1 /* 2 * EAP peer state machines (RFC 4137) 3 * Copyright (c) 2004-2012, Jouni Malinen <j (at) w1.fi> 4 * 5 * This software may be distributed under the terms of the BSD license. 6 * See README for more details. 7 * 8 * This file implements the Peer State Machine as defined in RFC 4137. The used 9 * states and state transitions match mostly with the RFC. However, there are 10 * couple of additional transitions for working around small issues noticed 11 * during testing. These exceptions are explained in comments within the 12 * functions in this file. The method functions, m.func(), are similar to the 13 * ones used in RFC 4137, but some small changes have used here to optimize 14 * operations and to add functionality needed for fast re-authentication 15 * (session resumption). 16 */ 17 18 #include "includes.h" 19 20 #include "common.h" 21 #include "pcsc_funcs.h" 22 #include "state_machine.h" 23 #include "ext_password.h" 24 #include "crypto/crypto.h" 25 #include "crypto/tls.h" 26 #include "common/wpa_ctrl.h" 27 #include "eap_common/eap_wsc_common.h" 28 #include "eap_i.h" 29 #include "eap_config.h" 30 31 #define STATE_MACHINE_DATA struct eap_sm 32 #define STATE_MACHINE_DEBUG_PREFIX "EAP" 33 34 #define EAP_MAX_AUTH_ROUNDS 50 35 #define EAP_CLIENT_TIMEOUT_DEFAULT 60 36 37 38 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor, 39 EapType method); 40 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id); 41 static void eap_sm_processIdentity(struct eap_sm *sm, 42 const struct wpabuf *req); 43 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req); 44 static struct wpabuf * eap_sm_buildNotify(int id); 45 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req); 46 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG) 47 static const char * eap_sm_method_state_txt(EapMethodState state); 48 static const char * eap_sm_decision_txt(EapDecision decision); 49 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 50 51 52 53 static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var) 54 { 55 return sm->eapol_cb->get_bool(sm->eapol_ctx, var); 56 } 57 58 59 static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var, 60 Boolean value) 61 { 62 sm->eapol_cb->set_bool(sm->eapol_ctx, var, value); 63 } 64 65 66 static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var) 67 { 68 return sm->eapol_cb->get_int(sm->eapol_ctx, var); 69 } 70 71 72 static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var, 73 unsigned int value) 74 { 75 sm->eapol_cb->set_int(sm->eapol_ctx, var, value); 76 } 77 78 79 static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm) 80 { 81 return sm->eapol_cb->get_eapReqData(sm->eapol_ctx); 82 } 83 84 85 static void eap_notify_status(struct eap_sm *sm, const char *status, 86 const char *parameter) 87 { 88 wpa_printf(MSG_DEBUG, "EAP: Status notification: %s (param=%s)", 89 status, parameter); 90 if (sm->eapol_cb->notify_status) 91 sm->eapol_cb->notify_status(sm->eapol_ctx, status, parameter); 92 } 93 94 95 static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt) 96 { 97 ext_password_free(sm->ext_pw_buf); 98 sm->ext_pw_buf = NULL; 99 100 if (sm->m == NULL || sm->eap_method_priv == NULL) 101 return; 102 103 wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method " 104 "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt); 105 sm->m->deinit(sm, sm->eap_method_priv); 106 sm->eap_method_priv = NULL; 107 sm->m = NULL; 108 } 109 110 111 /** 112 * eap_allowed_method - Check whether EAP method is allowed 113 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 114 * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types 115 * @method: EAP type 116 * Returns: 1 = allowed EAP method, 0 = not allowed 117 */ 118 int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method) 119 { 120 struct eap_peer_config *config = eap_get_config(sm); 121 int i; 122 struct eap_method_type *m; 123 124 if (config == NULL || config->eap_methods == NULL) 125 return 1; 126 127 m = config->eap_methods; 128 for (i = 0; m[i].vendor != EAP_VENDOR_IETF || 129 m[i].method != EAP_TYPE_NONE; i++) { 130 if (m[i].vendor == vendor && m[i].method == method) 131 return 1; 132 } 133 return 0; 134 } 135 136 137 /* 138 * This state initializes state machine variables when the machine is 139 * activated (portEnabled = TRUE). This is also used when re-starting 140 * authentication (eapRestart == TRUE). 141 */ 142 SM_STATE(EAP, INITIALIZE) 143 { 144 SM_ENTRY(EAP, INITIALIZE); 145 if (sm->fast_reauth && sm->m && sm->m->has_reauth_data && 146 sm->m->has_reauth_data(sm, sm->eap_method_priv) && 147 !sm->prev_failure) { 148 wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for " 149 "fast reauthentication"); 150 sm->m->deinit_for_reauth(sm, sm->eap_method_priv); 151 } else { 152 eap_deinit_prev_method(sm, "INITIALIZE"); 153 } 154 sm->selectedMethod = EAP_TYPE_NONE; 155 sm->methodState = METHOD_NONE; 156 sm->allowNotifications = TRUE; 157 sm->decision = DECISION_FAIL; 158 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT; 159 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout); 160 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE); 161 eapol_set_bool(sm, EAPOL_eapFail, FALSE); 162 os_free(sm->eapKeyData); 163 sm->eapKeyData = NULL; 164 os_free(sm->eapSessionId); 165 sm->eapSessionId = NULL; 166 sm->eapKeyAvailable = FALSE; 167 eapol_set_bool(sm, EAPOL_eapRestart, FALSE); 168 sm->lastId = -1; /* new session - make sure this does not match with 169 * the first EAP-Packet */ 170 /* 171 * RFC 4137 does not reset eapResp and eapNoResp here. However, this 172 * seemed to be able to trigger cases where both were set and if EAPOL 173 * state machine uses eapNoResp first, it may end up not sending a real 174 * reply correctly. This occurred when the workaround in FAIL state set 175 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do 176 * something else(?) 177 */ 178 eapol_set_bool(sm, EAPOL_eapResp, FALSE); 179 eapol_set_bool(sm, EAPOL_eapNoResp, FALSE); 180 sm->num_rounds = 0; 181 sm->prev_failure = 0; 182 } 183 184 185 /* 186 * This state is reached whenever service from the lower layer is interrupted 187 * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE 188 * occurs when the port becomes enabled. 189 */ 190 SM_STATE(EAP, DISABLED) 191 { 192 SM_ENTRY(EAP, DISABLED); 193 sm->num_rounds = 0; 194 /* 195 * RFC 4137 does not describe clearing of idleWhile here, but doing so 196 * allows the timer tick to be stopped more quickly when EAP is not in 197 * use. 198 */ 199 eapol_set_int(sm, EAPOL_idleWhile, 0); 200 } 201 202 203 /* 204 * The state machine spends most of its time here, waiting for something to 205 * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and 206 * SEND_RESPONSE states. 207 */ 208 SM_STATE(EAP, IDLE) 209 { 210 SM_ENTRY(EAP, IDLE); 211 } 212 213 214 /* 215 * This state is entered when an EAP packet is received (eapReq == TRUE) to 216 * parse the packet header. 217 */ 218 SM_STATE(EAP, RECEIVED) 219 { 220 const struct wpabuf *eapReqData; 221 222 SM_ENTRY(EAP, RECEIVED); 223 eapReqData = eapol_get_eapReqData(sm); 224 /* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */ 225 eap_sm_parseEapReq(sm, eapReqData); 226 sm->num_rounds++; 227 } 228 229 230 /* 231 * This state is entered when a request for a new type comes in. Either the 232 * correct method is started, or a Nak response is built. 233 */ 234 SM_STATE(EAP, GET_METHOD) 235 { 236 int reinit; 237 EapType method; 238 const struct eap_method *eap_method; 239 240 SM_ENTRY(EAP, GET_METHOD); 241 242 if (sm->reqMethod == EAP_TYPE_EXPANDED) 243 method = sm->reqVendorMethod; 244 else 245 method = sm->reqMethod; 246 247 eap_method = eap_peer_get_eap_method(sm->reqVendor, method); 248 249 if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) { 250 wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed", 251 sm->reqVendor, method); 252 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD 253 "vendor=%u method=%u -> NAK", 254 sm->reqVendor, method); 255 eap_notify_status(sm, "refuse proposed method", 256 eap_method ? eap_method->name : "unknown"); 257 goto nak; 258 } 259 260 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD 261 "vendor=%u method=%u", sm->reqVendor, method); 262 263 eap_notify_status(sm, "accept proposed method", 264 eap_method ? eap_method->name : "unknown"); 265 /* 266 * RFC 4137 does not define specific operation for fast 267 * re-authentication (session resumption). The design here is to allow 268 * the previously used method data to be maintained for 269 * re-authentication if the method support session resumption. 270 * Otherwise, the previously used method data is freed and a new method 271 * is allocated here. 272 */ 273 if (sm->fast_reauth && 274 sm->m && sm->m->vendor == sm->reqVendor && 275 sm->m->method == method && 276 sm->m->has_reauth_data && 277 sm->m->has_reauth_data(sm, sm->eap_method_priv)) { 278 wpa_printf(MSG_DEBUG, "EAP: Using previous method data" 279 " for fast re-authentication"); 280 reinit = 1; 281 } else { 282 eap_deinit_prev_method(sm, "GET_METHOD"); 283 reinit = 0; 284 } 285 286 sm->selectedMethod = sm->reqMethod; 287 if (sm->m == NULL) 288 sm->m = eap_method; 289 if (!sm->m) { 290 wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: " 291 "vendor %d method %d", 292 sm->reqVendor, method); 293 goto nak; 294 } 295 296 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT; 297 298 wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: " 299 "vendor %u method %u (%s)", 300 sm->reqVendor, method, sm->m->name); 301 if (reinit) 302 sm->eap_method_priv = sm->m->init_for_reauth( 303 sm, sm->eap_method_priv); 304 else 305 sm->eap_method_priv = sm->m->init(sm); 306 307 if (sm->eap_method_priv == NULL) { 308 struct eap_peer_config *config = eap_get_config(sm); 309 wpa_msg(sm->msg_ctx, MSG_INFO, 310 "EAP: Failed to initialize EAP method: vendor %u " 311 "method %u (%s)", 312 sm->reqVendor, method, sm->m->name); 313 sm->m = NULL; 314 sm->methodState = METHOD_NONE; 315 sm->selectedMethod = EAP_TYPE_NONE; 316 if (sm->reqMethod == EAP_TYPE_TLS && config && 317 (config->pending_req_pin || 318 config->pending_req_passphrase)) { 319 /* 320 * Return without generating Nak in order to allow 321 * entering of PIN code or passphrase to retry the 322 * current EAP packet. 323 */ 324 wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase " 325 "request - skip Nak"); 326 return; 327 } 328 329 goto nak; 330 } 331 332 sm->methodState = METHOD_INIT; 333 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD 334 "EAP vendor %u method %u (%s) selected", 335 sm->reqVendor, method, sm->m->name); 336 return; 337 338 nak: 339 wpabuf_free(sm->eapRespData); 340 sm->eapRespData = NULL; 341 sm->eapRespData = eap_sm_buildNak(sm, sm->reqId); 342 } 343 344 345 /* 346 * The method processing happens here. The request from the authenticator is 347 * processed, and an appropriate response packet is built. 348 */ 349 SM_STATE(EAP, METHOD) 350 { 351 struct wpabuf *eapReqData; 352 struct eap_method_ret ret; 353 int min_len = 1; 354 355 SM_ENTRY(EAP, METHOD); 356 if (sm->m == NULL) { 357 wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected"); 358 return; 359 } 360 361 eapReqData = eapol_get_eapReqData(sm); 362 if (sm->m->vendor == EAP_VENDOR_IETF && sm->m->method == EAP_TYPE_LEAP) 363 min_len = 0; /* LEAP uses EAP-Success without payload */ 364 if (!eap_hdr_len_valid(eapReqData, min_len)) 365 return; 366 367 /* 368 * Get ignore, methodState, decision, allowNotifications, and 369 * eapRespData. RFC 4137 uses three separate method procedure (check, 370 * process, and buildResp) in this state. These have been combined into 371 * a single function call to m->process() in order to optimize EAP 372 * method implementation interface a bit. These procedures are only 373 * used from within this METHOD state, so there is no need to keep 374 * these as separate C functions. 375 * 376 * The RFC 4137 procedures return values as follows: 377 * ignore = m.check(eapReqData) 378 * (methodState, decision, allowNotifications) = m.process(eapReqData) 379 * eapRespData = m.buildResp(reqId) 380 */ 381 os_memset(&ret, 0, sizeof(ret)); 382 ret.ignore = sm->ignore; 383 ret.methodState = sm->methodState; 384 ret.decision = sm->decision; 385 ret.allowNotifications = sm->allowNotifications; 386 wpabuf_free(sm->eapRespData); 387 sm->eapRespData = NULL; 388 sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret, 389 eapReqData); 390 wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s " 391 "methodState=%s decision=%s", 392 ret.ignore ? "TRUE" : "FALSE", 393 eap_sm_method_state_txt(ret.methodState), 394 eap_sm_decision_txt(ret.decision)); 395 396 sm->ignore = ret.ignore; 397 if (sm->ignore) 398 return; 399 sm->methodState = ret.methodState; 400 sm->decision = ret.decision; 401 sm->allowNotifications = ret.allowNotifications; 402 403 if (sm->m->isKeyAvailable && sm->m->getKey && 404 sm->m->isKeyAvailable(sm, sm->eap_method_priv)) { 405 os_free(sm->eapKeyData); 406 sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv, 407 &sm->eapKeyDataLen); 408 os_free(sm->eapSessionId); 409 sm->eapSessionId = sm->m->getSessionId(sm, sm->eap_method_priv, 410 &sm->eapSessionIdLen); 411 if (sm->eapSessionId) { 412 wpa_hexdump(MSG_DEBUG, "EAP: Session-Id", 413 sm->eapSessionId, sm->eapSessionIdLen); 414 } 415 } 416 } 417 418 419 /* 420 * This state signals the lower layer that a response packet is ready to be 421 * sent. 422 */ 423 SM_STATE(EAP, SEND_RESPONSE) 424 { 425 SM_ENTRY(EAP, SEND_RESPONSE); 426 wpabuf_free(sm->lastRespData); 427 if (sm->eapRespData) { 428 if (sm->workaround) 429 os_memcpy(sm->last_md5, sm->req_md5, 16); 430 sm->lastId = sm->reqId; 431 sm->lastRespData = wpabuf_dup(sm->eapRespData); 432 eapol_set_bool(sm, EAPOL_eapResp, TRUE); 433 } else 434 sm->lastRespData = NULL; 435 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 436 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout); 437 } 438 439 440 /* 441 * This state signals the lower layer that the request was discarded, and no 442 * response packet will be sent at this time. 443 */ 444 SM_STATE(EAP, DISCARD) 445 { 446 SM_ENTRY(EAP, DISCARD); 447 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 448 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE); 449 } 450 451 452 /* 453 * Handles requests for Identity method and builds a response. 454 */ 455 SM_STATE(EAP, IDENTITY) 456 { 457 const struct wpabuf *eapReqData; 458 459 SM_ENTRY(EAP, IDENTITY); 460 eapReqData = eapol_get_eapReqData(sm); 461 if (!eap_hdr_len_valid(eapReqData, 1)) 462 return; 463 eap_sm_processIdentity(sm, eapReqData); 464 wpabuf_free(sm->eapRespData); 465 sm->eapRespData = NULL; 466 sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0); 467 } 468 469 470 /* 471 * Handles requests for Notification method and builds a response. 472 */ 473 SM_STATE(EAP, NOTIFICATION) 474 { 475 const struct wpabuf *eapReqData; 476 477 SM_ENTRY(EAP, NOTIFICATION); 478 eapReqData = eapol_get_eapReqData(sm); 479 if (!eap_hdr_len_valid(eapReqData, 1)) 480 return; 481 eap_sm_processNotify(sm, eapReqData); 482 wpabuf_free(sm->eapRespData); 483 sm->eapRespData = NULL; 484 sm->eapRespData = eap_sm_buildNotify(sm->reqId); 485 } 486 487 488 /* 489 * This state retransmits the previous response packet. 490 */ 491 SM_STATE(EAP, RETRANSMIT) 492 { 493 SM_ENTRY(EAP, RETRANSMIT); 494 wpabuf_free(sm->eapRespData); 495 if (sm->lastRespData) 496 sm->eapRespData = wpabuf_dup(sm->lastRespData); 497 else 498 sm->eapRespData = NULL; 499 } 500 501 502 /* 503 * This state is entered in case of a successful completion of authentication 504 * and state machine waits here until port is disabled or EAP authentication is 505 * restarted. 506 */ 507 SM_STATE(EAP, SUCCESS) 508 { 509 SM_ENTRY(EAP, SUCCESS); 510 if (sm->eapKeyData != NULL) 511 sm->eapKeyAvailable = TRUE; 512 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE); 513 514 /* 515 * RFC 4137 does not clear eapReq here, but this seems to be required 516 * to avoid processing the same request twice when state machine is 517 * initialized. 518 */ 519 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 520 521 /* 522 * RFC 4137 does not set eapNoResp here, but this seems to be required 523 * to get EAPOL Supplicant backend state machine into SUCCESS state. In 524 * addition, either eapResp or eapNoResp is required to be set after 525 * processing the received EAP frame. 526 */ 527 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE); 528 529 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS 530 "EAP authentication completed successfully"); 531 } 532 533 534 /* 535 * This state is entered in case of a failure and state machine waits here 536 * until port is disabled or EAP authentication is restarted. 537 */ 538 SM_STATE(EAP, FAILURE) 539 { 540 SM_ENTRY(EAP, FAILURE); 541 eapol_set_bool(sm, EAPOL_eapFail, TRUE); 542 543 /* 544 * RFC 4137 does not clear eapReq here, but this seems to be required 545 * to avoid processing the same request twice when state machine is 546 * initialized. 547 */ 548 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 549 550 /* 551 * RFC 4137 does not set eapNoResp here. However, either eapResp or 552 * eapNoResp is required to be set after processing the received EAP 553 * frame. 554 */ 555 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE); 556 557 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE 558 "EAP authentication failed"); 559 560 sm->prev_failure = 1; 561 } 562 563 564 static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId) 565 { 566 /* 567 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending 568 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and 569 * RFC 4137 require that reqId == lastId. In addition, it looks like 570 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success. 571 * 572 * Accept this kind of Id if EAP workarounds are enabled. These are 573 * unauthenticated plaintext messages, so this should have minimal 574 * security implications (bit easier to fake EAP-Success/Failure). 575 */ 576 if (sm->workaround && (reqId == ((lastId + 1) & 0xff) || 577 reqId == ((lastId + 2) & 0xff))) { 578 wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected " 579 "identifier field in EAP Success: " 580 "reqId=%d lastId=%d (these are supposed to be " 581 "same)", reqId, lastId); 582 return 1; 583 } 584 wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d " 585 "lastId=%d", reqId, lastId); 586 return 0; 587 } 588 589 590 /* 591 * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions 592 */ 593 594 static void eap_peer_sm_step_idle(struct eap_sm *sm) 595 { 596 /* 597 * The first three transitions are from RFC 4137. The last two are 598 * local additions to handle special cases with LEAP and PEAP server 599 * not sending EAP-Success in some cases. 600 */ 601 if (eapol_get_bool(sm, EAPOL_eapReq)) 602 SM_ENTER(EAP, RECEIVED); 603 else if ((eapol_get_bool(sm, EAPOL_altAccept) && 604 sm->decision != DECISION_FAIL) || 605 (eapol_get_int(sm, EAPOL_idleWhile) == 0 && 606 sm->decision == DECISION_UNCOND_SUCC)) 607 SM_ENTER(EAP, SUCCESS); 608 else if (eapol_get_bool(sm, EAPOL_altReject) || 609 (eapol_get_int(sm, EAPOL_idleWhile) == 0 && 610 sm->decision != DECISION_UNCOND_SUCC) || 611 (eapol_get_bool(sm, EAPOL_altAccept) && 612 sm->methodState != METHOD_CONT && 613 sm->decision == DECISION_FAIL)) 614 SM_ENTER(EAP, FAILURE); 615 else if (sm->selectedMethod == EAP_TYPE_LEAP && 616 sm->leap_done && sm->decision != DECISION_FAIL && 617 sm->methodState == METHOD_DONE) 618 SM_ENTER(EAP, SUCCESS); 619 else if (sm->selectedMethod == EAP_TYPE_PEAP && 620 sm->peap_done && sm->decision != DECISION_FAIL && 621 sm->methodState == METHOD_DONE) 622 SM_ENTER(EAP, SUCCESS); 623 } 624 625 626 static int eap_peer_req_is_duplicate(struct eap_sm *sm) 627 { 628 int duplicate; 629 630 duplicate = (sm->reqId == sm->lastId) && sm->rxReq; 631 if (sm->workaround && duplicate && 632 os_memcmp(sm->req_md5, sm->last_md5, 16) != 0) { 633 /* 634 * RFC 4137 uses (reqId == lastId) as the only verification for 635 * duplicate EAP requests. However, this misses cases where the 636 * AS is incorrectly using the same id again; and 637 * unfortunately, such implementations exist. Use MD5 hash as 638 * an extra verification for the packets being duplicate to 639 * workaround these issues. 640 */ 641 wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but " 642 "EAP packets were not identical"); 643 wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a " 644 "duplicate packet"); 645 duplicate = 0; 646 } 647 648 return duplicate; 649 } 650 651 652 static void eap_peer_sm_step_received(struct eap_sm *sm) 653 { 654 int duplicate = eap_peer_req_is_duplicate(sm); 655 656 /* 657 * Two special cases below for LEAP are local additions to work around 658 * odd LEAP behavior (EAP-Success in the middle of authentication and 659 * then swapped roles). Other transitions are based on RFC 4137. 660 */ 661 if (sm->rxSuccess && sm->decision != DECISION_FAIL && 662 (sm->reqId == sm->lastId || 663 eap_success_workaround(sm, sm->reqId, sm->lastId))) 664 SM_ENTER(EAP, SUCCESS); 665 else if (sm->methodState != METHOD_CONT && 666 ((sm->rxFailure && 667 sm->decision != DECISION_UNCOND_SUCC) || 668 (sm->rxSuccess && sm->decision == DECISION_FAIL && 669 (sm->selectedMethod != EAP_TYPE_LEAP || 670 sm->methodState != METHOD_MAY_CONT))) && 671 (sm->reqId == sm->lastId || 672 eap_success_workaround(sm, sm->reqId, sm->lastId))) 673 SM_ENTER(EAP, FAILURE); 674 else if (sm->rxReq && duplicate) 675 SM_ENTER(EAP, RETRANSMIT); 676 else if (sm->rxReq && !duplicate && 677 sm->reqMethod == EAP_TYPE_NOTIFICATION && 678 sm->allowNotifications) 679 SM_ENTER(EAP, NOTIFICATION); 680 else if (sm->rxReq && !duplicate && 681 sm->selectedMethod == EAP_TYPE_NONE && 682 sm->reqMethod == EAP_TYPE_IDENTITY) 683 SM_ENTER(EAP, IDENTITY); 684 else if (sm->rxReq && !duplicate && 685 sm->selectedMethod == EAP_TYPE_NONE && 686 sm->reqMethod != EAP_TYPE_IDENTITY && 687 sm->reqMethod != EAP_TYPE_NOTIFICATION) 688 SM_ENTER(EAP, GET_METHOD); 689 else if (sm->rxReq && !duplicate && 690 sm->reqMethod == sm->selectedMethod && 691 sm->methodState != METHOD_DONE) 692 SM_ENTER(EAP, METHOD); 693 else if (sm->selectedMethod == EAP_TYPE_LEAP && 694 (sm->rxSuccess || sm->rxResp)) 695 SM_ENTER(EAP, METHOD); 696 else 697 SM_ENTER(EAP, DISCARD); 698 } 699 700 701 static void eap_peer_sm_step_local(struct eap_sm *sm) 702 { 703 switch (sm->EAP_state) { 704 case EAP_INITIALIZE: 705 SM_ENTER(EAP, IDLE); 706 break; 707 case EAP_DISABLED: 708 if (eapol_get_bool(sm, EAPOL_portEnabled) && 709 !sm->force_disabled) 710 SM_ENTER(EAP, INITIALIZE); 711 break; 712 case EAP_IDLE: 713 eap_peer_sm_step_idle(sm); 714 break; 715 case EAP_RECEIVED: 716 eap_peer_sm_step_received(sm); 717 break; 718 case EAP_GET_METHOD: 719 if (sm->selectedMethod == sm->reqMethod) 720 SM_ENTER(EAP, METHOD); 721 else 722 SM_ENTER(EAP, SEND_RESPONSE); 723 break; 724 case EAP_METHOD: 725 if (sm->ignore) 726 SM_ENTER(EAP, DISCARD); 727 else 728 SM_ENTER(EAP, SEND_RESPONSE); 729 break; 730 case EAP_SEND_RESPONSE: 731 SM_ENTER(EAP, IDLE); 732 break; 733 case EAP_DISCARD: 734 SM_ENTER(EAP, IDLE); 735 break; 736 case EAP_IDENTITY: 737 SM_ENTER(EAP, SEND_RESPONSE); 738 break; 739 case EAP_NOTIFICATION: 740 SM_ENTER(EAP, SEND_RESPONSE); 741 break; 742 case EAP_RETRANSMIT: 743 SM_ENTER(EAP, SEND_RESPONSE); 744 break; 745 case EAP_SUCCESS: 746 break; 747 case EAP_FAILURE: 748 break; 749 } 750 } 751 752 753 SM_STEP(EAP) 754 { 755 /* Global transitions */ 756 if (eapol_get_bool(sm, EAPOL_eapRestart) && 757 eapol_get_bool(sm, EAPOL_portEnabled)) 758 SM_ENTER_GLOBAL(EAP, INITIALIZE); 759 else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled) 760 SM_ENTER_GLOBAL(EAP, DISABLED); 761 else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) { 762 /* RFC 4137 does not place any limit on number of EAP messages 763 * in an authentication session. However, some error cases have 764 * ended up in a state were EAP messages were sent between the 765 * peer and server in a loop (e.g., TLS ACK frame in both 766 * direction). Since this is quite undesired outcome, limit the 767 * total number of EAP round-trips and abort authentication if 768 * this limit is exceeded. 769 */ 770 if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) { 771 wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d " 772 "authentication rounds - abort", 773 EAP_MAX_AUTH_ROUNDS); 774 sm->num_rounds++; 775 SM_ENTER_GLOBAL(EAP, FAILURE); 776 } 777 } else { 778 /* Local transitions */ 779 eap_peer_sm_step_local(sm); 780 } 781 } 782 783 784 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor, 785 EapType method) 786 { 787 if (!eap_allowed_method(sm, vendor, method)) { 788 wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: " 789 "vendor %u method %u", vendor, method); 790 return FALSE; 791 } 792 if (eap_peer_get_eap_method(vendor, method)) 793 return TRUE; 794 wpa_printf(MSG_DEBUG, "EAP: not included in build: " 795 "vendor %u method %u", vendor, method); 796 return FALSE; 797 } 798 799 800 static struct wpabuf * eap_sm_build_expanded_nak( 801 struct eap_sm *sm, int id, const struct eap_method *methods, 802 size_t count) 803 { 804 struct wpabuf *resp; 805 int found = 0; 806 const struct eap_method *m; 807 808 wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak"); 809 810 /* RFC 3748 - 5.3.2: Expanded Nak */ 811 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED, 812 8 + 8 * (count + 1), EAP_CODE_RESPONSE, id); 813 if (resp == NULL) 814 return NULL; 815 816 wpabuf_put_be24(resp, EAP_VENDOR_IETF); 817 wpabuf_put_be32(resp, EAP_TYPE_NAK); 818 819 for (m = methods; m; m = m->next) { 820 if (sm->reqVendor == m->vendor && 821 sm->reqVendorMethod == m->method) 822 continue; /* do not allow the current method again */ 823 if (eap_allowed_method(sm, m->vendor, m->method)) { 824 wpa_printf(MSG_DEBUG, "EAP: allowed type: " 825 "vendor=%u method=%u", 826 m->vendor, m->method); 827 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED); 828 wpabuf_put_be24(resp, m->vendor); 829 wpabuf_put_be32(resp, m->method); 830 831 found++; 832 } 833 } 834 if (!found) { 835 wpa_printf(MSG_DEBUG, "EAP: no more allowed methods"); 836 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED); 837 wpabuf_put_be24(resp, EAP_VENDOR_IETF); 838 wpabuf_put_be32(resp, EAP_TYPE_NONE); 839 } 840 841 eap_update_len(resp); 842 843 return resp; 844 } 845 846 847 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id) 848 { 849 struct wpabuf *resp; 850 u8 *start; 851 int found = 0, expanded_found = 0; 852 size_t count; 853 const struct eap_method *methods, *m; 854 855 wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u " 856 "vendor=%u method=%u not allowed)", sm->reqMethod, 857 sm->reqVendor, sm->reqVendorMethod); 858 methods = eap_peer_get_methods(&count); 859 if (methods == NULL) 860 return NULL; 861 if (sm->reqMethod == EAP_TYPE_EXPANDED) 862 return eap_sm_build_expanded_nak(sm, id, methods, count); 863 864 /* RFC 3748 - 5.3.1: Legacy Nak */ 865 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK, 866 sizeof(struct eap_hdr) + 1 + count + 1, 867 EAP_CODE_RESPONSE, id); 868 if (resp == NULL) 869 return NULL; 870 871 start = wpabuf_put(resp, 0); 872 for (m = methods; m; m = m->next) { 873 if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod) 874 continue; /* do not allow the current method again */ 875 if (eap_allowed_method(sm, m->vendor, m->method)) { 876 if (m->vendor != EAP_VENDOR_IETF) { 877 if (expanded_found) 878 continue; 879 expanded_found = 1; 880 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED); 881 } else 882 wpabuf_put_u8(resp, m->method); 883 found++; 884 } 885 } 886 if (!found) 887 wpabuf_put_u8(resp, EAP_TYPE_NONE); 888 wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found); 889 890 eap_update_len(resp); 891 892 return resp; 893 } 894 895 896 static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req) 897 { 898 const u8 *pos; 899 size_t msg_len; 900 901 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED 902 "EAP authentication started"); 903 eap_notify_status(sm, "started", ""); 904 905 pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, req, 906 &msg_len); 907 if (pos == NULL) 908 return; 909 910 /* 911 * RFC 3748 - 5.1: Identity 912 * Data field may contain a displayable message in UTF-8. If this 913 * includes NUL-character, only the data before that should be 914 * displayed. Some EAP implementasitons may piggy-back additional 915 * options after the NUL. 916 */ 917 /* TODO: could save displayable message so that it can be shown to the 918 * user in case of interaction is required */ 919 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data", 920 pos, msg_len); 921 } 922 923 924 #ifdef PCSC_FUNCS 925 926 /* 927 * Rules for figuring out MNC length based on IMSI for SIM cards that do not 928 * include MNC length field. 929 */ 930 static int mnc_len_from_imsi(const char *imsi) 931 { 932 char mcc_str[4]; 933 unsigned int mcc; 934 935 os_memcpy(mcc_str, imsi, 3); 936 mcc_str[3] = '\0'; 937 mcc = atoi(mcc_str); 938 939 if (mcc == 244) 940 return 2; /* Networks in Finland use 2-digit MNC */ 941 942 return -1; 943 } 944 945 946 static int eap_sm_append_3gpp_realm(struct eap_sm *sm, char *imsi, 947 size_t max_len, size_t *imsi_len) 948 { 949 int mnc_len; 950 char *pos, mnc[4]; 951 952 if (*imsi_len + 36 > max_len) { 953 wpa_printf(MSG_WARNING, "No room for realm in IMSI buffer"); 954 return -1; 955 } 956 957 /* MNC (2 or 3 digits) */ 958 mnc_len = scard_get_mnc_len(sm->scard_ctx); 959 if (mnc_len < 0) 960 mnc_len = mnc_len_from_imsi(imsi); 961 if (mnc_len < 0) { 962 wpa_printf(MSG_INFO, "Failed to get MNC length from (U)SIM " 963 "assuming 3"); 964 mnc_len = 3; 965 } 966 967 if (mnc_len == 2) { 968 mnc[0] = '0'; 969 mnc[1] = imsi[3]; 970 mnc[2] = imsi[4]; 971 } else if (mnc_len == 3) { 972 mnc[0] = imsi[3]; 973 mnc[1] = imsi[4]; 974 mnc[2] = imsi[5]; 975 } 976 mnc[3] = '\0'; 977 978 pos = imsi + *imsi_len; 979 pos += os_snprintf(pos, imsi + max_len - pos, 980 "@wlan.mnc%s.mcc%c%c%c.3gppnetwork.org", 981 mnc, imsi[0], imsi[1], imsi[2]); 982 *imsi_len = pos - imsi; 983 984 return 0; 985 } 986 987 988 static int eap_sm_imsi_identity(struct eap_sm *sm, 989 struct eap_peer_config *conf) 990 { 991 enum { EAP_SM_SIM, EAP_SM_AKA, EAP_SM_AKA_PRIME } method = EAP_SM_SIM; 992 char imsi[100]; 993 size_t imsi_len; 994 struct eap_method_type *m = conf->eap_methods; 995 int i; 996 997 imsi_len = sizeof(imsi); 998 if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) { 999 wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM"); 1000 return -1; 1001 } 1002 1003 wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len); 1004 1005 if (imsi_len < 7) { 1006 wpa_printf(MSG_WARNING, "Too short IMSI for SIM identity"); 1007 return -1; 1008 } 1009 1010 if (eap_sm_append_3gpp_realm(sm, imsi, sizeof(imsi), &imsi_len) < 0) { 1011 wpa_printf(MSG_WARNING, "Could not add realm to SIM identity"); 1012 return -1; 1013 } 1014 wpa_hexdump_ascii(MSG_DEBUG, "IMSI + realm", (u8 *) imsi, imsi_len); 1015 1016 for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF || 1017 m[i].method != EAP_TYPE_NONE); i++) { 1018 if (m[i].vendor == EAP_VENDOR_IETF && 1019 m[i].method == EAP_TYPE_AKA_PRIME) { 1020 method = EAP_SM_AKA_PRIME; 1021 break; 1022 } 1023 1024 if (m[i].vendor == EAP_VENDOR_IETF && 1025 m[i].method == EAP_TYPE_AKA) { 1026 method = EAP_SM_AKA; 1027 break; 1028 } 1029 } 1030 1031 os_free(conf->identity); 1032 conf->identity = os_malloc(1 + imsi_len); 1033 if (conf->identity == NULL) { 1034 wpa_printf(MSG_WARNING, "Failed to allocate buffer for " 1035 "IMSI-based identity"); 1036 return -1; 1037 } 1038 1039 switch (method) { 1040 case EAP_SM_SIM: 1041 conf->identity[0] = '1'; 1042 break; 1043 case EAP_SM_AKA: 1044 conf->identity[0] = '0'; 1045 break; 1046 case EAP_SM_AKA_PRIME: 1047 conf->identity[0] = '6'; 1048 break; 1049 } 1050 os_memcpy(conf->identity + 1, imsi, imsi_len); 1051 conf->identity_len = 1 + imsi_len; 1052 1053 return 0; 1054 } 1055 1056 #endif /* PCSC_FUNCS */ 1057 1058 1059 static int eap_sm_set_scard_pin(struct eap_sm *sm, 1060 struct eap_peer_config *conf) 1061 { 1062 #ifdef PCSC_FUNCS 1063 if (scard_set_pin(sm->scard_ctx, conf->pin)) { 1064 /* 1065 * Make sure the same PIN is not tried again in order to avoid 1066 * blocking SIM. 1067 */ 1068 os_free(conf->pin); 1069 conf->pin = NULL; 1070 1071 wpa_printf(MSG_WARNING, "PIN validation failed"); 1072 eap_sm_request_pin(sm); 1073 return -1; 1074 } 1075 return 0; 1076 #else /* PCSC_FUNCS */ 1077 return -1; 1078 #endif /* PCSC_FUNCS */ 1079 } 1080 1081 static int eap_sm_get_scard_identity(struct eap_sm *sm, 1082 struct eap_peer_config *conf) 1083 { 1084 #ifdef PCSC_FUNCS 1085 if (eap_sm_set_scard_pin(sm, conf)) 1086 return -1; 1087 1088 return eap_sm_imsi_identity(sm, conf); 1089 #else /* PCSC_FUNCS */ 1090 return -1; 1091 #endif /* PCSC_FUNCS */ 1092 } 1093 1094 1095 /** 1096 * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network 1097 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1098 * @id: EAP identifier for the packet 1099 * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2) 1100 * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on 1101 * failure 1102 * 1103 * This function allocates and builds an EAP-Identity/Response packet for the 1104 * current network. The caller is responsible for freeing the returned data. 1105 */ 1106 struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted) 1107 { 1108 struct eap_peer_config *config = eap_get_config(sm); 1109 struct wpabuf *resp; 1110 const u8 *identity; 1111 size_t identity_len; 1112 1113 if (config == NULL) { 1114 wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration " 1115 "was not available"); 1116 return NULL; 1117 } 1118 1119 if (sm->m && sm->m->get_identity && 1120 (identity = sm->m->get_identity(sm, sm->eap_method_priv, 1121 &identity_len)) != NULL) { 1122 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth " 1123 "identity", identity, identity_len); 1124 } else if (!encrypted && config->anonymous_identity) { 1125 identity = config->anonymous_identity; 1126 identity_len = config->anonymous_identity_len; 1127 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity", 1128 identity, identity_len); 1129 } else { 1130 identity = config->identity; 1131 identity_len = config->identity_len; 1132 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity", 1133 identity, identity_len); 1134 } 1135 1136 if (identity == NULL) { 1137 wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity " 1138 "configuration was not available"); 1139 if (config->pcsc) { 1140 if (eap_sm_get_scard_identity(sm, config) < 0) 1141 return NULL; 1142 identity = config->identity; 1143 identity_len = config->identity_len; 1144 wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from " 1145 "IMSI", identity, identity_len); 1146 } else { 1147 eap_sm_request_identity(sm); 1148 return NULL; 1149 } 1150 } else if (config->pcsc) { 1151 if (eap_sm_set_scard_pin(sm, config) < 0) 1152 return NULL; 1153 } 1154 1155 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len, 1156 EAP_CODE_RESPONSE, id); 1157 if (resp == NULL) 1158 return NULL; 1159 1160 wpabuf_put_data(resp, identity, identity_len); 1161 1162 return resp; 1163 } 1164 1165 1166 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req) 1167 { 1168 const u8 *pos; 1169 char *msg; 1170 size_t i, msg_len; 1171 1172 pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req, 1173 &msg_len); 1174 if (pos == NULL) 1175 return; 1176 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data", 1177 pos, msg_len); 1178 1179 msg = os_malloc(msg_len + 1); 1180 if (msg == NULL) 1181 return; 1182 for (i = 0; i < msg_len; i++) 1183 msg[i] = isprint(pos[i]) ? (char) pos[i] : '_'; 1184 msg[msg_len] = '\0'; 1185 wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s", 1186 WPA_EVENT_EAP_NOTIFICATION, msg); 1187 os_free(msg); 1188 } 1189 1190 1191 static struct wpabuf * eap_sm_buildNotify(int id) 1192 { 1193 struct wpabuf *resp; 1194 1195 wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification"); 1196 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0, 1197 EAP_CODE_RESPONSE, id); 1198 if (resp == NULL) 1199 return NULL; 1200 1201 return resp; 1202 } 1203 1204 1205 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req) 1206 { 1207 const struct eap_hdr *hdr; 1208 size_t plen; 1209 const u8 *pos; 1210 1211 sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE; 1212 sm->reqId = 0; 1213 sm->reqMethod = EAP_TYPE_NONE; 1214 sm->reqVendor = EAP_VENDOR_IETF; 1215 sm->reqVendorMethod = EAP_TYPE_NONE; 1216 1217 if (req == NULL || wpabuf_len(req) < sizeof(*hdr)) 1218 return; 1219 1220 hdr = wpabuf_head(req); 1221 plen = be_to_host16(hdr->length); 1222 if (plen > wpabuf_len(req)) { 1223 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet " 1224 "(len=%lu plen=%lu)", 1225 (unsigned long) wpabuf_len(req), 1226 (unsigned long) plen); 1227 return; 1228 } 1229 1230 sm->reqId = hdr->identifier; 1231 1232 if (sm->workaround) { 1233 const u8 *addr[1]; 1234 addr[0] = wpabuf_head(req); 1235 md5_vector(1, addr, &plen, sm->req_md5); 1236 } 1237 1238 switch (hdr->code) { 1239 case EAP_CODE_REQUEST: 1240 if (plen < sizeof(*hdr) + 1) { 1241 wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - " 1242 "no Type field"); 1243 return; 1244 } 1245 sm->rxReq = TRUE; 1246 pos = (const u8 *) (hdr + 1); 1247 sm->reqMethod = *pos++; 1248 if (sm->reqMethod == EAP_TYPE_EXPANDED) { 1249 if (plen < sizeof(*hdr) + 8) { 1250 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated " 1251 "expanded EAP-Packet (plen=%lu)", 1252 (unsigned long) plen); 1253 return; 1254 } 1255 sm->reqVendor = WPA_GET_BE24(pos); 1256 pos += 3; 1257 sm->reqVendorMethod = WPA_GET_BE32(pos); 1258 } 1259 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d " 1260 "method=%u vendor=%u vendorMethod=%u", 1261 sm->reqId, sm->reqMethod, sm->reqVendor, 1262 sm->reqVendorMethod); 1263 break; 1264 case EAP_CODE_RESPONSE: 1265 if (sm->selectedMethod == EAP_TYPE_LEAP) { 1266 /* 1267 * LEAP differs from RFC 4137 by using reversed roles 1268 * for mutual authentication and because of this, we 1269 * need to accept EAP-Response frames if LEAP is used. 1270 */ 1271 if (plen < sizeof(*hdr) + 1) { 1272 wpa_printf(MSG_DEBUG, "EAP: Too short " 1273 "EAP-Response - no Type field"); 1274 return; 1275 } 1276 sm->rxResp = TRUE; 1277 pos = (const u8 *) (hdr + 1); 1278 sm->reqMethod = *pos; 1279 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for " 1280 "LEAP method=%d id=%d", 1281 sm->reqMethod, sm->reqId); 1282 break; 1283 } 1284 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response"); 1285 break; 1286 case EAP_CODE_SUCCESS: 1287 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success"); 1288 eap_notify_status(sm, "completion", "success"); 1289 sm->rxSuccess = TRUE; 1290 break; 1291 case EAP_CODE_FAILURE: 1292 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure"); 1293 eap_notify_status(sm, "completion", "failure"); 1294 sm->rxFailure = TRUE; 1295 break; 1296 default: 1297 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown " 1298 "code %d", hdr->code); 1299 break; 1300 } 1301 } 1302 1303 1304 static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev, 1305 union tls_event_data *data) 1306 { 1307 struct eap_sm *sm = ctx; 1308 char *hash_hex = NULL; 1309 1310 switch (ev) { 1311 case TLS_CERT_CHAIN_SUCCESS: 1312 eap_notify_status(sm, "remote certificate verification", 1313 "success"); 1314 break; 1315 case TLS_CERT_CHAIN_FAILURE: 1316 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR 1317 "reason=%d depth=%d subject='%s' err='%s'", 1318 data->cert_fail.reason, 1319 data->cert_fail.depth, 1320 data->cert_fail.subject, 1321 data->cert_fail.reason_txt); 1322 eap_notify_status(sm, "remote certificate verification", 1323 data->cert_fail.reason_txt); 1324 break; 1325 case TLS_PEER_CERTIFICATE: 1326 if (!sm->eapol_cb->notify_cert) 1327 break; 1328 1329 if (data->peer_cert.hash) { 1330 size_t len = data->peer_cert.hash_len * 2 + 1; 1331 hash_hex = os_malloc(len); 1332 if (hash_hex) { 1333 wpa_snprintf_hex(hash_hex, len, 1334 data->peer_cert.hash, 1335 data->peer_cert.hash_len); 1336 } 1337 } 1338 1339 sm->eapol_cb->notify_cert(sm->eapol_ctx, 1340 data->peer_cert.depth, 1341 data->peer_cert.subject, 1342 hash_hex, data->peer_cert.cert); 1343 break; 1344 case TLS_ALERT: 1345 if (data->alert.is_local) 1346 eap_notify_status(sm, "local TLS alert", 1347 data->alert.description); 1348 else 1349 eap_notify_status(sm, "remote TLS alert", 1350 data->alert.description); 1351 break; 1352 } 1353 1354 os_free(hash_hex); 1355 } 1356 1357 1358 /** 1359 * eap_peer_sm_init - Allocate and initialize EAP peer state machine 1360 * @eapol_ctx: Context data to be used with eapol_cb calls 1361 * @eapol_cb: Pointer to EAPOL callback functions 1362 * @msg_ctx: Context data for wpa_msg() calls 1363 * @conf: EAP configuration 1364 * Returns: Pointer to the allocated EAP state machine or %NULL on failure 1365 * 1366 * This function allocates and initializes an EAP state machine. In addition, 1367 * this initializes TLS library for the new EAP state machine. eapol_cb pointer 1368 * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP 1369 * state machine. Consequently, the caller must make sure that this data 1370 * structure remains alive while the EAP state machine is active. 1371 */ 1372 struct eap_sm * eap_peer_sm_init(void *eapol_ctx, 1373 struct eapol_callbacks *eapol_cb, 1374 void *msg_ctx, struct eap_config *conf) 1375 { 1376 struct eap_sm *sm; 1377 struct tls_config tlsconf; 1378 1379 sm = os_zalloc(sizeof(*sm)); 1380 if (sm == NULL) 1381 return NULL; 1382 sm->eapol_ctx = eapol_ctx; 1383 sm->eapol_cb = eapol_cb; 1384 sm->msg_ctx = msg_ctx; 1385 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT; 1386 sm->wps = conf->wps; 1387 1388 os_memset(&tlsconf, 0, sizeof(tlsconf)); 1389 tlsconf.opensc_engine_path = conf->opensc_engine_path; 1390 tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path; 1391 tlsconf.pkcs11_module_path = conf->pkcs11_module_path; 1392 #ifdef CONFIG_FIPS 1393 tlsconf.fips_mode = 1; 1394 #endif /* CONFIG_FIPS */ 1395 tlsconf.event_cb = eap_peer_sm_tls_event; 1396 tlsconf.cb_ctx = sm; 1397 tlsconf.cert_in_cb = conf->cert_in_cb; 1398 sm->ssl_ctx = tls_init(&tlsconf); 1399 if (sm->ssl_ctx == NULL) { 1400 wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS " 1401 "context."); 1402 os_free(sm); 1403 return NULL; 1404 } 1405 1406 sm->ssl_ctx2 = tls_init(&tlsconf); 1407 if (sm->ssl_ctx2 == NULL) { 1408 wpa_printf(MSG_INFO, "SSL: Failed to initialize TLS " 1409 "context (2)."); 1410 /* Run without separate TLS context within TLS tunnel */ 1411 } 1412 1413 return sm; 1414 } 1415 1416 1417 /** 1418 * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine 1419 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1420 * 1421 * This function deinitializes EAP state machine and frees all allocated 1422 * resources. 1423 */ 1424 void eap_peer_sm_deinit(struct eap_sm *sm) 1425 { 1426 if (sm == NULL) 1427 return; 1428 eap_deinit_prev_method(sm, "EAP deinit"); 1429 eap_sm_abort(sm); 1430 if (sm->ssl_ctx2) 1431 tls_deinit(sm->ssl_ctx2); 1432 tls_deinit(sm->ssl_ctx); 1433 os_free(sm); 1434 } 1435 1436 1437 /** 1438 * eap_peer_sm_step - Step EAP peer state machine 1439 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1440 * Returns: 1 if EAP state was changed or 0 if not 1441 * 1442 * This function advances EAP state machine to a new state to match with the 1443 * current variables. This should be called whenever variables used by the EAP 1444 * state machine have changed. 1445 */ 1446 int eap_peer_sm_step(struct eap_sm *sm) 1447 { 1448 int res = 0; 1449 do { 1450 sm->changed = FALSE; 1451 SM_STEP_RUN(EAP); 1452 if (sm->changed) 1453 res = 1; 1454 } while (sm->changed); 1455 return res; 1456 } 1457 1458 1459 /** 1460 * eap_sm_abort - Abort EAP authentication 1461 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1462 * 1463 * Release system resources that have been allocated for the authentication 1464 * session without fully deinitializing the EAP state machine. 1465 */ 1466 void eap_sm_abort(struct eap_sm *sm) 1467 { 1468 wpabuf_free(sm->lastRespData); 1469 sm->lastRespData = NULL; 1470 wpabuf_free(sm->eapRespData); 1471 sm->eapRespData = NULL; 1472 os_free(sm->eapKeyData); 1473 sm->eapKeyData = NULL; 1474 os_free(sm->eapSessionId); 1475 sm->eapSessionId = NULL; 1476 1477 /* This is not clearly specified in the EAP statemachines draft, but 1478 * it seems necessary to make sure that some of the EAPOL variables get 1479 * cleared for the next authentication. */ 1480 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE); 1481 } 1482 1483 1484 #ifdef CONFIG_CTRL_IFACE 1485 static const char * eap_sm_state_txt(int state) 1486 { 1487 switch (state) { 1488 case EAP_INITIALIZE: 1489 return "INITIALIZE"; 1490 case EAP_DISABLED: 1491 return "DISABLED"; 1492 case EAP_IDLE: 1493 return "IDLE"; 1494 case EAP_RECEIVED: 1495 return "RECEIVED"; 1496 case EAP_GET_METHOD: 1497 return "GET_METHOD"; 1498 case EAP_METHOD: 1499 return "METHOD"; 1500 case EAP_SEND_RESPONSE: 1501 return "SEND_RESPONSE"; 1502 case EAP_DISCARD: 1503 return "DISCARD"; 1504 case EAP_IDENTITY: 1505 return "IDENTITY"; 1506 case EAP_NOTIFICATION: 1507 return "NOTIFICATION"; 1508 case EAP_RETRANSMIT: 1509 return "RETRANSMIT"; 1510 case EAP_SUCCESS: 1511 return "SUCCESS"; 1512 case EAP_FAILURE: 1513 return "FAILURE"; 1514 default: 1515 return "UNKNOWN"; 1516 } 1517 } 1518 #endif /* CONFIG_CTRL_IFACE */ 1519 1520 1521 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG) 1522 static const char * eap_sm_method_state_txt(EapMethodState state) 1523 { 1524 switch (state) { 1525 case METHOD_NONE: 1526 return "NONE"; 1527 case METHOD_INIT: 1528 return "INIT"; 1529 case METHOD_CONT: 1530 return "CONT"; 1531 case METHOD_MAY_CONT: 1532 return "MAY_CONT"; 1533 case METHOD_DONE: 1534 return "DONE"; 1535 default: 1536 return "UNKNOWN"; 1537 } 1538 } 1539 1540 1541 static const char * eap_sm_decision_txt(EapDecision decision) 1542 { 1543 switch (decision) { 1544 case DECISION_FAIL: 1545 return "FAIL"; 1546 case DECISION_COND_SUCC: 1547 return "COND_SUCC"; 1548 case DECISION_UNCOND_SUCC: 1549 return "UNCOND_SUCC"; 1550 default: 1551 return "UNKNOWN"; 1552 } 1553 } 1554 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 1555 1556 1557 #ifdef CONFIG_CTRL_IFACE 1558 1559 /** 1560 * eap_sm_get_status - Get EAP state machine status 1561 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1562 * @buf: Buffer for status information 1563 * @buflen: Maximum buffer length 1564 * @verbose: Whether to include verbose status information 1565 * Returns: Number of bytes written to buf. 1566 * 1567 * Query EAP state machine for status information. This function fills in a 1568 * text area with current status information from the EAPOL state machine. If 1569 * the buffer (buf) is not large enough, status information will be truncated 1570 * to fit the buffer. 1571 */ 1572 int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose) 1573 { 1574 int len, ret; 1575 1576 if (sm == NULL) 1577 return 0; 1578 1579 len = os_snprintf(buf, buflen, 1580 "EAP state=%s\n", 1581 eap_sm_state_txt(sm->EAP_state)); 1582 if (len < 0 || (size_t) len >= buflen) 1583 return 0; 1584 1585 if (sm->selectedMethod != EAP_TYPE_NONE) { 1586 const char *name; 1587 if (sm->m) { 1588 name = sm->m->name; 1589 } else { 1590 const struct eap_method *m = 1591 eap_peer_get_eap_method(EAP_VENDOR_IETF, 1592 sm->selectedMethod); 1593 if (m) 1594 name = m->name; 1595 else 1596 name = "?"; 1597 } 1598 ret = os_snprintf(buf + len, buflen - len, 1599 "selectedMethod=%d (EAP-%s)\n", 1600 sm->selectedMethod, name); 1601 if (ret < 0 || (size_t) ret >= buflen - len) 1602 return len; 1603 len += ret; 1604 1605 if (sm->m && sm->m->get_status) { 1606 len += sm->m->get_status(sm, sm->eap_method_priv, 1607 buf + len, buflen - len, 1608 verbose); 1609 } 1610 } 1611 1612 if (verbose) { 1613 ret = os_snprintf(buf + len, buflen - len, 1614 "reqMethod=%d\n" 1615 "methodState=%s\n" 1616 "decision=%s\n" 1617 "ClientTimeout=%d\n", 1618 sm->reqMethod, 1619 eap_sm_method_state_txt(sm->methodState), 1620 eap_sm_decision_txt(sm->decision), 1621 sm->ClientTimeout); 1622 if (ret < 0 || (size_t) ret >= buflen - len) 1623 return len; 1624 len += ret; 1625 } 1626 1627 return len; 1628 } 1629 #endif /* CONFIG_CTRL_IFACE */ 1630 1631 1632 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG) 1633 static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field, 1634 const char *msg, size_t msglen) 1635 { 1636 struct eap_peer_config *config; 1637 char *txt = NULL, *tmp; 1638 1639 if (sm == NULL) 1640 return; 1641 config = eap_get_config(sm); 1642 if (config == NULL) 1643 return; 1644 1645 switch (field) { 1646 case WPA_CTRL_REQ_EAP_IDENTITY: 1647 config->pending_req_identity++; 1648 break; 1649 case WPA_CTRL_REQ_EAP_PASSWORD: 1650 config->pending_req_password++; 1651 break; 1652 case WPA_CTRL_REQ_EAP_NEW_PASSWORD: 1653 config->pending_req_new_password++; 1654 break; 1655 case WPA_CTRL_REQ_EAP_PIN: 1656 config->pending_req_pin++; 1657 break; 1658 case WPA_CTRL_REQ_EAP_OTP: 1659 if (msg) { 1660 tmp = os_malloc(msglen + 3); 1661 if (tmp == NULL) 1662 return; 1663 tmp[0] = '['; 1664 os_memcpy(tmp + 1, msg, msglen); 1665 tmp[msglen + 1] = ']'; 1666 tmp[msglen + 2] = '\0'; 1667 txt = tmp; 1668 os_free(config->pending_req_otp); 1669 config->pending_req_otp = tmp; 1670 config->pending_req_otp_len = msglen + 3; 1671 } else { 1672 if (config->pending_req_otp == NULL) 1673 return; 1674 txt = config->pending_req_otp; 1675 } 1676 break; 1677 case WPA_CTRL_REQ_EAP_PASSPHRASE: 1678 config->pending_req_passphrase++; 1679 break; 1680 default: 1681 return; 1682 } 1683 1684 if (sm->eapol_cb->eap_param_needed) 1685 sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt); 1686 } 1687 #else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 1688 #define eap_sm_request(sm, type, msg, msglen) do { } while (0) 1689 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 1690 1691 const char * eap_sm_get_method_name(struct eap_sm *sm) 1692 { 1693 if (sm->m == NULL) 1694 return "UNKNOWN"; 1695 return sm->m->name; 1696 } 1697 1698 1699 /** 1700 * eap_sm_request_identity - Request identity from user (ctrl_iface) 1701 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1702 * 1703 * EAP methods can call this function to request identity information for the 1704 * current network. This is normally called when the identity is not included 1705 * in the network configuration. The request will be sent to monitor programs 1706 * through the control interface. 1707 */ 1708 void eap_sm_request_identity(struct eap_sm *sm) 1709 { 1710 eap_sm_request(sm, WPA_CTRL_REQ_EAP_IDENTITY, NULL, 0); 1711 } 1712 1713 1714 /** 1715 * eap_sm_request_password - Request password from user (ctrl_iface) 1716 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1717 * 1718 * EAP methods can call this function to request password information for the 1719 * current network. This is normally called when the password is not included 1720 * in the network configuration. The request will be sent to monitor programs 1721 * through the control interface. 1722 */ 1723 void eap_sm_request_password(struct eap_sm *sm) 1724 { 1725 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSWORD, NULL, 0); 1726 } 1727 1728 1729 /** 1730 * eap_sm_request_new_password - Request new password from user (ctrl_iface) 1731 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1732 * 1733 * EAP methods can call this function to request new password information for 1734 * the current network. This is normally called when the EAP method indicates 1735 * that the current password has expired and password change is required. The 1736 * request will be sent to monitor programs through the control interface. 1737 */ 1738 void eap_sm_request_new_password(struct eap_sm *sm) 1739 { 1740 eap_sm_request(sm, WPA_CTRL_REQ_EAP_NEW_PASSWORD, NULL, 0); 1741 } 1742 1743 1744 /** 1745 * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface) 1746 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1747 * 1748 * EAP methods can call this function to request SIM or smart card PIN 1749 * information for the current network. This is normally called when the PIN is 1750 * not included in the network configuration. The request will be sent to 1751 * monitor programs through the control interface. 1752 */ 1753 void eap_sm_request_pin(struct eap_sm *sm) 1754 { 1755 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PIN, NULL, 0); 1756 } 1757 1758 1759 /** 1760 * eap_sm_request_otp - Request one time password from user (ctrl_iface) 1761 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1762 * @msg: Message to be displayed to the user when asking for OTP 1763 * @msg_len: Length of the user displayable message 1764 * 1765 * EAP methods can call this function to request open time password (OTP) for 1766 * the current network. The request will be sent to monitor programs through 1767 * the control interface. 1768 */ 1769 void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len) 1770 { 1771 eap_sm_request(sm, WPA_CTRL_REQ_EAP_OTP, msg, msg_len); 1772 } 1773 1774 1775 /** 1776 * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface) 1777 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1778 * 1779 * EAP methods can call this function to request passphrase for a private key 1780 * for the current network. This is normally called when the passphrase is not 1781 * included in the network configuration. The request will be sent to monitor 1782 * programs through the control interface. 1783 */ 1784 void eap_sm_request_passphrase(struct eap_sm *sm) 1785 { 1786 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSPHRASE, NULL, 0); 1787 } 1788 1789 1790 /** 1791 * eap_sm_notify_ctrl_attached - Notification of attached monitor 1792 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1793 * 1794 * Notify EAP state machines that a monitor was attached to the control 1795 * interface to trigger re-sending of pending requests for user input. 1796 */ 1797 void eap_sm_notify_ctrl_attached(struct eap_sm *sm) 1798 { 1799 struct eap_peer_config *config = eap_get_config(sm); 1800 1801 if (config == NULL) 1802 return; 1803 1804 /* Re-send any pending requests for user data since a new control 1805 * interface was added. This handles cases where the EAP authentication 1806 * starts immediately after system startup when the user interface is 1807 * not yet running. */ 1808 if (config->pending_req_identity) 1809 eap_sm_request_identity(sm); 1810 if (config->pending_req_password) 1811 eap_sm_request_password(sm); 1812 if (config->pending_req_new_password) 1813 eap_sm_request_new_password(sm); 1814 if (config->pending_req_otp) 1815 eap_sm_request_otp(sm, NULL, 0); 1816 if (config->pending_req_pin) 1817 eap_sm_request_pin(sm); 1818 if (config->pending_req_passphrase) 1819 eap_sm_request_passphrase(sm); 1820 } 1821 1822 1823 static int eap_allowed_phase2_type(int vendor, int type) 1824 { 1825 if (vendor != EAP_VENDOR_IETF) 1826 return 0; 1827 return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS && 1828 type != EAP_TYPE_FAST; 1829 } 1830 1831 1832 /** 1833 * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name 1834 * @name: EAP method name, e.g., MD5 1835 * @vendor: Buffer for returning EAP Vendor-Id 1836 * Returns: EAP method type or %EAP_TYPE_NONE if not found 1837 * 1838 * This function maps EAP type names into EAP type numbers that are allowed for 1839 * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with 1840 * EAP-PEAP, EAP-TTLS, and EAP-FAST. 1841 */ 1842 u32 eap_get_phase2_type(const char *name, int *vendor) 1843 { 1844 int v; 1845 u8 type = eap_peer_get_type(name, &v); 1846 if (eap_allowed_phase2_type(v, type)) { 1847 *vendor = v; 1848 return type; 1849 } 1850 *vendor = EAP_VENDOR_IETF; 1851 return EAP_TYPE_NONE; 1852 } 1853 1854 1855 /** 1856 * eap_get_phase2_types - Get list of allowed EAP phase 2 types 1857 * @config: Pointer to a network configuration 1858 * @count: Pointer to a variable to be filled with number of returned EAP types 1859 * Returns: Pointer to allocated type list or %NULL on failure 1860 * 1861 * This function generates an array of allowed EAP phase 2 (tunneled) types for 1862 * the given network configuration. 1863 */ 1864 struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config, 1865 size_t *count) 1866 { 1867 struct eap_method_type *buf; 1868 u32 method; 1869 int vendor; 1870 size_t mcount; 1871 const struct eap_method *methods, *m; 1872 1873 methods = eap_peer_get_methods(&mcount); 1874 if (methods == NULL) 1875 return NULL; 1876 *count = 0; 1877 buf = os_malloc(mcount * sizeof(struct eap_method_type)); 1878 if (buf == NULL) 1879 return NULL; 1880 1881 for (m = methods; m; m = m->next) { 1882 vendor = m->vendor; 1883 method = m->method; 1884 if (eap_allowed_phase2_type(vendor, method)) { 1885 if (vendor == EAP_VENDOR_IETF && 1886 method == EAP_TYPE_TLS && config && 1887 config->private_key2 == NULL) 1888 continue; 1889 buf[*count].vendor = vendor; 1890 buf[*count].method = method; 1891 (*count)++; 1892 } 1893 } 1894 1895 return buf; 1896 } 1897 1898 1899 /** 1900 * eap_set_fast_reauth - Update fast_reauth setting 1901 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1902 * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled 1903 */ 1904 void eap_set_fast_reauth(struct eap_sm *sm, int enabled) 1905 { 1906 sm->fast_reauth = enabled; 1907 } 1908 1909 1910 /** 1911 * eap_set_workaround - Update EAP workarounds setting 1912 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1913 * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds 1914 */ 1915 void eap_set_workaround(struct eap_sm *sm, unsigned int workaround) 1916 { 1917 sm->workaround = workaround; 1918 } 1919 1920 1921 /** 1922 * eap_get_config - Get current network configuration 1923 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1924 * Returns: Pointer to the current network configuration or %NULL if not found 1925 * 1926 * EAP peer methods should avoid using this function if they can use other 1927 * access functions, like eap_get_config_identity() and 1928 * eap_get_config_password(), that do not require direct access to 1929 * struct eap_peer_config. 1930 */ 1931 struct eap_peer_config * eap_get_config(struct eap_sm *sm) 1932 { 1933 return sm->eapol_cb->get_config(sm->eapol_ctx); 1934 } 1935 1936 1937 /** 1938 * eap_get_config_identity - Get identity from the network configuration 1939 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1940 * @len: Buffer for the length of the identity 1941 * Returns: Pointer to the identity or %NULL if not found 1942 */ 1943 const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len) 1944 { 1945 struct eap_peer_config *config = eap_get_config(sm); 1946 if (config == NULL) 1947 return NULL; 1948 *len = config->identity_len; 1949 return config->identity; 1950 } 1951 1952 1953 static int eap_get_ext_password(struct eap_sm *sm, 1954 struct eap_peer_config *config) 1955 { 1956 char *name; 1957 1958 if (config->password == NULL) 1959 return -1; 1960 1961 name = os_zalloc(config->password_len + 1); 1962 if (name == NULL) 1963 return -1; 1964 os_memcpy(name, config->password, config->password_len); 1965 1966 ext_password_free(sm->ext_pw_buf); 1967 sm->ext_pw_buf = ext_password_get(sm->ext_pw, name); 1968 os_free(name); 1969 1970 return sm->ext_pw_buf == NULL ? -1 : 0; 1971 } 1972 1973 1974 /** 1975 * eap_get_config_password - Get password from the network configuration 1976 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1977 * @len: Buffer for the length of the password 1978 * Returns: Pointer to the password or %NULL if not found 1979 */ 1980 const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len) 1981 { 1982 struct eap_peer_config *config = eap_get_config(sm); 1983 if (config == NULL) 1984 return NULL; 1985 1986 if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) { 1987 if (eap_get_ext_password(sm, config) < 0) 1988 return NULL; 1989 *len = wpabuf_len(sm->ext_pw_buf); 1990 return wpabuf_head(sm->ext_pw_buf); 1991 } 1992 1993 *len = config->password_len; 1994 return config->password; 1995 } 1996 1997 1998 /** 1999 * eap_get_config_password2 - Get password from the network configuration 2000 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2001 * @len: Buffer for the length of the password 2002 * @hash: Buffer for returning whether the password is stored as a 2003 * NtPasswordHash instead of plaintext password; can be %NULL if this 2004 * information is not needed 2005 * Returns: Pointer to the password or %NULL if not found 2006 */ 2007 const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash) 2008 { 2009 struct eap_peer_config *config = eap_get_config(sm); 2010 if (config == NULL) 2011 return NULL; 2012 2013 if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) { 2014 if (eap_get_ext_password(sm, config) < 0) 2015 return NULL; 2016 *len = wpabuf_len(sm->ext_pw_buf); 2017 return wpabuf_head(sm->ext_pw_buf); 2018 } 2019 2020 *len = config->password_len; 2021 if (hash) 2022 *hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH); 2023 return config->password; 2024 } 2025 2026 2027 /** 2028 * eap_get_config_new_password - Get new password from network configuration 2029 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2030 * @len: Buffer for the length of the new password 2031 * Returns: Pointer to the new password or %NULL if not found 2032 */ 2033 const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len) 2034 { 2035 struct eap_peer_config *config = eap_get_config(sm); 2036 if (config == NULL) 2037 return NULL; 2038 *len = config->new_password_len; 2039 return config->new_password; 2040 } 2041 2042 2043 /** 2044 * eap_get_config_otp - Get one-time password from the network configuration 2045 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2046 * @len: Buffer for the length of the one-time password 2047 * Returns: Pointer to the one-time password or %NULL if not found 2048 */ 2049 const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len) 2050 { 2051 struct eap_peer_config *config = eap_get_config(sm); 2052 if (config == NULL) 2053 return NULL; 2054 *len = config->otp_len; 2055 return config->otp; 2056 } 2057 2058 2059 /** 2060 * eap_clear_config_otp - Clear used one-time password 2061 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2062 * 2063 * This function clears a used one-time password (OTP) from the current network 2064 * configuration. This should be called when the OTP has been used and is not 2065 * needed anymore. 2066 */ 2067 void eap_clear_config_otp(struct eap_sm *sm) 2068 { 2069 struct eap_peer_config *config = eap_get_config(sm); 2070 if (config == NULL) 2071 return; 2072 os_memset(config->otp, 0, config->otp_len); 2073 os_free(config->otp); 2074 config->otp = NULL; 2075 config->otp_len = 0; 2076 } 2077 2078 2079 /** 2080 * eap_get_config_phase1 - Get phase1 data from the network configuration 2081 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2082 * Returns: Pointer to the phase1 data or %NULL if not found 2083 */ 2084 const char * eap_get_config_phase1(struct eap_sm *sm) 2085 { 2086 struct eap_peer_config *config = eap_get_config(sm); 2087 if (config == NULL) 2088 return NULL; 2089 return config->phase1; 2090 } 2091 2092 2093 /** 2094 * eap_get_config_phase2 - Get phase2 data from the network configuration 2095 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2096 * Returns: Pointer to the phase1 data or %NULL if not found 2097 */ 2098 const char * eap_get_config_phase2(struct eap_sm *sm) 2099 { 2100 struct eap_peer_config *config = eap_get_config(sm); 2101 if (config == NULL) 2102 return NULL; 2103 return config->phase2; 2104 } 2105 2106 2107 int eap_get_config_fragment_size(struct eap_sm *sm) 2108 { 2109 struct eap_peer_config *config = eap_get_config(sm); 2110 if (config == NULL) 2111 return -1; 2112 return config->fragment_size; 2113 } 2114 2115 2116 /** 2117 * eap_key_available - Get key availability (eapKeyAvailable variable) 2118 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2119 * Returns: 1 if EAP keying material is available, 0 if not 2120 */ 2121 int eap_key_available(struct eap_sm *sm) 2122 { 2123 return sm ? sm->eapKeyAvailable : 0; 2124 } 2125 2126 2127 /** 2128 * eap_notify_success - Notify EAP state machine about external success trigger 2129 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2130 * 2131 * This function is called when external event, e.g., successful completion of 2132 * WPA-PSK key handshake, is indicating that EAP state machine should move to 2133 * success state. This is mainly used with security modes that do not use EAP 2134 * state machine (e.g., WPA-PSK). 2135 */ 2136 void eap_notify_success(struct eap_sm *sm) 2137 { 2138 if (sm) { 2139 sm->decision = DECISION_COND_SUCC; 2140 sm->EAP_state = EAP_SUCCESS; 2141 } 2142 } 2143 2144 2145 /** 2146 * eap_notify_lower_layer_success - Notification of lower layer success 2147 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2148 * 2149 * Notify EAP state machines that a lower layer has detected a successful 2150 * authentication. This is used to recover from dropped EAP-Success messages. 2151 */ 2152 void eap_notify_lower_layer_success(struct eap_sm *sm) 2153 { 2154 if (sm == NULL) 2155 return; 2156 2157 if (eapol_get_bool(sm, EAPOL_eapSuccess) || 2158 sm->decision == DECISION_FAIL || 2159 (sm->methodState != METHOD_MAY_CONT && 2160 sm->methodState != METHOD_DONE)) 2161 return; 2162 2163 if (sm->eapKeyData != NULL) 2164 sm->eapKeyAvailable = TRUE; 2165 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE); 2166 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS 2167 "EAP authentication completed successfully (based on lower " 2168 "layer success)"); 2169 } 2170 2171 2172 /** 2173 * eap_get_eapSessionId - Get Session-Id from EAP state machine 2174 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2175 * @len: Pointer to variable that will be set to number of bytes in the session 2176 * Returns: Pointer to the EAP Session-Id or %NULL on failure 2177 * 2178 * Fetch EAP Session-Id from the EAP state machine. The Session-Id is available 2179 * only after a successful authentication. EAP state machine continues to manage 2180 * the Session-Id and the caller must not change or free the returned data. 2181 */ 2182 const u8 * eap_get_eapSessionId(struct eap_sm *sm, size_t *len) 2183 { 2184 if (sm == NULL || sm->eapSessionId == NULL) { 2185 *len = 0; 2186 return NULL; 2187 } 2188 2189 *len = sm->eapSessionIdLen; 2190 return sm->eapSessionId; 2191 } 2192 2193 2194 /** 2195 * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine 2196 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2197 * @len: Pointer to variable that will be set to number of bytes in the key 2198 * Returns: Pointer to the EAP keying data or %NULL on failure 2199 * 2200 * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The 2201 * key is available only after a successful authentication. EAP state machine 2202 * continues to manage the key data and the caller must not change or free the 2203 * returned data. 2204 */ 2205 const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len) 2206 { 2207 if (sm == NULL || sm->eapKeyData == NULL) { 2208 *len = 0; 2209 return NULL; 2210 } 2211 2212 *len = sm->eapKeyDataLen; 2213 return sm->eapKeyData; 2214 } 2215 2216 2217 /** 2218 * eap_get_eapKeyData - Get EAP response data 2219 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2220 * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure 2221 * 2222 * Fetch EAP response (eapRespData) from the EAP state machine. This data is 2223 * available when EAP state machine has processed an incoming EAP request. The 2224 * EAP state machine does not maintain a reference to the response after this 2225 * function is called and the caller is responsible for freeing the data. 2226 */ 2227 struct wpabuf * eap_get_eapRespData(struct eap_sm *sm) 2228 { 2229 struct wpabuf *resp; 2230 2231 if (sm == NULL || sm->eapRespData == NULL) 2232 return NULL; 2233 2234 resp = sm->eapRespData; 2235 sm->eapRespData = NULL; 2236 2237 return resp; 2238 } 2239 2240 2241 /** 2242 * eap_sm_register_scard_ctx - Notification of smart card context 2243 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2244 * @ctx: Context data for smart card operations 2245 * 2246 * Notify EAP state machines of context data for smart card operations. This 2247 * context data will be used as a parameter for scard_*() functions. 2248 */ 2249 void eap_register_scard_ctx(struct eap_sm *sm, void *ctx) 2250 { 2251 if (sm) 2252 sm->scard_ctx = ctx; 2253 } 2254 2255 2256 /** 2257 * eap_set_config_blob - Set or add a named configuration blob 2258 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2259 * @blob: New value for the blob 2260 * 2261 * Adds a new configuration blob or replaces the current value of an existing 2262 * blob. 2263 */ 2264 void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob) 2265 { 2266 #ifndef CONFIG_NO_CONFIG_BLOBS 2267 sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob); 2268 #endif /* CONFIG_NO_CONFIG_BLOBS */ 2269 } 2270 2271 2272 /** 2273 * eap_get_config_blob - Get a named configuration blob 2274 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2275 * @name: Name of the blob 2276 * Returns: Pointer to blob data or %NULL if not found 2277 */ 2278 const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm, 2279 const char *name) 2280 { 2281 #ifndef CONFIG_NO_CONFIG_BLOBS 2282 return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name); 2283 #else /* CONFIG_NO_CONFIG_BLOBS */ 2284 return NULL; 2285 #endif /* CONFIG_NO_CONFIG_BLOBS */ 2286 } 2287 2288 2289 /** 2290 * eap_set_force_disabled - Set force_disabled flag 2291 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2292 * @disabled: 1 = EAP disabled, 0 = EAP enabled 2293 * 2294 * This function is used to force EAP state machine to be disabled when it is 2295 * not in use (e.g., with WPA-PSK or plaintext connections). 2296 */ 2297 void eap_set_force_disabled(struct eap_sm *sm, int disabled) 2298 { 2299 sm->force_disabled = disabled; 2300 } 2301 2302 2303 /** 2304 * eap_notify_pending - Notify that EAP method is ready to re-process a request 2305 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2306 * 2307 * An EAP method can perform a pending operation (e.g., to get a response from 2308 * an external process). Once the response is available, this function can be 2309 * used to request EAPOL state machine to retry delivering the previously 2310 * received (and still unanswered) EAP request to EAP state machine. 2311 */ 2312 void eap_notify_pending(struct eap_sm *sm) 2313 { 2314 sm->eapol_cb->notify_pending(sm->eapol_ctx); 2315 } 2316 2317 2318 /** 2319 * eap_invalidate_cached_session - Mark cached session data invalid 2320 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2321 */ 2322 void eap_invalidate_cached_session(struct eap_sm *sm) 2323 { 2324 if (sm) 2325 eap_deinit_prev_method(sm, "invalidate"); 2326 } 2327 2328 2329 int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf) 2330 { 2331 if (conf->identity_len != WSC_ID_ENROLLEE_LEN || 2332 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN)) 2333 return 0; /* Not a WPS Enrollee */ 2334 2335 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL) 2336 return 0; /* Not using PBC */ 2337 2338 return 1; 2339 } 2340 2341 2342 int eap_is_wps_pin_enrollee(struct eap_peer_config *conf) 2343 { 2344 if (conf->identity_len != WSC_ID_ENROLLEE_LEN || 2345 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN)) 2346 return 0; /* Not a WPS Enrollee */ 2347 2348 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL) 2349 return 0; /* Not using PIN */ 2350 2351 return 1; 2352 } 2353 2354 2355 void eap_sm_set_ext_pw_ctx(struct eap_sm *sm, struct ext_password_data *ext) 2356 { 2357 ext_password_free(sm->ext_pw_buf); 2358 sm->ext_pw_buf = NULL; 2359 sm->ext_pw = ext; 2360 } 2361 2362 2363 /** 2364 * eap_set_anon_id - Set or add anonymous identity 2365 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2366 * @id: Anonymous identity (e.g., EAP-SIM pseudonym) or %NULL to clear 2367 * @len: Length of anonymous identity in octets 2368 */ 2369 void eap_set_anon_id(struct eap_sm *sm, const u8 *id, size_t len) 2370 { 2371 if (sm->eapol_cb->set_anon_id) 2372 sm->eapol_cb->set_anon_id(sm->eapol_ctx, id, len); 2373 } 2374