1 // Copyright (c) 2009 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef NET_TOOLS_FLIP_SERVER_BALSA_HEADERS_H_ 6 #define NET_TOOLS_FLIP_SERVER_BALSA_HEADERS_H_ 7 #pragma once 8 9 #include <algorithm> 10 #include <iosfwd> 11 #include <iterator> 12 #include <string> 13 #include <utility> 14 #include <vector> 15 16 #include "base/port.h" 17 #include "base/logging.h" 18 #include "base/string_piece.h" 19 #include "net/tools/flip_server/balsa_enums.h" 20 #include "net/tools/flip_server/string_piece_utils.h" 21 22 namespace net { 23 24 // WARNING: 25 // Note that -no- char* returned by any function in this 26 // file is null-terminated. 27 28 // This class exists to service the specific needs of BalsaHeaders. 29 // 30 // Functional goals: 31 // 1) provide a backing-store for all of the StringPieces that BalsaHeaders 32 // returns. Every StringPiece returned from BalsaHeaders should remain 33 // valid until the BalsaHeader's object is cleared, or the header-line is 34 // erased. 35 // 2) provide a backing-store for BalsaFrame, which requires contiguous memory 36 // for its fast-path parsing functions. Note that the cost of copying is 37 // less than the cost of requiring the parser to do slow-path parsing, as 38 // it would have to check for bounds every byte, instead of every 16 bytes. 39 // 40 // This class is optimized for the case where headers are stored in one of two 41 // buffers. It doesn't make a lot of effort to densely pack memory-- in fact, 42 // it -may- be somewhat memory inefficient. This possible inefficiency allows a 43 // certain simplicity of implementation and speed which makes it worthwhile. 44 // If, in the future, better memory density is required, it should be possible 45 // to reuse the abstraction presented by this object to achieve those goals. 46 // 47 // In the most common use-case, this memory inefficiency should be relatively 48 // small. 49 // 50 // Alternate implementations of BalsaBuffer may include: 51 // - vector of strings, one per header line (similar to HTTPHeaders) 52 // - densely packed strings: 53 // - keep a sorted array/map of free-space linked lists or numbers. 54 // - use the entry that most closely first your needs. 55 // - at this point, perhaps just use a vector of strings, and let 56 // the allocator do the right thing. 57 // 58 class BalsaBuffer { 59 public: 60 static const size_t kDefaultBlocksize = 4096; 61 // We have two friends here. These exist as friends as we 62 // want to allow access to the constructors for the test 63 // class and the Balsa* classes. We put this into the 64 // header file as we want this class to be inlined into the 65 // BalsaHeaders implementation, yet be testable. 66 friend class BalsaBufferTestSpouse; 67 friend class BalsaHeaders; 68 69 // The BufferBlock is a structure used internally by the 70 // BalsaBuffer class to store the base buffer pointers to 71 // each block, as well as the important metadata for buffer 72 // sizes and bytes free. 73 struct BufferBlock { 74 public: 75 char* buffer; 76 size_t buffer_size; 77 size_t bytes_free; 78 79 size_t bytes_used() const { 80 return buffer_size - bytes_free; 81 } 82 char* start_of_unused_bytes() const { 83 return buffer + bytes_used(); 84 } 85 86 BufferBlock() : buffer(NULL), buffer_size(0), bytes_free(0) {} 87 ~BufferBlock() {} 88 89 BufferBlock(char* buf, size_t size, size_t free) : 90 buffer(buf), buffer_size(size), bytes_free(free) {} 91 // Yes we want this to be copyable (it gets stuck into vectors). 92 // For this reason, we don't use scoped ptrs, etc. here-- it 93 // is more efficient to manage this memory externally to this 94 // object. 95 }; 96 97 typedef std::vector<BufferBlock> Blocks; 98 99 ~BalsaBuffer(); 100 101 // Returns the total amount of memory used by the buffer blocks. 102 size_t GetTotalBufferBlockSize() const; 103 104 const char* GetPtr(Blocks::size_type block_idx) const { 105 DCHECK_LT(block_idx, blocks_.size()) 106 << block_idx << ", " << blocks_.size(); 107 return blocks_[block_idx].buffer; 108 } 109 110 char* GetPtr(Blocks::size_type block_idx) { 111 DCHECK_LT(block_idx, blocks_.size()) 112 << block_idx << ", " << blocks_.size(); 113 return blocks_[block_idx].buffer; 114 } 115 116 // This function is different from Write(), as it ensures that the data 117 // stored via subsequent calls to this function are all contiguous (and in 118 // the order in which these writes happened). This is essentially the same 119 // as a string append. 120 // 121 // You may call this function at any time between object 122 // construction/Clear(), and the calling of the 123 // NoMoreWriteToContiguousBuffer() function. 124 // 125 // You must not call this function after the NoMoreWriteToContiguousBuffer() 126 // function is called, unless a Clear() has been called since. 127 // If you do, the program will abort(). 128 // 129 // This condition is placed upon this code so that calls to Write() can 130 // append to the buffer in the first block safely, and without invaliding 131 // the StringPiece which it returns. 132 // 133 // This function's main intended user is the BalsaFrame class, which, 134 // for reasons of efficiency, requires that the buffer from which it parses 135 // the headers be contiguous. 136 // 137 void WriteToContiguousBuffer(const base::StringPiece& sp); 138 139 void NoMoreWriteToContiguousBuffer() { 140 can_write_to_contiguous_buffer_ = false; 141 } 142 143 // Takes a StringPiece and writes it to "permanent" storage, then returns a 144 // StringPiece which points to that data. If block_idx != NULL, it will be 145 // assigned the index of the block into which the data was stored. 146 // Note that the 'permanent' storage in which it stores data may be in 147 // the first block IFF the NoMoreWriteToContiguousBuffer function has 148 // been called since the last Clear/Construction. 149 base::StringPiece Write(const base::StringPiece& sp, 150 Blocks::size_type* block_buffer_idx); 151 152 // Reserves "permanent" storage of the size indicated. Returns a pointer to 153 // the beginning of that storage, and assigns the index of the block used to 154 // block_buffer_idx. This function uses the first block IFF the 155 // NoMoreWriteToContiguousBuffer function has been called since the last 156 // Clear/Construction. 157 char* Reserve(size_t size, Blocks::size_type* block_buffer_idx); 158 159 void Clear(); 160 161 void Swap(BalsaBuffer* b); 162 163 void CopyFrom(const BalsaBuffer& b); 164 165 const char* StartOfFirstBlock() const { 166 return blocks_[0].buffer; 167 } 168 169 const char* EndOfFirstBlock() const { 170 return blocks_[0].buffer + blocks_[0].bytes_used(); 171 } 172 173 bool can_write_to_contiguous_buffer() const { 174 return can_write_to_contiguous_buffer_; 175 } 176 size_t blocksize() const { return blocksize_; } 177 Blocks::size_type num_blocks() const { return blocks_.size(); } 178 size_t buffer_size(size_t idx) const { return blocks_[idx].buffer_size; } 179 size_t bytes_used(size_t idx) const { return blocks_[idx].bytes_used(); } 180 181 protected: 182 BalsaBuffer(); 183 184 explicit BalsaBuffer(size_t blocksize); 185 186 BufferBlock AllocBlock(); 187 188 BufferBlock AllocCustomBlock(size_t blocksize); 189 190 BufferBlock CopyBlock(const BufferBlock& b); 191 192 // Cleans up the object. 193 // The block at start_idx, and all subsequent blocks 194 // will be cleared and have associated memory deleted. 195 void CleanupBlocksStartingFrom(Blocks::size_type start_idx); 196 197 // A container of BufferBlocks 198 Blocks blocks_; 199 200 // The default allocation size for a block. 201 // In general, blocksize_ bytes will be allocated for 202 // each buffer. 203 size_t blocksize_; 204 205 // If set to true, then the first block cannot be used for Write() calls as 206 // the WriteToContiguous... function will modify the base pointer for this 207 // block, and the Write() calls need to be sure that the base pointer will 208 // not be changing in order to provide the user with StringPieces which 209 // continue to be valid. 210 bool can_write_to_contiguous_buffer_; 211 }; 212 213 //////////////////////////////////////////////////////////////////////////////// 214 215 // All of the functions in the BalsaHeaders class use string pieces, by either 216 // using the StringPiece class, or giving an explicit size and char* (as these 217 // are the native representation for these string pieces). 218 // This is done for several reasons. 219 // 1) This minimizes copying/allocation/deallocation as compared to using 220 // string parameters 221 // 2) This reduces the number of strlen() calls done (as the length of any 222 // string passed in is relatively likely to be known at compile time, and for 223 // those strings passed back we obviate the need for a strlen() to determine 224 // the size of new storage allocations if a new allocation is required. 225 // 3) This class attempts to store all of its data in two linear buffers in 226 // order to enhance the speed of parsing and writing out to a buffer. As a 227 // result, many string pieces are -not- terminated by '\0', and are not 228 // c-strings. Since this is the case, we must delineate the length of the 229 // string explicitly via a length. 230 // 231 // WARNING: The side effect of using StringPiece is that if the underlying 232 // buffer changes (due to modifying the headers) the StringPieces which point 233 // to the data which was modified, may now contain "garbage", and should not 234 // be dereferenced. 235 // For example, If you fetch some component of the first-line, (request or 236 // response), and then you modify the first line, the StringPieces you 237 // originally received from the original first-line may no longer be valid). 238 // 239 // StringPieces pointing to pieces of header lines which have not been 240 // erased() or modified should be valid until the object is cleared or 241 // destroyed. 242 243 class BalsaHeaders { 244 public: 245 struct HeaderLineDescription { 246 HeaderLineDescription(size_t first_character_index, 247 size_t key_end_index, 248 size_t value_begin_index, 249 size_t last_character_index, 250 size_t buffer_base_index) : 251 first_char_idx(first_character_index), 252 key_end_idx(key_end_index), 253 value_begin_idx(value_begin_index), 254 last_char_idx(last_character_index), 255 buffer_base_idx(buffer_base_index), 256 skip(false) {} 257 258 HeaderLineDescription() : 259 first_char_idx(0), 260 key_end_idx(0), 261 value_begin_idx(0), 262 last_char_idx(0), 263 buffer_base_idx(0), 264 skip(false) {} 265 266 size_t first_char_idx; 267 size_t key_end_idx; 268 size_t value_begin_idx; 269 size_t last_char_idx; 270 BalsaBuffer::Blocks::size_type buffer_base_idx; 271 bool skip; 272 }; 273 274 typedef std::vector<base::StringPiece> HeaderTokenList; 275 friend bool ParseHTTPFirstLine(const char* begin, 276 const char* end, 277 bool is_request, 278 size_t max_request_uri_length, 279 BalsaHeaders* headers, 280 BalsaFrameEnums::ErrorCode* error_code); 281 282 protected: 283 typedef std::vector<HeaderLineDescription> HeaderLines; 284 285 // Why these base classes (iterator_base, reverse_iterator_base)? Well, if 286 // we do want to export both iterator and const_iterator types (currently we 287 // only have const_iterator), then this is useful to avoid code duplication. 288 // Additionally, having this base class makes comparisons of iterators of 289 // different types (they're different types to ensure that operator= and 290 // constructors do not work in the places where they're expected to not work) 291 // work properly. There could be as many as 4 iterator types, all based on 292 // the same data as iterator_base... so it makes sense to simply have some 293 // base classes. 294 295 class iterator_base { 296 public: 297 friend class BalsaHeaders; 298 friend class reverse_iterator_base; 299 typedef std::pair<base::StringPiece, base::StringPiece> StringPiecePair; 300 typedef StringPiecePair value_type; 301 typedef value_type& reference; 302 typedef value_type* pointer; 303 304 typedef std::forward_iterator_tag iterator_category; 305 typedef ptrdiff_t difference_type; 306 307 typedef iterator_base self; 308 309 // default constructor. 310 iterator_base() : headers_(NULL), idx_(0) { } 311 312 // copy constructor. 313 iterator_base(const iterator_base& it) 314 : headers_(it.headers_), 315 idx_(it.idx_) {} 316 317 reference operator*() const { 318 return Lookup(idx_); 319 } 320 321 pointer operator->() const { 322 return &(this->operator*()); 323 } 324 325 bool operator==(const self& it) const { 326 return idx_ == it.idx_; 327 } 328 329 bool operator<(const self& it) const { 330 return idx_ < it.idx_; 331 } 332 333 bool operator<=(const self& it) const { 334 return idx_ <= it.idx_; 335 } 336 337 bool operator!=(const self& it) const { 338 return !(*this == it); 339 } 340 341 bool operator>(const self& it) const { 342 return it < *this; 343 } 344 345 bool operator>=(const self& it) const { 346 return it <= *this; 347 } 348 349 // This mainly exists so that we can have interesting output for 350 // unittesting. The EXPECT_EQ, EXPECT_NE functions require that 351 // operator<< work for the classes it sees. It would be better if there 352 // was an additional traits-like system for the gUnit output... but oh 353 // well. 354 std::ostream& operator<<(std::ostream& os) const; 355 356 protected: 357 iterator_base(const BalsaHeaders* headers, HeaderLines::size_type index) : 358 headers_(headers), 359 idx_(index) {} 360 361 void increment() { 362 const HeaderLines& header_lines = headers_->header_lines_; 363 const HeaderLines::size_type header_lines_size = header_lines.size(); 364 const HeaderLines::size_type original_idx = idx_; 365 do { 366 ++idx_; 367 } while (idx_ < header_lines_size && header_lines[idx_].skip == true); 368 // The condition below exists so that ++(end() - 1) == end(), even 369 // if there are only 'skip == true' elements between the end() iterator 370 // and the end of the vector of HeaderLineDescriptions. 371 // TODO(fenix): refactor this list so that we don't have to do 372 // linear scanning through skipped headers (and this condition is 373 // then unnecessary) 374 if (idx_ == header_lines_size) { 375 idx_ = original_idx + 1; 376 } 377 } 378 379 void decrement() { 380 const HeaderLines& header_lines = headers_->header_lines_; 381 const HeaderLines::size_type header_lines_size = header_lines.size(); 382 const HeaderLines::size_type original_idx = idx_; 383 do { 384 --idx_; 385 } while (idx_ < header_lines_size && header_lines[idx_].skip == true); 386 // The condition below exists so that --(rbegin() + 1) == rbegin(), even 387 // if there are only 'skip == true' elements between the rbegin() iterator 388 // and the beginning of the vector of HeaderLineDescriptions. 389 // TODO(fenix): refactor this list so that we don't have to do 390 // linear scanning through skipped headers (and this condition is 391 // then unnecessary) 392 if (idx_ > header_lines_size) { 393 idx_ = original_idx - 1; 394 } 395 } 396 397 reference Lookup(HeaderLines::size_type index) const { 398 DCHECK_LT(index, headers_->header_lines_.size()); 399 const HeaderLineDescription& line = headers_->header_lines_[index]; 400 const char* stream_begin = headers_->GetPtr(line.buffer_base_idx); 401 value_ = value_type( 402 base::StringPiece(stream_begin + line.first_char_idx, 403 line.key_end_idx - line.first_char_idx), 404 base::StringPiece(stream_begin + line.value_begin_idx, 405 line.last_char_idx - line.value_begin_idx)); 406 DCHECK_GE(line.key_end_idx, line.first_char_idx); 407 DCHECK_GE(line.last_char_idx, line.value_begin_idx); 408 return value_; 409 } 410 411 const BalsaHeaders* headers_; 412 HeaderLines::size_type idx_; 413 mutable StringPiecePair value_; 414 }; 415 416 class reverse_iterator_base : public iterator_base { 417 public: 418 typedef reverse_iterator_base self; 419 typedef iterator_base::reference reference; 420 typedef iterator_base::pointer pointer; 421 using iterator_base::headers_; 422 using iterator_base::idx_; 423 424 reverse_iterator_base() : iterator_base() {} 425 426 // This constructor is no explicit purposely. 427 reverse_iterator_base(const iterator_base& it) : // NOLINT 428 iterator_base(it) { 429 } 430 431 self& operator=(const iterator_base& it) { 432 idx_ = it.idx_; 433 headers_ = it.headers_; 434 return *this; 435 } 436 437 self& operator=(const reverse_iterator_base& it) { 438 idx_ = it.idx_; 439 headers_ = it.headers_; 440 return *this; 441 } 442 443 reference operator*() const { 444 return Lookup(idx_ - 1); 445 } 446 447 pointer operator->() const { 448 return &(this->operator*()); 449 } 450 451 reverse_iterator_base(const reverse_iterator_base& it) : 452 iterator_base(it) { } 453 454 protected: 455 void increment() { 456 --idx_; 457 iterator_base::decrement(); 458 ++idx_; 459 } 460 461 void decrement() { 462 ++idx_; 463 iterator_base::increment(); 464 --idx_; 465 } 466 467 reverse_iterator_base(const BalsaHeaders* headers, 468 HeaderLines::size_type index) : 469 iterator_base(headers, index) {} 470 }; 471 472 public: 473 class const_header_lines_iterator : public iterator_base { 474 friend class BalsaHeaders; 475 public: 476 typedef const_header_lines_iterator self; 477 const_header_lines_iterator() : iterator_base() {} 478 479 const_header_lines_iterator(const const_header_lines_iterator& it) : 480 iterator_base(it.headers_, it.idx_) {} 481 482 self& operator++() { 483 iterator_base::increment(); 484 return *this; 485 } 486 487 self& operator--() { 488 iterator_base::decrement(); 489 return *this; 490 } 491 protected: 492 const_header_lines_iterator(const BalsaHeaders* headers, 493 HeaderLines::size_type index) : 494 iterator_base(headers, index) {} 495 }; 496 497 class const_reverse_header_lines_iterator : public reverse_iterator_base { 498 public: 499 typedef const_reverse_header_lines_iterator self; 500 const_reverse_header_lines_iterator() : reverse_iterator_base() {} 501 502 const_reverse_header_lines_iterator( 503 const const_header_lines_iterator& it) : 504 reverse_iterator_base(it.headers_, it.idx_) {} 505 506 const_reverse_header_lines_iterator( 507 const const_reverse_header_lines_iterator& it) : 508 reverse_iterator_base(it.headers_, it.idx_) {} 509 510 const_header_lines_iterator base() { 511 return const_header_lines_iterator(headers_, idx_); 512 } 513 514 self& operator++() { 515 reverse_iterator_base::increment(); 516 return *this; 517 } 518 519 self& operator--() { 520 reverse_iterator_base::decrement(); 521 return *this; 522 } 523 protected: 524 const_reverse_header_lines_iterator(const BalsaHeaders* headers, 525 HeaderLines::size_type index) : 526 reverse_iterator_base(headers, index) {} 527 528 friend class BalsaHeaders; 529 }; 530 531 // An iterator that only stops at lines with a particular key. 532 // See also GetIteratorForKey. 533 // 534 // Check against header_lines_key_end() to determine when iteration is 535 // finished. header_lines_end() will also work. 536 class const_header_lines_key_iterator : public iterator_base { 537 friend class BalsaHeaders; 538 public: 539 typedef const_header_lines_key_iterator self; 540 541 self& operator++() { 542 do { 543 iterator_base::increment(); 544 } while (!AtEnd() && 545 !StringPieceUtils::EqualIgnoreCase(key_, (**this).first)); 546 return *this; 547 } 548 549 void operator++(int ignore) { 550 ++(*this); 551 } 552 553 // Only forward-iteration makes sense, so no operator-- defined. 554 555 private: 556 const_header_lines_key_iterator(const BalsaHeaders* headers, 557 HeaderLines::size_type index, 558 const base::StringPiece& key) 559 : iterator_base(headers, index), 560 key_(key) { 561 } 562 563 // Should only be used for creating an end iterator. 564 const_header_lines_key_iterator(const BalsaHeaders* headers, 565 HeaderLines::size_type index) 566 : iterator_base(headers, index) { 567 } 568 569 bool AtEnd() const { 570 return *this >= headers_->header_lines_end(); 571 } 572 573 base::StringPiece key_; 574 }; 575 576 // TODO(fenix): Revisit the amount of bytes initially allocated to the second 577 // block of the balsa_buffer_. It may make sense to pre-allocate some amount 578 // (roughly the amount we'd append in new headers such as X-User-Ip, etc.) 579 BalsaHeaders(); 580 ~BalsaHeaders(); 581 582 const_header_lines_iterator header_lines_begin() { 583 return HeaderLinesBeginHelper<const_header_lines_iterator>(); 584 } 585 586 const_header_lines_iterator header_lines_begin() const { 587 return HeaderLinesBeginHelper<const_header_lines_iterator>(); 588 } 589 590 const_header_lines_iterator header_lines_end() { 591 return HeaderLinesEndHelper<const_header_lines_iterator>(); 592 } 593 594 const_header_lines_iterator header_lines_end() const { 595 return HeaderLinesEndHelper<const_header_lines_iterator>(); 596 } 597 598 const_reverse_header_lines_iterator header_lines_rbegin() { 599 return const_reverse_header_lines_iterator(header_lines_end()); 600 } 601 602 const_reverse_header_lines_iterator header_lines_rbegin() const { 603 return const_reverse_header_lines_iterator(header_lines_end()); 604 } 605 606 const_reverse_header_lines_iterator header_lines_rend() { 607 return const_reverse_header_lines_iterator(header_lines_begin()); 608 } 609 610 const_reverse_header_lines_iterator header_lines_rend() const { 611 return const_reverse_header_lines_iterator(header_lines_begin()); 612 } 613 614 const_header_lines_key_iterator header_lines_key_end() const { 615 return HeaderLinesEndHelper<const_header_lines_key_iterator>(); 616 } 617 618 void erase(const const_header_lines_iterator& it) { 619 DCHECK_EQ(it.headers_, this); 620 DCHECK_LT(it.idx_, header_lines_.size()); 621 DCHECK_GE(it.idx_, 0u); 622 header_lines_[it.idx_].skip = true; 623 } 624 625 void Clear(); 626 627 void Swap(BalsaHeaders* other); 628 629 void CopyFrom(const BalsaHeaders& other); 630 631 void HackHeader(const base::StringPiece& key, const base::StringPiece& value); 632 633 // Same as AppendToHeader, except that it will attempt to preserve 634 // header ordering. 635 // Note that this will always append to an existing header, if available, 636 // without moving the header around, or collapsing multiple header lines 637 // with the same key together. For this reason, it only 'attempts' to 638 // preserve header ordering. 639 // TODO(fenix): remove this function and rename all occurances 640 // of it in the code to AppendToHeader when the condition above 641 // has been satisified. 642 void HackAppendToHeader(const base::StringPiece& key, 643 const base::StringPiece& value); 644 645 // Replaces header entries with key 'key' if they exist, or appends 646 // a new header if none exist. See 'AppendHeader' below for additional 647 // comments about ContentLength and TransferEncoding headers. Note that this 648 // will allocate new storage every time that it is called. 649 // TODO(fenix): modify this function to reuse existing storage 650 // if it is available. 651 void ReplaceOrAppendHeader(const base::StringPiece& key, 652 const base::StringPiece& value); 653 654 // Append a new header entry to the header object. Clients who wish to append 655 // Content-Length header should use SetContentLength() method instead of 656 // adding the content length header using AppendHeader (manually adding the 657 // content length header will not update the content_length_ and 658 // content_length_status_ values). 659 // Similarly, clients who wish to add or remove the transfer encoding header 660 // in order to apply or remove chunked encoding should use SetChunkEncoding() 661 // instead. 662 void AppendHeader(const base::StringPiece& key, 663 const base::StringPiece& value); 664 665 // Appends ',value' to an existing header named 'key'. If no header with the 666 // correct key exists, it will call AppendHeader(key, value). Calling this 667 // function on a key which exists several times in the headers will produce 668 // unpredictable results. 669 void AppendToHeader(const base::StringPiece& key, 670 const base::StringPiece& value); 671 672 // Prepends 'value,' to an existing header named 'key'. If no header with the 673 // correct key exists, it will call AppendHeader(key, value). Calling this 674 // function on a key which exists several times in the headers will produce 675 // unpredictable results. 676 void PrependToHeader(const base::StringPiece& key, 677 const base::StringPiece& value); 678 679 const base::StringPiece GetHeader(const base::StringPiece& key) const; 680 681 // Iterates over all currently valid header lines, appending their 682 // values into the vector 'out', in top-to-bottom order. 683 // Header-lines which have been erased are not currently valid, and 684 // will not have their values appended. Empty values will be 685 // represented as empty string. If 'key' doesn't exist in the headers at 686 // all, out will not be changed. We do not clear the vector out 687 // before adding new entries. If there are header lines with matching 688 // key but empty value then they are also added to the vector out. 689 // (Basically empty values are not treated in any special manner). 690 // 691 // Example: 692 // Input header: 693 // "GET / HTTP/1.0\r\n" 694 // "key1: v1\r\n" 695 // "key1: \r\n" 696 // "key1:\r\n" 697 // "key1: v1\r\n" 698 // "key1:v2\r\n" 699 // 700 // vector out is initially: ["foo"] 701 // vector out after GetAllOfHeader("key1", &out) is: 702 // ["foo", "v1", "", "", "v2", "v1", "v2"] 703 704 void GetAllOfHeader(const base::StringPiece& key, 705 std::vector<base::StringPiece>* out) const; 706 707 // Joins all values for key into a comma-separated string in out. 708 // More efficient than calling JoinStrings on result of GetAllOfHeader if 709 // you don't need the intermediate vector<StringPiece>. 710 void GetAllOfHeaderAsString(const base::StringPiece& key, 711 std::string* out) const; 712 713 // Returns true if RFC 2616 Section 14 indicates that header can 714 // have multiple values. 715 static bool IsMultivaluedHeader(const base::StringPiece& header); 716 717 // Determine if a given header is present. 718 inline bool HasHeader(const base::StringPiece& key) const { 719 return (GetConstHeaderLinesIterator(key, header_lines_.begin()) != 720 header_lines_.end()); 721 } 722 723 // Returns true iff any header 'key' exists with non-empty value. 724 bool HasNonEmptyHeader(const base::StringPiece& key) const; 725 726 const_header_lines_iterator GetHeaderPosition( 727 const base::StringPiece& key) const; 728 729 // Returns a forward-only iterator that only stops at lines matching key. 730 // String backing 'key' must remain valid for lifetime of iterator. 731 // 732 // Check returned iterator against header_lines_key_end() to determine when 733 // iteration is finished. 734 const_header_lines_key_iterator GetIteratorForKey( 735 const base::StringPiece& key) const; 736 737 void RemoveAllOfHeader(const base::StringPiece& key); 738 739 // Removes all headers starting with 'key' [case insensitive] 740 void RemoveAllHeadersWithPrefix(const base::StringPiece& key); 741 742 // Returns the lower bound of memory used by this header object, including 743 // all internal buffers and data structure. Some of the memory used cannot be 744 // directly measure. For example, memory used for bookkeeping by standard 745 // containers. 746 size_t GetMemoryUsedLowerBound() const; 747 748 // Returns the upper bound on the required buffer space to fully write out 749 // the header object (this include the first line, all header lines, and the 750 // final CRLF that marks the ending of the header). 751 size_t GetSizeForWriteBuffer() const; 752 753 // The following WriteHeader* methods are template member functions that 754 // place one requirement on the Buffer class: it must implement a Write 755 // method that takes a pointer and a length. The buffer passed in is not 756 // required to be stretchable. For non-stretchable buffers, the user must 757 // call GetSizeForWriteBuffer() to find out the upper bound on the output 758 // buffer space required to make sure that the entire header is serialized. 759 // BalsaHeaders will not check that there is adequate space in the buffer 760 // object during the write. 761 762 // Writes the entire header and the final CRLF that marks the end of the HTTP 763 // header section to the buffer. After this method returns, no more header 764 // data should be written to the buffer. 765 template <typename Buffer> 766 void WriteHeaderAndEndingToBuffer(Buffer* buffer) const { 767 WriteToBuffer(buffer); 768 WriteHeaderEndingToBuffer(buffer); 769 } 770 771 // Writes the final CRLF to the buffer to terminate the HTTP header section. 772 // After this method returns, no more header data should be written to the 773 // buffer. 774 template <typename Buffer> 775 static void WriteHeaderEndingToBuffer(Buffer* buffer) { 776 buffer->Write("\r\n", 2); 777 } 778 779 // Writes the entire header to the buffer without the CRLF that terminates 780 // the HTTP header. This lets users append additional header lines using 781 // WriteHeaderLineToBuffer and then terminate the header with 782 // WriteHeaderEndingToBuffer as the header is serialized to the 783 // buffer, without having to first copy the header. 784 template <typename Buffer> 785 void WriteToBuffer(Buffer* buffer) const { 786 // write the first line. 787 const size_t firstline_len = whitespace_4_idx_ - non_whitespace_1_idx_; 788 const char* stream_begin = GetPtr(firstline_buffer_base_idx_); 789 buffer->Write(stream_begin + non_whitespace_1_idx_, firstline_len); 790 buffer->Write("\r\n", 2); 791 const HeaderLines::size_type end = header_lines_.size(); 792 for (HeaderLines::size_type i = 0; i < end; ++i) { 793 const HeaderLineDescription& line = header_lines_[i]; 794 if (line.skip) { 795 continue; 796 } 797 const char* line_ptr = GetPtr(line.buffer_base_idx); 798 WriteHeaderLineToBuffer( 799 buffer, 800 base::StringPiece(line_ptr + line.first_char_idx, 801 line.key_end_idx - line.first_char_idx), 802 base::StringPiece(line_ptr + line.value_begin_idx, 803 line.last_char_idx - line.value_begin_idx)); 804 } 805 } 806 807 // Takes a header line in the form of a key/value pair and append it to the 808 // buffer. This function should be called after WriteToBuffer to 809 // append additional header lines to the header without copying the header. 810 // When the user is done with appending to the buffer, 811 // WriteHeaderEndingToBuffer must be used to terminate the HTTP 812 // header in the buffer. This method is a no-op if key is empty. 813 template <typename Buffer> 814 static void WriteHeaderLineToBuffer(Buffer* buffer, 815 const base::StringPiece& key, 816 const base::StringPiece& value) { 817 // if the key is empty, we don't want to write the rest because it 818 // will not be a well-formed header line. 819 if (!key.empty()) { 820 buffer->Write(key.data(), key.size()); 821 buffer->Write(": ", 2); 822 buffer->Write(value.data(), value.size()); 823 buffer->Write("\r\n", 2); 824 } 825 } 826 827 // Dump the textural representation of the header object to a string, which 828 // is suitable for writing out to logs. All CRLF will be printed out as \n. 829 // This function can be called on a header object in any state. Raw header 830 // data will be printed out if the header object is not completely parsed, 831 // e.g., when there was an error in the middle of parsing. 832 // The header content is appended to the string; the original content is not 833 // cleared. 834 void DumpToString(std::string* str) const; 835 836 const base::StringPiece first_line() const { 837 DCHECK_GE(whitespace_4_idx_, non_whitespace_1_idx_); 838 return base::StringPiece(BeginningOfFirstLine() + non_whitespace_1_idx_, 839 whitespace_4_idx_ - non_whitespace_1_idx_); 840 } 841 842 // Returns the parsed value of the response code if it has been parsed. 843 // Guaranteed to return 0 when unparsed (though it is a much better idea to 844 // verify that the BalsaFrame had no errors while parsing). 845 // This may return response codes which are outside the normal bounds of 846 // HTTP response codes-- it is up to the user of this class to ensure that 847 // the response code is one which is interpretable. 848 size_t parsed_response_code() const { return parsed_response_code_; } 849 850 const base::StringPiece request_method() const { 851 DCHECK_GE(whitespace_2_idx_, non_whitespace_1_idx_); 852 return base::StringPiece(BeginningOfFirstLine() + non_whitespace_1_idx_, 853 whitespace_2_idx_ - non_whitespace_1_idx_); 854 } 855 856 const base::StringPiece response_version() const { 857 // Note: There is no difference between request_method() and 858 // response_version(). They both could be called 859 // GetFirstTokenFromFirstline()... but that wouldn't be anywhere near as 860 // descriptive. 861 return request_method(); 862 } 863 864 const base::StringPiece request_uri() const { 865 DCHECK_GE(whitespace_3_idx_, non_whitespace_2_idx_); 866 return base::StringPiece(BeginningOfFirstLine() + non_whitespace_2_idx_, 867 whitespace_3_idx_ - non_whitespace_2_idx_); 868 } 869 870 const base::StringPiece response_code() const { 871 // Note: There is no difference between request_uri() and response_code(). 872 // They both could be called GetSecondtTokenFromFirstline(), but, as noted 873 // in an earlier comment, that wouldn't be as descriptive. 874 return request_uri(); 875 } 876 877 const base::StringPiece request_version() const { 878 DCHECK_GE(whitespace_4_idx_, non_whitespace_3_idx_); 879 return base::StringPiece(BeginningOfFirstLine() + non_whitespace_3_idx_, 880 whitespace_4_idx_ - non_whitespace_3_idx_); 881 } 882 883 const base::StringPiece response_reason_phrase() const { 884 // Note: There is no difference between request_version() and 885 // response_reason_phrase(). They both could be called 886 // GetThirdTokenFromFirstline(), but, as noted in an earlier comment, that 887 // wouldn't be as descriptive. 888 return request_version(); 889 } 890 891 // Note that SetFirstLine will not update the internal indices for the 892 // various bits of the first-line (and may set them all to zero). 893 // If you'd like to use the accessors for the various bits of the firstline, 894 // then you should use the Set* functions, or SetFirstlineFromStringPieces, 895 // below, instead. 896 // 897 void SetFirstlineFromStringPieces(const base::StringPiece& firstline_a, 898 const base::StringPiece& firstline_b, 899 const base::StringPiece& firstline_c); 900 901 void SetRequestFirstlineFromStringPieces(const base::StringPiece& method, 902 const base::StringPiece& uri, 903 const base::StringPiece& version) { 904 SetFirstlineFromStringPieces(method, uri, version); 905 } 906 907 void SetResponseFirstlineFromStringPieces( 908 const base::StringPiece& version, 909 const base::StringPiece& code, 910 const base::StringPiece& reason_phrase) { 911 SetFirstlineFromStringPieces(version, code, reason_phrase); 912 } 913 914 // These functions are exactly the same, except that their names are 915 // different. This is done so that the code using this class is more 916 // expressive. 917 void SetRequestMethod(const base::StringPiece& method); 918 void SetResponseVersion(const base::StringPiece& version); 919 920 void SetRequestUri(const base::StringPiece& uri); 921 void SetResponseCode(const base::StringPiece& code); 922 void set_parsed_response_code(size_t parsed_response_code) { 923 parsed_response_code_ = parsed_response_code; 924 } 925 void SetParsedResponseCodeAndUpdateFirstline(size_t parsed_response_code); 926 927 // These functions are exactly the same, except that their names are 928 // different. This is done so that the code using this class is more 929 // expressive. 930 void SetRequestVersion(const base::StringPiece& version); 931 void SetResponseReasonPhrase(const base::StringPiece& reason_phrase); 932 933 // The biggest problem with SetFirstLine is that we don't want to use a 934 // separate buffer for it. The second biggest problem with it is that the 935 // first biggest problem requires that we store offsets into a buffer instead 936 // of pointers into a buffer. Cuteness aside, SetFirstLine doesn't parse 937 // the individual fields of the firstline, and so accessors to those fields 938 // will not work properly after calling SetFirstLine. If you want those 939 // accessors to work, use the Set* functions above this one. 940 // SetFirstLine is stuff useful, however, if all you care about is correct 941 // serialization with the rest of the header object. 942 void SetFirstLine(const base::StringPiece& line); 943 944 // Simple accessors to some of the internal state 945 bool transfer_encoding_is_chunked() const { 946 return transfer_encoding_is_chunked_; 947 } 948 949 static bool ResponseCodeImpliesNoBody(int code) { 950 // From HTTP spec section 6.1.1 all 1xx responses must not have a body, 951 // as well as 204 No Content and 304 Not Modified. 952 return ((code >= 100) && (code <= 199)) || (code == 204) || (code == 304); 953 } 954 955 // Note: never check this for requests. Nothing bad will happen if you do, 956 // but spec does not allow requests framed by connection close. 957 // TODO(vitaliyl): refactor. 958 bool is_framed_by_connection_close() const { 959 // We declare that response is framed by connection close if it has no 960 // content-length, no transfer encoding, and is allowed to have a body by 961 // the HTTP spec. 962 // parsed_response_code_ is 0 for requests, so ResponseCodeImpliesNoBody 963 // will return false. 964 return (content_length_status_ == BalsaHeadersEnums::NO_CONTENT_LENGTH) && 965 !transfer_encoding_is_chunked_ && 966 !ResponseCodeImpliesNoBody(parsed_response_code_); 967 } 968 969 size_t content_length() const { return content_length_; } 970 BalsaHeadersEnums::ContentLengthStatus content_length_status() const { 971 return content_length_status_; 972 } 973 974 // SetContentLength and SetChunkEncoding modifies the header object to use 975 // content-length and transfer-encoding headers in a consistent manner. They 976 // set all internal flags and status so client can get a consistent view from 977 // various accessors. 978 void SetContentLength(size_t length); 979 void SetChunkEncoding(bool chunk_encode); 980 981 protected: 982 friend class BalsaFrame; 983 friend class SpdyFrame; 984 friend class HTTPMessage; 985 friend class BalsaHeadersTokenUtils; 986 987 const char* BeginningOfFirstLine() const { 988 return GetPtr(firstline_buffer_base_idx_); 989 } 990 991 char* GetPtr(BalsaBuffer::Blocks::size_type block_idx) { 992 return balsa_buffer_.GetPtr(block_idx); 993 } 994 995 const char* GetPtr(BalsaBuffer::Blocks::size_type block_idx) const { 996 return balsa_buffer_.GetPtr(block_idx); 997 } 998 999 void WriteFromFramer(const char* ptr, size_t size) { 1000 balsa_buffer_.WriteToContiguousBuffer(base::StringPiece(ptr, size)); 1001 } 1002 1003 void DoneWritingFromFramer() { 1004 balsa_buffer_.NoMoreWriteToContiguousBuffer(); 1005 } 1006 1007 const char* OriginalHeaderStreamBegin() const { 1008 return balsa_buffer_.StartOfFirstBlock(); 1009 } 1010 1011 const char* OriginalHeaderStreamEnd() const { 1012 return balsa_buffer_.EndOfFirstBlock(); 1013 } 1014 1015 size_t GetReadableBytesFromHeaderStream() const { 1016 return OriginalHeaderStreamEnd() - OriginalHeaderStreamBegin(); 1017 } 1018 1019 void GetReadablePtrFromHeaderStream(const char** p, size_t* s) { 1020 *p = OriginalHeaderStreamBegin(); 1021 *s = GetReadableBytesFromHeaderStream(); 1022 } 1023 1024 base::StringPiece GetValueFromHeaderLineDescription( 1025 const HeaderLineDescription& line) const; 1026 1027 void AddAndMakeDescription(const base::StringPiece& key, 1028 const base::StringPiece& value, 1029 HeaderLineDescription* d); 1030 1031 void AppendOrPrependAndMakeDescription(const base::StringPiece& key, 1032 const base::StringPiece& value, 1033 bool append, 1034 HeaderLineDescription* d); 1035 1036 // Removes all header lines with the given key starting at start. 1037 void RemoveAllOfHeaderStartingAt(const base::StringPiece& key, 1038 HeaderLines::iterator start); 1039 1040 // If the 'key' does not exist in the headers, calls 1041 // AppendHeader(key, value). Otherwise if append is true, appends ',value' 1042 // to the first existing header with key 'key'. If append is false, prepends 1043 // 'value,' to the first existing header with key 'key'. 1044 void AppendOrPrependToHeader(const base::StringPiece& key, 1045 const base::StringPiece& value, 1046 bool append); 1047 1048 HeaderLines::const_iterator GetConstHeaderLinesIterator( 1049 const base::StringPiece& key, 1050 HeaderLines::const_iterator start) const; 1051 1052 HeaderLines::iterator GetHeaderLinesIteratorNoSkip( 1053 const base::StringPiece& key, 1054 HeaderLines::iterator start); 1055 1056 HeaderLines::iterator GetHeaderLinesIterator( 1057 const base::StringPiece& key, 1058 HeaderLines::iterator start); 1059 1060 template <typename IteratorType> 1061 const IteratorType HeaderLinesBeginHelper() const { 1062 if (header_lines_.empty()) { 1063 return IteratorType(this, 0); 1064 } 1065 const HeaderLines::size_type header_lines_size = header_lines_.size(); 1066 for (HeaderLines::size_type i = 0; i < header_lines_size; ++i) { 1067 if (header_lines_[i].skip == false) { 1068 return IteratorType(this, i); 1069 } 1070 } 1071 return IteratorType(this, 0); 1072 } 1073 1074 template <typename IteratorType> 1075 const IteratorType HeaderLinesEndHelper() const { 1076 if (header_lines_.empty()) { 1077 return IteratorType(this, 0); 1078 } 1079 const HeaderLines::size_type header_lines_size = header_lines_.size(); 1080 HeaderLines::size_type i = header_lines_size; 1081 do { 1082 --i; 1083 if (header_lines_[i].skip == false) { 1084 return IteratorType(this, i + 1); 1085 } 1086 } while (i != 0); 1087 return IteratorType(this, 0); 1088 } 1089 1090 // At the moment, this function will always return the original headers. 1091 // In the future, it may not do so after erasing header lines, modifying 1092 // header lines, or modifying the first line. 1093 // For this reason, it is strongly suggested that use of this function is 1094 // only acceptable for the purpose of debugging parse errors seen by the 1095 // BalsaFrame class. 1096 base::StringPiece OriginalHeadersForDebugging() const { 1097 return base::StringPiece(OriginalHeaderStreamBegin(), 1098 OriginalHeaderStreamEnd() - OriginalHeaderStreamBegin()); 1099 } 1100 1101 BalsaBuffer balsa_buffer_; 1102 1103 size_t content_length_; 1104 BalsaHeadersEnums::ContentLengthStatus content_length_status_; 1105 size_t parsed_response_code_; 1106 // HTTP firstlines all have the following structure: 1107 // LWS NONWS LWS NONWS LWS NONWS NOTCRLF CRLF 1108 // [\t \r\n]+ [^\t ]+ [\t ]+ [^\t ]+ [\t ]+ [^\t ]+ [^\r\n]+ "\r\n" 1109 // ws1 nws1 ws2 nws2 ws3 nws3 ws4 1110 // | [-------) [-------) [----------------) 1111 // REQ: method request_uri version 1112 // RESP: version statuscode reason 1113 // 1114 // The first NONWS->LWS component we'll call firstline_a. 1115 // The second firstline_b, and the third firstline_c. 1116 // 1117 // firstline_a goes from nws1 to (but not including) ws2 1118 // firstline_b goes from nws2 to (but not including) ws3 1119 // firstline_c goes from nws3 to (but not including) ws4 1120 // 1121 // In the code: 1122 // ws1 == whitespace_1_idx_ 1123 // nws1 == non_whitespace_1_idx_ 1124 // ws2 == whitespace_2_idx_ 1125 // nws2 == non_whitespace_2_idx_ 1126 // ws3 == whitespace_3_idx_ 1127 // nws3 == non_whitespace_3_idx_ 1128 // ws4 == whitespace_4_idx_ 1129 BalsaBuffer::Blocks::size_type firstline_buffer_base_idx_; 1130 size_t whitespace_1_idx_; 1131 size_t non_whitespace_1_idx_; 1132 size_t whitespace_2_idx_; 1133 size_t non_whitespace_2_idx_; 1134 size_t whitespace_3_idx_; 1135 size_t non_whitespace_3_idx_; 1136 size_t whitespace_4_idx_; 1137 size_t end_of_firstline_idx_; 1138 1139 bool transfer_encoding_is_chunked_; 1140 1141 HeaderLines header_lines_; 1142 }; 1143 1144 } // namespace net 1145 1146 #endif // NET_TOOLS_FLIP_SERVER_BALSA_HEADERS_H_ 1147