1 /* 2 * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 #include "delay_estimator.h" 12 13 #include <assert.h> 14 #include <stdlib.h> 15 #include <string.h> 16 17 // Number of right shifts for scaling is linearly depending on number of bits in 18 // the far-end binary spectrum. 19 static const int kShiftsAtZero = 13; // Right shifts at zero binary spectrum. 20 static const int kShiftsLinearSlope = 3; 21 22 static const int32_t kProbabilityOffset = 1024; // 2 in Q9. 23 static const int32_t kProbabilityLowerLimit = 8704; // 17 in Q9. 24 static const int32_t kProbabilityMinSpread = 2816; // 5.5 in Q9. 25 26 // Counts and returns number of bits of a 32-bit word. 27 static int BitCount(uint32_t u32) { 28 uint32_t tmp = u32 - ((u32 >> 1) & 033333333333) - 29 ((u32 >> 2) & 011111111111); 30 tmp = ((tmp + (tmp >> 3)) & 030707070707); 31 tmp = (tmp + (tmp >> 6)); 32 tmp = (tmp + (tmp >> 12) + (tmp >> 24)) & 077; 33 34 return ((int) tmp); 35 } 36 37 // Compares the |binary_vector| with all rows of the |binary_matrix| and counts 38 // per row the number of times they have the same value. 39 // 40 // Inputs: 41 // - binary_vector : binary "vector" stored in a long 42 // - binary_matrix : binary "matrix" stored as a vector of long 43 // - matrix_size : size of binary "matrix" 44 // 45 // Output: 46 // - bit_counts : "Vector" stored as a long, containing for each 47 // row the number of times the matrix row and the 48 // input vector have the same value 49 // 50 static void BitCountComparison(uint32_t binary_vector, 51 const uint32_t* binary_matrix, 52 int matrix_size, 53 int32_t* bit_counts) { 54 int n = 0; 55 56 // Compare |binary_vector| with all rows of the |binary_matrix| 57 for (; n < matrix_size; n++) { 58 bit_counts[n] = (int32_t) BitCount(binary_vector ^ binary_matrix[n]); 59 } 60 } 61 62 int WebRtc_FreeBinaryDelayEstimator(BinaryDelayEstimator* handle) { 63 assert(handle != NULL); 64 65 if (handle->mean_bit_counts != NULL) { 66 free(handle->mean_bit_counts); 67 handle->mean_bit_counts = NULL; 68 } 69 if (handle->bit_counts != NULL) { 70 free(handle->bit_counts); 71 handle->bit_counts = NULL; 72 } 73 if (handle->binary_far_history != NULL) { 74 free(handle->binary_far_history); 75 handle->binary_far_history = NULL; 76 } 77 if (handle->binary_near_history != NULL) { 78 free(handle->binary_near_history); 79 handle->binary_near_history = NULL; 80 } 81 if (handle->far_bit_counts != NULL) { 82 free(handle->far_bit_counts); 83 handle->far_bit_counts = NULL; 84 } 85 86 free(handle); 87 88 return 0; 89 } 90 91 int WebRtc_CreateBinaryDelayEstimator(BinaryDelayEstimator** handle, 92 int max_delay, 93 int lookahead) { 94 BinaryDelayEstimator* self = NULL; 95 int history_size = max_delay + lookahead; 96 97 if (handle == NULL) { 98 return -1; 99 } 100 if (max_delay < 0) { 101 return -1; 102 } 103 if (lookahead < 0) { 104 return -1; 105 } 106 if (history_size < 2) { 107 // Must be this large for buffer shifting. 108 return -1; 109 } 110 111 self = malloc(sizeof(BinaryDelayEstimator)); 112 *handle = self; 113 if (self == NULL) { 114 return -1; 115 } 116 117 self->mean_bit_counts = NULL; 118 self->bit_counts = NULL; 119 self->binary_far_history = NULL; 120 self->far_bit_counts = NULL; 121 122 self->history_size = history_size; 123 self->near_history_size = lookahead + 1; 124 125 // Allocate memory for spectrum buffers. 126 self->mean_bit_counts = malloc(history_size * sizeof(int32_t)); 127 if (self->mean_bit_counts == NULL) { 128 WebRtc_FreeBinaryDelayEstimator(self); 129 self = NULL; 130 return -1; 131 } 132 self->bit_counts = malloc(history_size * sizeof(int32_t)); 133 if (self->bit_counts == NULL) { 134 WebRtc_FreeBinaryDelayEstimator(self); 135 self = NULL; 136 return -1; 137 } 138 // Allocate memory for history buffers. 139 self->binary_far_history = malloc(history_size * sizeof(uint32_t)); 140 if (self->binary_far_history == NULL) { 141 WebRtc_FreeBinaryDelayEstimator(self); 142 self = NULL; 143 return -1; 144 } 145 self->binary_near_history = malloc(self->near_history_size * 146 sizeof(uint32_t)); 147 if (self->binary_near_history == NULL) { 148 WebRtc_FreeBinaryDelayEstimator(self); 149 self = NULL; 150 return -1; 151 } 152 self->far_bit_counts = malloc(history_size * sizeof(int)); 153 if (self->far_bit_counts == NULL) { 154 WebRtc_FreeBinaryDelayEstimator(self); 155 self = NULL; 156 return -1; 157 } 158 159 return 0; 160 } 161 162 int WebRtc_InitBinaryDelayEstimator(BinaryDelayEstimator* handle) { 163 int i = 0; 164 assert(handle != NULL); 165 166 memset(handle->bit_counts, 0, sizeof(int32_t) * handle->history_size); 167 memset(handle->binary_far_history, 0, 168 sizeof(uint32_t) * handle->history_size); 169 memset(handle->binary_near_history, 0, 170 sizeof(uint32_t) * handle->near_history_size); 171 memset(handle->far_bit_counts, 0, sizeof(int) * handle->history_size); 172 for (i = 0; i < handle->history_size; ++i) { 173 handle->mean_bit_counts[i] = (20 << 9); // 20 in Q9. 174 } 175 handle->minimum_probability = (32 << 9); // 32 in Q9. 176 handle->last_delay_probability = (32 << 9); // 32 in Q9. 177 178 // Default return value if we're unable to estimate. -1 is used for errors. 179 handle->last_delay = -2; 180 181 return 0; 182 } 183 184 int WebRtc_ProcessBinarySpectrum(BinaryDelayEstimator* handle, 185 uint32_t binary_far_spectrum, 186 uint32_t binary_near_spectrum) { 187 int i = 0; 188 int candidate_delay = -1; 189 190 int32_t value_best_candidate = 16384; // 32 in Q9, (max |mean_bit_counts|). 191 int32_t value_worst_candidate = 0; 192 193 assert(handle != NULL); 194 // Shift binary spectrum history and insert current |binary_far_spectrum|. 195 memmove(&(handle->binary_far_history[1]), &(handle->binary_far_history[0]), 196 (handle->history_size - 1) * sizeof(uint32_t)); 197 handle->binary_far_history[0] = binary_far_spectrum; 198 199 // Shift history of far-end binary spectrum bit counts and insert bit count 200 // of current |binary_far_spectrum|. 201 memmove(&(handle->far_bit_counts[1]), &(handle->far_bit_counts[0]), 202 (handle->history_size - 1) * sizeof(int)); 203 handle->far_bit_counts[0] = BitCount(binary_far_spectrum); 204 205 if (handle->near_history_size > 1) { 206 // If we apply lookahead, shift near-end binary spectrum history. Insert 207 // current |binary_near_spectrum| and pull out the delayed one. 208 memmove(&(handle->binary_near_history[1]), 209 &(handle->binary_near_history[0]), 210 (handle->near_history_size - 1) * sizeof(uint32_t)); 211 handle->binary_near_history[0] = binary_near_spectrum; 212 binary_near_spectrum = 213 handle->binary_near_history[handle->near_history_size - 1]; 214 } 215 216 // Compare with delayed spectra and store the |bit_counts| for each delay. 217 BitCountComparison(binary_near_spectrum, 218 handle->binary_far_history, 219 handle->history_size, 220 handle->bit_counts); 221 222 // Update |mean_bit_counts|, which is the smoothed version of |bit_counts|. 223 for (i = 0; i < handle->history_size; i++) { 224 // |bit_counts| is constrained to [0, 32], meaning we can smooth with a 225 // factor up to 2^26. We use Q9. 226 int32_t bit_count = (handle->bit_counts[i] << 9); // Q9. 227 228 // Update |mean_bit_counts| only when far-end signal has something to 229 // contribute. If |far_bit_counts| is zero the far-end signal is weak and 230 // we likely have a poor echo condition, hence don't update. 231 if (handle->far_bit_counts[i] > 0) { 232 // Make number of right shifts piecewise linear w.r.t. |far_bit_counts|. 233 int shifts = kShiftsAtZero; 234 shifts -= (kShiftsLinearSlope * handle->far_bit_counts[i]) >> 4; 235 WebRtc_MeanEstimatorFix(bit_count, shifts, &(handle->mean_bit_counts[i])); 236 } 237 } 238 239 // Find |candidate_delay|, |value_best_candidate| and |value_worst_candidate| 240 // of |mean_bit_counts|. 241 for (i = 0; i < handle->history_size; i++) { 242 if (handle->mean_bit_counts[i] < value_best_candidate) { 243 value_best_candidate = handle->mean_bit_counts[i]; 244 candidate_delay = i; 245 } 246 if (handle->mean_bit_counts[i] > value_worst_candidate) { 247 value_worst_candidate = handle->mean_bit_counts[i]; 248 } 249 } 250 251 // The |value_best_candidate| is a good indicator on the probability of 252 // |candidate_delay| being an accurate delay (a small |value_best_candidate| 253 // means a good binary match). In the following sections we make a decision 254 // whether to update |last_delay| or not. 255 // 1) If the difference bit counts between the best and the worst delay 256 // candidates is too small we consider the situation to be unreliable and 257 // don't update |last_delay|. 258 // 2) If the situation is reliable we update |last_delay| if the value of the 259 // best candidate delay has a value less than 260 // i) an adaptive threshold |minimum_probability|, or 261 // ii) this corresponding value |last_delay_probability|, but updated at 262 // this time instant. 263 264 // Update |minimum_probability|. 265 if ((handle->minimum_probability > kProbabilityLowerLimit) && 266 (value_worst_candidate - value_best_candidate > kProbabilityMinSpread)) { 267 // The "hard" threshold can't be lower than 17 (in Q9). 268 // The valley in the curve also has to be distinct, i.e., the 269 // difference between |value_worst_candidate| and |value_best_candidate| has 270 // to be large enough. 271 int32_t threshold = value_best_candidate + kProbabilityOffset; 272 if (threshold < kProbabilityLowerLimit) { 273 threshold = kProbabilityLowerLimit; 274 } 275 if (handle->minimum_probability > threshold) { 276 handle->minimum_probability = threshold; 277 } 278 } 279 // Update |last_delay_probability|. 280 // We use a Markov type model, i.e., a slowly increasing level over time. 281 handle->last_delay_probability++; 282 if (value_worst_candidate > value_best_candidate + kProbabilityOffset) { 283 // Reliable delay value for usage. 284 if (value_best_candidate < handle->minimum_probability) { 285 handle->last_delay = candidate_delay; 286 } 287 if (value_best_candidate < handle->last_delay_probability) { 288 handle->last_delay = candidate_delay; 289 // Reset |last_delay_probability|. 290 handle->last_delay_probability = value_best_candidate; 291 } 292 } 293 294 return handle->last_delay; 295 } 296 297 int WebRtc_binary_last_delay(BinaryDelayEstimator* handle) { 298 assert(handle != NULL); 299 return handle->last_delay; 300 } 301 302 int WebRtc_history_size(BinaryDelayEstimator* handle) { 303 assert(handle != NULL); 304 return handle->history_size; 305 } 306 307 void WebRtc_MeanEstimatorFix(int32_t new_value, 308 int factor, 309 int32_t* mean_value) { 310 int32_t diff = new_value - *mean_value; 311 312 // mean_new = mean_value + ((new_value - mean_value) >> factor); 313 if (diff < 0) { 314 diff = -((-diff) >> factor); 315 } else { 316 diff = (diff >> factor); 317 } 318 *mean_value += diff; 319 } 320