1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ANDROID_BASIC_HASHTABLE_H 18 #define ANDROID_BASIC_HASHTABLE_H 19 20 #include <stdint.h> 21 #include <sys/types.h> 22 #include <utils/SharedBuffer.h> 23 #include <utils/TypeHelpers.h> 24 25 namespace android { 26 27 /* Implementation type. Nothing to see here. */ 28 class BasicHashtableImpl { 29 protected: 30 struct Bucket { 31 // The collision flag indicates that the bucket is part of a collision chain 32 // such that at least two entries both hash to this bucket. When true, we 33 // may need to seek further along the chain to find the entry. 34 static const uint32_t COLLISION = 0x80000000UL; 35 36 // The present flag indicates that the bucket contains an initialized entry value. 37 static const uint32_t PRESENT = 0x40000000UL; 38 39 // Mask for 30 bits worth of the hash code that are stored within the bucket to 40 // speed up lookups and rehashing by eliminating the need to recalculate the 41 // hash code of the entry's key. 42 static const uint32_t HASH_MASK = 0x3fffffffUL; 43 44 // Combined value that stores the collision and present flags as well as 45 // a 30 bit hash code. 46 uint32_t cookie; 47 48 // Storage for the entry begins here. 49 char entry[0]; 50 }; 51 52 BasicHashtableImpl(size_t entrySize, bool hasTrivialDestructor, 53 size_t minimumInitialCapacity, float loadFactor); 54 BasicHashtableImpl(const BasicHashtableImpl& other); 55 56 void dispose(); 57 58 inline void edit() { 59 if (mBuckets && !SharedBuffer::bufferFromData(mBuckets)->onlyOwner()) { 60 clone(); 61 } 62 } 63 64 void setTo(const BasicHashtableImpl& other); 65 void clear(); 66 67 ssize_t next(ssize_t index) const; 68 ssize_t find(ssize_t index, hash_t hash, const void* __restrict__ key) const; 69 size_t add(hash_t hash, const void* __restrict__ entry); 70 void removeAt(size_t index); 71 void rehash(size_t minimumCapacity, float loadFactor); 72 73 const size_t mBucketSize; // number of bytes per bucket including the entry 74 const bool mHasTrivialDestructor; // true if the entry type does not require destruction 75 size_t mCapacity; // number of buckets that can be filled before exceeding load factor 76 float mLoadFactor; // load factor 77 size_t mSize; // number of elements actually in the table 78 size_t mFilledBuckets; // number of buckets for which collision or present is true 79 size_t mBucketCount; // number of slots in the mBuckets array 80 void* mBuckets; // array of buckets, as a SharedBuffer 81 82 inline const Bucket& bucketAt(const void* __restrict__ buckets, size_t index) const { 83 return *reinterpret_cast<const Bucket*>( 84 static_cast<const uint8_t*>(buckets) + index * mBucketSize); 85 } 86 87 inline Bucket& bucketAt(void* __restrict__ buckets, size_t index) const { 88 return *reinterpret_cast<Bucket*>(static_cast<uint8_t*>(buckets) + index * mBucketSize); 89 } 90 91 virtual bool compareBucketKey(const Bucket& bucket, const void* __restrict__ key) const = 0; 92 virtual void initializeBucketEntry(Bucket& bucket, const void* __restrict__ entry) const = 0; 93 virtual void destroyBucketEntry(Bucket& bucket) const = 0; 94 95 private: 96 void clone(); 97 98 // Allocates a bucket array as a SharedBuffer. 99 void* allocateBuckets(size_t count) const; 100 101 // Releases a bucket array's associated SharedBuffer. 102 void releaseBuckets(void* __restrict__ buckets, size_t count) const; 103 104 // Destroys the contents of buckets (invokes destroyBucketEntry for each 105 // populated bucket if needed). 106 void destroyBuckets(void* __restrict__ buckets, size_t count) const; 107 108 // Copies the content of buckets (copies the cookie and invokes copyBucketEntry 109 // for each populated bucket if needed). 110 void copyBuckets(const void* __restrict__ fromBuckets, 111 void* __restrict__ toBuckets, size_t count) const; 112 113 // Determines the appropriate size of a bucket array to store a certain minimum 114 // number of entries and returns its effective capacity. 115 static void determineCapacity(size_t minimumCapacity, float loadFactor, 116 size_t* __restrict__ outBucketCount, size_t* __restrict__ outCapacity); 117 118 // Trim a hash code to 30 bits to match what we store in the bucket's cookie. 119 inline static hash_t trimHash(hash_t hash) { 120 return (hash & Bucket::HASH_MASK) ^ (hash >> 30); 121 } 122 123 // Returns the index of the first bucket that is in the collision chain 124 // for the specified hash code, given the total number of buckets. 125 // (Primary hash) 126 inline static size_t chainStart(hash_t hash, size_t count) { 127 return hash % count; 128 } 129 130 // Returns the increment to add to a bucket index to seek to the next bucket 131 // in the collision chain for the specified hash code, given the total number of buckets. 132 // (Secondary hash) 133 inline static size_t chainIncrement(hash_t hash, size_t count) { 134 return ((hash >> 7) | (hash << 25)) % (count - 1) + 1; 135 } 136 137 // Returns the index of the next bucket that is in the collision chain 138 // that is defined by the specified increment, given the total number of buckets. 139 inline static size_t chainSeek(size_t index, size_t increment, size_t count) { 140 return (index + increment) % count; 141 } 142 }; 143 144 /* 145 * A BasicHashtable stores entries that are indexed by hash code in place 146 * within an array. The basic operations are finding entries by key, 147 * adding new entries and removing existing entries. 148 * 149 * This class provides a very limited set of operations with simple semantics. 150 * It is intended to be used as a building block to construct more complex 151 * and interesting data structures such as HashMap. Think very hard before 152 * adding anything extra to BasicHashtable, it probably belongs at a 153 * higher level of abstraction. 154 * 155 * TKey: The key type. 156 * TEntry: The entry type which is what is actually stored in the array. 157 * 158 * TKey must support the following contract: 159 * bool operator==(const TKey& other) const; // return true if equal 160 * bool operator!=(const TKey& other) const; // return true if unequal 161 * 162 * TEntry must support the following contract: 163 * const TKey& getKey() const; // get the key from the entry 164 * 165 * This class supports storing entries with duplicate keys. Of course, it can't 166 * tell them apart during removal so only the first entry will be removed. 167 * We do this because it means that operations like add() can't fail. 168 */ 169 template <typename TKey, typename TEntry> 170 class BasicHashtable : private BasicHashtableImpl { 171 public: 172 /* Creates a hashtable with the specified minimum initial capacity. 173 * The underlying array will be created when the first entry is added. 174 * 175 * minimumInitialCapacity: The minimum initial capacity for the hashtable. 176 * Default is 0. 177 * loadFactor: The desired load factor for the hashtable, between 0 and 1. 178 * Default is 0.75. 179 */ 180 BasicHashtable(size_t minimumInitialCapacity = 0, float loadFactor = 0.75f); 181 182 /* Copies a hashtable. 183 * The underlying storage is shared copy-on-write. 184 */ 185 BasicHashtable(const BasicHashtable& other); 186 187 /* Clears and destroys the hashtable. 188 */ 189 virtual ~BasicHashtable(); 190 191 /* Making this hashtable a copy of the other hashtable. 192 * The underlying storage is shared copy-on-write. 193 * 194 * other: The hashtable to copy. 195 */ 196 inline BasicHashtable<TKey, TEntry>& operator =(const BasicHashtable<TKey, TEntry> & other) { 197 setTo(other); 198 return *this; 199 } 200 201 /* Returns the number of entries in the hashtable. 202 */ 203 inline size_t size() const { 204 return mSize; 205 } 206 207 /* Returns the capacity of the hashtable, which is the number of elements that can 208 * added to the hashtable without requiring it to be grown. 209 */ 210 inline size_t capacity() const { 211 return mCapacity; 212 } 213 214 /* Returns the number of buckets that the hashtable has, which is the size of its 215 * underlying array. 216 */ 217 inline size_t bucketCount() const { 218 return mBucketCount; 219 } 220 221 /* Returns the load factor of the hashtable. */ 222 inline float loadFactor() const { 223 return mLoadFactor; 224 }; 225 226 /* Returns a const reference to the entry at the specified index. 227 * 228 * index: The index of the entry to retrieve. Must be a valid index within 229 * the bounds of the hashtable. 230 */ 231 inline const TEntry& entryAt(size_t index) const { 232 return entryFor(bucketAt(mBuckets, index)); 233 } 234 235 /* Returns a non-const reference to the entry at the specified index. 236 * 237 * index: The index of the entry to edit. Must be a valid index within 238 * the bounds of the hashtable. 239 */ 240 inline TEntry& editEntryAt(size_t index) { 241 edit(); 242 return entryFor(bucketAt(mBuckets, index)); 243 } 244 245 /* Clears the hashtable. 246 * All entries in the hashtable are destroyed immediately. 247 * If you need to do something special with the entries in the hashtable then iterate 248 * over them and do what you need before clearing the hashtable. 249 */ 250 inline void clear() { 251 BasicHashtableImpl::clear(); 252 } 253 254 /* Returns the index of the next entry in the hashtable given the index of a previous entry. 255 * If the given index is -1, then returns the index of the first entry in the hashtable, 256 * if there is one, or -1 otherwise. 257 * If the given index is not -1, then returns the index of the next entry in the hashtable, 258 * in strictly increasing order, or -1 if there are none left. 259 * 260 * index: The index of the previous entry that was iterated, or -1 to begin 261 * iteration at the beginning of the hashtable. 262 */ 263 inline ssize_t next(ssize_t index) const { 264 return BasicHashtableImpl::next(index); 265 } 266 267 /* Finds the index of an entry with the specified key. 268 * If the given index is -1, then returns the index of the first matching entry, 269 * otherwise returns the index of the next matching entry. 270 * If the hashtable contains multiple entries with keys that match the requested 271 * key, then the sequence of entries returned is arbitrary. 272 * Returns -1 if no entry was found. 273 * 274 * index: The index of the previous entry with the specified key, or -1 to 275 * find the first matching entry. 276 * hash: The hashcode of the key. 277 * key: The key. 278 */ 279 inline ssize_t find(ssize_t index, hash_t hash, const TKey& key) const { 280 return BasicHashtableImpl::find(index, hash, &key); 281 } 282 283 /* Adds the entry to the hashtable. 284 * Returns the index of the newly added entry. 285 * If an entry with the same key already exists, then a duplicate entry is added. 286 * If the entry will not fit, then the hashtable's capacity is increased and 287 * its contents are rehashed. See rehash(). 288 * 289 * hash: The hashcode of the key. 290 * entry: The entry to add. 291 */ 292 inline size_t add(hash_t hash, const TEntry& entry) { 293 return BasicHashtableImpl::add(hash, &entry); 294 } 295 296 /* Removes the entry with the specified index from the hashtable. 297 * The entry is destroyed immediately. 298 * The index must be valid. 299 * 300 * The hashtable is not compacted after an item is removed, so it is legal 301 * to continue iterating over the hashtable using next() or find(). 302 * 303 * index: The index of the entry to remove. Must be a valid index within the 304 * bounds of the hashtable, and it must refer to an existing entry. 305 */ 306 inline void removeAt(size_t index) { 307 BasicHashtableImpl::removeAt(index); 308 } 309 310 /* Rehashes the contents of the hashtable. 311 * Grows the hashtable to at least the specified minimum capacity or the 312 * current number of elements, whichever is larger. 313 * 314 * Rehashing causes all entries to be copied and the entry indices may change. 315 * Although the hash codes are cached by the hashtable, rehashing can be an 316 * expensive operation and should be avoided unless the hashtable's size 317 * needs to be changed. 318 * 319 * Rehashing is the only way to change the capacity or load factor of the 320 * hashtable once it has been created. It can be used to compact the 321 * hashtable by choosing a minimum capacity that is smaller than the current 322 * capacity (such as 0). 323 * 324 * minimumCapacity: The desired minimum capacity after rehashing. 325 * loadFactor: The desired load factor after rehashing. 326 */ 327 inline void rehash(size_t minimumCapacity, float loadFactor) { 328 BasicHashtableImpl::rehash(minimumCapacity, loadFactor); 329 } 330 331 /* Determines whether there is room to add another entry without rehashing. 332 * When this returns true, a subsequent add() operation is guaranteed to 333 * complete without performing a rehash. 334 */ 335 inline bool hasMoreRoom() const { 336 return mCapacity > mFilledBuckets; 337 } 338 339 protected: 340 static inline const TEntry& entryFor(const Bucket& bucket) { 341 return reinterpret_cast<const TEntry&>(bucket.entry); 342 } 343 344 static inline TEntry& entryFor(Bucket& bucket) { 345 return reinterpret_cast<TEntry&>(bucket.entry); 346 } 347 348 virtual bool compareBucketKey(const Bucket& bucket, const void* __restrict__ key) const; 349 virtual void initializeBucketEntry(Bucket& bucket, const void* __restrict__ entry) const; 350 virtual void destroyBucketEntry(Bucket& bucket) const; 351 352 private: 353 // For dumping the raw contents of a hashtable during testing. 354 friend class BasicHashtableTest; 355 inline uint32_t cookieAt(size_t index) const { 356 return bucketAt(mBuckets, index).cookie; 357 } 358 }; 359 360 template <typename TKey, typename TEntry> 361 BasicHashtable<TKey, TEntry>::BasicHashtable(size_t minimumInitialCapacity, float loadFactor) : 362 BasicHashtableImpl(sizeof(TEntry), traits<TEntry>::has_trivial_dtor, 363 minimumInitialCapacity, loadFactor) { 364 } 365 366 template <typename TKey, typename TEntry> 367 BasicHashtable<TKey, TEntry>::BasicHashtable(const BasicHashtable<TKey, TEntry>& other) : 368 BasicHashtableImpl(other) { 369 } 370 371 template <typename TKey, typename TEntry> 372 BasicHashtable<TKey, TEntry>::~BasicHashtable() { 373 dispose(); 374 } 375 376 template <typename TKey, typename TEntry> 377 bool BasicHashtable<TKey, TEntry>::compareBucketKey(const Bucket& bucket, 378 const void* __restrict__ key) const { 379 return entryFor(bucket).getKey() == *static_cast<const TKey*>(key); 380 } 381 382 template <typename TKey, typename TEntry> 383 void BasicHashtable<TKey, TEntry>::initializeBucketEntry(Bucket& bucket, 384 const void* __restrict__ entry) const { 385 if (!traits<TEntry>::has_trivial_copy) { 386 new (&entryFor(bucket)) TEntry(*(static_cast<const TEntry*>(entry))); 387 } else { 388 memcpy(&entryFor(bucket), entry, sizeof(TEntry)); 389 } 390 } 391 392 template <typename TKey, typename TEntry> 393 void BasicHashtable<TKey, TEntry>::destroyBucketEntry(Bucket& bucket) const { 394 if (!traits<TEntry>::has_trivial_dtor) { 395 entryFor(bucket).~TEntry(); 396 } 397 } 398 399 }; // namespace android 400 401 #endif // ANDROID_BASIC_HASHTABLE_H 402