OpenGrok
Home
Sort by relevance
Sort by last modified time
Full Search
Definition
Symbol
File Path
History
|
|
Help
Searched
refs:polynomial
(Results
1 - 9
of
9
) sorted by null
/external/ceres-solver/internal/ceres/
polynomial_solver.h
39
// Use the companion matrix eigenvalues to determine the roots of the
polynomial
41
// sum_{i=0}^N
polynomial
(i) x^{N-i}.
44
// Failure indicates that the
polynomial
is invalid (of size 0) or
49
bool FindPolynomialRoots(const Vector&
polynomial
,
53
// Evaluate the
polynomial
at x using the Horner scheme.
54
inline double EvaluatePolynomial(const Vector&
polynomial
, double x) {
56
for (int i = 0; i <
polynomial
.size(); ++i) {
57
v = v * x +
polynomial
(i);
polynomial_solver.cc
98
void BuildCompanionMatrix(const Vector&
polynomial
,
103
const int degree =
polynomial
.size() - 1;
108
companion_matrix.col(degree - 1) = -
polynomial
.reverse().head(degree);
125
LOG(ERROR) << "Invalid
polynomial
of size 0 passed to FindPolynomialRoots";
129
Vector
polynomial
= RemoveLeadingZeros(polynomial_in);
local
130
const int degree =
polynomial
.size() - 1;
132
// Is the
polynomial
constant?
135
<< "
polynomial
in FindPolynomialRoots";
140
const double leading_term =
polynomial
(0);
141
polynomial
/= leading_term
[
all
...]
dogleg_strategy.cc
294
//
polynomial
in y, which can be solved using e.g. the companion matrix.
317
LOG(WARNING) << "Failed to compute
polynomial
roots. "
362
// Build the
polynomial
that defines the optimal Lagrange multipliers.
403
// So (7) is a
polynomial
in y of degree four.
421
Vector
polynomial
(5);
422
polynomial
(0) = r2;
423
polynomial
(1) = 2.0 * r2 * trB;
424
polynomial
(2) = r2 * ( trB * trB + 2.0 * detB ) - subspace_g_.squaredNorm();
425
polynomial
(3) = -2.0 * ( subspace_g_.transpose() * B_adj * subspace_g_
427
polynomial
(4) = r2 * detB * detB - (B_adj * subspace_g_).squaredNorm()
473
const Vector
polynomial
= MakePolynomialForBoundaryConstrainedProblem();
local
[
all
...]
/external/eigen/unsupported/doc/examples/
PolynomialUtils1.cpp
11
Eigen::Matrix<double,5,1>
polynomial
;
local
12
roots_to_monicPolynomial( roots,
polynomial
);
13
cout << "
Polynomial
: ";
14
for( int i=0; i<4; ++i ){ cout <<
polynomial
[i] << ".x^" << i << "+ "; }
15
cout <<
polynomial
[4] << ".x^4" << endl;
18
evaluation[i] = poly_eval(
polynomial
, roots[i] ); }
19
cout << "Evaluation of the
polynomial
at the roots: " << evaluation.transpose();