Home | History | Annotate | Download | only in linux
      1 #ifndef __LINUX_CPUMASK_H
      2 #define __LINUX_CPUMASK_H
      3 
      4 /*
      5  * Cpumasks provide a bitmap suitable for representing the
      6  * set of CPU's in a system, one bit position per CPU number.
      7  *
      8  * See detailed comments in the file linux/bitmap.h describing the
      9  * data type on which these cpumasks are based.
     10  *
     11  * For details of cpumask_scnprintf() and cpumask_parse(),
     12  * see bitmap_scnprintf() and bitmap_parse() in lib/bitmap.c.
     13  * For details of cpulist_scnprintf() and cpulist_parse(), see
     14  * bitmap_scnlistprintf() and bitmap_parselist(), also in bitmap.c.
     15  * For details of cpu_remap(), see bitmap_bitremap in lib/bitmap.c
     16  * For details of cpus_remap(), see bitmap_remap in lib/bitmap.c.
     17  *
     18  * The available cpumask operations are:
     19  *
     20  * void cpu_set(cpu, mask)		turn on bit 'cpu' in mask
     21  * void cpu_clear(cpu, mask)		turn off bit 'cpu' in mask
     22  * void cpus_setall(mask)		set all bits
     23  * void cpus_clear(mask)		clear all bits
     24  * int cpu_isset(cpu, mask)		true iff bit 'cpu' set in mask
     25  * int cpu_test_and_set(cpu, mask)	test and set bit 'cpu' in mask
     26  *
     27  * void cpus_and(dst, src1, src2)	dst = src1 & src2  [intersection]
     28  * void cpus_or(dst, src1, src2)	dst = src1 | src2  [union]
     29  * void cpus_xor(dst, src1, src2)	dst = src1 ^ src2
     30  * void cpus_andnot(dst, src1, src2)	dst = src1 & ~src2
     31  * void cpus_complement(dst, src)	dst = ~src
     32  *
     33  * int cpus_equal(mask1, mask2)		Does mask1 == mask2?
     34  * int cpus_intersects(mask1, mask2)	Do mask1 and mask2 intersect?
     35  * int cpus_subset(mask1, mask2)	Is mask1 a subset of mask2?
     36  * int cpus_empty(mask)			Is mask empty (no bits sets)?
     37  * int cpus_full(mask)			Is mask full (all bits sets)?
     38  * int cpus_weight(mask)		Hamming weigh - number of set bits
     39  *
     40  * void cpus_shift_right(dst, src, n)	Shift right
     41  * void cpus_shift_left(dst, src, n)	Shift left
     42  *
     43  * int first_cpu(mask)			Number lowest set bit, or NR_CPUS
     44  * int next_cpu(cpu, mask)		Next cpu past 'cpu', or NR_CPUS
     45  *
     46  * cpumask_t cpumask_of_cpu(cpu)	Return cpumask with bit 'cpu' set
     47  * CPU_MASK_ALL				Initializer - all bits set
     48  * CPU_MASK_NONE			Initializer - no bits set
     49  * unsigned long *cpus_addr(mask)	Array of unsigned long's in mask
     50  *
     51  * int cpumask_scnprintf(buf, len, mask) Format cpumask for printing
     52  * int cpumask_parse(ubuf, ulen, mask)	Parse ascii string as cpumask
     53  * int cpulist_scnprintf(buf, len, mask) Format cpumask as list for printing
     54  * int cpulist_parse(buf, map)		Parse ascii string as cpulist
     55  * int cpu_remap(oldbit, old, new)	newbit = map(old, new)(oldbit)
     56  * int cpus_remap(dst, src, old, new)	*dst = map(old, new)(src)
     57  *
     58  * for_each_cpu_mask(cpu, mask)		for-loop cpu over mask
     59  *
     60  * int num_online_cpus()		Number of online CPUs
     61  * int num_possible_cpus()		Number of all possible CPUs
     62  * int num_present_cpus()		Number of present CPUs
     63  *
     64  * int cpu_online(cpu)			Is some cpu online?
     65  * int cpu_possible(cpu)		Is some cpu possible?
     66  * int cpu_present(cpu)			Is some cpu present (can schedule)?
     67  *
     68  * int any_online_cpu(mask)		First online cpu in mask
     69  *
     70  * for_each_possible_cpu(cpu)		for-loop cpu over cpu_possible_map
     71  * for_each_online_cpu(cpu)		for-loop cpu over cpu_online_map
     72  * for_each_present_cpu(cpu)		for-loop cpu over cpu_present_map
     73  *
     74  * Subtlety:
     75  * 1) The 'type-checked' form of cpu_isset() causes gcc (3.3.2, anyway)
     76  *    to generate slightly worse code.  Note for example the additional
     77  *    40 lines of assembly code compiling the "for each possible cpu"
     78  *    loops buried in the disk_stat_read() macros calls when compiling
     79  *    drivers/block/genhd.c (arch i386, CONFIG_SMP=y).  So use a simple
     80  *    one-line #define for cpu_isset(), instead of wrapping an inline
     81  *    inside a macro, the way we do the other calls.
     82  */
     83 
     84 #include <linux/kernel.h>
     85 #include <linux/threads.h>
     86 #include <linux/bitmap.h>
     87 
     88 typedef struct { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t;
     89 extern cpumask_t _unused_cpumask_arg_;
     90 
     91 #define cpu_set(cpu, dst) __cpu_set((cpu), &(dst))
     92 static inline void __cpu_set(int cpu, volatile cpumask_t *dstp)
     93 {
     94 	set_bit(cpu, dstp->bits);
     95 }
     96 
     97 #define cpu_clear(cpu, dst) __cpu_clear((cpu), &(dst))
     98 static inline void __cpu_clear(int cpu, volatile cpumask_t *dstp)
     99 {
    100 	clear_bit(cpu, dstp->bits);
    101 }
    102 
    103 #define cpus_setall(dst) __cpus_setall(&(dst), NR_CPUS)
    104 static inline void __cpus_setall(cpumask_t *dstp, int nbits)
    105 {
    106 	bitmap_fill(dstp->bits, nbits);
    107 }
    108 
    109 #define cpus_clear(dst) __cpus_clear(&(dst), NR_CPUS)
    110 static inline void __cpus_clear(cpumask_t *dstp, int nbits)
    111 {
    112 	bitmap_zero(dstp->bits, nbits);
    113 }
    114 
    115 /* No static inline type checking - see Subtlety (1) above. */
    116 #define cpu_isset(cpu, cpumask) test_bit((cpu), (cpumask).bits)
    117 
    118 #define cpu_test_and_set(cpu, cpumask) __cpu_test_and_set((cpu), &(cpumask))
    119 static inline int __cpu_test_and_set(int cpu, cpumask_t *addr)
    120 {
    121 	return test_and_set_bit(cpu, addr->bits);
    122 }
    123 
    124 #define cpus_and(dst, src1, src2) __cpus_and(&(dst), &(src1), &(src2), NR_CPUS)
    125 static inline void __cpus_and(cpumask_t *dstp, const cpumask_t *src1p,
    126 					const cpumask_t *src2p, int nbits)
    127 {
    128 	bitmap_and(dstp->bits, src1p->bits, src2p->bits, nbits);
    129 }
    130 
    131 #define cpus_or(dst, src1, src2) __cpus_or(&(dst), &(src1), &(src2), NR_CPUS)
    132 static inline void __cpus_or(cpumask_t *dstp, const cpumask_t *src1p,
    133 					const cpumask_t *src2p, int nbits)
    134 {
    135 	bitmap_or(dstp->bits, src1p->bits, src2p->bits, nbits);
    136 }
    137 
    138 #define cpus_xor(dst, src1, src2) __cpus_xor(&(dst), &(src1), &(src2), NR_CPUS)
    139 static inline void __cpus_xor(cpumask_t *dstp, const cpumask_t *src1p,
    140 					const cpumask_t *src2p, int nbits)
    141 {
    142 	bitmap_xor(dstp->bits, src1p->bits, src2p->bits, nbits);
    143 }
    144 
    145 #define cpus_andnot(dst, src1, src2) \
    146 				__cpus_andnot(&(dst), &(src1), &(src2), NR_CPUS)
    147 static inline void __cpus_andnot(cpumask_t *dstp, const cpumask_t *src1p,
    148 					const cpumask_t *src2p, int nbits)
    149 {
    150 	bitmap_andnot(dstp->bits, src1p->bits, src2p->bits, nbits);
    151 }
    152 
    153 #define cpus_complement(dst, src) __cpus_complement(&(dst), &(src), NR_CPUS)
    154 static inline void __cpus_complement(cpumask_t *dstp,
    155 					const cpumask_t *srcp, int nbits)
    156 {
    157 	bitmap_complement(dstp->bits, srcp->bits, nbits);
    158 }
    159 
    160 #define cpus_equal(src1, src2) __cpus_equal(&(src1), &(src2), NR_CPUS)
    161 static inline int __cpus_equal(const cpumask_t *src1p,
    162 					const cpumask_t *src2p, int nbits)
    163 {
    164 	return bitmap_equal(src1p->bits, src2p->bits, nbits);
    165 }
    166 
    167 #define cpus_intersects(src1, src2) __cpus_intersects(&(src1), &(src2), NR_CPUS)
    168 static inline int __cpus_intersects(const cpumask_t *src1p,
    169 					const cpumask_t *src2p, int nbits)
    170 {
    171 	return bitmap_intersects(src1p->bits, src2p->bits, nbits);
    172 }
    173 
    174 #define cpus_subset(src1, src2) __cpus_subset(&(src1), &(src2), NR_CPUS)
    175 static inline int __cpus_subset(const cpumask_t *src1p,
    176 					const cpumask_t *src2p, int nbits)
    177 {
    178 	return bitmap_subset(src1p->bits, src2p->bits, nbits);
    179 }
    180 
    181 #define cpus_empty(src) __cpus_empty(&(src), NR_CPUS)
    182 static inline int __cpus_empty(const cpumask_t *srcp, int nbits)
    183 {
    184 	return bitmap_empty(srcp->bits, nbits);
    185 }
    186 
    187 #define cpus_full(cpumask) __cpus_full(&(cpumask), NR_CPUS)
    188 static inline int __cpus_full(const cpumask_t *srcp, int nbits)
    189 {
    190 	return bitmap_full(srcp->bits, nbits);
    191 }
    192 
    193 #define cpus_weight(cpumask) __cpus_weight(&(cpumask), NR_CPUS)
    194 static inline int __cpus_weight(const cpumask_t *srcp, int nbits)
    195 {
    196 	return bitmap_weight(srcp->bits, nbits);
    197 }
    198 
    199 #define cpus_shift_right(dst, src, n) \
    200 			__cpus_shift_right(&(dst), &(src), (n), NR_CPUS)
    201 static inline void __cpus_shift_right(cpumask_t *dstp,
    202 					const cpumask_t *srcp, int n, int nbits)
    203 {
    204 	bitmap_shift_right(dstp->bits, srcp->bits, n, nbits);
    205 }
    206 
    207 #define cpus_shift_left(dst, src, n) \
    208 			__cpus_shift_left(&(dst), &(src), (n), NR_CPUS)
    209 static inline void __cpus_shift_left(cpumask_t *dstp,
    210 					const cpumask_t *srcp, int n, int nbits)
    211 {
    212 	bitmap_shift_left(dstp->bits, srcp->bits, n, nbits);
    213 }
    214 
    215 #ifdef CONFIG_SMP
    216 int __first_cpu(const cpumask_t *srcp);
    217 #define first_cpu(src) __first_cpu(&(src))
    218 int __next_cpu(int n, const cpumask_t *srcp);
    219 #define next_cpu(n, src) __next_cpu((n), &(src))
    220 #else
    221 #define first_cpu(src)		0
    222 #define next_cpu(n, src)	1
    223 #endif
    224 
    225 #define cpumask_of_cpu(cpu)						\
    226 ({									\
    227 	typeof(_unused_cpumask_arg_) m;					\
    228 	if (sizeof(m) == sizeof(unsigned long)) {			\
    229 		m.bits[0] = 1UL<<(cpu);					\
    230 	} else {							\
    231 		cpus_clear(m);						\
    232 		cpu_set((cpu), m);					\
    233 	}								\
    234 	m;								\
    235 })
    236 
    237 #define CPU_MASK_LAST_WORD BITMAP_LAST_WORD_MASK(NR_CPUS)
    238 
    239 #if NR_CPUS <= BITS_PER_LONG
    240 
    241 #define CPU_MASK_ALL							\
    242 (cpumask_t) { {								\
    243 	[BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD			\
    244 } }
    245 
    246 #else
    247 
    248 #define CPU_MASK_ALL							\
    249 (cpumask_t) { {								\
    250 	[0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL,			\
    251 	[BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD			\
    252 } }
    253 
    254 #endif
    255 
    256 #define CPU_MASK_NONE							\
    257 (cpumask_t) { {								\
    258 	[0 ... BITS_TO_LONGS(NR_CPUS)-1] =  0UL				\
    259 } }
    260 
    261 #define CPU_MASK_CPU0							\
    262 (cpumask_t) { {								\
    263 	[0] =  1UL							\
    264 } }
    265 
    266 #define cpus_addr(src) ((src).bits)
    267 
    268 #define cpumask_scnprintf(buf, len, src) \
    269 			__cpumask_scnprintf((buf), (len), &(src), NR_CPUS)
    270 static inline int __cpumask_scnprintf(char *buf, int len,
    271 					const cpumask_t *srcp, int nbits)
    272 {
    273 	return bitmap_scnprintf(buf, len, srcp->bits, nbits);
    274 }
    275 
    276 #define cpumask_parse(ubuf, ulen, dst) \
    277 			__cpumask_parse((ubuf), (ulen), &(dst), NR_CPUS)
    278 static inline int __cpumask_parse(const char __user *buf, int len,
    279 					cpumask_t *dstp, int nbits)
    280 {
    281 	return bitmap_parse(buf, len, dstp->bits, nbits);
    282 }
    283 
    284 #define cpulist_scnprintf(buf, len, src) \
    285 			__cpulist_scnprintf((buf), (len), &(src), NR_CPUS)
    286 static inline int __cpulist_scnprintf(char *buf, int len,
    287 					const cpumask_t *srcp, int nbits)
    288 {
    289 	return bitmap_scnlistprintf(buf, len, srcp->bits, nbits);
    290 }
    291 
    292 #define cpulist_parse(buf, dst) __cpulist_parse((buf), &(dst), NR_CPUS)
    293 static inline int __cpulist_parse(const char *buf, cpumask_t *dstp, int nbits)
    294 {
    295 	return bitmap_parselist(buf, dstp->bits, nbits);
    296 }
    297 
    298 #define cpu_remap(oldbit, old, new) \
    299 		__cpu_remap((oldbit), &(old), &(new), NR_CPUS)
    300 static inline int __cpu_remap(int oldbit,
    301 		const cpumask_t *oldp, const cpumask_t *newp, int nbits)
    302 {
    303 	return bitmap_bitremap(oldbit, oldp->bits, newp->bits, nbits);
    304 }
    305 
    306 #define cpus_remap(dst, src, old, new) \
    307 		__cpus_remap(&(dst), &(src), &(old), &(new), NR_CPUS)
    308 static inline void __cpus_remap(cpumask_t *dstp, const cpumask_t *srcp,
    309 		const cpumask_t *oldp, const cpumask_t *newp, int nbits)
    310 {
    311 	bitmap_remap(dstp->bits, srcp->bits, oldp->bits, newp->bits, nbits);
    312 }
    313 
    314 #if NR_CPUS > 1
    315 #define for_each_cpu_mask(cpu, mask)		\
    316 	for ((cpu) = first_cpu(mask);		\
    317 		(cpu) < NR_CPUS;		\
    318 		(cpu) = next_cpu((cpu), (mask)))
    319 #else /* NR_CPUS == 1 */
    320 #define for_each_cpu_mask(cpu, mask)		\
    321 	for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask)
    322 #endif /* NR_CPUS */
    323 
    324 /*
    325  * The following particular system cpumasks and operations manage
    326  * possible, present and online cpus.  Each of them is a fixed size
    327  * bitmap of size NR_CPUS.
    328  *
    329  *  #ifdef CONFIG_HOTPLUG_CPU
    330  *     cpu_possible_map - has bit 'cpu' set iff cpu is populatable
    331  *     cpu_present_map  - has bit 'cpu' set iff cpu is populated
    332  *     cpu_online_map   - has bit 'cpu' set iff cpu available to scheduler
    333  *  #else
    334  *     cpu_possible_map - has bit 'cpu' set iff cpu is populated
    335  *     cpu_present_map  - copy of cpu_possible_map
    336  *     cpu_online_map   - has bit 'cpu' set iff cpu available to scheduler
    337  *  #endif
    338  *
    339  *  In either case, NR_CPUS is fixed at compile time, as the static
    340  *  size of these bitmaps.  The cpu_possible_map is fixed at boot
    341  *  time, as the set of CPU id's that it is possible might ever
    342  *  be plugged in at anytime during the life of that system boot.
    343  *  The cpu_present_map is dynamic(*), representing which CPUs
    344  *  are currently plugged in.  And cpu_online_map is the dynamic
    345  *  subset of cpu_present_map, indicating those CPUs available
    346  *  for scheduling.
    347  *
    348  *  If HOTPLUG is enabled, then cpu_possible_map is forced to have
    349  *  all NR_CPUS bits set, otherwise it is just the set of CPUs that
    350  *  ACPI reports present at boot.
    351  *
    352  *  If HOTPLUG is enabled, then cpu_present_map varies dynamically,
    353  *  depending on what ACPI reports as currently plugged in, otherwise
    354  *  cpu_present_map is just a copy of cpu_possible_map.
    355  *
    356  *  (*) Well, cpu_present_map is dynamic in the hotplug case.  If not
    357  *      hotplug, it's a copy of cpu_possible_map, hence fixed at boot.
    358  *
    359  * Subtleties:
    360  * 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode
    361  *    assumption that their single CPU is online.  The UP
    362  *    cpu_{online,possible,present}_maps are placebos.  Changing them
    363  *    will have no useful affect on the following num_*_cpus()
    364  *    and cpu_*() macros in the UP case.  This ugliness is a UP
    365  *    optimization - don't waste any instructions or memory references
    366  *    asking if you're online or how many CPUs there are if there is
    367  *    only one CPU.
    368  * 2) Most SMP arch's #define some of these maps to be some
    369  *    other map specific to that arch.  Therefore, the following
    370  *    must be #define macros, not inlines.  To see why, examine
    371  *    the assembly code produced by the following.  Note that
    372  *    set1() writes phys_x_map, but set2() writes x_map:
    373  *        int x_map, phys_x_map;
    374  *        #define set1(a) x_map = a
    375  *        inline void set2(int a) { x_map = a; }
    376  *        #define x_map phys_x_map
    377  *        main(){ set1(3); set2(5); }
    378  */
    379 
    380 extern cpumask_t cpu_possible_map;
    381 extern cpumask_t cpu_online_map;
    382 extern cpumask_t cpu_present_map;
    383 
    384 #if NR_CPUS > 1
    385 #define num_online_cpus()	cpus_weight(cpu_online_map)
    386 #define num_possible_cpus()	cpus_weight(cpu_possible_map)
    387 #define num_present_cpus()	cpus_weight(cpu_present_map)
    388 #define cpu_online(cpu)		cpu_isset((cpu), cpu_online_map)
    389 #define cpu_possible(cpu)	cpu_isset((cpu), cpu_possible_map)
    390 #define cpu_present(cpu)	cpu_isset((cpu), cpu_present_map)
    391 #else
    392 #define num_online_cpus()	1
    393 #define num_possible_cpus()	1
    394 #define num_present_cpus()	1
    395 #define cpu_online(cpu)		((cpu) == 0)
    396 #define cpu_possible(cpu)	((cpu) == 0)
    397 #define cpu_present(cpu)	((cpu) == 0)
    398 #endif
    399 
    400 #ifdef CONFIG_SMP
    401 int highest_possible_processor_id(void);
    402 #define any_online_cpu(mask) __any_online_cpu(&(mask))
    403 int __any_online_cpu(const cpumask_t *mask);
    404 #else
    405 #define highest_possible_processor_id()	0
    406 #define any_online_cpu(mask)		0
    407 #endif
    408 
    409 #define for_each_possible_cpu(cpu)  for_each_cpu_mask((cpu), cpu_possible_map)
    410 #define for_each_online_cpu(cpu)  for_each_cpu_mask((cpu), cpu_online_map)
    411 #define for_each_present_cpu(cpu) for_each_cpu_mask((cpu), cpu_present_map)
    412 
    413 #endif /* __LINUX_CPUMASK_H */
    414