1 /* 2 * Copyright (C) 2009 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 /* 18 * This file contains codegen and support common to all supported 19 * ARM variants. It is included by: 20 * 21 * Codegen-$(TARGET_ARCH_VARIANT).c 22 * 23 * which combines this common code with specific support found in the 24 * applicable directory below this one. 25 */ 26 27 #include "compiler/Loop.h" 28 29 /* Array holding the entry offset of each template relative to the first one */ 30 static intptr_t templateEntryOffsets[TEMPLATE_LAST_MARK]; 31 32 /* Track exercised opcodes */ 33 static int opcodeCoverage[kNumPackedOpcodes]; 34 35 static void setMemRefType(ArmLIR *lir, bool isLoad, int memType) 36 { 37 u8 *maskPtr; 38 u8 mask = ENCODE_MEM;; 39 assert(EncodingMap[lir->opcode].flags & (IS_LOAD | IS_STORE)); 40 if (isLoad) { 41 maskPtr = &lir->useMask; 42 } else { 43 maskPtr = &lir->defMask; 44 } 45 /* Clear out the memref flags */ 46 *maskPtr &= ~mask; 47 /* ..and then add back the one we need */ 48 switch(memType) { 49 case kLiteral: 50 assert(isLoad); 51 *maskPtr |= ENCODE_LITERAL; 52 break; 53 case kDalvikReg: 54 *maskPtr |= ENCODE_DALVIK_REG; 55 break; 56 case kHeapRef: 57 *maskPtr |= ENCODE_HEAP_REF; 58 break; 59 case kMustNotAlias: 60 /* Currently only loads can be marked as kMustNotAlias */ 61 assert(!(EncodingMap[lir->opcode].flags & IS_STORE)); 62 *maskPtr |= ENCODE_MUST_NOT_ALIAS; 63 break; 64 default: 65 ALOGE("Jit: invalid memref kind - %d", memType); 66 assert(0); // Bail if debug build, set worst-case in the field 67 *maskPtr |= ENCODE_ALL; 68 } 69 } 70 71 /* 72 * Mark load/store instructions that access Dalvik registers through r5FP + 73 * offset. 74 */ 75 static void annotateDalvikRegAccess(ArmLIR *lir, int regId, bool isLoad) 76 { 77 setMemRefType(lir, isLoad, kDalvikReg); 78 79 /* 80 * Store the Dalvik register id in aliasInfo. Mark he MSB if it is a 64-bit 81 * access. 82 */ 83 lir->aliasInfo = regId; 84 if (DOUBLEREG(lir->operands[0])) { 85 lir->aliasInfo |= 0x80000000; 86 } 87 } 88 89 /* 90 * Decode the register id. 91 */ 92 static inline u8 getRegMaskCommon(int reg) 93 { 94 u8 seed; 95 int shift; 96 int regId = reg & 0x1f; 97 98 /* 99 * Each double register is equal to a pair of single-precision FP registers 100 */ 101 seed = DOUBLEREG(reg) ? 3 : 1; 102 /* FP register starts at bit position 16 */ 103 shift = FPREG(reg) ? kFPReg0 : 0; 104 /* Expand the double register id into single offset */ 105 shift += regId; 106 return (seed << shift); 107 } 108 109 /* External version of getRegMaskCommon */ 110 u8 dvmGetRegResourceMask(int reg) 111 { 112 return getRegMaskCommon(reg); 113 } 114 115 /* 116 * Mark the corresponding bit(s). 117 */ 118 static inline void setupRegMask(u8 *mask, int reg) 119 { 120 *mask |= getRegMaskCommon(reg); 121 } 122 123 /* 124 * Set up the proper fields in the resource mask 125 */ 126 static void setupResourceMasks(ArmLIR *lir) 127 { 128 int opcode = lir->opcode; 129 int flags; 130 131 if (opcode <= 0) { 132 lir->useMask = lir->defMask = 0; 133 return; 134 } 135 136 flags = EncodingMap[lir->opcode].flags; 137 138 /* Set up the mask for resources that are updated */ 139 if (flags & (IS_LOAD | IS_STORE)) { 140 /* Default to heap - will catch specialized classes later */ 141 setMemRefType(lir, flags & IS_LOAD, kHeapRef); 142 } 143 144 /* 145 * Conservatively assume the branch here will call out a function that in 146 * turn will trash everything. 147 */ 148 if (flags & IS_BRANCH) { 149 lir->defMask = lir->useMask = ENCODE_ALL; 150 return; 151 } 152 153 if (flags & REG_DEF0) { 154 setupRegMask(&lir->defMask, lir->operands[0]); 155 } 156 157 if (flags & REG_DEF1) { 158 setupRegMask(&lir->defMask, lir->operands[1]); 159 } 160 161 if (flags & REG_DEF_SP) { 162 lir->defMask |= ENCODE_REG_SP; 163 } 164 165 if (flags & REG_DEF_LR) { 166 lir->defMask |= ENCODE_REG_LR; 167 } 168 169 if (flags & REG_DEF_LIST0) { 170 lir->defMask |= ENCODE_REG_LIST(lir->operands[0]); 171 } 172 173 if (flags & REG_DEF_LIST1) { 174 lir->defMask |= ENCODE_REG_LIST(lir->operands[1]); 175 } 176 177 if (flags & SETS_CCODES) { 178 lir->defMask |= ENCODE_CCODE; 179 } 180 181 /* Conservatively treat the IT block */ 182 if (flags & IS_IT) { 183 lir->defMask = ENCODE_ALL; 184 } 185 186 if (flags & (REG_USE0 | REG_USE1 | REG_USE2 | REG_USE3)) { 187 int i; 188 189 for (i = 0; i < 4; i++) { 190 if (flags & (1 << (kRegUse0 + i))) { 191 setupRegMask(&lir->useMask, lir->operands[i]); 192 } 193 } 194 } 195 196 if (flags & REG_USE_PC) { 197 lir->useMask |= ENCODE_REG_PC; 198 } 199 200 if (flags & REG_USE_SP) { 201 lir->useMask |= ENCODE_REG_SP; 202 } 203 204 if (flags & REG_USE_LIST0) { 205 lir->useMask |= ENCODE_REG_LIST(lir->operands[0]); 206 } 207 208 if (flags & REG_USE_LIST1) { 209 lir->useMask |= ENCODE_REG_LIST(lir->operands[1]); 210 } 211 212 if (flags & USES_CCODES) { 213 lir->useMask |= ENCODE_CCODE; 214 } 215 216 /* Fixup for kThumbPush/lr and kThumbPop/pc */ 217 if (opcode == kThumbPush || opcode == kThumbPop) { 218 u8 r8Mask = getRegMaskCommon(r8); 219 if ((opcode == kThumbPush) && (lir->useMask & r8Mask)) { 220 lir->useMask &= ~r8Mask; 221 lir->useMask |= ENCODE_REG_LR; 222 } else if ((opcode == kThumbPop) && (lir->defMask & r8Mask)) { 223 lir->defMask &= ~r8Mask; 224 lir->defMask |= ENCODE_REG_PC; 225 } 226 } 227 } 228 229 /* 230 * Set up the accurate resource mask for branch instructions 231 */ 232 static void relaxBranchMasks(ArmLIR *lir) 233 { 234 int flags = EncodingMap[lir->opcode].flags; 235 236 /* Make sure only branch instructions are passed here */ 237 assert(flags & IS_BRANCH); 238 239 lir->useMask = lir->defMask = ENCODE_REG_PC; 240 241 if (flags & REG_DEF_LR) { 242 lir->defMask |= ENCODE_REG_LR; 243 } 244 245 if (flags & (REG_USE0 | REG_USE1 | REG_USE2 | REG_USE3)) { 246 int i; 247 248 for (i = 0; i < 4; i++) { 249 if (flags & (1 << (kRegUse0 + i))) { 250 setupRegMask(&lir->useMask, lir->operands[i]); 251 } 252 } 253 } 254 255 if (flags & USES_CCODES) { 256 lir->useMask |= ENCODE_CCODE; 257 } 258 } 259 260 /* 261 * The following are building blocks to construct low-level IRs with 0 - 4 262 * operands. 263 */ 264 static ArmLIR *newLIR0(CompilationUnit *cUnit, ArmOpcode opcode) 265 { 266 ArmLIR *insn = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true); 267 assert(isPseudoOpcode(opcode) || (EncodingMap[opcode].flags & NO_OPERAND)); 268 insn->opcode = opcode; 269 setupResourceMasks(insn); 270 dvmCompilerAppendLIR(cUnit, (LIR *) insn); 271 return insn; 272 } 273 274 static ArmLIR *newLIR1(CompilationUnit *cUnit, ArmOpcode opcode, 275 int dest) 276 { 277 ArmLIR *insn = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true); 278 assert(isPseudoOpcode(opcode) || (EncodingMap[opcode].flags & IS_UNARY_OP)); 279 insn->opcode = opcode; 280 insn->operands[0] = dest; 281 setupResourceMasks(insn); 282 dvmCompilerAppendLIR(cUnit, (LIR *) insn); 283 return insn; 284 } 285 286 static ArmLIR *newLIR2(CompilationUnit *cUnit, ArmOpcode opcode, 287 int dest, int src1) 288 { 289 ArmLIR *insn = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true); 290 assert(isPseudoOpcode(opcode) || 291 (EncodingMap[opcode].flags & IS_BINARY_OP)); 292 insn->opcode = opcode; 293 insn->operands[0] = dest; 294 insn->operands[1] = src1; 295 setupResourceMasks(insn); 296 dvmCompilerAppendLIR(cUnit, (LIR *) insn); 297 return insn; 298 } 299 300 static ArmLIR *newLIR3(CompilationUnit *cUnit, ArmOpcode opcode, 301 int dest, int src1, int src2) 302 { 303 ArmLIR *insn = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true); 304 if (!(EncodingMap[opcode].flags & IS_TERTIARY_OP)) { 305 ALOGE("Bad LIR3: %s[%d]",EncodingMap[opcode].name,opcode); 306 } 307 assert(isPseudoOpcode(opcode) || 308 (EncodingMap[opcode].flags & IS_TERTIARY_OP)); 309 insn->opcode = opcode; 310 insn->operands[0] = dest; 311 insn->operands[1] = src1; 312 insn->operands[2] = src2; 313 setupResourceMasks(insn); 314 dvmCompilerAppendLIR(cUnit, (LIR *) insn); 315 return insn; 316 } 317 318 #if defined(_ARMV7_A) || defined(_ARMV7_A_NEON) 319 static ArmLIR *newLIR4(CompilationUnit *cUnit, ArmOpcode opcode, 320 int dest, int src1, int src2, int info) 321 { 322 ArmLIR *insn = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true); 323 assert(isPseudoOpcode(opcode) || 324 (EncodingMap[opcode].flags & IS_QUAD_OP)); 325 insn->opcode = opcode; 326 insn->operands[0] = dest; 327 insn->operands[1] = src1; 328 insn->operands[2] = src2; 329 insn->operands[3] = info; 330 setupResourceMasks(insn); 331 dvmCompilerAppendLIR(cUnit, (LIR *) insn); 332 return insn; 333 } 334 #endif 335 336 /* 337 * If the next instruction is a move-result or move-result-long, 338 * return the target Dalvik sReg[s] and convert the next to a 339 * nop. Otherwise, return INVALID_SREG. Used to optimize method inlining. 340 */ 341 static RegLocation inlinedTarget(CompilationUnit *cUnit, MIR *mir, 342 bool fpHint) 343 { 344 if (mir->next && 345 ((mir->next->dalvikInsn.opcode == OP_MOVE_RESULT) || 346 (mir->next->dalvikInsn.opcode == OP_MOVE_RESULT_OBJECT))) { 347 mir->next->dalvikInsn.opcode = OP_NOP; 348 return dvmCompilerGetDest(cUnit, mir->next, 0); 349 } else { 350 RegLocation res = LOC_DALVIK_RETURN_VAL; 351 res.fp = fpHint; 352 return res; 353 } 354 } 355 356 /* 357 * Search the existing constants in the literal pool for an exact or close match 358 * within specified delta (greater or equal to 0). 359 */ 360 static ArmLIR *scanLiteralPool(LIR *dataTarget, int value, unsigned int delta) 361 { 362 while (dataTarget) { 363 if (((unsigned) (value - ((ArmLIR *) dataTarget)->operands[0])) <= 364 delta) 365 return (ArmLIR *) dataTarget; 366 dataTarget = dataTarget->next; 367 } 368 return NULL; 369 } 370 371 /* Search the existing constants in the literal pool for an exact wide match */ 372 ArmLIR* scanLiteralPoolWide(LIR* dataTarget, int valLo, int valHi) 373 { 374 bool lowMatch = false; 375 ArmLIR* lowTarget = NULL; 376 while (dataTarget) { 377 if (lowMatch && (((ArmLIR *)dataTarget)->operands[0] == valHi)) { 378 return lowTarget; 379 } 380 lowMatch = false; 381 if (((ArmLIR *) dataTarget)->operands[0] == valLo) { 382 lowMatch = true; 383 lowTarget = (ArmLIR *) dataTarget; 384 } 385 dataTarget = dataTarget->next; 386 } 387 return NULL; 388 } 389 390 /* 391 * The following are building blocks to insert constants into the pool or 392 * instruction streams. 393 */ 394 395 /* Add a 32-bit constant either in the constant pool or mixed with code */ 396 static ArmLIR *addWordData(CompilationUnit *cUnit, LIR **constantListP, 397 int value) 398 { 399 /* Add the constant to the literal pool */ 400 if (constantListP) { 401 ArmLIR *newValue = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true); 402 newValue->operands[0] = value; 403 newValue->generic.next = *constantListP; 404 *constantListP = (LIR *) newValue; 405 return newValue; 406 } else { 407 /* Add the constant in the middle of code stream */ 408 newLIR1(cUnit, kArm16BitData, (value & 0xffff)); 409 newLIR1(cUnit, kArm16BitData, (value >> 16)); 410 } 411 return NULL; 412 } 413 414 /* Add a 64-bit constant to the literal pool or mixed with code */ 415 ArmLIR* addWideData(CompilationUnit* cUnit, LIR** constantListP, 416 int valLo, int valHi) 417 { 418 addWordData(cUnit, constantListP, valHi); 419 return addWordData(cUnit, constantListP, valLo); 420 } 421 422 static RegLocation inlinedTargetWide(CompilationUnit *cUnit, MIR *mir, 423 bool fpHint) 424 { 425 if (mir->next && 426 (mir->next->dalvikInsn.opcode == OP_MOVE_RESULT_WIDE)) { 427 mir->next->dalvikInsn.opcode = OP_NOP; 428 return dvmCompilerGetDestWide(cUnit, mir->next, 0, 1); 429 } else { 430 RegLocation res = LOC_DALVIK_RETURN_VAL_WIDE; 431 res.fp = fpHint; 432 return res; 433 } 434 } 435 436 437 /* 438 * Generate an kArmPseudoBarrier marker to indicate the boundary of special 439 * blocks. 440 */ 441 static void genBarrier(CompilationUnit *cUnit) 442 { 443 ArmLIR *barrier = newLIR0(cUnit, kArmPseudoBarrier); 444 /* Mark all resources as being clobbered */ 445 barrier->defMask = -1; 446 } 447 448 /* Create the PC reconstruction slot if not already done */ 449 static ArmLIR *genCheckCommon(CompilationUnit *cUnit, int dOffset, 450 ArmLIR *branch, 451 ArmLIR *pcrLabel) 452 { 453 /* Forget all def info (because we might rollback here. Bug #2367397 */ 454 dvmCompilerResetDefTracking(cUnit); 455 456 /* Set up the place holder to reconstruct this Dalvik PC */ 457 if (pcrLabel == NULL) { 458 int dPC = (int) (cUnit->method->insns + dOffset); 459 pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true); 460 pcrLabel->opcode = kArmPseudoPCReconstructionCell; 461 pcrLabel->operands[0] = dPC; 462 pcrLabel->operands[1] = dOffset; 463 /* Insert the place holder to the growable list */ 464 dvmInsertGrowableList(&cUnit->pcReconstructionList, 465 (intptr_t) pcrLabel); 466 } 467 /* Branch to the PC reconstruction code */ 468 branch->generic.target = (LIR *) pcrLabel; 469 470 /* Clear the conservative flags for branches that punt to the interpreter */ 471 relaxBranchMasks(branch); 472 473 return pcrLabel; 474 } 475