HomeSort by relevance Sort by last modified time
    Searched refs:polynomial (Results 1 - 9 of 9) sorted by null

  /external/ceres-solver/internal/ceres/
polynomial_solver.h 39 // Use the companion matrix eigenvalues to determine the roots of the polynomial
41 // sum_{i=0}^N polynomial(i) x^{N-i}.
44 // Failure indicates that the polynomial is invalid (of size 0) or
49 bool FindPolynomialRoots(const Vector& polynomial,
53 // Evaluate the polynomial at x using the Horner scheme.
54 inline double EvaluatePolynomial(const Vector& polynomial, double x) {
56 for (int i = 0; i < polynomial.size(); ++i) {
57 v = v * x + polynomial(i);
polynomial_solver.cc 98 void BuildCompanionMatrix(const Vector& polynomial,
103 const int degree = polynomial.size() - 1;
108 companion_matrix.col(degree - 1) = -polynomial.reverse().head(degree);
125 LOG(ERROR) << "Invalid polynomial of size 0 passed to FindPolynomialRoots";
129 Vector polynomial = RemoveLeadingZeros(polynomial_in); local
130 const int degree = polynomial.size() - 1;
132 // Is the polynomial constant?
135 << "polynomial in FindPolynomialRoots";
140 const double leading_term = polynomial(0);
141 polynomial /= leading_term
    [all...]
dogleg_strategy.cc 294 // polynomial in y, which can be solved using e.g. the companion matrix.
317 LOG(WARNING) << "Failed to compute polynomial roots. "
362 // Build the polynomial that defines the optimal Lagrange multipliers.
403 // So (7) is a polynomial in y of degree four.
421 Vector polynomial(5);
422 polynomial(0) = r2;
423 polynomial(1) = 2.0 * r2 * trB;
424 polynomial(2) = r2 * ( trB * trB + 2.0 * detB ) - subspace_g_.squaredNorm();
425 polynomial(3) = -2.0 * ( subspace_g_.transpose() * B_adj * subspace_g_
427 polynomial(4) = r2 * detB * detB - (B_adj * subspace_g_).squaredNorm()
473 const Vector polynomial = MakePolynomialForBoundaryConstrainedProblem(); local
    [all...]
  /external/eigen/unsupported/doc/examples/
PolynomialUtils1.cpp 11 Eigen::Matrix<double,5,1> polynomial; local
12 roots_to_monicPolynomial( roots, polynomial );
13 cout << "Polynomial: ";
14 for( int i=0; i<4; ++i ){ cout << polynomial[i] << ".x^" << i << "+ "; }
15 cout << polynomial[4] << ".x^4" << endl;
18 evaluation[i] = poly_eval( polynomial, roots[i] ); }
19 cout << "Evaluation of the polynomial at the roots: " << evaluation.transpose();