Home | History | Annotate | Download | only in tzcode
      1 /*
      2 ** This file is in the public domain, so clarified as of
      3 ** 1996-06-05 by Arthur David Olson.
      4 */
      5 
      6 #ifndef lint
      7 #ifndef NOID
      8 static char elsieid[] = "@(#)localtime.c    8.3";
      9 #endif /* !defined NOID */
     10 #endif /* !defined lint */
     11 
     12 /*
     13 ** Leap second handling from Bradley White.
     14 ** POSIX-style TZ environment variable handling from Guy Harris.
     15 */
     16 
     17 /*LINTLIBRARY*/
     18 
     19 #include "private.h"
     20 #include "tzfile.h"
     21 #include "fcntl.h"
     22 #include "float.h"  /* for FLT_MAX and DBL_MAX */
     23 
     24 #include "thread_private.h"
     25 #include <sys/system_properties.h>
     26 
     27 #ifndef TZ_ABBR_MAX_LEN
     28 #define TZ_ABBR_MAX_LEN 16
     29 #endif /* !defined TZ_ABBR_MAX_LEN */
     30 
     31 #ifndef TZ_ABBR_CHAR_SET
     32 #define TZ_ABBR_CHAR_SET \
     33     "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
     34 #endif /* !defined TZ_ABBR_CHAR_SET */
     35 
     36 #ifndef TZ_ABBR_ERR_CHAR
     37 #define TZ_ABBR_ERR_CHAR    '_'
     38 #endif /* !defined TZ_ABBR_ERR_CHAR */
     39 
     40 /*
     41 ** SunOS 4.1.1 headers lack O_BINARY.
     42 */
     43 
     44 #ifdef O_BINARY
     45 #define OPEN_MODE   (O_RDONLY | O_BINARY)
     46 #endif /* defined O_BINARY */
     47 #ifndef O_BINARY
     48 #define OPEN_MODE   O_RDONLY
     49 #endif /* !defined O_BINARY */
     50 
     51 #if 0
     52 #  define  XLOG(xx)  printf xx , fflush(stdout)
     53 #else
     54 #  define  XLOG(x)   do{}while (0)
     55 #endif
     56 
     57 /* Add the following function implementations:
     58  *  timelocal()
     59  *  timegm()
     60  *  time2posix()
     61  *  posix2time()
     62  */
     63 #define STD_INSPIRED 1
     64 
     65 /* THREAD-SAFETY SUPPORT GOES HERE */
     66 static pthread_mutex_t  _tzMutex = PTHREAD_MUTEX_INITIALIZER;
     67 
     68 static __inline__ void _tzLock(void)
     69 {
     70     if (__isthreaded)
     71         pthread_mutex_lock(&_tzMutex);
     72 }
     73 
     74 static __inline__ void _tzUnlock(void)
     75 {
     76     if (__isthreaded)
     77         pthread_mutex_unlock(&_tzMutex);
     78 }
     79 
     80 /* Complex computations to determine the min/max of time_t depending
     81  * on TYPE_BIT / TYPE_SIGNED / TYPE_INTEGRAL.
     82  * These macros cannot be used in pre-processor directives, so we
     83  * let the C compiler do the work, which makes things a bit funky.
     84  */
     85 static const time_t TIME_T_MAX =
     86     TYPE_INTEGRAL(time_t) ?
     87         ( TYPE_SIGNED(time_t) ?
     88             ~((time_t)1 << (TYPE_BIT(time_t)-1))
     89         :
     90             ~(time_t)0
     91         )
     92     : /* if time_t is a floating point number */
     93         ( sizeof(time_t) > sizeof(float) ? (time_t)DBL_MAX : (time_t)FLT_MAX );
     94 
     95 static const time_t TIME_T_MIN =
     96     TYPE_INTEGRAL(time_t) ?
     97         ( TYPE_SIGNED(time_t) ?
     98             ((time_t)1 << (TYPE_BIT(time_t)-1))
     99         :
    100             0
    101         )
    102     :
    103         ( sizeof(time_t) > sizeof(float) ? (time_t)DBL_MIN : (time_t)FLT_MIN );
    104 
    105 #ifndef WILDABBR
    106 /*
    107 ** Someone might make incorrect use of a time zone abbreviation:
    108 **  1.  They might reference tzname[0] before calling tzset (explicitly
    109 **      or implicitly).
    110 **  2.  They might reference tzname[1] before calling tzset (explicitly
    111 **      or implicitly).
    112 **  3.  They might reference tzname[1] after setting to a time zone
    113 **      in which Daylight Saving Time is never observed.
    114 **  4.  They might reference tzname[0] after setting to a time zone
    115 **      in which Standard Time is never observed.
    116 **  5.  They might reference tm.TM_ZONE after calling offtime.
    117 ** What's best to do in the above cases is open to debate;
    118 ** for now, we just set things up so that in any of the five cases
    119 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
    120 ** string "tzname[0] used before set", and similarly for the other cases.
    121 ** And another: initialize tzname[0] to "ERA", with an explanation in the
    122 ** manual page of what this "time zone abbreviation" means (doing this so
    123 ** that tzname[0] has the "normal" length of three characters).
    124 */
    125 #define WILDABBR    "   "
    126 #endif /* !defined WILDABBR */
    127 
    128 static char     wildabbr[] = WILDABBR;
    129 
    130 static const char   gmt[] = "GMT";
    131 
    132 /*
    133 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
    134 ** We default to US rules as of 1999-08-17.
    135 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
    136 ** implementation dependent; for historical reasons, US rules are a
    137 ** common default.
    138 */
    139 #ifndef TZDEFRULESTRING
    140 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
    141 #endif /* !defined TZDEFDST */
    142 
    143 struct ttinfo {             /* time type information */
    144     long    tt_gmtoff;  /* UTC offset in seconds */
    145     int     tt_isdst;   /* used to set tm_isdst */
    146     int     tt_abbrind; /* abbreviation list index */
    147     int     tt_ttisstd; /* TRUE if transition is std time */
    148     int     tt_ttisgmt; /* TRUE if transition is UTC */
    149 };
    150 
    151 struct lsinfo {             /* leap second information */
    152     time_t      ls_trans;   /* transition time */
    153     long        ls_corr;    /* correction to apply */
    154 };
    155 
    156 #define BIGGEST(a, b)   (((a) > (b)) ? (a) : (b))
    157 
    158 #ifdef TZNAME_MAX
    159 #define MY_TZNAME_MAX   TZNAME_MAX
    160 #endif /* defined TZNAME_MAX */
    161 #ifndef TZNAME_MAX
    162 #define MY_TZNAME_MAX   255
    163 #endif /* !defined TZNAME_MAX */
    164 
    165 /* XXX: This code should really use time64_t instead of time_t
    166  *      but we can't change it without re-generating the index
    167  *      file first with the correct data.
    168  */
    169 struct state {
    170     int     leapcnt;
    171     int     timecnt;
    172     int     typecnt;
    173     int     charcnt;
    174     int     goback;
    175     int     goahead;
    176     time_t      ats[TZ_MAX_TIMES];
    177     unsigned char   types[TZ_MAX_TIMES];
    178     struct ttinfo   ttis[TZ_MAX_TYPES];
    179     char        chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
    180                 (2 * (MY_TZNAME_MAX + 1)))];
    181     struct lsinfo   lsis[TZ_MAX_LEAPS];
    182 };
    183 
    184 struct rule {
    185     int     r_type;     /* type of rule--see below */
    186     int     r_day;      /* day number of rule */
    187     int     r_week;     /* week number of rule */
    188     int     r_mon;      /* month number of rule */
    189     long        r_time;     /* transition time of rule */
    190 };
    191 
    192 #define JULIAN_DAY      0   /* Jn - Julian day */
    193 #define DAY_OF_YEAR     1   /* n - day of year */
    194 #define MONTH_NTH_DAY_OF_WEEK   2   /* Mm.n.d - month, week, day of week */
    195 
    196 /*
    197 ** Prototypes for static functions.
    198 */
    199 
    200 /* NOTE: all internal functions assume that _tzLock() was already called */
    201 
    202 static int __bionic_open_tzdata(const char*, int*);
    203 static long     detzcode P((const char * codep));
    204 static time_t   detzcode64 P((const char * codep));
    205 static int      differ_by_repeat P((time_t t1, time_t t0));
    206 static const char * getzname P((const char * strp));
    207 static const char * getqzname P((const char * strp, const int delim));
    208 static const char * getnum P((const char * strp, int * nump, int min,
    209                 int max));
    210 static const char * getsecs P((const char * strp, long * secsp));
    211 static const char * getoffset P((const char * strp, long * offsetp));
    212 static const char * getrule P((const char * strp, struct rule * rulep));
    213 static void     gmtload P((struct state * sp));
    214 static struct tm *  gmtsub P((const time_t * timep, long offset,
    215                 struct tm * tmp, const struct state * sp)); // android-changed: added sp.
    216 static struct tm *  localsub P((const time_t * timep, long offset,
    217                 struct tm * tmp, const struct state * sp)); // android-changed: added sp.
    218 static int      increment_overflow P((int * number, int delta));
    219 static int      leaps_thru_end_of P((int y));
    220 static int      long_increment_overflow P((long * number, int delta));
    221 static int      long_normalize_overflow P((long * tensptr,
    222                 int * unitsptr, int base));
    223 static int      normalize_overflow P((int * tensptr, int * unitsptr,
    224                 int base));
    225 static void     settzname P((void));
    226 static time_t       time1 P((struct tm * tmp,
    227                 struct tm * (*funcp) P((const time_t *,
    228                 long, struct tm *, const struct state *)), // android-changed: added state*.
    229                 long offset, const struct state * sp)); // android-changed: added sp.
    230 static time_t       time2 P((struct tm *tmp,
    231                 struct tm * (*funcp) P((const time_t *,
    232                 long, struct tm*, const struct state *)), // android-changed: added state*.
    233                 long offset, int * okayp, const struct state * sp)); // android-changed: added sp.
    234 static time_t       time2sub P((struct tm *tmp,
    235                 struct tm * (*funcp) P((const time_t *,
    236                 long, struct tm*, const struct state *)), // android-changed: added state*.
    237                 long offset, int * okayp, int do_norm_secs, const struct state * sp)); // android-change: added sp.
    238 static struct tm *  timesub P((const time_t * timep, long offset,
    239                 const struct state * sp, struct tm * tmp));
    240 static int      tmcomp P((const struct tm * atmp,
    241                 const struct tm * btmp));
    242 static time_t       transtime P((time_t janfirst, int year,
    243                 const struct rule * rulep, long offset));
    244 static int      tzload P((const char * name, struct state * sp,
    245                 int doextend));
    246 static int      tzparse P((const char * name, struct state * sp,
    247                 int lastditch));
    248 
    249 #ifdef ALL_STATE
    250 static struct state *   lclptr;
    251 static struct state *   gmtptr;
    252 #endif /* defined ALL_STATE */
    253 
    254 #ifndef ALL_STATE
    255 static struct state lclmem;
    256 static struct state gmtmem;
    257 #define lclptr      (&lclmem)
    258 #define gmtptr      (&gmtmem)
    259 #endif /* State Farm */
    260 
    261 #ifndef TZ_STRLEN_MAX
    262 #define TZ_STRLEN_MAX 255
    263 #endif /* !defined TZ_STRLEN_MAX */
    264 
    265 static char     lcl_TZname[TZ_STRLEN_MAX + 1];
    266 static int      lcl_is_set;
    267 static int      gmt_is_set;
    268 
    269 char *          tzname[2] = {
    270     wildabbr,
    271     wildabbr
    272 };
    273 
    274 /*
    275 ** Section 4.12.3 of X3.159-1989 requires that
    276 **  Except for the strftime function, these functions [asctime,
    277 **  ctime, gmtime, localtime] return values in one of two static
    278 **  objects: a broken-down time structure and an array of char.
    279 ** Thanks to Paul Eggert for noting this.
    280 */
    281 
    282 static struct tm    tmGlobal;
    283 
    284 #ifdef USG_COMPAT
    285 time_t          timezone = 0;
    286 int         daylight = 0;
    287 #endif /* defined USG_COMPAT */
    288 
    289 #ifdef ALTZONE
    290 time_t          altzone = 0;
    291 #endif /* defined ALTZONE */
    292 
    293 static long
    294 detzcode(codep)
    295 const char * const  codep;
    296 {
    297     register long   result;
    298     register int    i;
    299 
    300     result = (codep[0] & 0x80) ? ~0L : 0;
    301     for (i = 0; i < 4; ++i)
    302         result = (result << 8) | (codep[i] & 0xff);
    303     return result;
    304 }
    305 
    306 static time_t
    307 detzcode64(codep)
    308 const char * const  codep;
    309 {
    310     register time_t result;
    311     register int    i;
    312 
    313     result = (codep[0] & 0x80) ?  (~(int_fast64_t) 0) : 0;
    314     for (i = 0; i < 8; ++i)
    315         result = result * 256 + (codep[i] & 0xff);
    316     return result;
    317 }
    318 
    319 static void
    320 settzname P((void))
    321 {
    322     register struct state * const   sp = lclptr;
    323     register int            i;
    324 
    325     tzname[0] = wildabbr;
    326     tzname[1] = wildabbr;
    327 #ifdef USG_COMPAT
    328     daylight = 0;
    329     timezone = 0;
    330 #endif /* defined USG_COMPAT */
    331 #ifdef ALTZONE
    332     altzone = 0;
    333 #endif /* defined ALTZONE */
    334 #ifdef ALL_STATE
    335     if (sp == NULL) {
    336         tzname[0] = tzname[1] = gmt;
    337         return;
    338     }
    339 #endif /* defined ALL_STATE */
    340     for (i = 0; i < sp->typecnt; ++i) {
    341         register const struct ttinfo * const    ttisp = &sp->ttis[i];
    342 
    343         tzname[ttisp->tt_isdst] =
    344             &sp->chars[ttisp->tt_abbrind];
    345 #ifdef USG_COMPAT
    346         if (ttisp->tt_isdst)
    347             daylight = 1;
    348         if (i == 0 || !ttisp->tt_isdst)
    349             timezone = -(ttisp->tt_gmtoff);
    350 #endif /* defined USG_COMPAT */
    351 #ifdef ALTZONE
    352         if (i == 0 || ttisp->tt_isdst)
    353             altzone = -(ttisp->tt_gmtoff);
    354 #endif /* defined ALTZONE */
    355     }
    356     /*
    357     ** And to get the latest zone names into tzname. . .
    358     */
    359     for (i = 0; i < sp->timecnt; ++i) {
    360         register const struct ttinfo * const    ttisp =
    361                             &sp->ttis[
    362                                 sp->types[i]];
    363 
    364         tzname[ttisp->tt_isdst] =
    365             &sp->chars[ttisp->tt_abbrind];
    366     }
    367     /*
    368     ** Finally, scrub the abbreviations.
    369     ** First, replace bogus characters.
    370     */
    371     for (i = 0; i < sp->charcnt; ++i)
    372         if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
    373             sp->chars[i] = TZ_ABBR_ERR_CHAR;
    374     /*
    375     ** Second, truncate long abbreviations.
    376     */
    377     for (i = 0; i < sp->typecnt; ++i) {
    378         register const struct ttinfo * const    ttisp = &sp->ttis[i];
    379         register char *             cp = &sp->chars[ttisp->tt_abbrind];
    380 
    381         if (strlen(cp) > TZ_ABBR_MAX_LEN &&
    382             strcmp(cp, GRANDPARENTED) != 0)
    383                 *(cp + TZ_ABBR_MAX_LEN) = '\0';
    384     }
    385 }
    386 
    387 static int
    388 differ_by_repeat(t1, t0)
    389 const time_t    t1;
    390 const time_t    t0;
    391 {
    392     if (TYPE_INTEGRAL(time_t) &&
    393         TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
    394             return 0;
    395 #if SECSPERREPEAT_BITS <= 32  /* to avoid compiler warning (condition is always false) */
    396         return (t1 - t0) == SECSPERREPEAT;
    397 #else
    398         return 0;
    399 #endif
    400 }
    401 
    402 static int toint(unsigned char *s) {
    403     return (s[0] << 24) | (s[1] << 16) | (s[2] << 8) | s[3];
    404 }
    405 
    406 static int
    407 tzload(const char* name, struct state* const sp, const int doextend)
    408 {
    409     register const char *       p;
    410     register int            i;
    411     register int            fid;
    412     register int            stored;
    413     register int            nread;
    414     union {
    415         struct tzhead   tzhead;
    416         char        buf[2 * sizeof(struct tzhead) +
    417                     2 * sizeof *sp +
    418                     4 * TZ_MAX_TIMES];
    419     } u;
    420     int                     toread = sizeof u.buf;
    421 
    422         if (name == NULL && (name = TZDEFAULT) == NULL) {
    423                 XLOG(("tzload: null 'name' parameter\n" ));
    424                 return -1;
    425         }
    426     {
    427         register int    doaccess;
    428         /*
    429         ** Section 4.9.1 of the C standard says that
    430         ** "FILENAME_MAX expands to an integral constant expression
    431         ** that is the size needed for an array of char large enough
    432         ** to hold the longest file name string that the implementation
    433         ** guarantees can be opened."
    434         */
    435         char        fullname[FILENAME_MAX + 1];
    436         char        *origname = (char*) name;
    437 
    438         if (name[0] == ':')
    439             ++name;
    440         doaccess = name[0] == '/';
    441         if (!doaccess) {
    442             if ((p = TZDIR) == NULL) {
    443                 XLOG(("tzload: null TZDIR macro ?\n" ));
    444                 return -1;
    445             }
    446             if ((strlen(p) + strlen(name) + 1) >= sizeof fullname) {
    447                 XLOG(( "tzload: path too long: %s/%s\n", p, name ));
    448                 return -1;
    449             }
    450             (void) strcpy(fullname, p);
    451             (void) strcat(fullname, "/");
    452             (void) strcat(fullname, name);
    453             /*
    454             ** Set doaccess if '.' (as in "../") shows up in name.
    455             */
    456             if (strchr(name, '.') != NULL)
    457                 doaccess = TRUE;
    458             name = fullname;
    459         }
    460         if (doaccess && access(name, R_OK) != 0) {
    461             XLOG(( "tzload: could not find '%s'\n", name ));
    462             return -1;
    463         }
    464         if ((fid = open(name, OPEN_MODE)) == -1) {
    465             fid = __bionic_open_tzdata(origname, &toread);
    466             if (fid < 0) {
    467                 return -1;
    468             }
    469         }
    470     }
    471     nread = read(fid, u.buf, toread);
    472         if (close(fid) < 0 || nread <= 0) {
    473             XLOG(( "tzload: could not read content of '%s'\n", DATAFILE ));
    474             return -1;
    475         }
    476     for (stored = 4; stored <= 8; stored *= 2) {
    477         int     ttisstdcnt;
    478         int     ttisgmtcnt;
    479 
    480         ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
    481         ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
    482         sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
    483         sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
    484         sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
    485         sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
    486         p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
    487         if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
    488             sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
    489             sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
    490             sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
    491             (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
    492             (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
    493                 return -1;
    494         if (nread - (p - u.buf) <
    495             sp->timecnt * stored +      /* ats */
    496             sp->timecnt +           /* types */
    497             sp->typecnt * 6 +       /* ttinfos */
    498             sp->charcnt +           /* chars */
    499             sp->leapcnt * (stored + 4) +    /* lsinfos */
    500             ttisstdcnt +            /* ttisstds */
    501             ttisgmtcnt)         /* ttisgmts */
    502                 return -1;
    503         for (i = 0; i < sp->timecnt; ++i) {
    504             sp->ats[i] = (stored == 4) ?
    505                 detzcode(p) : detzcode64(p);
    506             p += stored;
    507         }
    508         for (i = 0; i < sp->timecnt; ++i) {
    509             sp->types[i] = (unsigned char) *p++;
    510             if (sp->types[i] >= sp->typecnt)
    511                 return -1;
    512         }
    513         for (i = 0; i < sp->typecnt; ++i) {
    514             register struct ttinfo *    ttisp;
    515 
    516             ttisp = &sp->ttis[i];
    517             ttisp->tt_gmtoff = detzcode(p);
    518             p += 4;
    519             ttisp->tt_isdst = (unsigned char) *p++;
    520             if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
    521                 return -1;
    522             ttisp->tt_abbrind = (unsigned char) *p++;
    523             if (ttisp->tt_abbrind < 0 ||
    524                 ttisp->tt_abbrind > sp->charcnt)
    525                     return -1;
    526         }
    527         for (i = 0; i < sp->charcnt; ++i)
    528             sp->chars[i] = *p++;
    529         sp->chars[i] = '\0';    /* ensure '\0' at end */
    530         for (i = 0; i < sp->leapcnt; ++i) {
    531             register struct lsinfo *    lsisp;
    532 
    533             lsisp = &sp->lsis[i];
    534             lsisp->ls_trans = (stored == 4) ?
    535                 detzcode(p) : detzcode64(p);
    536             p += stored;
    537             lsisp->ls_corr = detzcode(p);
    538             p += 4;
    539         }
    540         for (i = 0; i < sp->typecnt; ++i) {
    541             register struct ttinfo *    ttisp;
    542 
    543             ttisp = &sp->ttis[i];
    544             if (ttisstdcnt == 0)
    545                 ttisp->tt_ttisstd = FALSE;
    546             else {
    547                 ttisp->tt_ttisstd = *p++;
    548                 if (ttisp->tt_ttisstd != TRUE &&
    549                     ttisp->tt_ttisstd != FALSE)
    550                         return -1;
    551             }
    552         }
    553         for (i = 0; i < sp->typecnt; ++i) {
    554             register struct ttinfo *    ttisp;
    555 
    556             ttisp = &sp->ttis[i];
    557             if (ttisgmtcnt == 0)
    558                 ttisp->tt_ttisgmt = FALSE;
    559             else {
    560                 ttisp->tt_ttisgmt = *p++;
    561                 if (ttisp->tt_ttisgmt != TRUE &&
    562                     ttisp->tt_ttisgmt != FALSE)
    563                         return -1;
    564             }
    565         }
    566         /*
    567         ** Out-of-sort ats should mean we're running on a
    568         ** signed time_t system but using a data file with
    569         ** unsigned values (or vice versa).
    570         */
    571         for (i = 0; i < sp->timecnt - 2; ++i)
    572             if (sp->ats[i] > sp->ats[i + 1]) {
    573                 ++i;
    574                 if (TYPE_SIGNED(time_t)) {
    575                     /*
    576                     ** Ignore the end (easy).
    577                     */
    578                     sp->timecnt = i;
    579                 } else {
    580                     /*
    581                     ** Ignore the beginning (harder).
    582                     */
    583                     register int    j;
    584 
    585                     for (j = 0; j + i < sp->timecnt; ++j) {
    586                         sp->ats[j] = sp->ats[j + i];
    587                         sp->types[j] = sp->types[j + i];
    588                     }
    589                     sp->timecnt = j;
    590                 }
    591                 break;
    592             }
    593         /*
    594         ** If this is an old file, we're done.
    595         */
    596         if (u.tzhead.tzh_version[0] == '\0')
    597             break;
    598         nread -= p - u.buf;
    599         for (i = 0; i < nread; ++i)
    600             u.buf[i] = p[i];
    601         /*
    602         ** If this is a narrow integer time_t system, we're done.
    603         */
    604         if (stored >= (int) sizeof(time_t) && TYPE_INTEGRAL(time_t))
    605             break;
    606     }
    607     if (doextend && nread > 2 &&
    608         u.buf[0] == '\n' && u.buf[nread - 1] == '\n' &&
    609         sp->typecnt + 2 <= TZ_MAX_TYPES) {
    610             struct state    ts;
    611             register int    result;
    612 
    613             u.buf[nread - 1] = '\0';
    614             result = tzparse(&u.buf[1], &ts, FALSE);
    615             if (result == 0 && ts.typecnt == 2 &&
    616                 sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
    617                     for (i = 0; i < 2; ++i)
    618                         ts.ttis[i].tt_abbrind +=
    619                             sp->charcnt;
    620                     for (i = 0; i < ts.charcnt; ++i)
    621                         sp->chars[sp->charcnt++] =
    622                             ts.chars[i];
    623                     i = 0;
    624                     while (i < ts.timecnt &&
    625                         ts.ats[i] <=
    626                         sp->ats[sp->timecnt - 1])
    627                             ++i;
    628                     while (i < ts.timecnt &&
    629                         sp->timecnt < TZ_MAX_TIMES) {
    630                         sp->ats[sp->timecnt] =
    631                             ts.ats[i];
    632                         sp->types[sp->timecnt] =
    633                             sp->typecnt +
    634                             ts.types[i];
    635                         ++sp->timecnt;
    636                         ++i;
    637                     }
    638                     sp->ttis[sp->typecnt++] = ts.ttis[0];
    639                     sp->ttis[sp->typecnt++] = ts.ttis[1];
    640             }
    641     }
    642     i = 2 * YEARSPERREPEAT;
    643     sp->goback = sp->goahead = sp->timecnt > i;
    644     sp->goback &= sp->types[i] == sp->types[0] &&
    645         differ_by_repeat(sp->ats[i], sp->ats[0]);
    646     sp->goahead &=
    647         sp->types[sp->timecnt - 1] == sp->types[sp->timecnt - 1 - i] &&
    648         differ_by_repeat(sp->ats[sp->timecnt - 1],
    649              sp->ats[sp->timecnt - 1 - i]);
    650         XLOG(( "tzload: load ok !!\n" ));
    651     return 0;
    652 }
    653 
    654 static const int    mon_lengths[2][MONSPERYEAR] = {
    655     { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
    656     { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
    657 };
    658 
    659 static const int    year_lengths[2] = {
    660     DAYSPERNYEAR, DAYSPERLYEAR
    661 };
    662 
    663 /*
    664 ** Given a pointer into a time zone string, scan until a character that is not
    665 ** a valid character in a zone name is found. Return a pointer to that
    666 ** character.
    667 */
    668 
    669 static const char *
    670 getzname(strp)
    671 register const char *   strp;
    672 {
    673     register char   c;
    674 
    675     while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
    676         c != '+')
    677             ++strp;
    678     return strp;
    679 }
    680 
    681 /*
    682 ** Given a pointer into an extended time zone string, scan until the ending
    683 ** delimiter of the zone name is located. Return a pointer to the delimiter.
    684 **
    685 ** As with getzname above, the legal character set is actually quite
    686 ** restricted, with other characters producing undefined results.
    687 ** We don't do any checking here; checking is done later in common-case code.
    688 */
    689 
    690 static const char *
    691 getqzname(register const char *strp, const int delim)
    692 {
    693     register int    c;
    694 
    695     while ((c = *strp) != '\0' && c != delim)
    696         ++strp;
    697     return strp;
    698 }
    699 
    700 /*
    701 ** Given a pointer into a time zone string, extract a number from that string.
    702 ** Check that the number is within a specified range; if it is not, return
    703 ** NULL.
    704 ** Otherwise, return a pointer to the first character not part of the number.
    705 */
    706 
    707 static const char *
    708 getnum(strp, nump, min, max)
    709 register const char *   strp;
    710 int * const     nump;
    711 const int       min;
    712 const int       max;
    713 {
    714     register char   c;
    715     register int    num;
    716 
    717     if (strp == NULL || !is_digit(c = *strp))
    718         return NULL;
    719     num = 0;
    720     do {
    721         num = num * 10 + (c - '0');
    722         if (num > max)
    723             return NULL;    /* illegal value */
    724         c = *++strp;
    725     } while (is_digit(c));
    726     if (num < min)
    727         return NULL;        /* illegal value */
    728     *nump = num;
    729     return strp;
    730 }
    731 
    732 /*
    733 ** Given a pointer into a time zone string, extract a number of seconds,
    734 ** in hh[:mm[:ss]] form, from the string.
    735 ** If any error occurs, return NULL.
    736 ** Otherwise, return a pointer to the first character not part of the number
    737 ** of seconds.
    738 */
    739 
    740 static const char *
    741 getsecs(strp, secsp)
    742 register const char *   strp;
    743 long * const        secsp;
    744 {
    745     int num;
    746 
    747     /*
    748     ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
    749     ** "M10.4.6/26", which does not conform to Posix,
    750     ** but which specifies the equivalent of
    751     ** ``02:00 on the first Sunday on or after 23 Oct''.
    752     */
    753     strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
    754     if (strp == NULL)
    755         return NULL;
    756     *secsp = num * (long) SECSPERHOUR;
    757     if (*strp == ':') {
    758         ++strp;
    759         strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
    760         if (strp == NULL)
    761             return NULL;
    762         *secsp += num * SECSPERMIN;
    763         if (*strp == ':') {
    764             ++strp;
    765             /* `SECSPERMIN' allows for leap seconds. */
    766             strp = getnum(strp, &num, 0, SECSPERMIN);
    767             if (strp == NULL)
    768                 return NULL;
    769             *secsp += num;
    770         }
    771     }
    772     return strp;
    773 }
    774 
    775 /*
    776 ** Given a pointer into a time zone string, extract an offset, in
    777 ** [+-]hh[:mm[:ss]] form, from the string.
    778 ** If any error occurs, return NULL.
    779 ** Otherwise, return a pointer to the first character not part of the time.
    780 */
    781 
    782 static const char *
    783 getoffset(strp, offsetp)
    784 register const char *   strp;
    785 long * const        offsetp;
    786 {
    787     register int    neg = 0;
    788 
    789     if (*strp == '-') {
    790         neg = 1;
    791         ++strp;
    792     } else if (*strp == '+')
    793         ++strp;
    794     strp = getsecs(strp, offsetp);
    795     if (strp == NULL)
    796         return NULL;        /* illegal time */
    797     if (neg)
    798         *offsetp = -*offsetp;
    799     return strp;
    800 }
    801 
    802 /*
    803 ** Given a pointer into a time zone string, extract a rule in the form
    804 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
    805 ** If a valid rule is not found, return NULL.
    806 ** Otherwise, return a pointer to the first character not part of the rule.
    807 */
    808 
    809 static const char *
    810 getrule(strp, rulep)
    811 const char *            strp;
    812 register struct rule * const    rulep;
    813 {
    814     if (*strp == 'J') {
    815         /*
    816         ** Julian day.
    817         */
    818         rulep->r_type = JULIAN_DAY;
    819         ++strp;
    820         strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
    821     } else if (*strp == 'M') {
    822         /*
    823         ** Month, week, day.
    824         */
    825         rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
    826         ++strp;
    827         strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
    828         if (strp == NULL)
    829             return NULL;
    830         if (*strp++ != '.')
    831             return NULL;
    832         strp = getnum(strp, &rulep->r_week, 1, 5);
    833         if (strp == NULL)
    834             return NULL;
    835         if (*strp++ != '.')
    836             return NULL;
    837         strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
    838     } else if (is_digit(*strp)) {
    839         /*
    840         ** Day of year.
    841         */
    842         rulep->r_type = DAY_OF_YEAR;
    843         strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
    844     } else  return NULL;        /* invalid format */
    845     if (strp == NULL)
    846         return NULL;
    847     if (*strp == '/') {
    848         /*
    849         ** Time specified.
    850         */
    851         ++strp;
    852         strp = getsecs(strp, &rulep->r_time);
    853     } else  rulep->r_time = 2 * SECSPERHOUR;    /* default = 2:00:00 */
    854     return strp;
    855 }
    856 
    857 /*
    858 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
    859 ** year, a rule, and the offset from UTC at the time that rule takes effect,
    860 ** calculate the Epoch-relative time that rule takes effect.
    861 */
    862 
    863 static time_t
    864 transtime(janfirst, year, rulep, offset)
    865 const time_t                janfirst;
    866 const int               year;
    867 register const struct rule * const  rulep;
    868 const long              offset;
    869 {
    870     register int    leapyear;
    871     register time_t value;
    872     register int    i;
    873     int     d, m1, yy0, yy1, yy2, dow;
    874 
    875     INITIALIZE(value);
    876     leapyear = isleap(year);
    877     switch (rulep->r_type) {
    878 
    879     case JULIAN_DAY:
    880         /*
    881         ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
    882         ** years.
    883         ** In non-leap years, or if the day number is 59 or less, just
    884         ** add SECSPERDAY times the day number-1 to the time of
    885         ** January 1, midnight, to get the day.
    886         */
    887         value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
    888         if (leapyear && rulep->r_day >= 60)
    889             value += SECSPERDAY;
    890         break;
    891 
    892     case DAY_OF_YEAR:
    893         /*
    894         ** n - day of year.
    895         ** Just add SECSPERDAY times the day number to the time of
    896         ** January 1, midnight, to get the day.
    897         */
    898         value = janfirst + rulep->r_day * SECSPERDAY;
    899         break;
    900 
    901     case MONTH_NTH_DAY_OF_WEEK:
    902         /*
    903         ** Mm.n.d - nth "dth day" of month m.
    904         */
    905         value = janfirst;
    906         for (i = 0; i < rulep->r_mon - 1; ++i)
    907             value += mon_lengths[leapyear][i] * SECSPERDAY;
    908 
    909         /*
    910         ** Use Zeller's Congruence to get day-of-week of first day of
    911         ** month.
    912         */
    913         m1 = (rulep->r_mon + 9) % 12 + 1;
    914         yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
    915         yy1 = yy0 / 100;
    916         yy2 = yy0 % 100;
    917         dow = ((26 * m1 - 2) / 10 +
    918             1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
    919         if (dow < 0)
    920             dow += DAYSPERWEEK;
    921 
    922         /*
    923         ** "dow" is the day-of-week of the first day of the month. Get
    924         ** the day-of-month (zero-origin) of the first "dow" day of the
    925         ** month.
    926         */
    927         d = rulep->r_day - dow;
    928         if (d < 0)
    929             d += DAYSPERWEEK;
    930         for (i = 1; i < rulep->r_week; ++i) {
    931             if (d + DAYSPERWEEK >=
    932                 mon_lengths[leapyear][rulep->r_mon - 1])
    933                     break;
    934             d += DAYSPERWEEK;
    935         }
    936 
    937         /*
    938         ** "d" is the day-of-month (zero-origin) of the day we want.
    939         */
    940         value += d * SECSPERDAY;
    941         break;
    942     }
    943 
    944     /*
    945     ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
    946     ** question. To get the Epoch-relative time of the specified local
    947     ** time on that day, add the transition time and the current offset
    948     ** from UTC.
    949     */
    950     return value + rulep->r_time + offset;
    951 }
    952 
    953 /*
    954 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
    955 ** appropriate.
    956 */
    957 
    958 static int
    959 tzparse(name, sp, lastditch)
    960 const char *            name;
    961 register struct state * const   sp;
    962 const int           lastditch;
    963 {
    964     const char *            stdname;
    965     const char *            dstname;
    966     size_t              stdlen;
    967     size_t              dstlen;
    968     long                stdoffset;
    969     long                dstoffset;
    970     register time_t *       atp;
    971     register unsigned char *    typep;
    972     register char *         cp;
    973     register int            load_result;
    974 
    975     INITIALIZE(dstname);
    976     stdname = name;
    977     if (lastditch) {
    978         stdlen = strlen(name);  /* length of standard zone name */
    979         name += stdlen;
    980         if (stdlen >= sizeof sp->chars)
    981             stdlen = (sizeof sp->chars) - 1;
    982         stdoffset = 0;
    983     } else {
    984         if (*name == '<') {
    985             name++;
    986             stdname = name;
    987             name = getqzname(name, '>');
    988             if (*name != '>')
    989                 return (-1);
    990             stdlen = name - stdname;
    991             name++;
    992         } else {
    993             name = getzname(name);
    994             stdlen = name - stdname;
    995         }
    996         if (*name == '\0')
    997             return -1;
    998         name = getoffset(name, &stdoffset);
    999         if (name == NULL)
   1000             return -1;
   1001     }
   1002     load_result = tzload(TZDEFRULES, sp, FALSE);
   1003     if (load_result != 0)
   1004         sp->leapcnt = 0;        /* so, we're off a little */
   1005     sp->timecnt = 0;
   1006     if (*name != '\0') {
   1007         if (*name == '<') {
   1008             dstname = ++name;
   1009             name = getqzname(name, '>');
   1010             if (*name != '>')
   1011                 return -1;
   1012             dstlen = name - dstname;
   1013             name++;
   1014         } else {
   1015             dstname = name;
   1016             name = getzname(name);
   1017             dstlen = name - dstname; /* length of DST zone name */
   1018         }
   1019         if (*name != '\0' && *name != ',' && *name != ';') {
   1020             name = getoffset(name, &dstoffset);
   1021             if (name == NULL)
   1022                 return -1;
   1023         } else  dstoffset = stdoffset - SECSPERHOUR;
   1024         if (*name == '\0' && load_result != 0)
   1025             name = TZDEFRULESTRING;
   1026         if (*name == ',' || *name == ';') {
   1027             struct rule start;
   1028             struct rule end;
   1029             register int    year;
   1030             register time_t janfirst;
   1031             time_t      starttime;
   1032             time_t      endtime;
   1033 
   1034             ++name;
   1035             if ((name = getrule(name, &start)) == NULL)
   1036                 return -1;
   1037             if (*name++ != ',')
   1038                 return -1;
   1039             if ((name = getrule(name, &end)) == NULL)
   1040                 return -1;
   1041             if (*name != '\0')
   1042                 return -1;
   1043             sp->typecnt = 2;    /* standard time and DST */
   1044             /*
   1045             ** Two transitions per year, from EPOCH_YEAR forward.
   1046             */
   1047             sp->ttis[0].tt_gmtoff = -dstoffset;
   1048             sp->ttis[0].tt_isdst = 1;
   1049             sp->ttis[0].tt_abbrind = stdlen + 1;
   1050             sp->ttis[1].tt_gmtoff = -stdoffset;
   1051             sp->ttis[1].tt_isdst = 0;
   1052             sp->ttis[1].tt_abbrind = 0;
   1053             atp = sp->ats;
   1054             typep = sp->types;
   1055             janfirst = 0;
   1056             for (year = EPOCH_YEAR;
   1057                 sp->timecnt + 2 <= TZ_MAX_TIMES;
   1058                 ++year) {
   1059                     time_t  newfirst;
   1060 
   1061                 starttime = transtime(janfirst, year, &start,
   1062                     stdoffset);
   1063                 endtime = transtime(janfirst, year, &end,
   1064                     dstoffset);
   1065                 if (starttime > endtime) {
   1066                     *atp++ = endtime;
   1067                     *typep++ = 1;   /* DST ends */
   1068                     *atp++ = starttime;
   1069                     *typep++ = 0;   /* DST begins */
   1070                 } else {
   1071                     *atp++ = starttime;
   1072                     *typep++ = 0;   /* DST begins */
   1073                     *atp++ = endtime;
   1074                     *typep++ = 1;   /* DST ends */
   1075                 }
   1076                 sp->timecnt += 2;
   1077                 newfirst = janfirst;
   1078                 newfirst += year_lengths[isleap(year)] *
   1079                     SECSPERDAY;
   1080                 if (newfirst <= janfirst)
   1081                     break;
   1082                 janfirst = newfirst;
   1083             }
   1084         } else {
   1085             register long   theirstdoffset;
   1086             register long   theirdstoffset;
   1087             register long   theiroffset;
   1088             register int    isdst;
   1089             register int    i;
   1090             register int    j;
   1091 
   1092             if (*name != '\0')
   1093                 return -1;
   1094             /*
   1095             ** Initial values of theirstdoffset and theirdstoffset.
   1096             */
   1097             theirstdoffset = 0;
   1098             for (i = 0; i < sp->timecnt; ++i) {
   1099                 j = sp->types[i];
   1100                 if (!sp->ttis[j].tt_isdst) {
   1101                     theirstdoffset =
   1102                         -sp->ttis[j].tt_gmtoff;
   1103                     break;
   1104                 }
   1105             }
   1106             theirdstoffset = 0;
   1107             for (i = 0; i < sp->timecnt; ++i) {
   1108                 j = sp->types[i];
   1109                 if (sp->ttis[j].tt_isdst) {
   1110                     theirdstoffset =
   1111                         -sp->ttis[j].tt_gmtoff;
   1112                     break;
   1113                 }
   1114             }
   1115             /*
   1116             ** Initially we're assumed to be in standard time.
   1117             */
   1118             isdst = FALSE;
   1119             theiroffset = theirstdoffset;
   1120             /*
   1121             ** Now juggle transition times and types
   1122             ** tracking offsets as you do.
   1123             */
   1124             for (i = 0; i < sp->timecnt; ++i) {
   1125                 j = sp->types[i];
   1126                 sp->types[i] = sp->ttis[j].tt_isdst;
   1127                 if (sp->ttis[j].tt_ttisgmt) {
   1128                     /* No adjustment to transition time */
   1129                 } else {
   1130                     /*
   1131                     ** If summer time is in effect, and the
   1132                     ** transition time was not specified as
   1133                     ** standard time, add the summer time
   1134                     ** offset to the transition time;
   1135                     ** otherwise, add the standard time
   1136                     ** offset to the transition time.
   1137                     */
   1138                     /*
   1139                     ** Transitions from DST to DDST
   1140                     ** will effectively disappear since
   1141                     ** POSIX provides for only one DST
   1142                     ** offset.
   1143                     */
   1144                     if (isdst && !sp->ttis[j].tt_ttisstd) {
   1145                         sp->ats[i] += dstoffset -
   1146                             theirdstoffset;
   1147                     } else {
   1148                         sp->ats[i] += stdoffset -
   1149                             theirstdoffset;
   1150                     }
   1151                 }
   1152                 theiroffset = -sp->ttis[j].tt_gmtoff;
   1153                 if (sp->ttis[j].tt_isdst)
   1154                     theirdstoffset = theiroffset;
   1155                 else    theirstdoffset = theiroffset;
   1156             }
   1157             /*
   1158             ** Finally, fill in ttis.
   1159             ** ttisstd and ttisgmt need not be handled.
   1160             */
   1161             sp->ttis[0].tt_gmtoff = -stdoffset;
   1162             sp->ttis[0].tt_isdst = FALSE;
   1163             sp->ttis[0].tt_abbrind = 0;
   1164             sp->ttis[1].tt_gmtoff = -dstoffset;
   1165             sp->ttis[1].tt_isdst = TRUE;
   1166             sp->ttis[1].tt_abbrind = stdlen + 1;
   1167             sp->typecnt = 2;
   1168         }
   1169     } else {
   1170         dstlen = 0;
   1171         sp->typecnt = 1;        /* only standard time */
   1172         sp->timecnt = 0;
   1173         sp->ttis[0].tt_gmtoff = -stdoffset;
   1174         sp->ttis[0].tt_isdst = 0;
   1175         sp->ttis[0].tt_abbrind = 0;
   1176     }
   1177     sp->charcnt = stdlen + 1;
   1178     if (dstlen != 0)
   1179         sp->charcnt += dstlen + 1;
   1180     if ((size_t) sp->charcnt > sizeof sp->chars)
   1181         return -1;
   1182     cp = sp->chars;
   1183     (void) strncpy(cp, stdname, stdlen);
   1184     cp += stdlen;
   1185     *cp++ = '\0';
   1186     if (dstlen != 0) {
   1187         (void) strncpy(cp, dstname, dstlen);
   1188         *(cp + dstlen) = '\0';
   1189     }
   1190     return 0;
   1191 }
   1192 
   1193 static void
   1194 gmtload(sp)
   1195 struct state * const    sp;
   1196 {
   1197     if (tzload(gmt, sp, TRUE) != 0)
   1198         (void) tzparse(gmt, sp, TRUE);
   1199 }
   1200 
   1201 static void
   1202 tzsetwall P((void))
   1203 {
   1204     if (lcl_is_set < 0)
   1205         return;
   1206     lcl_is_set = -1;
   1207 
   1208 #ifdef ALL_STATE
   1209     if (lclptr == NULL) {
   1210         lclptr = (struct state *) malloc(sizeof *lclptr);
   1211         if (lclptr == NULL) {
   1212             settzname();    /* all we can do */
   1213             return;
   1214         }
   1215     }
   1216 #endif /* defined ALL_STATE */
   1217     if (tzload((char *) NULL, lclptr, TRUE) != 0)
   1218         gmtload(lclptr);
   1219     settzname();
   1220 }
   1221 
   1222 static void
   1223 tzset_locked P((void))
   1224 {
   1225     register const char *   name = NULL;
   1226     static char buf[PROP_VALUE_MAX];
   1227 
   1228     name = getenv("TZ");
   1229 
   1230     // try the "persist.sys.timezone" system property first
   1231     if (name == NULL && __system_property_get("persist.sys.timezone", buf) > 0)
   1232         name = buf;
   1233 
   1234     if (name == NULL) {
   1235         tzsetwall();
   1236         return;
   1237     }
   1238 
   1239     if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
   1240         return;
   1241     lcl_is_set = strlen(name) < sizeof lcl_TZname;
   1242     if (lcl_is_set)
   1243         (void) strcpy(lcl_TZname, name);
   1244 
   1245 #ifdef ALL_STATE
   1246     if (lclptr == NULL) {
   1247         lclptr = (struct state *) malloc(sizeof *lclptr);
   1248         if (lclptr == NULL) {
   1249             settzname();    /* all we can do */
   1250             return;
   1251         }
   1252     }
   1253 #endif /* defined ALL_STATE */
   1254     if (*name == '\0') {
   1255         /*
   1256         ** User wants it fast rather than right.
   1257         */
   1258         lclptr->leapcnt = 0;        /* so, we're off a little */
   1259         lclptr->timecnt = 0;
   1260         lclptr->typecnt = 0;
   1261         lclptr->ttis[0].tt_isdst = 0;
   1262         lclptr->ttis[0].tt_gmtoff = 0;
   1263         lclptr->ttis[0].tt_abbrind = 0;
   1264         (void) strcpy(lclptr->chars, gmt);
   1265     } else if (tzload(name, lclptr, TRUE) != 0)
   1266         if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
   1267             (void) gmtload(lclptr);
   1268     settzname();
   1269 }
   1270 
   1271 void
   1272 tzset P((void))
   1273 {
   1274     _tzLock();
   1275     tzset_locked();
   1276     _tzUnlock();
   1277 }
   1278 
   1279 /*
   1280 ** The easy way to behave "as if no library function calls" localtime
   1281 ** is to not call it--so we drop its guts into "localsub", which can be
   1282 ** freely called. (And no, the PANS doesn't require the above behavior--
   1283 ** but it *is* desirable.)
   1284 **
   1285 ** The unused offset argument is for the benefit of mktime variants.
   1286 */
   1287 
   1288 /*ARGSUSED*/
   1289 static struct tm *
   1290 localsub(timep, offset, tmp, sp) // android-changed: added sp.
   1291 const time_t * const    timep;
   1292 const long      offset;
   1293 struct tm * const   tmp;
   1294 const struct state * sp; // android-added: added sp.
   1295 {
   1296     register const struct ttinfo *  ttisp;
   1297     register int            i;
   1298     register struct tm *        result;
   1299     const time_t            t = *timep;
   1300 
   1301     // BEGIN android-changed: support user-supplied sp.
   1302     if (sp == NULL) {
   1303         sp = lclptr;
   1304     }
   1305     // END android-changed
   1306 #ifdef ALL_STATE
   1307     if (sp == NULL)
   1308         return gmtsub(timep, offset, tmp, sp); // android-changed: added sp.
   1309 #endif /* defined ALL_STATE */
   1310     if ((sp->goback && t < sp->ats[0]) ||
   1311         (sp->goahead && t > sp->ats[sp->timecnt - 1])) {
   1312             time_t          newt = t;
   1313             register time_t     seconds;
   1314             register time_t     tcycles;
   1315             register int_fast64_t   icycles;
   1316 
   1317             if (t < sp->ats[0])
   1318                 seconds = sp->ats[0] - t;
   1319             else    seconds = t - sp->ats[sp->timecnt - 1];
   1320             --seconds;
   1321             tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
   1322             ++tcycles;
   1323             icycles = tcycles;
   1324             if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
   1325                 return NULL;
   1326             seconds = icycles;
   1327             seconds *= YEARSPERREPEAT;
   1328             seconds *= AVGSECSPERYEAR;
   1329             if (t < sp->ats[0])
   1330                 newt += seconds;
   1331             else    newt -= seconds;
   1332             if (newt < sp->ats[0] ||
   1333                 newt > sp->ats[sp->timecnt - 1])
   1334                     return NULL;    /* "cannot happen" */
   1335             result = localsub(&newt, offset, tmp, sp); // android-changed: added sp.
   1336             if (result == tmp) {
   1337                 register time_t newy;
   1338 
   1339                 newy = tmp->tm_year;
   1340                 if (t < sp->ats[0])
   1341                     newy -= icycles * YEARSPERREPEAT;
   1342                 else    newy += icycles * YEARSPERREPEAT;
   1343                 tmp->tm_year = newy;
   1344                 if (tmp->tm_year != newy)
   1345                     return NULL;
   1346             }
   1347             return result;
   1348     }
   1349     if (sp->timecnt == 0 || t < sp->ats[0]) {
   1350         i = 0;
   1351         while (sp->ttis[i].tt_isdst)
   1352             if (++i >= sp->typecnt) {
   1353                 i = 0;
   1354                 break;
   1355             }
   1356     } else {
   1357         register int    lo = 1;
   1358         register int    hi = sp->timecnt;
   1359 
   1360         while (lo < hi) {
   1361             register int    mid = (lo + hi) >> 1;
   1362 
   1363             if (t < sp->ats[mid])
   1364                 hi = mid;
   1365             else    lo = mid + 1;
   1366         }
   1367         i = (int) sp->types[lo - 1];
   1368     }
   1369     ttisp = &sp->ttis[i];
   1370     /*
   1371     ** To get (wrong) behavior that's compatible with System V Release 2.0
   1372     ** you'd replace the statement below with
   1373     **  t += ttisp->tt_gmtoff;
   1374     **  timesub(&t, 0L, sp, tmp);
   1375     */
   1376     result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
   1377     tmp->tm_isdst = ttisp->tt_isdst;
   1378     tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
   1379 #ifdef TM_ZONE
   1380     tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
   1381 #endif /* defined TM_ZONE */
   1382     return result;
   1383 }
   1384 
   1385 struct tm *
   1386 localtime(timep)
   1387 const time_t * const    timep;
   1388 {
   1389     return localtime_r(timep, &tmGlobal);
   1390 }
   1391 
   1392 /*
   1393 ** Re-entrant version of localtime.
   1394 */
   1395 
   1396 struct tm *
   1397 localtime_r(timep, tmp)
   1398 const time_t * const    timep;
   1399 struct tm *     tmp;
   1400 {
   1401     struct tm*  result;
   1402 
   1403     _tzLock();
   1404     tzset_locked();
   1405     result = localsub(timep, 0L, tmp, NULL); // android-changed: extra parameter.
   1406     _tzUnlock();
   1407 
   1408     return result;
   1409 }
   1410 
   1411 /*
   1412 ** gmtsub is to gmtime as localsub is to localtime.
   1413 */
   1414 
   1415 static struct tm *
   1416 gmtsub(timep, offset, tmp, sp) // android-changed: added sp.
   1417 const time_t * const    timep;
   1418 const long      offset;
   1419 struct tm * const   tmp;
   1420 const struct state * sp; // android-changed: added sp.
   1421 {
   1422     register struct tm *    result;
   1423 
   1424     (void) sp; // android-added: unused.
   1425 
   1426     if (!gmt_is_set) {
   1427         gmt_is_set = TRUE;
   1428 #ifdef ALL_STATE
   1429         gmtptr = (struct state *) malloc(sizeof *gmtptr);
   1430         if (gmtptr != NULL)
   1431 #endif /* defined ALL_STATE */
   1432             gmtload(gmtptr);
   1433     }
   1434     result = timesub(timep, offset, gmtptr, tmp);
   1435 #ifdef TM_ZONE
   1436     /*
   1437     ** Could get fancy here and deliver something such as
   1438     ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
   1439     ** but this is no time for a treasure hunt.
   1440     */
   1441     if (offset != 0)
   1442         tmp->TM_ZONE = wildabbr;
   1443     else {
   1444 #ifdef ALL_STATE
   1445         if (gmtptr == NULL)
   1446             tmp->TM_ZONE = gmt;
   1447         else    tmp->TM_ZONE = gmtptr->chars;
   1448 #endif /* defined ALL_STATE */
   1449 #ifndef ALL_STATE
   1450         tmp->TM_ZONE = gmtptr->chars;
   1451 #endif /* State Farm */
   1452     }
   1453 #endif /* defined TM_ZONE */
   1454     return result;
   1455 }
   1456 
   1457 struct tm *
   1458 gmtime(timep)
   1459 const time_t * const    timep;
   1460 {
   1461     return gmtime_r(timep, &tmGlobal);
   1462 }
   1463 
   1464 /*
   1465 * Re-entrant version of gmtime.
   1466 */
   1467 
   1468 struct tm *
   1469 gmtime_r(timep, tmp)
   1470 const time_t * const    timep;
   1471 struct tm *     tmp;
   1472 {
   1473     struct tm*  result;
   1474 
   1475     _tzLock();
   1476     result = gmtsub(timep, 0L, tmp, NULL); // android-changed: extra parameter.
   1477     _tzUnlock();
   1478 
   1479     return result;
   1480 }
   1481 
   1482 #ifdef STD_INSPIRED
   1483 #if 0 /* disabled because there is no good documentation for this function */
   1484 struct tm *
   1485 offtime(timep, offset)
   1486 const time_t * const    timep;
   1487 const long      offset;
   1488 {
   1489     return gmtsub(timep, offset, &tmGlobal, NULL); // android-changed: extra parameter.
   1490 }
   1491 #endif /* 0 */
   1492 #endif /* defined STD_INSPIRED */
   1493 
   1494 /*
   1495 ** Return the number of leap years through the end of the given year
   1496 ** where, to make the math easy, the answer for year zero is defined as zero.
   1497 */
   1498 
   1499 static int
   1500 leaps_thru_end_of(y)
   1501 register const int  y;
   1502 {
   1503     return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
   1504         -(leaps_thru_end_of(-(y + 1)) + 1);
   1505 }
   1506 
   1507 static struct tm *
   1508 timesub(timep, offset, sp, tmp)
   1509 const time_t * const            timep;
   1510 const long              offset;
   1511 register const struct state * const sp;
   1512 register struct tm * const      tmp;
   1513 {
   1514     register const struct lsinfo *  lp;
   1515     register time_t         tdays;
   1516     register int            idays;  /* unsigned would be so 2003 */
   1517     register long           rem;
   1518     int             y;
   1519     register const int *        ip;
   1520     register long           corr;
   1521     register int            hit;
   1522     register int            i;
   1523 
   1524     corr = 0;
   1525     hit = 0;
   1526 #ifdef ALL_STATE
   1527     i = (sp == NULL) ? 0 : sp->leapcnt;
   1528 #endif /* defined ALL_STATE */
   1529 #ifndef ALL_STATE
   1530     i = sp->leapcnt;
   1531 #endif /* State Farm */
   1532     while (--i >= 0) {
   1533         lp = &sp->lsis[i];
   1534         if (*timep >= lp->ls_trans) {
   1535             if (*timep == lp->ls_trans) {
   1536                 hit = ((i == 0 && lp->ls_corr > 0) ||
   1537                     lp->ls_corr > sp->lsis[i - 1].ls_corr);
   1538                 if (hit)
   1539                     while (i > 0 &&
   1540                         sp->lsis[i].ls_trans ==
   1541                         sp->lsis[i - 1].ls_trans + 1 &&
   1542                         sp->lsis[i].ls_corr ==
   1543                         sp->lsis[i - 1].ls_corr + 1) {
   1544                             ++hit;
   1545                             --i;
   1546                     }
   1547             }
   1548             corr = lp->ls_corr;
   1549             break;
   1550         }
   1551     }
   1552     y = EPOCH_YEAR;
   1553     tdays = *timep / SECSPERDAY;
   1554     rem = *timep - tdays * SECSPERDAY;
   1555     while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
   1556         int     newy;
   1557         register time_t tdelta;
   1558         register int    idelta;
   1559         register int    leapdays;
   1560 
   1561         tdelta = tdays / DAYSPERLYEAR;
   1562         idelta = tdelta;
   1563         if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
   1564             return NULL;
   1565         if (idelta == 0)
   1566             idelta = (tdays < 0) ? -1 : 1;
   1567         newy = y;
   1568         if (increment_overflow(&newy, idelta))
   1569             return NULL;
   1570         leapdays = leaps_thru_end_of(newy - 1) -
   1571             leaps_thru_end_of(y - 1);
   1572         tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
   1573         tdays -= leapdays;
   1574         y = newy;
   1575     }
   1576     {
   1577         register long   seconds;
   1578 
   1579         seconds = tdays * SECSPERDAY + 0.5;
   1580         tdays = seconds / SECSPERDAY;
   1581         rem += seconds - tdays * SECSPERDAY;
   1582     }
   1583     /*
   1584     ** Given the range, we can now fearlessly cast...
   1585     */
   1586     idays = tdays;
   1587     rem += offset - corr;
   1588     while (rem < 0) {
   1589         rem += SECSPERDAY;
   1590         --idays;
   1591     }
   1592     while (rem >= SECSPERDAY) {
   1593         rem -= SECSPERDAY;
   1594         ++idays;
   1595     }
   1596     while (idays < 0) {
   1597         if (increment_overflow(&y, -1))
   1598             return NULL;
   1599         idays += year_lengths[isleap(y)];
   1600     }
   1601     while (idays >= year_lengths[isleap(y)]) {
   1602         idays -= year_lengths[isleap(y)];
   1603         if (increment_overflow(&y, 1))
   1604             return NULL;
   1605     }
   1606     tmp->tm_year = y;
   1607     if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
   1608         return NULL;
   1609     tmp->tm_yday = idays;
   1610     /*
   1611     ** The "extra" mods below avoid overflow problems.
   1612     */
   1613     tmp->tm_wday = EPOCH_WDAY +
   1614         ((y - EPOCH_YEAR) % DAYSPERWEEK) *
   1615         (DAYSPERNYEAR % DAYSPERWEEK) +
   1616         leaps_thru_end_of(y - 1) -
   1617         leaps_thru_end_of(EPOCH_YEAR - 1) +
   1618         idays;
   1619     tmp->tm_wday %= DAYSPERWEEK;
   1620     if (tmp->tm_wday < 0)
   1621         tmp->tm_wday += DAYSPERWEEK;
   1622     tmp->tm_hour = (int) (rem / SECSPERHOUR);
   1623     rem %= SECSPERHOUR;
   1624     tmp->tm_min = (int) (rem / SECSPERMIN);
   1625     /*
   1626     ** A positive leap second requires a special
   1627     ** representation. This uses "... ??:59:60" et seq.
   1628     */
   1629     tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
   1630     ip = mon_lengths[isleap(y)];
   1631     for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
   1632         idays -= ip[tmp->tm_mon];
   1633     tmp->tm_mday = (int) (idays + 1);
   1634     tmp->tm_isdst = 0;
   1635 #ifdef TM_GMTOFF
   1636     tmp->TM_GMTOFF = offset;
   1637 #endif /* defined TM_GMTOFF */
   1638     return tmp;
   1639 }
   1640 
   1641 char *
   1642 ctime(timep)
   1643 const time_t * const    timep;
   1644 {
   1645 /*
   1646 ** Section 4.12.3.2 of X3.159-1989 requires that
   1647 **  The ctime function converts the calendar time pointed to by timer
   1648 **  to local time in the form of a string. It is equivalent to
   1649 **      asctime(localtime(timer))
   1650 */
   1651     return asctime(localtime(timep));
   1652 }
   1653 
   1654 char *
   1655 ctime_r(timep, buf)
   1656 const time_t * const    timep;
   1657 char *          buf;
   1658 {
   1659     struct tm   mytm;
   1660 
   1661     return asctime_r(localtime_r(timep, &mytm), buf);
   1662 }
   1663 
   1664 /*
   1665 ** Adapted from code provided by Robert Elz, who writes:
   1666 **  The "best" way to do mktime I think is based on an idea of Bob
   1667 **  Kridle's (so its said...) from a long time ago.
   1668 **  It does a binary search of the time_t space. Since time_t's are
   1669 **  just 32 bits, its a max of 32 iterations (even at 64 bits it
   1670 **  would still be very reasonable).
   1671 */
   1672 
   1673 #ifndef WRONG
   1674 #define WRONG   (-1)
   1675 #endif /* !defined WRONG */
   1676 
   1677 /*
   1678 ** Simplified normalize logic courtesy Paul Eggert.
   1679 */
   1680 
   1681 static int
   1682 increment_overflow(number, delta)
   1683 int *   number;
   1684 int delta;
   1685 {
   1686     unsigned  number0 = (unsigned)*number;
   1687     unsigned  number1 = (unsigned)(number0 + delta);
   1688 
   1689     *number = (int)number1;
   1690 
   1691     if (delta >= 0) {
   1692         return ((int)number1 < (int)number0);
   1693     } else {
   1694         return ((int)number1 > (int)number0);
   1695     }
   1696 }
   1697 
   1698 static int
   1699 long_increment_overflow(number, delta)
   1700 long *  number;
   1701 int delta;
   1702 {
   1703     unsigned long  number0 = (unsigned long)*number;
   1704     unsigned long  number1 = (unsigned long)(number0 + delta);
   1705 
   1706     *number = (long)number1;
   1707 
   1708     if (delta >= 0) {
   1709         return ((long)number1 < (long)number0);
   1710     } else {
   1711         return ((long)number1 > (long)number0);
   1712     }
   1713 }
   1714 
   1715 static int
   1716 normalize_overflow(tensptr, unitsptr, base)
   1717 int * const tensptr;
   1718 int * const unitsptr;
   1719 const int   base;
   1720 {
   1721     register int    tensdelta;
   1722 
   1723     tensdelta = (*unitsptr >= 0) ?
   1724         (*unitsptr / base) :
   1725         (-1 - (-1 - *unitsptr) / base);
   1726     *unitsptr -= tensdelta * base;
   1727     return increment_overflow(tensptr, tensdelta);
   1728 }
   1729 
   1730 static int
   1731 long_normalize_overflow(tensptr, unitsptr, base)
   1732 long * const    tensptr;
   1733 int * const unitsptr;
   1734 const int   base;
   1735 {
   1736     register int    tensdelta;
   1737 
   1738     tensdelta = (*unitsptr >= 0) ?
   1739         (*unitsptr / base) :
   1740         (-1 - (-1 - *unitsptr) / base);
   1741     *unitsptr -= tensdelta * base;
   1742     return long_increment_overflow(tensptr, tensdelta);
   1743 }
   1744 
   1745 static int
   1746 tmcomp(atmp, btmp)
   1747 register const struct tm * const atmp;
   1748 register const struct tm * const btmp;
   1749 {
   1750     register int    result;
   1751 
   1752     if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
   1753         (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
   1754         (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
   1755         (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
   1756         (result = (atmp->tm_min - btmp->tm_min)) == 0)
   1757             result = atmp->tm_sec - btmp->tm_sec;
   1758     return result;
   1759 }
   1760 
   1761 static time_t
   1762 time2sub(tmp, funcp, offset, okayp, do_norm_secs, sp) // android-changed: added sp
   1763 struct tm * const   tmp;
   1764 struct tm * (* const    funcp) P((const time_t*, long, struct tm*, const struct state*)); // android-changed: added state*
   1765 const long      offset;
   1766 int * const     okayp;
   1767 const int       do_norm_secs;
   1768 const struct state * sp; // android-changed: added sp
   1769 {
   1770     register int            dir;
   1771     register int            i, j;
   1772     register int            saved_seconds;
   1773     register long           li;
   1774     register time_t         lo;
   1775     register time_t         hi;
   1776     long                y;
   1777     time_t              newt;
   1778     time_t              t;
   1779     struct tm           yourtm, mytm;
   1780 
   1781     *okayp = FALSE;
   1782     yourtm = *tmp;
   1783     if (do_norm_secs) {
   1784         if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
   1785             SECSPERMIN))
   1786                 return WRONG;
   1787     }
   1788     if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
   1789         return WRONG;
   1790     if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
   1791         return WRONG;
   1792     y = yourtm.tm_year;
   1793     if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
   1794         return WRONG;
   1795     /*
   1796     ** Turn y into an actual year number for now.
   1797     ** It is converted back to an offset from TM_YEAR_BASE later.
   1798     */
   1799     if (long_increment_overflow(&y, TM_YEAR_BASE))
   1800         return WRONG;
   1801     while (yourtm.tm_mday <= 0) {
   1802         if (long_increment_overflow(&y, -1))
   1803             return WRONG;
   1804         li = y + (1 < yourtm.tm_mon);
   1805         yourtm.tm_mday += year_lengths[isleap(li)];
   1806     }
   1807     while (yourtm.tm_mday > DAYSPERLYEAR) {
   1808         li = y + (1 < yourtm.tm_mon);
   1809         yourtm.tm_mday -= year_lengths[isleap(li)];
   1810         if (long_increment_overflow(&y, 1))
   1811             return WRONG;
   1812     }
   1813     for ( ; ; ) {
   1814         i = mon_lengths[isleap(y)][yourtm.tm_mon];
   1815         if (yourtm.tm_mday <= i)
   1816             break;
   1817         yourtm.tm_mday -= i;
   1818         if (++yourtm.tm_mon >= MONSPERYEAR) {
   1819             yourtm.tm_mon = 0;
   1820             if (long_increment_overflow(&y, 1))
   1821                 return WRONG;
   1822         }
   1823     }
   1824     if (long_increment_overflow(&y, -TM_YEAR_BASE))
   1825         return WRONG;
   1826     yourtm.tm_year = y;
   1827     if (yourtm.tm_year != y)
   1828         return WRONG;
   1829     if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
   1830         saved_seconds = 0;
   1831     else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
   1832         /*
   1833         ** We can't set tm_sec to 0, because that might push the
   1834         ** time below the minimum representable time.
   1835         ** Set tm_sec to 59 instead.
   1836         ** This assumes that the minimum representable time is
   1837         ** not in the same minute that a leap second was deleted from,
   1838         ** which is a safer assumption than using 58 would be.
   1839         */
   1840         if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
   1841             return WRONG;
   1842         saved_seconds = yourtm.tm_sec;
   1843         yourtm.tm_sec = SECSPERMIN - 1;
   1844     } else {
   1845         saved_seconds = yourtm.tm_sec;
   1846         yourtm.tm_sec = 0;
   1847     }
   1848     /*
   1849     ** Do a binary search (this works whatever time_t's type is).
   1850     */
   1851     if (!TYPE_SIGNED(time_t)) {
   1852         lo = 0;
   1853         hi = lo - 1;
   1854     } else if (!TYPE_INTEGRAL(time_t)) {
   1855         if (sizeof(time_t) > sizeof(float))
   1856             hi = (time_t) DBL_MAX;
   1857         else    hi = (time_t) FLT_MAX;
   1858         lo = -hi;
   1859     } else {
   1860         lo = 1;
   1861         for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
   1862             lo *= 2;
   1863         hi = -(lo + 1);
   1864     }
   1865     for ( ; ; ) {
   1866         t = lo / 2 + hi / 2;
   1867         if (t < lo)
   1868             t = lo;
   1869         else if (t > hi)
   1870             t = hi;
   1871         if ((*funcp)(&t, offset, &mytm, sp) == NULL) { // android-changed: added sp.
   1872             /*
   1873             ** Assume that t is too extreme to be represented in
   1874             ** a struct tm; arrange things so that it is less
   1875             ** extreme on the next pass.
   1876             */
   1877             dir = (t > 0) ? 1 : -1;
   1878         } else  dir = tmcomp(&mytm, &yourtm);
   1879         if (dir != 0) {
   1880             if (t == lo) {
   1881                 if (t == TIME_T_MAX)
   1882                     return WRONG;
   1883                 ++t;
   1884                 ++lo;
   1885             } else if (t == hi) {
   1886                 if (t == TIME_T_MIN)
   1887                     return WRONG;
   1888                 --t;
   1889                 --hi;
   1890             }
   1891             if (lo > hi)
   1892                 return WRONG;
   1893             if (dir > 0)
   1894                 hi = t;
   1895             else    lo = t;
   1896             continue;
   1897         }
   1898         if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
   1899             break;
   1900         /*
   1901         ** Right time, wrong type.
   1902         ** Hunt for right time, right type.
   1903         ** It's okay to guess wrong since the guess
   1904         ** gets checked.
   1905         */
   1906         /*
   1907         ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
   1908         */
   1909         // BEGIN android-changed: support user-supplied sp
   1910         if (sp == NULL) {
   1911             sp = (const struct state *)
   1912                 (((void *) funcp == (void *) localsub) ?
   1913                 lclptr : gmtptr);
   1914         }
   1915         // END android-changed
   1916 #ifdef ALL_STATE
   1917         if (sp == NULL)
   1918             return WRONG;
   1919 #endif /* defined ALL_STATE */
   1920         for (i = sp->typecnt - 1; i >= 0; --i) {
   1921             if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
   1922                 continue;
   1923             for (j = sp->typecnt - 1; j >= 0; --j) {
   1924                 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
   1925                     continue;
   1926                 newt = t + sp->ttis[j].tt_gmtoff -
   1927                     sp->ttis[i].tt_gmtoff;
   1928                 if ((*funcp)(&newt, offset, &mytm, sp) == NULL) // android-changed: added sp.
   1929                     continue;
   1930                 if (tmcomp(&mytm, &yourtm) != 0)
   1931                     continue;
   1932                 if (mytm.tm_isdst != yourtm.tm_isdst)
   1933                     continue;
   1934                 /*
   1935                 ** We have a match.
   1936                 */
   1937                 t = newt;
   1938                 goto label;
   1939             }
   1940         }
   1941         return WRONG;
   1942     }
   1943 label:
   1944     newt = t + saved_seconds;
   1945     if ((newt < t) != (saved_seconds < 0))
   1946         return WRONG;
   1947     t = newt;
   1948     if ((*funcp)(&t, offset, tmp, sp)) // android-changed: added sp.
   1949         *okayp = TRUE;
   1950     return t;
   1951 }
   1952 
   1953 // BEGIN android-changed: added sp.
   1954 static time_t
   1955 time2(tmp, funcp, offset, okayp, sp)
   1956 struct tm * const   tmp;
   1957 struct tm * (* const    funcp) P((const time_t*, long, struct tm*, const struct state*));
   1958 const long      offset;
   1959 int * const     okayp;
   1960 const struct state * sp;
   1961 {
   1962     time_t  t;
   1963 
   1964     /*
   1965     ** First try without normalization of seconds
   1966     ** (in case tm_sec contains a value associated with a leap second).
   1967     ** If that fails, try with normalization of seconds.
   1968     */
   1969     t = time2sub(tmp, funcp, offset, okayp, FALSE, sp);
   1970     return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE, sp);
   1971 }
   1972 // END android-changed
   1973 
   1974 static time_t
   1975 time1(tmp, funcp, offset, sp) // android-changed: added sp.
   1976 struct tm * const   tmp;
   1977 struct tm * (* const    funcp) P((const time_t *, long, struct tm *, const struct state *));
   1978 const long      offset;
   1979 const struct state * sp; // android-changed: added sp.
   1980 {
   1981     register time_t         t;
   1982     register int            samei, otheri;
   1983     register int            sameind, otherind;
   1984     register int            i;
   1985     register int            nseen;
   1986     int             seen[TZ_MAX_TYPES];
   1987     int             types[TZ_MAX_TYPES];
   1988     int             okay;
   1989 
   1990     if (tmp->tm_isdst > 1)
   1991         tmp->tm_isdst = 1;
   1992     t = time2(tmp, funcp, offset, &okay, sp); // android-changed: added sp.
   1993 #ifdef PCTS
   1994     /*
   1995     ** PCTS code courtesy Grant Sullivan.
   1996     */
   1997     if (okay)
   1998         return t;
   1999     if (tmp->tm_isdst < 0)
   2000         tmp->tm_isdst = 0;  /* reset to std and try again */
   2001 #endif /* defined PCTS */
   2002 #ifndef PCTS
   2003     if (okay || tmp->tm_isdst < 0)
   2004         return t;
   2005 #endif /* !defined PCTS */
   2006     /*
   2007     ** We're supposed to assume that somebody took a time of one type
   2008     ** and did some math on it that yielded a "struct tm" that's bad.
   2009     ** We try to divine the type they started from and adjust to the
   2010     ** type they need.
   2011     */
   2012     /*
   2013     ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
   2014     */
   2015     // BEGIN android-changed: support user-supplied sp.
   2016     if (sp == NULL) {
   2017         sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
   2018             lclptr : gmtptr);
   2019     }
   2020     // BEGIN android-changed
   2021 #ifdef ALL_STATE
   2022     if (sp == NULL)
   2023         return WRONG;
   2024 #endif /* defined ALL_STATE */
   2025     for (i = 0; i < sp->typecnt; ++i)
   2026         seen[i] = FALSE;
   2027     nseen = 0;
   2028     for (i = sp->timecnt - 1; i >= 0; --i)
   2029         if (!seen[sp->types[i]]) {
   2030             seen[sp->types[i]] = TRUE;
   2031             types[nseen++] = sp->types[i];
   2032         }
   2033     for (sameind = 0; sameind < nseen; ++sameind) {
   2034         samei = types[sameind];
   2035         if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
   2036             continue;
   2037         for (otherind = 0; otherind < nseen; ++otherind) {
   2038             otheri = types[otherind];
   2039             if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
   2040                 continue;
   2041             tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
   2042                     sp->ttis[samei].tt_gmtoff;
   2043             tmp->tm_isdst = !tmp->tm_isdst;
   2044             t = time2(tmp, funcp, offset, &okay, sp); // android-changed: added sp.
   2045             if (okay)
   2046                 return t;
   2047             tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
   2048                     sp->ttis[samei].tt_gmtoff;
   2049             tmp->tm_isdst = !tmp->tm_isdst;
   2050         }
   2051     }
   2052     return WRONG;
   2053 }
   2054 
   2055 time_t
   2056 mktime(tmp)
   2057 struct tm * const   tmp;
   2058 {
   2059     time_t  result;
   2060     _tzLock();
   2061     tzset_locked();
   2062     result = time1(tmp, localsub, 0L, NULL); // android-changed: extra parameter.
   2063     _tzUnlock();
   2064     return result;
   2065 }
   2066 
   2067 // BEGIN android-added
   2068 
   2069 // Caches the most recent timezone (http://b/8270865).
   2070 static int __bionic_tzload_cached(const char* name, struct state* const sp, const int doextend) {
   2071   _tzLock();
   2072 
   2073   // Our single-item cache.
   2074   static char* gCachedTimeZoneName;
   2075   static struct state gCachedTimeZone;
   2076 
   2077   // Do we already have this timezone cached?
   2078   if (gCachedTimeZoneName != NULL && strcmp(name, gCachedTimeZoneName) == 0) {
   2079     *sp = gCachedTimeZone;
   2080     _tzUnlock();
   2081     return 0;
   2082   }
   2083 
   2084   // Can we load it?
   2085   int rc = tzload(name, sp, doextend);
   2086   if (rc == 0) {
   2087     // Update the cache.
   2088     free(gCachedTimeZoneName);
   2089     gCachedTimeZoneName = strdup(name);
   2090     gCachedTimeZone = *sp;
   2091   }
   2092 
   2093   _tzUnlock();
   2094   return rc;
   2095 }
   2096 
   2097 // Non-standard API: mktime(3) but with an explicit timezone parameter.
   2098 time_t mktime_tz(struct tm* const tmp, const char* tz) {
   2099   struct state st;
   2100   if (__bionic_tzload_cached(tz, &st, TRUE) != 0) {
   2101     // TODO: not sure what's best here, but for now, we fall back to gmt.
   2102     gmtload(&st);
   2103   }
   2104   return time1(tmp, localsub, 0L, &st);
   2105 }
   2106 
   2107 // Non-standard API: localtime(3) but with an explicit timezone parameter.
   2108 void localtime_tz(const time_t* const timep, struct tm* tmp, const char* tz) {
   2109   struct state st;
   2110   if (__bionic_tzload_cached(tz, &st, TRUE) != 0) {
   2111     // TODO: not sure what's best here, but for now, we fall back to gmt.
   2112     gmtload(&st);
   2113   }
   2114   localsub(timep, 0L, tmp, &st);
   2115 }
   2116 
   2117 // END android-added
   2118 
   2119 #ifdef STD_INSPIRED
   2120 
   2121 time_t
   2122 timelocal(tmp)
   2123 struct tm * const   tmp;
   2124 {
   2125     tmp->tm_isdst = -1; /* in case it wasn't initialized */
   2126     return mktime(tmp);
   2127 }
   2128 
   2129 time_t
   2130 timegm(tmp)
   2131 struct tm * const   tmp;
   2132 {
   2133     time_t  result;
   2134 
   2135     tmp->tm_isdst = 0;
   2136     _tzLock();
   2137     result = time1(tmp, gmtsub, 0L, NULL); // android-changed: extra parameter.
   2138     _tzUnlock();
   2139 
   2140     return result;
   2141 }
   2142 
   2143 #if 0 /* disable due to lack of clear documentation on this function */
   2144 time_t
   2145 timeoff(tmp, offset)
   2146 struct tm * const   tmp;
   2147 const long      offset;
   2148 {
   2149     time_t  result;
   2150 
   2151     tmp->tm_isdst = 0;
   2152     _tzLock();
   2153     result = time1(tmp, gmtsub, offset, NULL); // android-changed: extra parameter.
   2154     _tzUnlock();
   2155 
   2156     return result;
   2157 }
   2158 #endif /* 0 */
   2159 
   2160 #endif /* defined STD_INSPIRED */
   2161 
   2162 #ifdef CMUCS
   2163 
   2164 /*
   2165 ** The following is supplied for compatibility with
   2166 ** previous versions of the CMUCS runtime library.
   2167 */
   2168 
   2169 long
   2170 gtime(tmp)
   2171 struct tm * const   tmp;
   2172 {
   2173     const time_t    t = mktime(tmp);
   2174 
   2175     if (t == WRONG)
   2176         return -1;
   2177     return t;
   2178 }
   2179 
   2180 #endif /* defined CMUCS */
   2181 
   2182 /*
   2183 ** XXX--is the below the right way to conditionalize??
   2184 */
   2185 
   2186 #ifdef STD_INSPIRED
   2187 
   2188 /*
   2189 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
   2190 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
   2191 ** is not the case if we are accounting for leap seconds.
   2192 ** So, we provide the following conversion routines for use
   2193 ** when exchanging timestamps with POSIX conforming systems.
   2194 */
   2195 
   2196 static long
   2197 leapcorr(timep)
   2198 time_t *    timep;
   2199 {
   2200     register struct state *     sp;
   2201     register struct lsinfo *    lp;
   2202     register int            i;
   2203 
   2204     sp = lclptr;
   2205     i = sp->leapcnt;
   2206     while (--i >= 0) {
   2207         lp = &sp->lsis[i];
   2208         if (*timep >= lp->ls_trans)
   2209             return lp->ls_corr;
   2210     }
   2211     return 0;
   2212 }
   2213 
   2214 time_t
   2215 time2posix(t)
   2216 time_t  t;
   2217 {
   2218     tzset();
   2219     return t - leapcorr(&t);
   2220 }
   2221 
   2222 time_t
   2223 posix2time(t)
   2224 time_t  t;
   2225 {
   2226     time_t  x;
   2227     time_t  y;
   2228 
   2229     tzset();
   2230     /*
   2231     ** For a positive leap second hit, the result
   2232     ** is not unique. For a negative leap second
   2233     ** hit, the corresponding time doesn't exist,
   2234     ** so we return an adjacent second.
   2235     */
   2236     x = t + leapcorr(&t);
   2237     y = x - leapcorr(&x);
   2238     if (y < t) {
   2239         do {
   2240             x++;
   2241             y = x - leapcorr(&x);
   2242         } while (y < t);
   2243         if (t != y)
   2244             return x - 1;
   2245     } else if (y > t) {
   2246         do {
   2247             --x;
   2248             y = x - leapcorr(&x);
   2249         } while (y > t);
   2250         if (t != y)
   2251             return x + 1;
   2252     }
   2253     return x;
   2254 }
   2255 
   2256 #endif /* defined STD_INSPIRED */
   2257 
   2258 #include <assert.h>
   2259 #include <stdint.h>
   2260 #include <arpa/inet.h> // For ntohl(3).
   2261 
   2262 static int __bionic_open_tzdata_path(const char* path, const char* olson_id, int* data_size) {
   2263   int fd = TEMP_FAILURE_RETRY(open(path, OPEN_MODE));
   2264   if (fd == -1) {
   2265     XLOG(("%s: could not open \"%s\": %s\n", __FUNCTION__, path, strerror(errno)));
   2266     return -2; // Distinguish failure to find any data from failure to find a specific id.
   2267   }
   2268 
   2269   // byte[12] tzdata_version  -- "tzdata2012f\0"
   2270   // int index_offset
   2271   // int data_offset
   2272   // int zonetab_offset
   2273   struct bionic_tzdata_header {
   2274     char tzdata_version[12];
   2275     int32_t index_offset;
   2276     int32_t data_offset;
   2277     int32_t zonetab_offset;
   2278   } header;
   2279   if (TEMP_FAILURE_RETRY(read(fd, &header, sizeof(header))) != sizeof(header)) {
   2280     fprintf(stderr, "%s: could not read header: %s\n", __FUNCTION__, strerror(errno));
   2281     close(fd);
   2282     return -1;
   2283   }
   2284 
   2285   if (strncmp(header.tzdata_version, "tzdata", 6) != 0 || header.tzdata_version[11] != 0) {
   2286     fprintf(stderr, "%s: bad magic: %s\n", __FUNCTION__, header.tzdata_version);
   2287     close(fd);
   2288     return -1;
   2289   }
   2290 
   2291 #if 0
   2292   fprintf(stderr, "version: %s\n", header.tzdata_version);
   2293   fprintf(stderr, "index_offset = %d\n", ntohl(header.index_offset));
   2294   fprintf(stderr, "data_offset = %d\n", ntohl(header.data_offset));
   2295   fprintf(stderr, "zonetab_offset = %d\n", ntohl(header.zonetab_offset));
   2296 #endif
   2297 
   2298   if (TEMP_FAILURE_RETRY(lseek(fd, ntohl(header.index_offset), SEEK_SET)) == -1) {
   2299     fprintf(stderr, "%s: couldn't seek to index: %s\n", __FUNCTION__, strerror(errno));
   2300     close(fd);
   2301     return -1;
   2302   }
   2303 
   2304   off_t specific_zone_offset = -1;
   2305 
   2306   static const size_t NAME_LENGTH = 40;
   2307   unsigned char buf[NAME_LENGTH + 3 * sizeof(int32_t)];
   2308 
   2309   size_t id_count = (ntohl(header.data_offset) - ntohl(header.index_offset)) / sizeof(buf);
   2310   for (size_t i = 0; i < id_count; ++i) {
   2311     if (TEMP_FAILURE_RETRY(read(fd, buf, sizeof(buf))) != (ssize_t) sizeof(buf)) {
   2312       break;
   2313     }
   2314 
   2315     char this_id[NAME_LENGTH + 1];
   2316     memcpy(this_id, buf, NAME_LENGTH);
   2317     this_id[NAME_LENGTH] = '\0';
   2318 
   2319     if (strcmp(this_id, olson_id) == 0) {
   2320       specific_zone_offset = toint(buf + NAME_LENGTH) + ntohl(header.data_offset);
   2321       *data_size = toint(buf + NAME_LENGTH + sizeof(int32_t));
   2322       break;
   2323     }
   2324   }
   2325 
   2326   if (specific_zone_offset == -1) {
   2327     XLOG(("%s: couldn't find zone \"%s\"\n", __FUNCTION__, olson_id));
   2328     close(fd);
   2329     return -1;
   2330   }
   2331 
   2332   if (TEMP_FAILURE_RETRY(lseek(fd, specific_zone_offset, SEEK_SET)) == -1) {
   2333     fprintf(stderr, "%s: could not seek to %ld: %s\n", __FUNCTION__, specific_zone_offset, strerror(errno));
   2334     close(fd);
   2335     return -1;
   2336   }
   2337 
   2338   return fd;
   2339 }
   2340 
   2341 static int __bionic_open_tzdata(const char* olson_id, int* data_size) {
   2342   // TODO: use $ANDROID_DATA and $ANDROID_ROOT like libcore, to support bionic on the host.
   2343   int fd = __bionic_open_tzdata_path("/data/misc/zoneinfo/tzdata", olson_id, data_size);
   2344   if (fd < 0) {
   2345     fd = __bionic_open_tzdata_path("/system/usr/share/zoneinfo/tzdata", olson_id, data_size);
   2346     if (fd == -2) {
   2347       // The first thing that 'recovery' does is try to format the current time. It doesn't have
   2348       // any tzdata available, so we must not abort here --- doing so breaks the recovery image!
   2349       fprintf(stderr, "%s: couldn't find any tzdata when looking for %s!\n", __FUNCTION__, olson_id);
   2350     }
   2351   }
   2352   return fd;
   2353 }
   2354