HomeSort by relevance Sort by last modified time
    Searched refs:worst (Results 1 - 10 of 10) sorted by null

  /external/llvm/include/llvm/CodeGen/PBQP/Heuristics/
Briggs.h 103 unsigned worst, reverseWorst; member in struct:PBQP::Heuristics::Briggs::EdgeData
107 EdgeData() : worst(0), reverseWorst(0), isUpToDate(false) {}
321 ed.worst = 0;
337 if (colInfCounts[j] > ed.worst) {
338 ed.worst = colInfCounts[j];
366 nd.numDenied += nIsNode1 ? ed.worst : ed.reverseWorst;
393 nd.numDenied -= nIsNode1 ? ed.worst : ed.reverseWorst;
  /external/eigen/bench/
BenchTimer.h 105 /** Return the worst elapsed time in seconds
107 inline double worst(int TIMER = CPU_TIMER) const function in class:Eigen::BenchTimer
  /external/v8/tools/
csvparser.js 70 // in the worst case the match will be an empty string.
  /external/speex/libspeex/
jitter.c 186 int worst = 0; local
230 worst = latest;
257 deltaT = best-worst;
260 /*fprintf(stderr, "auto_tradeoff = %d (%d %d %d)\n", jitter->auto_tradeoff, best, worst, i);*/
  /external/chromium/chrome/common/extensions/docs/examples/apps/hello-php/lib/lightopenid/
openid.php 407 # in worst case we don't get anything in return.
  /external/libvorbis/doc/
a1-encapsulation-ogg.tex 171 Failure to do so should, at worst, cause a
  /external/ceres-solver/docs/
solving.tex 347 The solution to this problem is to replace~\eqref{eq:normal} with a {\em preconditioned} system. Given a linear system, $Ax =b$ and a preconditioner $M$ the preconditioned system is given by $M^{-1}Ax = M^{-1}b$. The resulting algorithm is known as Preconditioned Conjugate Gradients algorithm (PCG) and its worst case complexity now depends on the condition number of the {\em preconditioned} matrix $\kappa(M^{-1}A)$.
    [all...]
  /external/bison/
configure     [all...]
  /external/v8/test/mjsunit/
unicode-test.js     [all...]
  /external/iproute2/doc/
ip-cref.tex     [all...]

Completed in 252 milliseconds