Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2011 Gael Guennebaud <g.gael (at) free.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #include "sparse.h"
     11 #include <Eigen/SparseCore>
     12 
     13 template<typename Solver, typename Rhs, typename DenseMat, typename DenseRhs>
     14 void check_sparse_solving(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const DenseMat& dA, const DenseRhs& db)
     15 {
     16   typedef typename Solver::MatrixType Mat;
     17   typedef typename Mat::Scalar Scalar;
     18 
     19   DenseRhs refX = dA.lu().solve(db);
     20 
     21   Rhs x(b.rows(), b.cols());
     22   Rhs oldb = b;
     23 
     24   solver.compute(A);
     25   if (solver.info() != Success)
     26   {
     27     std::cerr << "sparse solver testing: factorization failed (check_sparse_solving)\n";
     28     exit(0);
     29     return;
     30   }
     31   x = solver.solve(b);
     32   if (solver.info() != Success)
     33   {
     34     std::cerr << "sparse solver testing: solving failed\n";
     35     return;
     36   }
     37   VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
     38 
     39   VERIFY(x.isApprox(refX,test_precision<Scalar>()));
     40 
     41   x.setZero();
     42   // test the analyze/factorize API
     43   solver.analyzePattern(A);
     44   solver.factorize(A);
     45   if (solver.info() != Success)
     46   {
     47     std::cerr << "sparse solver testing: factorization failed (check_sparse_solving)\n";
     48     exit(0);
     49     return;
     50   }
     51   x = solver.solve(b);
     52   if (solver.info() != Success)
     53   {
     54     std::cerr << "sparse solver testing: solving failed\n";
     55     return;
     56   }
     57   VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
     58 
     59   VERIFY(x.isApprox(refX,test_precision<Scalar>()));
     60 
     61   // test Block as the result and rhs:
     62   {
     63     DenseRhs x(db.rows(), db.cols());
     64     DenseRhs b(db), oldb(db);
     65     x.setZero();
     66     x.block(0,0,x.rows(),x.cols()) = solver.solve(b.block(0,0,b.rows(),b.cols()));
     67     VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
     68     VERIFY(x.isApprox(refX,test_precision<Scalar>()));
     69   }
     70 }
     71 
     72 template<typename Solver, typename Rhs>
     73 void check_sparse_solving_real_cases(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const Rhs& refX)
     74 {
     75   typedef typename Solver::MatrixType Mat;
     76   typedef typename Mat::Scalar Scalar;
     77   typedef typename Mat::RealScalar RealScalar;
     78 
     79   Rhs x(b.rows(), b.cols());
     80 
     81   solver.compute(A);
     82   if (solver.info() != Success)
     83   {
     84     std::cerr << "sparse solver testing: factorization failed (check_sparse_solving_real_cases)\n";
     85     exit(0);
     86     return;
     87   }
     88   x = solver.solve(b);
     89   if (solver.info() != Success)
     90   {
     91     std::cerr << "sparse solver testing: solving failed\n";
     92     return;
     93   }
     94 
     95   RealScalar res_error;
     96   // Compute the norm of the relative error
     97   if(refX.size() != 0)
     98     res_error = (refX - x).norm()/refX.norm();
     99   else
    100   {
    101     // Compute the relative residual norm
    102     res_error = (b - A * x).norm()/b.norm();
    103   }
    104   if (res_error > test_precision<Scalar>() ){
    105     std::cerr << "Test " << g_test_stack.back() << " failed in "EI_PP_MAKE_STRING(__FILE__)
    106     << " (" << EI_PP_MAKE_STRING(__LINE__) << ")" << std::endl << std::endl;
    107     abort();
    108   }
    109 
    110 }
    111 template<typename Solver, typename DenseMat>
    112 void check_sparse_determinant(Solver& solver, const typename Solver::MatrixType& A, const DenseMat& dA)
    113 {
    114   typedef typename Solver::MatrixType Mat;
    115   typedef typename Mat::Scalar Scalar;
    116   typedef typename Mat::RealScalar RealScalar;
    117 
    118   solver.compute(A);
    119   if (solver.info() != Success)
    120   {
    121     std::cerr << "sparse solver testing: factorization failed (check_sparse_determinant)\n";
    122     return;
    123   }
    124 
    125   Scalar refDet = dA.determinant();
    126   VERIFY_IS_APPROX(refDet,solver.determinant());
    127 }
    128 
    129 
    130 template<typename Solver, typename DenseMat>
    131 int generate_sparse_spd_problem(Solver& , typename Solver::MatrixType& A, typename Solver::MatrixType& halfA, DenseMat& dA, int maxSize = 300)
    132 {
    133   typedef typename Solver::MatrixType Mat;
    134   typedef typename Mat::Scalar Scalar;
    135   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
    136 
    137   int size = internal::random<int>(1,maxSize);
    138   double density = (std::max)(8./(size*size), 0.01);
    139 
    140   Mat M(size, size);
    141   DenseMatrix dM(size, size);
    142 
    143   initSparse<Scalar>(density, dM, M, ForceNonZeroDiag);
    144 
    145   A = M * M.adjoint();
    146   dA = dM * dM.adjoint();
    147 
    148   halfA.resize(size,size);
    149   halfA.template selfadjointView<Solver::UpLo>().rankUpdate(M);
    150 
    151   return size;
    152 }
    153 
    154 
    155 #ifdef TEST_REAL_CASES
    156 template<typename Scalar>
    157 inline std::string get_matrixfolder()
    158 {
    159   std::string mat_folder = TEST_REAL_CASES;
    160   if( internal::is_same<Scalar, std::complex<float> >::value || internal::is_same<Scalar, std::complex<double> >::value )
    161     mat_folder  = mat_folder + static_cast<string>("/complex/");
    162   else
    163     mat_folder = mat_folder + static_cast<string>("/real/");
    164   return mat_folder;
    165 }
    166 #endif
    167 
    168 template<typename Solver> void check_sparse_spd_solving(Solver& solver)
    169 {
    170   typedef typename Solver::MatrixType Mat;
    171   typedef typename Mat::Scalar Scalar;
    172   typedef typename Mat::Index Index;
    173   typedef SparseMatrix<Scalar,ColMajor> SpMat;
    174   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
    175   typedef Matrix<Scalar,Dynamic,1> DenseVector;
    176 
    177   // generate the problem
    178   Mat A, halfA;
    179   DenseMatrix dA;
    180   int size = generate_sparse_spd_problem(solver, A, halfA, dA);
    181 
    182   // generate the right hand sides
    183   int rhsCols = internal::random<int>(1,16);
    184   double density = (std::max)(8./(size*rhsCols), 0.1);
    185   SpMat B(size,rhsCols);
    186   DenseVector b = DenseVector::Random(size);
    187   DenseMatrix dB(size,rhsCols);
    188   initSparse<Scalar>(density, dB, B, ForceNonZeroDiag);
    189 
    190   for (int i = 0; i < g_repeat; i++) {
    191     check_sparse_solving(solver, A,     b,  dA, b);
    192     check_sparse_solving(solver, halfA, b,  dA, b);
    193     check_sparse_solving(solver, A,     dB, dA, dB);
    194     check_sparse_solving(solver, halfA, dB, dA, dB);
    195     check_sparse_solving(solver, A,     B,  dA, dB);
    196     check_sparse_solving(solver, halfA, B,  dA, dB);
    197   }
    198 
    199   // First, get the folder
    200 #ifdef TEST_REAL_CASES
    201   if (internal::is_same<Scalar, float>::value
    202       || internal::is_same<Scalar, std::complex<float> >::value)
    203     return ;
    204 
    205   std::string mat_folder = get_matrixfolder<Scalar>();
    206   MatrixMarketIterator<Scalar> it(mat_folder);
    207   for (; it; ++it)
    208   {
    209     if (it.sym() == SPD){
    210       Mat halfA;
    211       PermutationMatrix<Dynamic, Dynamic, Index> pnull;
    212       halfA.template selfadjointView<Solver::UpLo>() = it.matrix().template triangularView<Eigen::Lower>().twistedBy(pnull);
    213 
    214       std::cout<< " ==== SOLVING WITH MATRIX " << it.matname() << " ==== \n";
    215       check_sparse_solving_real_cases(solver, it.matrix(), it.rhs(), it.refX());
    216       check_sparse_solving_real_cases(solver, halfA, it.rhs(), it.refX());
    217     }
    218   }
    219 #endif
    220 }
    221 
    222 template<typename Solver> void check_sparse_spd_determinant(Solver& solver)
    223 {
    224   typedef typename Solver::MatrixType Mat;
    225   typedef typename Mat::Scalar Scalar;
    226   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
    227 
    228   // generate the problem
    229   Mat A, halfA;
    230   DenseMatrix dA;
    231   generate_sparse_spd_problem(solver, A, halfA, dA, 30);
    232 
    233   for (int i = 0; i < g_repeat; i++) {
    234     check_sparse_determinant(solver, A,     dA);
    235     check_sparse_determinant(solver, halfA, dA );
    236   }
    237 }
    238 
    239 template<typename Solver, typename DenseMat>
    240 int generate_sparse_square_problem(Solver&, typename Solver::MatrixType& A, DenseMat& dA, int maxSize = 300)
    241 {
    242   typedef typename Solver::MatrixType Mat;
    243   typedef typename Mat::Scalar Scalar;
    244   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
    245 
    246   int size = internal::random<int>(1,maxSize);
    247   double density = (std::max)(8./(size*size), 0.01);
    248 
    249   A.resize(size,size);
    250   dA.resize(size,size);
    251 
    252   initSparse<Scalar>(density, dA, A, ForceNonZeroDiag);
    253 
    254   return size;
    255 }
    256 
    257 template<typename Solver> void check_sparse_square_solving(Solver& solver)
    258 {
    259   typedef typename Solver::MatrixType Mat;
    260   typedef typename Mat::Scalar Scalar;
    261   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
    262   typedef Matrix<Scalar,Dynamic,1> DenseVector;
    263 
    264   int rhsCols = internal::random<int>(1,16);
    265 
    266   Mat A;
    267   DenseMatrix dA;
    268   int size = generate_sparse_square_problem(solver, A, dA);
    269 
    270   DenseVector b = DenseVector::Random(size);
    271   DenseMatrix dB = DenseMatrix::Random(size,rhsCols);
    272   A.makeCompressed();
    273   for (int i = 0; i < g_repeat; i++) {
    274     check_sparse_solving(solver, A, b,  dA, b);
    275     check_sparse_solving(solver, A, dB, dA, dB);
    276   }
    277 
    278   // First, get the folder
    279 #ifdef TEST_REAL_CASES
    280   if (internal::is_same<Scalar, float>::value
    281       || internal::is_same<Scalar, std::complex<float> >::value)
    282     return ;
    283 
    284   std::string mat_folder = get_matrixfolder<Scalar>();
    285   MatrixMarketIterator<Scalar> it(mat_folder);
    286   for (; it; ++it)
    287   {
    288     std::cout<< " ==== SOLVING WITH MATRIX " << it.matname() << " ==== \n";
    289     check_sparse_solving_real_cases(solver, it.matrix(), it.rhs(), it.refX());
    290   }
    291 #endif
    292 
    293 }
    294 
    295 template<typename Solver> void check_sparse_square_determinant(Solver& solver)
    296 {
    297   typedef typename Solver::MatrixType Mat;
    298   typedef typename Mat::Scalar Scalar;
    299   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
    300 
    301   // generate the problem
    302   Mat A;
    303   DenseMatrix dA;
    304   generate_sparse_square_problem(solver, A, dA, 30);
    305   A.makeCompressed();
    306   for (int i = 0; i < g_repeat; i++) {
    307     check_sparse_determinant(solver, A, dA);
    308   }
    309 }
    310