Home | History | Annotate | Download | only in Checkers
      1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This defines CStringChecker, which is an assortment of checks on calls
     11 // to functions in <string.h>.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "ClangSACheckers.h"
     16 #include "InterCheckerAPI.h"
     17 #include "clang/Basic/CharInfo.h"
     18 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
     19 #include "clang/StaticAnalyzer/Core/Checker.h"
     20 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
     21 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
     22 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
     23 #include "llvm/ADT/STLExtras.h"
     24 #include "llvm/ADT/SmallString.h"
     25 #include "llvm/ADT/StringSwitch.h"
     26 #include "llvm/Support/raw_ostream.h"
     27 
     28 using namespace clang;
     29 using namespace ento;
     30 
     31 namespace {
     32 class CStringChecker : public Checker< eval::Call,
     33                                          check::PreStmt<DeclStmt>,
     34                                          check::LiveSymbols,
     35                                          check::DeadSymbols,
     36                                          check::RegionChanges
     37                                          > {
     38   mutable OwningPtr<BugType> BT_Null,
     39                              BT_Bounds,
     40                              BT_Overlap,
     41                              BT_NotCString,
     42                              BT_AdditionOverflow;
     43 
     44   mutable const char *CurrentFunctionDescription;
     45 
     46 public:
     47   /// The filter is used to filter out the diagnostics which are not enabled by
     48   /// the user.
     49   struct CStringChecksFilter {
     50     DefaultBool CheckCStringNullArg;
     51     DefaultBool CheckCStringOutOfBounds;
     52     DefaultBool CheckCStringBufferOverlap;
     53     DefaultBool CheckCStringNotNullTerm;
     54   };
     55 
     56   CStringChecksFilter Filter;
     57 
     58   static void *getTag() { static int tag; return &tag; }
     59 
     60   bool evalCall(const CallExpr *CE, CheckerContext &C) const;
     61   void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const;
     62   void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const;
     63   void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
     64   bool wantsRegionChangeUpdate(ProgramStateRef state) const;
     65 
     66   ProgramStateRef
     67     checkRegionChanges(ProgramStateRef state,
     68                        const InvalidatedSymbols *,
     69                        ArrayRef<const MemRegion *> ExplicitRegions,
     70                        ArrayRef<const MemRegion *> Regions,
     71                        const CallEvent *Call) const;
     72 
     73   typedef void (CStringChecker::*FnCheck)(CheckerContext &,
     74                                           const CallExpr *) const;
     75 
     76   void evalMemcpy(CheckerContext &C, const CallExpr *CE) const;
     77   void evalMempcpy(CheckerContext &C, const CallExpr *CE) const;
     78   void evalMemmove(CheckerContext &C, const CallExpr *CE) const;
     79   void evalBcopy(CheckerContext &C, const CallExpr *CE) const;
     80   void evalCopyCommon(CheckerContext &C, const CallExpr *CE,
     81                       ProgramStateRef state,
     82                       const Expr *Size,
     83                       const Expr *Source,
     84                       const Expr *Dest,
     85                       bool Restricted = false,
     86                       bool IsMempcpy = false) const;
     87 
     88   void evalMemcmp(CheckerContext &C, const CallExpr *CE) const;
     89 
     90   void evalstrLength(CheckerContext &C, const CallExpr *CE) const;
     91   void evalstrnLength(CheckerContext &C, const CallExpr *CE) const;
     92   void evalstrLengthCommon(CheckerContext &C,
     93                            const CallExpr *CE,
     94                            bool IsStrnlen = false) const;
     95 
     96   void evalStrcpy(CheckerContext &C, const CallExpr *CE) const;
     97   void evalStrncpy(CheckerContext &C, const CallExpr *CE) const;
     98   void evalStpcpy(CheckerContext &C, const CallExpr *CE) const;
     99   void evalStrcpyCommon(CheckerContext &C,
    100                         const CallExpr *CE,
    101                         bool returnEnd,
    102                         bool isBounded,
    103                         bool isAppending) const;
    104 
    105   void evalStrcat(CheckerContext &C, const CallExpr *CE) const;
    106   void evalStrncat(CheckerContext &C, const CallExpr *CE) const;
    107 
    108   void evalStrcmp(CheckerContext &C, const CallExpr *CE) const;
    109   void evalStrncmp(CheckerContext &C, const CallExpr *CE) const;
    110   void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const;
    111   void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const;
    112   void evalStrcmpCommon(CheckerContext &C,
    113                         const CallExpr *CE,
    114                         bool isBounded = false,
    115                         bool ignoreCase = false) const;
    116 
    117   // Utility methods
    118   std::pair<ProgramStateRef , ProgramStateRef >
    119   static assumeZero(CheckerContext &C,
    120                     ProgramStateRef state, SVal V, QualType Ty);
    121 
    122   static ProgramStateRef setCStringLength(ProgramStateRef state,
    123                                               const MemRegion *MR,
    124                                               SVal strLength);
    125   static SVal getCStringLengthForRegion(CheckerContext &C,
    126                                         ProgramStateRef &state,
    127                                         const Expr *Ex,
    128                                         const MemRegion *MR,
    129                                         bool hypothetical);
    130   SVal getCStringLength(CheckerContext &C,
    131                         ProgramStateRef &state,
    132                         const Expr *Ex,
    133                         SVal Buf,
    134                         bool hypothetical = false) const;
    135 
    136   const StringLiteral *getCStringLiteral(CheckerContext &C,
    137                                          ProgramStateRef &state,
    138                                          const Expr *expr,
    139                                          SVal val) const;
    140 
    141   static ProgramStateRef InvalidateBuffer(CheckerContext &C,
    142                                               ProgramStateRef state,
    143                                               const Expr *Ex, SVal V);
    144 
    145   static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
    146                               const MemRegion *MR);
    147 
    148   // Re-usable checks
    149   ProgramStateRef checkNonNull(CheckerContext &C,
    150                                    ProgramStateRef state,
    151                                    const Expr *S,
    152                                    SVal l) const;
    153   ProgramStateRef CheckLocation(CheckerContext &C,
    154                                     ProgramStateRef state,
    155                                     const Expr *S,
    156                                     SVal l,
    157                                     const char *message = NULL) const;
    158   ProgramStateRef CheckBufferAccess(CheckerContext &C,
    159                                         ProgramStateRef state,
    160                                         const Expr *Size,
    161                                         const Expr *FirstBuf,
    162                                         const Expr *SecondBuf,
    163                                         const char *firstMessage = NULL,
    164                                         const char *secondMessage = NULL,
    165                                         bool WarnAboutSize = false) const;
    166 
    167   ProgramStateRef CheckBufferAccess(CheckerContext &C,
    168                                         ProgramStateRef state,
    169                                         const Expr *Size,
    170                                         const Expr *Buf,
    171                                         const char *message = NULL,
    172                                         bool WarnAboutSize = false) const {
    173     // This is a convenience override.
    174     return CheckBufferAccess(C, state, Size, Buf, NULL, message, NULL,
    175                              WarnAboutSize);
    176   }
    177   ProgramStateRef CheckOverlap(CheckerContext &C,
    178                                    ProgramStateRef state,
    179                                    const Expr *Size,
    180                                    const Expr *First,
    181                                    const Expr *Second) const;
    182   void emitOverlapBug(CheckerContext &C,
    183                       ProgramStateRef state,
    184                       const Stmt *First,
    185                       const Stmt *Second) const;
    186 
    187   ProgramStateRef checkAdditionOverflow(CheckerContext &C,
    188                                             ProgramStateRef state,
    189                                             NonLoc left,
    190                                             NonLoc right) const;
    191 };
    192 
    193 } //end anonymous namespace
    194 
    195 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal)
    196 
    197 //===----------------------------------------------------------------------===//
    198 // Individual checks and utility methods.
    199 //===----------------------------------------------------------------------===//
    200 
    201 std::pair<ProgramStateRef , ProgramStateRef >
    202 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V,
    203                            QualType Ty) {
    204   Optional<DefinedSVal> val = V.getAs<DefinedSVal>();
    205   if (!val)
    206     return std::pair<ProgramStateRef , ProgramStateRef >(state, state);
    207 
    208   SValBuilder &svalBuilder = C.getSValBuilder();
    209   DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty);
    210   return state->assume(svalBuilder.evalEQ(state, *val, zero));
    211 }
    212 
    213 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C,
    214                                             ProgramStateRef state,
    215                                             const Expr *S, SVal l) const {
    216   // If a previous check has failed, propagate the failure.
    217   if (!state)
    218     return NULL;
    219 
    220   ProgramStateRef stateNull, stateNonNull;
    221   llvm::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType());
    222 
    223   if (stateNull && !stateNonNull) {
    224     if (!Filter.CheckCStringNullArg)
    225       return NULL;
    226 
    227     ExplodedNode *N = C.generateSink(stateNull);
    228     if (!N)
    229       return NULL;
    230 
    231     if (!BT_Null)
    232       BT_Null.reset(new BuiltinBug("Unix API",
    233         "Null pointer argument in call to byte string function"));
    234 
    235     SmallString<80> buf;
    236     llvm::raw_svector_ostream os(buf);
    237     assert(CurrentFunctionDescription);
    238     os << "Null pointer argument in call to " << CurrentFunctionDescription;
    239 
    240     // Generate a report for this bug.
    241     BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Null.get());
    242     BugReport *report = new BugReport(*BT, os.str(), N);
    243 
    244     report->addRange(S->getSourceRange());
    245     bugreporter::trackNullOrUndefValue(N, S, *report);
    246     C.emitReport(report);
    247     return NULL;
    248   }
    249 
    250   // From here on, assume that the value is non-null.
    251   assert(stateNonNull);
    252   return stateNonNull;
    253 }
    254 
    255 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor?
    256 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C,
    257                                              ProgramStateRef state,
    258                                              const Expr *S, SVal l,
    259                                              const char *warningMsg) const {
    260   // If a previous check has failed, propagate the failure.
    261   if (!state)
    262     return NULL;
    263 
    264   // Check for out of bound array element access.
    265   const MemRegion *R = l.getAsRegion();
    266   if (!R)
    267     return state;
    268 
    269   const ElementRegion *ER = dyn_cast<ElementRegion>(R);
    270   if (!ER)
    271     return state;
    272 
    273   assert(ER->getValueType() == C.getASTContext().CharTy &&
    274     "CheckLocation should only be called with char* ElementRegions");
    275 
    276   // Get the size of the array.
    277   const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
    278   SValBuilder &svalBuilder = C.getSValBuilder();
    279   SVal Extent =
    280     svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder));
    281   DefinedOrUnknownSVal Size = Extent.castAs<DefinedOrUnknownSVal>();
    282 
    283   // Get the index of the accessed element.
    284   DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>();
    285 
    286   ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true);
    287   ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false);
    288   if (StOutBound && !StInBound) {
    289     ExplodedNode *N = C.generateSink(StOutBound);
    290     if (!N)
    291       return NULL;
    292 
    293     if (!BT_Bounds) {
    294       BT_Bounds.reset(new BuiltinBug("Out-of-bound array access",
    295         "Byte string function accesses out-of-bound array element"));
    296     }
    297     BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Bounds.get());
    298 
    299     // Generate a report for this bug.
    300     BugReport *report;
    301     if (warningMsg) {
    302       report = new BugReport(*BT, warningMsg, N);
    303     } else {
    304       assert(CurrentFunctionDescription);
    305       assert(CurrentFunctionDescription[0] != '\0');
    306 
    307       SmallString<80> buf;
    308       llvm::raw_svector_ostream os(buf);
    309       os << toUppercase(CurrentFunctionDescription[0])
    310          << &CurrentFunctionDescription[1]
    311          << " accesses out-of-bound array element";
    312       report = new BugReport(*BT, os.str(), N);
    313     }
    314 
    315     // FIXME: It would be nice to eventually make this diagnostic more clear,
    316     // e.g., by referencing the original declaration or by saying *why* this
    317     // reference is outside the range.
    318 
    319     report->addRange(S->getSourceRange());
    320     C.emitReport(report);
    321     return NULL;
    322   }
    323 
    324   // Array bound check succeeded.  From this point forward the array bound
    325   // should always succeed.
    326   return StInBound;
    327 }
    328 
    329 ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C,
    330                                                  ProgramStateRef state,
    331                                                  const Expr *Size,
    332                                                  const Expr *FirstBuf,
    333                                                  const Expr *SecondBuf,
    334                                                  const char *firstMessage,
    335                                                  const char *secondMessage,
    336                                                  bool WarnAboutSize) const {
    337   // If a previous check has failed, propagate the failure.
    338   if (!state)
    339     return NULL;
    340 
    341   SValBuilder &svalBuilder = C.getSValBuilder();
    342   ASTContext &Ctx = svalBuilder.getContext();
    343   const LocationContext *LCtx = C.getLocationContext();
    344 
    345   QualType sizeTy = Size->getType();
    346   QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
    347 
    348   // Check that the first buffer is non-null.
    349   SVal BufVal = state->getSVal(FirstBuf, LCtx);
    350   state = checkNonNull(C, state, FirstBuf, BufVal);
    351   if (!state)
    352     return NULL;
    353 
    354   // If out-of-bounds checking is turned off, skip the rest.
    355   if (!Filter.CheckCStringOutOfBounds)
    356     return state;
    357 
    358   // Get the access length and make sure it is known.
    359   // FIXME: This assumes the caller has already checked that the access length
    360   // is positive. And that it's unsigned.
    361   SVal LengthVal = state->getSVal(Size, LCtx);
    362   Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
    363   if (!Length)
    364     return state;
    365 
    366   // Compute the offset of the last element to be accessed: size-1.
    367   NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
    368   NonLoc LastOffset = svalBuilder
    369       .evalBinOpNN(state, BO_Sub, *Length, One, sizeTy).castAs<NonLoc>();
    370 
    371   // Check that the first buffer is sufficiently long.
    372   SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType());
    373   if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
    374     const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf);
    375 
    376     SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
    377                                           LastOffset, PtrTy);
    378     state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage);
    379 
    380     // If the buffer isn't large enough, abort.
    381     if (!state)
    382       return NULL;
    383   }
    384 
    385   // If there's a second buffer, check it as well.
    386   if (SecondBuf) {
    387     BufVal = state->getSVal(SecondBuf, LCtx);
    388     state = checkNonNull(C, state, SecondBuf, BufVal);
    389     if (!state)
    390       return NULL;
    391 
    392     BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType());
    393     if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
    394       const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf);
    395 
    396       SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
    397                                             LastOffset, PtrTy);
    398       state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage);
    399     }
    400   }
    401 
    402   // Large enough or not, return this state!
    403   return state;
    404 }
    405 
    406 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C,
    407                                             ProgramStateRef state,
    408                                             const Expr *Size,
    409                                             const Expr *First,
    410                                             const Expr *Second) const {
    411   if (!Filter.CheckCStringBufferOverlap)
    412     return state;
    413 
    414   // Do a simple check for overlap: if the two arguments are from the same
    415   // buffer, see if the end of the first is greater than the start of the second
    416   // or vice versa.
    417 
    418   // If a previous check has failed, propagate the failure.
    419   if (!state)
    420     return NULL;
    421 
    422   ProgramStateRef stateTrue, stateFalse;
    423 
    424   // Get the buffer values and make sure they're known locations.
    425   const LocationContext *LCtx = C.getLocationContext();
    426   SVal firstVal = state->getSVal(First, LCtx);
    427   SVal secondVal = state->getSVal(Second, LCtx);
    428 
    429   Optional<Loc> firstLoc = firstVal.getAs<Loc>();
    430   if (!firstLoc)
    431     return state;
    432 
    433   Optional<Loc> secondLoc = secondVal.getAs<Loc>();
    434   if (!secondLoc)
    435     return state;
    436 
    437   // Are the two values the same?
    438   SValBuilder &svalBuilder = C.getSValBuilder();
    439   llvm::tie(stateTrue, stateFalse) =
    440     state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc));
    441 
    442   if (stateTrue && !stateFalse) {
    443     // If the values are known to be equal, that's automatically an overlap.
    444     emitOverlapBug(C, stateTrue, First, Second);
    445     return NULL;
    446   }
    447 
    448   // assume the two expressions are not equal.
    449   assert(stateFalse);
    450   state = stateFalse;
    451 
    452   // Which value comes first?
    453   QualType cmpTy = svalBuilder.getConditionType();
    454   SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT,
    455                                          *firstLoc, *secondLoc, cmpTy);
    456   Optional<DefinedOrUnknownSVal> reverseTest =
    457       reverse.getAs<DefinedOrUnknownSVal>();
    458   if (!reverseTest)
    459     return state;
    460 
    461   llvm::tie(stateTrue, stateFalse) = state->assume(*reverseTest);
    462   if (stateTrue) {
    463     if (stateFalse) {
    464       // If we don't know which one comes first, we can't perform this test.
    465       return state;
    466     } else {
    467       // Switch the values so that firstVal is before secondVal.
    468       std::swap(firstLoc, secondLoc);
    469 
    470       // Switch the Exprs as well, so that they still correspond.
    471       std::swap(First, Second);
    472     }
    473   }
    474 
    475   // Get the length, and make sure it too is known.
    476   SVal LengthVal = state->getSVal(Size, LCtx);
    477   Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
    478   if (!Length)
    479     return state;
    480 
    481   // Convert the first buffer's start address to char*.
    482   // Bail out if the cast fails.
    483   ASTContext &Ctx = svalBuilder.getContext();
    484   QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
    485   SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy,
    486                                          First->getType());
    487   Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>();
    488   if (!FirstStartLoc)
    489     return state;
    490 
    491   // Compute the end of the first buffer. Bail out if THAT fails.
    492   SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add,
    493                                  *FirstStartLoc, *Length, CharPtrTy);
    494   Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>();
    495   if (!FirstEndLoc)
    496     return state;
    497 
    498   // Is the end of the first buffer past the start of the second buffer?
    499   SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT,
    500                                 *FirstEndLoc, *secondLoc, cmpTy);
    501   Optional<DefinedOrUnknownSVal> OverlapTest =
    502       Overlap.getAs<DefinedOrUnknownSVal>();
    503   if (!OverlapTest)
    504     return state;
    505 
    506   llvm::tie(stateTrue, stateFalse) = state->assume(*OverlapTest);
    507 
    508   if (stateTrue && !stateFalse) {
    509     // Overlap!
    510     emitOverlapBug(C, stateTrue, First, Second);
    511     return NULL;
    512   }
    513 
    514   // assume the two expressions don't overlap.
    515   assert(stateFalse);
    516   return stateFalse;
    517 }
    518 
    519 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state,
    520                                   const Stmt *First, const Stmt *Second) const {
    521   ExplodedNode *N = C.generateSink(state);
    522   if (!N)
    523     return;
    524 
    525   if (!BT_Overlap)
    526     BT_Overlap.reset(new BugType("Unix API", "Improper arguments"));
    527 
    528   // Generate a report for this bug.
    529   BugReport *report =
    530     new BugReport(*BT_Overlap,
    531       "Arguments must not be overlapping buffers", N);
    532   report->addRange(First->getSourceRange());
    533   report->addRange(Second->getSourceRange());
    534 
    535   C.emitReport(report);
    536 }
    537 
    538 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C,
    539                                                      ProgramStateRef state,
    540                                                      NonLoc left,
    541                                                      NonLoc right) const {
    542   // If out-of-bounds checking is turned off, skip the rest.
    543   if (!Filter.CheckCStringOutOfBounds)
    544     return state;
    545 
    546   // If a previous check has failed, propagate the failure.
    547   if (!state)
    548     return NULL;
    549 
    550   SValBuilder &svalBuilder = C.getSValBuilder();
    551   BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
    552 
    553   QualType sizeTy = svalBuilder.getContext().getSizeType();
    554   const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
    555   NonLoc maxVal = svalBuilder.makeIntVal(maxValInt);
    556 
    557   SVal maxMinusRight;
    558   if (right.getAs<nonloc::ConcreteInt>()) {
    559     maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right,
    560                                                  sizeTy);
    561   } else {
    562     // Try switching the operands. (The order of these two assignments is
    563     // important!)
    564     maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left,
    565                                             sizeTy);
    566     left = right;
    567   }
    568 
    569   if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) {
    570     QualType cmpTy = svalBuilder.getConditionType();
    571     // If left > max - right, we have an overflow.
    572     SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left,
    573                                                 *maxMinusRightNL, cmpTy);
    574 
    575     ProgramStateRef stateOverflow, stateOkay;
    576     llvm::tie(stateOverflow, stateOkay) =
    577       state->assume(willOverflow.castAs<DefinedOrUnknownSVal>());
    578 
    579     if (stateOverflow && !stateOkay) {
    580       // We have an overflow. Emit a bug report.
    581       ExplodedNode *N = C.generateSink(stateOverflow);
    582       if (!N)
    583         return NULL;
    584 
    585       if (!BT_AdditionOverflow)
    586         BT_AdditionOverflow.reset(new BuiltinBug("API",
    587           "Sum of expressions causes overflow"));
    588 
    589       // This isn't a great error message, but this should never occur in real
    590       // code anyway -- you'd have to create a buffer longer than a size_t can
    591       // represent, which is sort of a contradiction.
    592       const char *warning =
    593         "This expression will create a string whose length is too big to "
    594         "be represented as a size_t";
    595 
    596       // Generate a report for this bug.
    597       BugReport *report = new BugReport(*BT_AdditionOverflow, warning, N);
    598       C.emitReport(report);
    599 
    600       return NULL;
    601     }
    602 
    603     // From now on, assume an overflow didn't occur.
    604     assert(stateOkay);
    605     state = stateOkay;
    606   }
    607 
    608   return state;
    609 }
    610 
    611 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state,
    612                                                 const MemRegion *MR,
    613                                                 SVal strLength) {
    614   assert(!strLength.isUndef() && "Attempt to set an undefined string length");
    615 
    616   MR = MR->StripCasts();
    617 
    618   switch (MR->getKind()) {
    619   case MemRegion::StringRegionKind:
    620     // FIXME: This can happen if we strcpy() into a string region. This is
    621     // undefined [C99 6.4.5p6], but we should still warn about it.
    622     return state;
    623 
    624   case MemRegion::SymbolicRegionKind:
    625   case MemRegion::AllocaRegionKind:
    626   case MemRegion::VarRegionKind:
    627   case MemRegion::FieldRegionKind:
    628   case MemRegion::ObjCIvarRegionKind:
    629     // These are the types we can currently track string lengths for.
    630     break;
    631 
    632   case MemRegion::ElementRegionKind:
    633     // FIXME: Handle element regions by upper-bounding the parent region's
    634     // string length.
    635     return state;
    636 
    637   default:
    638     // Other regions (mostly non-data) can't have a reliable C string length.
    639     // For now, just ignore the change.
    640     // FIXME: These are rare but not impossible. We should output some kind of
    641     // warning for things like strcpy((char[]){'a', 0}, "b");
    642     return state;
    643   }
    644 
    645   if (strLength.isUnknown())
    646     return state->remove<CStringLength>(MR);
    647 
    648   return state->set<CStringLength>(MR, strLength);
    649 }
    650 
    651 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C,
    652                                                ProgramStateRef &state,
    653                                                const Expr *Ex,
    654                                                const MemRegion *MR,
    655                                                bool hypothetical) {
    656   if (!hypothetical) {
    657     // If there's a recorded length, go ahead and return it.
    658     const SVal *Recorded = state->get<CStringLength>(MR);
    659     if (Recorded)
    660       return *Recorded;
    661   }
    662 
    663   // Otherwise, get a new symbol and update the state.
    664   SValBuilder &svalBuilder = C.getSValBuilder();
    665   QualType sizeTy = svalBuilder.getContext().getSizeType();
    666   SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(),
    667                                                     MR, Ex, sizeTy,
    668                                                     C.blockCount());
    669 
    670   if (!hypothetical)
    671     state = state->set<CStringLength>(MR, strLength);
    672 
    673   return strLength;
    674 }
    675 
    676 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state,
    677                                       const Expr *Ex, SVal Buf,
    678                                       bool hypothetical) const {
    679   const MemRegion *MR = Buf.getAsRegion();
    680   if (!MR) {
    681     // If we can't get a region, see if it's something we /know/ isn't a
    682     // C string. In the context of locations, the only time we can issue such
    683     // a warning is for labels.
    684     if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) {
    685       if (!Filter.CheckCStringNotNullTerm)
    686         return UndefinedVal();
    687 
    688       if (ExplodedNode *N = C.addTransition(state)) {
    689         if (!BT_NotCString)
    690           BT_NotCString.reset(new BuiltinBug("Unix API",
    691             "Argument is not a null-terminated string."));
    692 
    693         SmallString<120> buf;
    694         llvm::raw_svector_ostream os(buf);
    695         assert(CurrentFunctionDescription);
    696         os << "Argument to " << CurrentFunctionDescription
    697            << " is the address of the label '" << Label->getLabel()->getName()
    698            << "', which is not a null-terminated string";
    699 
    700         // Generate a report for this bug.
    701         BugReport *report = new BugReport(*BT_NotCString,
    702                                                           os.str(), N);
    703 
    704         report->addRange(Ex->getSourceRange());
    705         C.emitReport(report);
    706       }
    707       return UndefinedVal();
    708 
    709     }
    710 
    711     // If it's not a region and not a label, give up.
    712     return UnknownVal();
    713   }
    714 
    715   // If we have a region, strip casts from it and see if we can figure out
    716   // its length. For anything we can't figure out, just return UnknownVal.
    717   MR = MR->StripCasts();
    718 
    719   switch (MR->getKind()) {
    720   case MemRegion::StringRegionKind: {
    721     // Modifying the contents of string regions is undefined [C99 6.4.5p6],
    722     // so we can assume that the byte length is the correct C string length.
    723     SValBuilder &svalBuilder = C.getSValBuilder();
    724     QualType sizeTy = svalBuilder.getContext().getSizeType();
    725     const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral();
    726     return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy);
    727   }
    728   case MemRegion::SymbolicRegionKind:
    729   case MemRegion::AllocaRegionKind:
    730   case MemRegion::VarRegionKind:
    731   case MemRegion::FieldRegionKind:
    732   case MemRegion::ObjCIvarRegionKind:
    733     return getCStringLengthForRegion(C, state, Ex, MR, hypothetical);
    734   case MemRegion::CompoundLiteralRegionKind:
    735     // FIXME: Can we track this? Is it necessary?
    736     return UnknownVal();
    737   case MemRegion::ElementRegionKind:
    738     // FIXME: How can we handle this? It's not good enough to subtract the
    739     // offset from the base string length; consider "123\x00567" and &a[5].
    740     return UnknownVal();
    741   default:
    742     // Other regions (mostly non-data) can't have a reliable C string length.
    743     // In this case, an error is emitted and UndefinedVal is returned.
    744     // The caller should always be prepared to handle this case.
    745     if (!Filter.CheckCStringNotNullTerm)
    746       return UndefinedVal();
    747 
    748     if (ExplodedNode *N = C.addTransition(state)) {
    749       if (!BT_NotCString)
    750         BT_NotCString.reset(new BuiltinBug("Unix API",
    751           "Argument is not a null-terminated string."));
    752 
    753       SmallString<120> buf;
    754       llvm::raw_svector_ostream os(buf);
    755 
    756       assert(CurrentFunctionDescription);
    757       os << "Argument to " << CurrentFunctionDescription << " is ";
    758 
    759       if (SummarizeRegion(os, C.getASTContext(), MR))
    760         os << ", which is not a null-terminated string";
    761       else
    762         os << "not a null-terminated string";
    763 
    764       // Generate a report for this bug.
    765       BugReport *report = new BugReport(*BT_NotCString,
    766                                                         os.str(), N);
    767 
    768       report->addRange(Ex->getSourceRange());
    769       C.emitReport(report);
    770     }
    771 
    772     return UndefinedVal();
    773   }
    774 }
    775 
    776 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C,
    777   ProgramStateRef &state, const Expr *expr, SVal val) const {
    778 
    779   // Get the memory region pointed to by the val.
    780   const MemRegion *bufRegion = val.getAsRegion();
    781   if (!bufRegion)
    782     return NULL;
    783 
    784   // Strip casts off the memory region.
    785   bufRegion = bufRegion->StripCasts();
    786 
    787   // Cast the memory region to a string region.
    788   const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion);
    789   if (!strRegion)
    790     return NULL;
    791 
    792   // Return the actual string in the string region.
    793   return strRegion->getStringLiteral();
    794 }
    795 
    796 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C,
    797                                                 ProgramStateRef state,
    798                                                 const Expr *E, SVal V) {
    799   Optional<Loc> L = V.getAs<Loc>();
    800   if (!L)
    801     return state;
    802 
    803   // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes
    804   // some assumptions about the value that CFRefCount can't. Even so, it should
    805   // probably be refactored.
    806   if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) {
    807     const MemRegion *R = MR->getRegion()->StripCasts();
    808 
    809     // Are we dealing with an ElementRegion?  If so, we should be invalidating
    810     // the super-region.
    811     if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
    812       R = ER->getSuperRegion();
    813       // FIXME: What about layers of ElementRegions?
    814     }
    815 
    816     // Invalidate this region.
    817     const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
    818     return state->invalidateRegions(R, E, C.blockCount(), LCtx,
    819                                     /*CausesPointerEscape*/ false);
    820   }
    821 
    822   // If we have a non-region value by chance, just remove the binding.
    823   // FIXME: is this necessary or correct? This handles the non-Region
    824   //  cases.  Is it ever valid to store to these?
    825   return state->killBinding(*L);
    826 }
    827 
    828 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
    829                                      const MemRegion *MR) {
    830   const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR);
    831 
    832   switch (MR->getKind()) {
    833   case MemRegion::FunctionTextRegionKind: {
    834     const NamedDecl *FD = cast<FunctionTextRegion>(MR)->getDecl();
    835     if (FD)
    836       os << "the address of the function '" << *FD << '\'';
    837     else
    838       os << "the address of a function";
    839     return true;
    840   }
    841   case MemRegion::BlockTextRegionKind:
    842     os << "block text";
    843     return true;
    844   case MemRegion::BlockDataRegionKind:
    845     os << "a block";
    846     return true;
    847   case MemRegion::CXXThisRegionKind:
    848   case MemRegion::CXXTempObjectRegionKind:
    849     os << "a C++ temp object of type " << TVR->getValueType().getAsString();
    850     return true;
    851   case MemRegion::VarRegionKind:
    852     os << "a variable of type" << TVR->getValueType().getAsString();
    853     return true;
    854   case MemRegion::FieldRegionKind:
    855     os << "a field of type " << TVR->getValueType().getAsString();
    856     return true;
    857   case MemRegion::ObjCIvarRegionKind:
    858     os << "an instance variable of type " << TVR->getValueType().getAsString();
    859     return true;
    860   default:
    861     return false;
    862   }
    863 }
    864 
    865 //===----------------------------------------------------------------------===//
    866 // evaluation of individual function calls.
    867 //===----------------------------------------------------------------------===//
    868 
    869 void CStringChecker::evalCopyCommon(CheckerContext &C,
    870                                     const CallExpr *CE,
    871                                     ProgramStateRef state,
    872                                     const Expr *Size, const Expr *Dest,
    873                                     const Expr *Source, bool Restricted,
    874                                     bool IsMempcpy) const {
    875   CurrentFunctionDescription = "memory copy function";
    876 
    877   // See if the size argument is zero.
    878   const LocationContext *LCtx = C.getLocationContext();
    879   SVal sizeVal = state->getSVal(Size, LCtx);
    880   QualType sizeTy = Size->getType();
    881 
    882   ProgramStateRef stateZeroSize, stateNonZeroSize;
    883   llvm::tie(stateZeroSize, stateNonZeroSize) =
    884     assumeZero(C, state, sizeVal, sizeTy);
    885 
    886   // Get the value of the Dest.
    887   SVal destVal = state->getSVal(Dest, LCtx);
    888 
    889   // If the size is zero, there won't be any actual memory access, so
    890   // just bind the return value to the destination buffer and return.
    891   if (stateZeroSize && !stateNonZeroSize) {
    892     stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal);
    893     C.addTransition(stateZeroSize);
    894     return;
    895   }
    896 
    897   // If the size can be nonzero, we have to check the other arguments.
    898   if (stateNonZeroSize) {
    899     state = stateNonZeroSize;
    900 
    901     // Ensure the destination is not null. If it is NULL there will be a
    902     // NULL pointer dereference.
    903     state = checkNonNull(C, state, Dest, destVal);
    904     if (!state)
    905       return;
    906 
    907     // Get the value of the Src.
    908     SVal srcVal = state->getSVal(Source, LCtx);
    909 
    910     // Ensure the source is not null. If it is NULL there will be a
    911     // NULL pointer dereference.
    912     state = checkNonNull(C, state, Source, srcVal);
    913     if (!state)
    914       return;
    915 
    916     // Ensure the accesses are valid and that the buffers do not overlap.
    917     const char * const writeWarning =
    918       "Memory copy function overflows destination buffer";
    919     state = CheckBufferAccess(C, state, Size, Dest, Source,
    920                               writeWarning, /* sourceWarning = */ NULL);
    921     if (Restricted)
    922       state = CheckOverlap(C, state, Size, Dest, Source);
    923 
    924     if (!state)
    925       return;
    926 
    927     // If this is mempcpy, get the byte after the last byte copied and
    928     // bind the expr.
    929     if (IsMempcpy) {
    930       loc::MemRegionVal destRegVal = destVal.castAs<loc::MemRegionVal>();
    931 
    932       // Get the length to copy.
    933       if (Optional<NonLoc> lenValNonLoc = sizeVal.getAs<NonLoc>()) {
    934         // Get the byte after the last byte copied.
    935         SVal lastElement = C.getSValBuilder().evalBinOpLN(state, BO_Add,
    936                                                           destRegVal,
    937                                                           *lenValNonLoc,
    938                                                           Dest->getType());
    939 
    940         // The byte after the last byte copied is the return value.
    941         state = state->BindExpr(CE, LCtx, lastElement);
    942       } else {
    943         // If we don't know how much we copied, we can at least
    944         // conjure a return value for later.
    945         SVal result = C.getSValBuilder().conjureSymbolVal(0, CE, LCtx,
    946                                                           C.blockCount());
    947         state = state->BindExpr(CE, LCtx, result);
    948       }
    949 
    950     } else {
    951       // All other copies return the destination buffer.
    952       // (Well, bcopy() has a void return type, but this won't hurt.)
    953       state = state->BindExpr(CE, LCtx, destVal);
    954     }
    955 
    956     // Invalidate the destination.
    957     // FIXME: Even if we can't perfectly model the copy, we should see if we
    958     // can use LazyCompoundVals to copy the source values into the destination.
    959     // This would probably remove any existing bindings past the end of the
    960     // copied region, but that's still an improvement over blank invalidation.
    961     state = InvalidateBuffer(C, state, Dest,
    962                              state->getSVal(Dest, C.getLocationContext()));
    963     C.addTransition(state);
    964   }
    965 }
    966 
    967 
    968 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const {
    969   if (CE->getNumArgs() < 3)
    970     return;
    971 
    972   // void *memcpy(void *restrict dst, const void *restrict src, size_t n);
    973   // The return value is the address of the destination buffer.
    974   const Expr *Dest = CE->getArg(0);
    975   ProgramStateRef state = C.getState();
    976 
    977   evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true);
    978 }
    979 
    980 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const {
    981   if (CE->getNumArgs() < 3)
    982     return;
    983 
    984   // void *mempcpy(void *restrict dst, const void *restrict src, size_t n);
    985   // The return value is a pointer to the byte following the last written byte.
    986   const Expr *Dest = CE->getArg(0);
    987   ProgramStateRef state = C.getState();
    988 
    989   evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true);
    990 }
    991 
    992 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const {
    993   if (CE->getNumArgs() < 3)
    994     return;
    995 
    996   // void *memmove(void *dst, const void *src, size_t n);
    997   // The return value is the address of the destination buffer.
    998   const Expr *Dest = CE->getArg(0);
    999   ProgramStateRef state = C.getState();
   1000 
   1001   evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1));
   1002 }
   1003 
   1004 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const {
   1005   if (CE->getNumArgs() < 3)
   1006     return;
   1007 
   1008   // void bcopy(const void *src, void *dst, size_t n);
   1009   evalCopyCommon(C, CE, C.getState(),
   1010                  CE->getArg(2), CE->getArg(1), CE->getArg(0));
   1011 }
   1012 
   1013 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const {
   1014   if (CE->getNumArgs() < 3)
   1015     return;
   1016 
   1017   // int memcmp(const void *s1, const void *s2, size_t n);
   1018   CurrentFunctionDescription = "memory comparison function";
   1019 
   1020   const Expr *Left = CE->getArg(0);
   1021   const Expr *Right = CE->getArg(1);
   1022   const Expr *Size = CE->getArg(2);
   1023 
   1024   ProgramStateRef state = C.getState();
   1025   SValBuilder &svalBuilder = C.getSValBuilder();
   1026 
   1027   // See if the size argument is zero.
   1028   const LocationContext *LCtx = C.getLocationContext();
   1029   SVal sizeVal = state->getSVal(Size, LCtx);
   1030   QualType sizeTy = Size->getType();
   1031 
   1032   ProgramStateRef stateZeroSize, stateNonZeroSize;
   1033   llvm::tie(stateZeroSize, stateNonZeroSize) =
   1034     assumeZero(C, state, sizeVal, sizeTy);
   1035 
   1036   // If the size can be zero, the result will be 0 in that case, and we don't
   1037   // have to check either of the buffers.
   1038   if (stateZeroSize) {
   1039     state = stateZeroSize;
   1040     state = state->BindExpr(CE, LCtx,
   1041                             svalBuilder.makeZeroVal(CE->getType()));
   1042     C.addTransition(state);
   1043   }
   1044 
   1045   // If the size can be nonzero, we have to check the other arguments.
   1046   if (stateNonZeroSize) {
   1047     state = stateNonZeroSize;
   1048     // If we know the two buffers are the same, we know the result is 0.
   1049     // First, get the two buffers' addresses. Another checker will have already
   1050     // made sure they're not undefined.
   1051     DefinedOrUnknownSVal LV =
   1052         state->getSVal(Left, LCtx).castAs<DefinedOrUnknownSVal>();
   1053     DefinedOrUnknownSVal RV =
   1054         state->getSVal(Right, LCtx).castAs<DefinedOrUnknownSVal>();
   1055 
   1056     // See if they are the same.
   1057     DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
   1058     ProgramStateRef StSameBuf, StNotSameBuf;
   1059     llvm::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
   1060 
   1061     // If the two arguments might be the same buffer, we know the result is 0,
   1062     // and we only need to check one size.
   1063     if (StSameBuf) {
   1064       state = StSameBuf;
   1065       state = CheckBufferAccess(C, state, Size, Left);
   1066       if (state) {
   1067         state = StSameBuf->BindExpr(CE, LCtx,
   1068                                     svalBuilder.makeZeroVal(CE->getType()));
   1069         C.addTransition(state);
   1070       }
   1071     }
   1072 
   1073     // If the two arguments might be different buffers, we have to check the
   1074     // size of both of them.
   1075     if (StNotSameBuf) {
   1076       state = StNotSameBuf;
   1077       state = CheckBufferAccess(C, state, Size, Left, Right);
   1078       if (state) {
   1079         // The return value is the comparison result, which we don't know.
   1080         SVal CmpV = svalBuilder.conjureSymbolVal(0, CE, LCtx, C.blockCount());
   1081         state = state->BindExpr(CE, LCtx, CmpV);
   1082         C.addTransition(state);
   1083       }
   1084     }
   1085   }
   1086 }
   1087 
   1088 void CStringChecker::evalstrLength(CheckerContext &C,
   1089                                    const CallExpr *CE) const {
   1090   if (CE->getNumArgs() < 1)
   1091     return;
   1092 
   1093   // size_t strlen(const char *s);
   1094   evalstrLengthCommon(C, CE, /* IsStrnlen = */ false);
   1095 }
   1096 
   1097 void CStringChecker::evalstrnLength(CheckerContext &C,
   1098                                     const CallExpr *CE) const {
   1099   if (CE->getNumArgs() < 2)
   1100     return;
   1101 
   1102   // size_t strnlen(const char *s, size_t maxlen);
   1103   evalstrLengthCommon(C, CE, /* IsStrnlen = */ true);
   1104 }
   1105 
   1106 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE,
   1107                                          bool IsStrnlen) const {
   1108   CurrentFunctionDescription = "string length function";
   1109   ProgramStateRef state = C.getState();
   1110   const LocationContext *LCtx = C.getLocationContext();
   1111 
   1112   if (IsStrnlen) {
   1113     const Expr *maxlenExpr = CE->getArg(1);
   1114     SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
   1115 
   1116     ProgramStateRef stateZeroSize, stateNonZeroSize;
   1117     llvm::tie(stateZeroSize, stateNonZeroSize) =
   1118       assumeZero(C, state, maxlenVal, maxlenExpr->getType());
   1119 
   1120     // If the size can be zero, the result will be 0 in that case, and we don't
   1121     // have to check the string itself.
   1122     if (stateZeroSize) {
   1123       SVal zero = C.getSValBuilder().makeZeroVal(CE->getType());
   1124       stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero);
   1125       C.addTransition(stateZeroSize);
   1126     }
   1127 
   1128     // If the size is GUARANTEED to be zero, we're done!
   1129     if (!stateNonZeroSize)
   1130       return;
   1131 
   1132     // Otherwise, record the assumption that the size is nonzero.
   1133     state = stateNonZeroSize;
   1134   }
   1135 
   1136   // Check that the string argument is non-null.
   1137   const Expr *Arg = CE->getArg(0);
   1138   SVal ArgVal = state->getSVal(Arg, LCtx);
   1139 
   1140   state = checkNonNull(C, state, Arg, ArgVal);
   1141 
   1142   if (!state)
   1143     return;
   1144 
   1145   SVal strLength = getCStringLength(C, state, Arg, ArgVal);
   1146 
   1147   // If the argument isn't a valid C string, there's no valid state to
   1148   // transition to.
   1149   if (strLength.isUndef())
   1150     return;
   1151 
   1152   DefinedOrUnknownSVal result = UnknownVal();
   1153 
   1154   // If the check is for strnlen() then bind the return value to no more than
   1155   // the maxlen value.
   1156   if (IsStrnlen) {
   1157     QualType cmpTy = C.getSValBuilder().getConditionType();
   1158 
   1159     // It's a little unfortunate to be getting this again,
   1160     // but it's not that expensive...
   1161     const Expr *maxlenExpr = CE->getArg(1);
   1162     SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
   1163 
   1164     Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
   1165     Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>();
   1166 
   1167     if (strLengthNL && maxlenValNL) {
   1168       ProgramStateRef stateStringTooLong, stateStringNotTooLong;
   1169 
   1170       // Check if the strLength is greater than the maxlen.
   1171       llvm::tie(stateStringTooLong, stateStringNotTooLong) =
   1172           state->assume(C.getSValBuilder().evalBinOpNN(
   1173               state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy)
   1174                             .castAs<DefinedOrUnknownSVal>());
   1175 
   1176       if (stateStringTooLong && !stateStringNotTooLong) {
   1177         // If the string is longer than maxlen, return maxlen.
   1178         result = *maxlenValNL;
   1179       } else if (stateStringNotTooLong && !stateStringTooLong) {
   1180         // If the string is shorter than maxlen, return its length.
   1181         result = *strLengthNL;
   1182       }
   1183     }
   1184 
   1185     if (result.isUnknown()) {
   1186       // If we don't have enough information for a comparison, there's
   1187       // no guarantee the full string length will actually be returned.
   1188       // All we know is the return value is the min of the string length
   1189       // and the limit. This is better than nothing.
   1190       result = C.getSValBuilder().conjureSymbolVal(0, CE, LCtx, C.blockCount());
   1191       NonLoc resultNL = result.castAs<NonLoc>();
   1192 
   1193       if (strLengthNL) {
   1194         state = state->assume(C.getSValBuilder().evalBinOpNN(
   1195                                   state, BO_LE, resultNL, *strLengthNL, cmpTy)
   1196                                   .castAs<DefinedOrUnknownSVal>(), true);
   1197       }
   1198 
   1199       if (maxlenValNL) {
   1200         state = state->assume(C.getSValBuilder().evalBinOpNN(
   1201                                   state, BO_LE, resultNL, *maxlenValNL, cmpTy)
   1202                                   .castAs<DefinedOrUnknownSVal>(), true);
   1203       }
   1204     }
   1205 
   1206   } else {
   1207     // This is a plain strlen(), not strnlen().
   1208     result = strLength.castAs<DefinedOrUnknownSVal>();
   1209 
   1210     // If we don't know the length of the string, conjure a return
   1211     // value, so it can be used in constraints, at least.
   1212     if (result.isUnknown()) {
   1213       result = C.getSValBuilder().conjureSymbolVal(0, CE, LCtx, C.blockCount());
   1214     }
   1215   }
   1216 
   1217   // Bind the return value.
   1218   assert(!result.isUnknown() && "Should have conjured a value by now");
   1219   state = state->BindExpr(CE, LCtx, result);
   1220   C.addTransition(state);
   1221 }
   1222 
   1223 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const {
   1224   if (CE->getNumArgs() < 2)
   1225     return;
   1226 
   1227   // char *strcpy(char *restrict dst, const char *restrict src);
   1228   evalStrcpyCommon(C, CE,
   1229                    /* returnEnd = */ false,
   1230                    /* isBounded = */ false,
   1231                    /* isAppending = */ false);
   1232 }
   1233 
   1234 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const {
   1235   if (CE->getNumArgs() < 3)
   1236     return;
   1237 
   1238   // char *strncpy(char *restrict dst, const char *restrict src, size_t n);
   1239   evalStrcpyCommon(C, CE,
   1240                    /* returnEnd = */ false,
   1241                    /* isBounded = */ true,
   1242                    /* isAppending = */ false);
   1243 }
   1244 
   1245 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const {
   1246   if (CE->getNumArgs() < 2)
   1247     return;
   1248 
   1249   // char *stpcpy(char *restrict dst, const char *restrict src);
   1250   evalStrcpyCommon(C, CE,
   1251                    /* returnEnd = */ true,
   1252                    /* isBounded = */ false,
   1253                    /* isAppending = */ false);
   1254 }
   1255 
   1256 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const {
   1257   if (CE->getNumArgs() < 2)
   1258     return;
   1259 
   1260   //char *strcat(char *restrict s1, const char *restrict s2);
   1261   evalStrcpyCommon(C, CE,
   1262                    /* returnEnd = */ false,
   1263                    /* isBounded = */ false,
   1264                    /* isAppending = */ true);
   1265 }
   1266 
   1267 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const {
   1268   if (CE->getNumArgs() < 3)
   1269     return;
   1270 
   1271   //char *strncat(char *restrict s1, const char *restrict s2, size_t n);
   1272   evalStrcpyCommon(C, CE,
   1273                    /* returnEnd = */ false,
   1274                    /* isBounded = */ true,
   1275                    /* isAppending = */ true);
   1276 }
   1277 
   1278 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE,
   1279                                       bool returnEnd, bool isBounded,
   1280                                       bool isAppending) const {
   1281   CurrentFunctionDescription = "string copy function";
   1282   ProgramStateRef state = C.getState();
   1283   const LocationContext *LCtx = C.getLocationContext();
   1284 
   1285   // Check that the destination is non-null.
   1286   const Expr *Dst = CE->getArg(0);
   1287   SVal DstVal = state->getSVal(Dst, LCtx);
   1288 
   1289   state = checkNonNull(C, state, Dst, DstVal);
   1290   if (!state)
   1291     return;
   1292 
   1293   // Check that the source is non-null.
   1294   const Expr *srcExpr = CE->getArg(1);
   1295   SVal srcVal = state->getSVal(srcExpr, LCtx);
   1296   state = checkNonNull(C, state, srcExpr, srcVal);
   1297   if (!state)
   1298     return;
   1299 
   1300   // Get the string length of the source.
   1301   SVal strLength = getCStringLength(C, state, srcExpr, srcVal);
   1302 
   1303   // If the source isn't a valid C string, give up.
   1304   if (strLength.isUndef())
   1305     return;
   1306 
   1307   SValBuilder &svalBuilder = C.getSValBuilder();
   1308   QualType cmpTy = svalBuilder.getConditionType();
   1309   QualType sizeTy = svalBuilder.getContext().getSizeType();
   1310 
   1311   // These two values allow checking two kinds of errors:
   1312   // - actual overflows caused by a source that doesn't fit in the destination
   1313   // - potential overflows caused by a bound that could exceed the destination
   1314   SVal amountCopied = UnknownVal();
   1315   SVal maxLastElementIndex = UnknownVal();
   1316   const char *boundWarning = NULL;
   1317 
   1318   // If the function is strncpy, strncat, etc... it is bounded.
   1319   if (isBounded) {
   1320     // Get the max number of characters to copy.
   1321     const Expr *lenExpr = CE->getArg(2);
   1322     SVal lenVal = state->getSVal(lenExpr, LCtx);
   1323 
   1324     // Protect against misdeclared strncpy().
   1325     lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType());
   1326 
   1327     Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
   1328     Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>();
   1329 
   1330     // If we know both values, we might be able to figure out how much
   1331     // we're copying.
   1332     if (strLengthNL && lenValNL) {
   1333       ProgramStateRef stateSourceTooLong, stateSourceNotTooLong;
   1334 
   1335       // Check if the max number to copy is less than the length of the src.
   1336       // If the bound is equal to the source length, strncpy won't null-
   1337       // terminate the result!
   1338       llvm::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume(
   1339           svalBuilder.evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy)
   1340               .castAs<DefinedOrUnknownSVal>());
   1341 
   1342       if (stateSourceTooLong && !stateSourceNotTooLong) {
   1343         // Max number to copy is less than the length of the src, so the actual
   1344         // strLength copied is the max number arg.
   1345         state = stateSourceTooLong;
   1346         amountCopied = lenVal;
   1347 
   1348       } else if (!stateSourceTooLong && stateSourceNotTooLong) {
   1349         // The source buffer entirely fits in the bound.
   1350         state = stateSourceNotTooLong;
   1351         amountCopied = strLength;
   1352       }
   1353     }
   1354 
   1355     // We still want to know if the bound is known to be too large.
   1356     if (lenValNL) {
   1357       if (isAppending) {
   1358         // For strncat, the check is strlen(dst) + lenVal < sizeof(dst)
   1359 
   1360         // Get the string length of the destination. If the destination is
   1361         // memory that can't have a string length, we shouldn't be copying
   1362         // into it anyway.
   1363         SVal dstStrLength = getCStringLength(C, state, Dst, DstVal);
   1364         if (dstStrLength.isUndef())
   1365           return;
   1366 
   1367         if (Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>()) {
   1368           maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Add,
   1369                                                         *lenValNL,
   1370                                                         *dstStrLengthNL,
   1371                                                         sizeTy);
   1372           boundWarning = "Size argument is greater than the free space in the "
   1373                          "destination buffer";
   1374         }
   1375 
   1376       } else {
   1377         // For strncpy, this is just checking that lenVal <= sizeof(dst)
   1378         // (Yes, strncpy and strncat differ in how they treat termination.
   1379         // strncat ALWAYS terminates, but strncpy doesn't.)
   1380 
   1381         // We need a special case for when the copy size is zero, in which
   1382         // case strncpy will do no work at all. Our bounds check uses n-1
   1383         // as the last element accessed, so n == 0 is problematic.
   1384         ProgramStateRef StateZeroSize, StateNonZeroSize;
   1385         llvm::tie(StateZeroSize, StateNonZeroSize) =
   1386           assumeZero(C, state, *lenValNL, sizeTy);
   1387 
   1388         // If the size is known to be zero, we're done.
   1389         if (StateZeroSize && !StateNonZeroSize) {
   1390           StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal);
   1391           C.addTransition(StateZeroSize);
   1392           return;
   1393         }
   1394 
   1395         // Otherwise, go ahead and figure out the last element we'll touch.
   1396         // We don't record the non-zero assumption here because we can't
   1397         // be sure. We won't warn on a possible zero.
   1398         NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
   1399         maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL,
   1400                                                       one, sizeTy);
   1401         boundWarning = "Size argument is greater than the length of the "
   1402                        "destination buffer";
   1403       }
   1404     }
   1405 
   1406     // If we couldn't pin down the copy length, at least bound it.
   1407     // FIXME: We should actually run this code path for append as well, but
   1408     // right now it creates problems with constraints (since we can end up
   1409     // trying to pass constraints from symbol to symbol).
   1410     if (amountCopied.isUnknown() && !isAppending) {
   1411       // Try to get a "hypothetical" string length symbol, which we can later
   1412       // set as a real value if that turns out to be the case.
   1413       amountCopied = getCStringLength(C, state, lenExpr, srcVal, true);
   1414       assert(!amountCopied.isUndef());
   1415 
   1416       if (Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>()) {
   1417         if (lenValNL) {
   1418           // amountCopied <= lenVal
   1419           SVal copiedLessThanBound = svalBuilder.evalBinOpNN(state, BO_LE,
   1420                                                              *amountCopiedNL,
   1421                                                              *lenValNL,
   1422                                                              cmpTy);
   1423           state = state->assume(
   1424               copiedLessThanBound.castAs<DefinedOrUnknownSVal>(), true);
   1425           if (!state)
   1426             return;
   1427         }
   1428 
   1429         if (strLengthNL) {
   1430           // amountCopied <= strlen(source)
   1431           SVal copiedLessThanSrc = svalBuilder.evalBinOpNN(state, BO_LE,
   1432                                                            *amountCopiedNL,
   1433                                                            *strLengthNL,
   1434                                                            cmpTy);
   1435           state = state->assume(
   1436               copiedLessThanSrc.castAs<DefinedOrUnknownSVal>(), true);
   1437           if (!state)
   1438             return;
   1439         }
   1440       }
   1441     }
   1442 
   1443   } else {
   1444     // The function isn't bounded. The amount copied should match the length
   1445     // of the source buffer.
   1446     amountCopied = strLength;
   1447   }
   1448 
   1449   assert(state);
   1450 
   1451   // This represents the number of characters copied into the destination
   1452   // buffer. (It may not actually be the strlen if the destination buffer
   1453   // is not terminated.)
   1454   SVal finalStrLength = UnknownVal();
   1455 
   1456   // If this is an appending function (strcat, strncat...) then set the
   1457   // string length to strlen(src) + strlen(dst) since the buffer will
   1458   // ultimately contain both.
   1459   if (isAppending) {
   1460     // Get the string length of the destination. If the destination is memory
   1461     // that can't have a string length, we shouldn't be copying into it anyway.
   1462     SVal dstStrLength = getCStringLength(C, state, Dst, DstVal);
   1463     if (dstStrLength.isUndef())
   1464       return;
   1465 
   1466     Optional<NonLoc> srcStrLengthNL = amountCopied.getAs<NonLoc>();
   1467     Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>();
   1468 
   1469     // If we know both string lengths, we might know the final string length.
   1470     if (srcStrLengthNL && dstStrLengthNL) {
   1471       // Make sure the two lengths together don't overflow a size_t.
   1472       state = checkAdditionOverflow(C, state, *srcStrLengthNL, *dstStrLengthNL);
   1473       if (!state)
   1474         return;
   1475 
   1476       finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *srcStrLengthNL,
   1477                                                *dstStrLengthNL, sizeTy);
   1478     }
   1479 
   1480     // If we couldn't get a single value for the final string length,
   1481     // we can at least bound it by the individual lengths.
   1482     if (finalStrLength.isUnknown()) {
   1483       // Try to get a "hypothetical" string length symbol, which we can later
   1484       // set as a real value if that turns out to be the case.
   1485       finalStrLength = getCStringLength(C, state, CE, DstVal, true);
   1486       assert(!finalStrLength.isUndef());
   1487 
   1488       if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) {
   1489         if (srcStrLengthNL) {
   1490           // finalStrLength >= srcStrLength
   1491           SVal sourceInResult = svalBuilder.evalBinOpNN(state, BO_GE,
   1492                                                         *finalStrLengthNL,
   1493                                                         *srcStrLengthNL,
   1494                                                         cmpTy);
   1495           state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(),
   1496                                 true);
   1497           if (!state)
   1498             return;
   1499         }
   1500 
   1501         if (dstStrLengthNL) {
   1502           // finalStrLength >= dstStrLength
   1503           SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE,
   1504                                                       *finalStrLengthNL,
   1505                                                       *dstStrLengthNL,
   1506                                                       cmpTy);
   1507           state =
   1508               state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true);
   1509           if (!state)
   1510             return;
   1511         }
   1512       }
   1513     }
   1514 
   1515   } else {
   1516     // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and
   1517     // the final string length will match the input string length.
   1518     finalStrLength = amountCopied;
   1519   }
   1520 
   1521   // The final result of the function will either be a pointer past the last
   1522   // copied element, or a pointer to the start of the destination buffer.
   1523   SVal Result = (returnEnd ? UnknownVal() : DstVal);
   1524 
   1525   assert(state);
   1526 
   1527   // If the destination is a MemRegion, try to check for a buffer overflow and
   1528   // record the new string length.
   1529   if (Optional<loc::MemRegionVal> dstRegVal =
   1530           DstVal.getAs<loc::MemRegionVal>()) {
   1531     QualType ptrTy = Dst->getType();
   1532 
   1533     // If we have an exact value on a bounded copy, use that to check for
   1534     // overflows, rather than our estimate about how much is actually copied.
   1535     if (boundWarning) {
   1536       if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) {
   1537         SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
   1538                                                       *maxLastNL, ptrTy);
   1539         state = CheckLocation(C, state, CE->getArg(2), maxLastElement,
   1540                               boundWarning);
   1541         if (!state)
   1542           return;
   1543       }
   1544     }
   1545 
   1546     // Then, if the final length is known...
   1547     if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) {
   1548       SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
   1549                                                  *knownStrLength, ptrTy);
   1550 
   1551       // ...and we haven't checked the bound, we'll check the actual copy.
   1552       if (!boundWarning) {
   1553         const char * const warningMsg =
   1554           "String copy function overflows destination buffer";
   1555         state = CheckLocation(C, state, Dst, lastElement, warningMsg);
   1556         if (!state)
   1557           return;
   1558       }
   1559 
   1560       // If this is a stpcpy-style copy, the last element is the return value.
   1561       if (returnEnd)
   1562         Result = lastElement;
   1563     }
   1564 
   1565     // Invalidate the destination. This must happen before we set the C string
   1566     // length because invalidation will clear the length.
   1567     // FIXME: Even if we can't perfectly model the copy, we should see if we
   1568     // can use LazyCompoundVals to copy the source values into the destination.
   1569     // This would probably remove any existing bindings past the end of the
   1570     // string, but that's still an improvement over blank invalidation.
   1571     state = InvalidateBuffer(C, state, Dst, *dstRegVal);
   1572 
   1573     // Set the C string length of the destination, if we know it.
   1574     if (isBounded && !isAppending) {
   1575       // strncpy is annoying in that it doesn't guarantee to null-terminate
   1576       // the result string. If the original string didn't fit entirely inside
   1577       // the bound (including the null-terminator), we don't know how long the
   1578       // result is.
   1579       if (amountCopied != strLength)
   1580         finalStrLength = UnknownVal();
   1581     }
   1582     state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength);
   1583   }
   1584 
   1585   assert(state);
   1586 
   1587   // If this is a stpcpy-style copy, but we were unable to check for a buffer
   1588   // overflow, we still need a result. Conjure a return value.
   1589   if (returnEnd && Result.isUnknown()) {
   1590     Result = svalBuilder.conjureSymbolVal(0, CE, LCtx, C.blockCount());
   1591   }
   1592 
   1593   // Set the return value.
   1594   state = state->BindExpr(CE, LCtx, Result);
   1595   C.addTransition(state);
   1596 }
   1597 
   1598 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const {
   1599   if (CE->getNumArgs() < 2)
   1600     return;
   1601 
   1602   //int strcmp(const char *s1, const char *s2);
   1603   evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ false);
   1604 }
   1605 
   1606 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const {
   1607   if (CE->getNumArgs() < 3)
   1608     return;
   1609 
   1610   //int strncmp(const char *s1, const char *s2, size_t n);
   1611   evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ false);
   1612 }
   1613 
   1614 void CStringChecker::evalStrcasecmp(CheckerContext &C,
   1615                                     const CallExpr *CE) const {
   1616   if (CE->getNumArgs() < 2)
   1617     return;
   1618 
   1619   //int strcasecmp(const char *s1, const char *s2);
   1620   evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ true);
   1621 }
   1622 
   1623 void CStringChecker::evalStrncasecmp(CheckerContext &C,
   1624                                      const CallExpr *CE) const {
   1625   if (CE->getNumArgs() < 3)
   1626     return;
   1627 
   1628   //int strncasecmp(const char *s1, const char *s2, size_t n);
   1629   evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ true);
   1630 }
   1631 
   1632 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE,
   1633                                       bool isBounded, bool ignoreCase) const {
   1634   CurrentFunctionDescription = "string comparison function";
   1635   ProgramStateRef state = C.getState();
   1636   const LocationContext *LCtx = C.getLocationContext();
   1637 
   1638   // Check that the first string is non-null
   1639   const Expr *s1 = CE->getArg(0);
   1640   SVal s1Val = state->getSVal(s1, LCtx);
   1641   state = checkNonNull(C, state, s1, s1Val);
   1642   if (!state)
   1643     return;
   1644 
   1645   // Check that the second string is non-null.
   1646   const Expr *s2 = CE->getArg(1);
   1647   SVal s2Val = state->getSVal(s2, LCtx);
   1648   state = checkNonNull(C, state, s2, s2Val);
   1649   if (!state)
   1650     return;
   1651 
   1652   // Get the string length of the first string or give up.
   1653   SVal s1Length = getCStringLength(C, state, s1, s1Val);
   1654   if (s1Length.isUndef())
   1655     return;
   1656 
   1657   // Get the string length of the second string or give up.
   1658   SVal s2Length = getCStringLength(C, state, s2, s2Val);
   1659   if (s2Length.isUndef())
   1660     return;
   1661 
   1662   // If we know the two buffers are the same, we know the result is 0.
   1663   // First, get the two buffers' addresses. Another checker will have already
   1664   // made sure they're not undefined.
   1665   DefinedOrUnknownSVal LV = s1Val.castAs<DefinedOrUnknownSVal>();
   1666   DefinedOrUnknownSVal RV = s2Val.castAs<DefinedOrUnknownSVal>();
   1667 
   1668   // See if they are the same.
   1669   SValBuilder &svalBuilder = C.getSValBuilder();
   1670   DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
   1671   ProgramStateRef StSameBuf, StNotSameBuf;
   1672   llvm::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
   1673 
   1674   // If the two arguments might be the same buffer, we know the result is 0,
   1675   // and we only need to check one size.
   1676   if (StSameBuf) {
   1677     StSameBuf = StSameBuf->BindExpr(CE, LCtx,
   1678                                     svalBuilder.makeZeroVal(CE->getType()));
   1679     C.addTransition(StSameBuf);
   1680 
   1681     // If the two arguments are GUARANTEED to be the same, we're done!
   1682     if (!StNotSameBuf)
   1683       return;
   1684   }
   1685 
   1686   assert(StNotSameBuf);
   1687   state = StNotSameBuf;
   1688 
   1689   // At this point we can go about comparing the two buffers.
   1690   // For now, we only do this if they're both known string literals.
   1691 
   1692   // Attempt to extract string literals from both expressions.
   1693   const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val);
   1694   const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val);
   1695   bool canComputeResult = false;
   1696 
   1697   if (s1StrLiteral && s2StrLiteral) {
   1698     StringRef s1StrRef = s1StrLiteral->getString();
   1699     StringRef s2StrRef = s2StrLiteral->getString();
   1700 
   1701     if (isBounded) {
   1702       // Get the max number of characters to compare.
   1703       const Expr *lenExpr = CE->getArg(2);
   1704       SVal lenVal = state->getSVal(lenExpr, LCtx);
   1705 
   1706       // If the length is known, we can get the right substrings.
   1707       if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) {
   1708         // Create substrings of each to compare the prefix.
   1709         s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue());
   1710         s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue());
   1711         canComputeResult = true;
   1712       }
   1713     } else {
   1714       // This is a normal, unbounded strcmp.
   1715       canComputeResult = true;
   1716     }
   1717 
   1718     if (canComputeResult) {
   1719       // Real strcmp stops at null characters.
   1720       size_t s1Term = s1StrRef.find('\0');
   1721       if (s1Term != StringRef::npos)
   1722         s1StrRef = s1StrRef.substr(0, s1Term);
   1723 
   1724       size_t s2Term = s2StrRef.find('\0');
   1725       if (s2Term != StringRef::npos)
   1726         s2StrRef = s2StrRef.substr(0, s2Term);
   1727 
   1728       // Use StringRef's comparison methods to compute the actual result.
   1729       int result;
   1730 
   1731       if (ignoreCase) {
   1732         // Compare string 1 to string 2 the same way strcasecmp() does.
   1733         result = s1StrRef.compare_lower(s2StrRef);
   1734       } else {
   1735         // Compare string 1 to string 2 the same way strcmp() does.
   1736         result = s1StrRef.compare(s2StrRef);
   1737       }
   1738 
   1739       // Build the SVal of the comparison and bind the return value.
   1740       SVal resultVal = svalBuilder.makeIntVal(result, CE->getType());
   1741       state = state->BindExpr(CE, LCtx, resultVal);
   1742     }
   1743   }
   1744 
   1745   if (!canComputeResult) {
   1746     // Conjure a symbolic value. It's the best we can do.
   1747     SVal resultVal = svalBuilder.conjureSymbolVal(0, CE, LCtx, C.blockCount());
   1748     state = state->BindExpr(CE, LCtx, resultVal);
   1749   }
   1750 
   1751   // Record this as a possible path.
   1752   C.addTransition(state);
   1753 }
   1754 
   1755 //===----------------------------------------------------------------------===//
   1756 // The driver method, and other Checker callbacks.
   1757 //===----------------------------------------------------------------------===//
   1758 
   1759 bool CStringChecker::evalCall(const CallExpr *CE, CheckerContext &C) const {
   1760   const FunctionDecl *FDecl = C.getCalleeDecl(CE);
   1761 
   1762   if (!FDecl)
   1763     return false;
   1764 
   1765   FnCheck evalFunction = 0;
   1766   if (C.isCLibraryFunction(FDecl, "memcpy"))
   1767     evalFunction =  &CStringChecker::evalMemcpy;
   1768   else if (C.isCLibraryFunction(FDecl, "mempcpy"))
   1769     evalFunction =  &CStringChecker::evalMempcpy;
   1770   else if (C.isCLibraryFunction(FDecl, "memcmp"))
   1771     evalFunction =  &CStringChecker::evalMemcmp;
   1772   else if (C.isCLibraryFunction(FDecl, "memmove"))
   1773     evalFunction =  &CStringChecker::evalMemmove;
   1774   else if (C.isCLibraryFunction(FDecl, "strcpy"))
   1775     evalFunction =  &CStringChecker::evalStrcpy;
   1776   else if (C.isCLibraryFunction(FDecl, "strncpy"))
   1777     evalFunction =  &CStringChecker::evalStrncpy;
   1778   else if (C.isCLibraryFunction(FDecl, "stpcpy"))
   1779     evalFunction =  &CStringChecker::evalStpcpy;
   1780   else if (C.isCLibraryFunction(FDecl, "strcat"))
   1781     evalFunction =  &CStringChecker::evalStrcat;
   1782   else if (C.isCLibraryFunction(FDecl, "strncat"))
   1783     evalFunction =  &CStringChecker::evalStrncat;
   1784   else if (C.isCLibraryFunction(FDecl, "strlen"))
   1785     evalFunction =  &CStringChecker::evalstrLength;
   1786   else if (C.isCLibraryFunction(FDecl, "strnlen"))
   1787     evalFunction =  &CStringChecker::evalstrnLength;
   1788   else if (C.isCLibraryFunction(FDecl, "strcmp"))
   1789     evalFunction =  &CStringChecker::evalStrcmp;
   1790   else if (C.isCLibraryFunction(FDecl, "strncmp"))
   1791     evalFunction =  &CStringChecker::evalStrncmp;
   1792   else if (C.isCLibraryFunction(FDecl, "strcasecmp"))
   1793     evalFunction =  &CStringChecker::evalStrcasecmp;
   1794   else if (C.isCLibraryFunction(FDecl, "strncasecmp"))
   1795     evalFunction =  &CStringChecker::evalStrncasecmp;
   1796   else if (C.isCLibraryFunction(FDecl, "bcopy"))
   1797     evalFunction =  &CStringChecker::evalBcopy;
   1798   else if (C.isCLibraryFunction(FDecl, "bcmp"))
   1799     evalFunction =  &CStringChecker::evalMemcmp;
   1800 
   1801   // If the callee isn't a string function, let another checker handle it.
   1802   if (!evalFunction)
   1803     return false;
   1804 
   1805   // Make sure each function sets its own description.
   1806   // (But don't bother in a release build.)
   1807   assert(!(CurrentFunctionDescription = NULL));
   1808 
   1809   // Check and evaluate the call.
   1810   (this->*evalFunction)(C, CE);
   1811 
   1812   // If the evaluate call resulted in no change, chain to the next eval call
   1813   // handler.
   1814   // Note, the custom CString evaluation calls assume that basic safety
   1815   // properties are held. However, if the user chooses to turn off some of these
   1816   // checks, we ignore the issues and leave the call evaluation to a generic
   1817   // handler.
   1818   if (!C.isDifferent())
   1819     return false;
   1820 
   1821   return true;
   1822 }
   1823 
   1824 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const {
   1825   // Record string length for char a[] = "abc";
   1826   ProgramStateRef state = C.getState();
   1827 
   1828   for (DeclStmt::const_decl_iterator I = DS->decl_begin(), E = DS->decl_end();
   1829        I != E; ++I) {
   1830     const VarDecl *D = dyn_cast<VarDecl>(*I);
   1831     if (!D)
   1832       continue;
   1833 
   1834     // FIXME: Handle array fields of structs.
   1835     if (!D->getType()->isArrayType())
   1836       continue;
   1837 
   1838     const Expr *Init = D->getInit();
   1839     if (!Init)
   1840       continue;
   1841     if (!isa<StringLiteral>(Init))
   1842       continue;
   1843 
   1844     Loc VarLoc = state->getLValue(D, C.getLocationContext());
   1845     const MemRegion *MR = VarLoc.getAsRegion();
   1846     if (!MR)
   1847       continue;
   1848 
   1849     SVal StrVal = state->getSVal(Init, C.getLocationContext());
   1850     assert(StrVal.isValid() && "Initializer string is unknown or undefined");
   1851     DefinedOrUnknownSVal strLength =
   1852         getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>();
   1853 
   1854     state = state->set<CStringLength>(MR, strLength);
   1855   }
   1856 
   1857   C.addTransition(state);
   1858 }
   1859 
   1860 bool CStringChecker::wantsRegionChangeUpdate(ProgramStateRef state) const {
   1861   CStringLengthTy Entries = state->get<CStringLength>();
   1862   return !Entries.isEmpty();
   1863 }
   1864 
   1865 ProgramStateRef
   1866 CStringChecker::checkRegionChanges(ProgramStateRef state,
   1867                                    const InvalidatedSymbols *,
   1868                                    ArrayRef<const MemRegion *> ExplicitRegions,
   1869                                    ArrayRef<const MemRegion *> Regions,
   1870                                    const CallEvent *Call) const {
   1871   CStringLengthTy Entries = state->get<CStringLength>();
   1872   if (Entries.isEmpty())
   1873     return state;
   1874 
   1875   llvm::SmallPtrSet<const MemRegion *, 8> Invalidated;
   1876   llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions;
   1877 
   1878   // First build sets for the changed regions and their super-regions.
   1879   for (ArrayRef<const MemRegion *>::iterator
   1880        I = Regions.begin(), E = Regions.end(); I != E; ++I) {
   1881     const MemRegion *MR = *I;
   1882     Invalidated.insert(MR);
   1883 
   1884     SuperRegions.insert(MR);
   1885     while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) {
   1886       MR = SR->getSuperRegion();
   1887       SuperRegions.insert(MR);
   1888     }
   1889   }
   1890 
   1891   CStringLengthTy::Factory &F = state->get_context<CStringLength>();
   1892 
   1893   // Then loop over the entries in the current state.
   1894   for (CStringLengthTy::iterator I = Entries.begin(),
   1895        E = Entries.end(); I != E; ++I) {
   1896     const MemRegion *MR = I.getKey();
   1897 
   1898     // Is this entry for a super-region of a changed region?
   1899     if (SuperRegions.count(MR)) {
   1900       Entries = F.remove(Entries, MR);
   1901       continue;
   1902     }
   1903 
   1904     // Is this entry for a sub-region of a changed region?
   1905     const MemRegion *Super = MR;
   1906     while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) {
   1907       Super = SR->getSuperRegion();
   1908       if (Invalidated.count(Super)) {
   1909         Entries = F.remove(Entries, MR);
   1910         break;
   1911       }
   1912     }
   1913   }
   1914 
   1915   return state->set<CStringLength>(Entries);
   1916 }
   1917 
   1918 void CStringChecker::checkLiveSymbols(ProgramStateRef state,
   1919                                       SymbolReaper &SR) const {
   1920   // Mark all symbols in our string length map as valid.
   1921   CStringLengthTy Entries = state->get<CStringLength>();
   1922 
   1923   for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
   1924        I != E; ++I) {
   1925     SVal Len = I.getData();
   1926 
   1927     for (SymExpr::symbol_iterator si = Len.symbol_begin(),
   1928                                   se = Len.symbol_end(); si != se; ++si)
   1929       SR.markInUse(*si);
   1930   }
   1931 }
   1932 
   1933 void CStringChecker::checkDeadSymbols(SymbolReaper &SR,
   1934                                       CheckerContext &C) const {
   1935   if (!SR.hasDeadSymbols())
   1936     return;
   1937 
   1938   ProgramStateRef state = C.getState();
   1939   CStringLengthTy Entries = state->get<CStringLength>();
   1940   if (Entries.isEmpty())
   1941     return;
   1942 
   1943   CStringLengthTy::Factory &F = state->get_context<CStringLength>();
   1944   for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
   1945        I != E; ++I) {
   1946     SVal Len = I.getData();
   1947     if (SymbolRef Sym = Len.getAsSymbol()) {
   1948       if (SR.isDead(Sym))
   1949         Entries = F.remove(Entries, I.getKey());
   1950     }
   1951   }
   1952 
   1953   state = state->set<CStringLength>(Entries);
   1954   C.addTransition(state);
   1955 }
   1956 
   1957 #define REGISTER_CHECKER(name) \
   1958 void ento::register##name(CheckerManager &mgr) {\
   1959   static CStringChecker *TheChecker = 0; \
   1960   if (TheChecker == 0) \
   1961     TheChecker = mgr.registerChecker<CStringChecker>(); \
   1962   TheChecker->Filter.Check##name = true; \
   1963 }
   1964 
   1965 REGISTER_CHECKER(CStringNullArg)
   1966 REGISTER_CHECKER(CStringOutOfBounds)
   1967 REGISTER_CHECKER(CStringBufferOverlap)
   1968 REGISTER_CHECKER(CStringNotNullTerm)
   1969 
   1970 void ento::registerCStringCheckerBasic(CheckerManager &Mgr) {
   1971   registerCStringNullArg(Mgr);
   1972 }
   1973