HomeSort by relevance Sort by last modified time
    Searched full:polynomial (Results 51 - 75 of 228) sorted by null

1 23 4 5 6 7 8 910

  /system/core/libsparse/
sparse_crc32.c 7 * First, the polynomial itself and its table of feedback terms. The
8 * polynomial is
39 * polynomial $edb88320
  /external/e2fsprogs/e2fsck/
crc32defs.h 3 * *the* standard CRC-32 polynomial, first popularized by Ethernet.
crc32.c 256 * CRC polynomial. To check the CRC, you can either check that the
268 * A 32-bit CRC polynomial is actually 33 bits long. But since it's
282 * the divisor (the CRC polynomial) you're dividing by. Each step of the
291 * the polynomial from the remainder and we're back to where we started,
358 * but again the multiple of the polynomial to subtract depends only on
363 * generator polynomial. This is simply the CRC-32 of the given
367 * is already a multiple of a polynomial produces a larger multiple of that
368 * polynomial. To enable a CRC to detect this condition, it's common to
  /external/qemu/distrib/zlib-1.2.3/
crc32.c 81 Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
86 is just exclusive-or, and multiplying a polynomial by x is a right shift by
87 one. If we call the above polynomial p, and represent a byte as the
88 polynomial q, also with the lowest power in the most significant bit (so the
89 byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
110 unsigned long poly; /* polynomial exclusive-or pattern */
111 /* terms of polynomial defining this crc (except x^32): */
121 /* make exclusive-or pattern from polynomial (0xedb88320UL) */
385 odd[0] = 0xedb88320L; /* CRC-32 polynomial */
  /external/zlib/src/
crc32.c 65 Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
70 is just exclusive-or, and multiplying a polynomial by x is a right shift by
71 one. If we call the above polynomial p, and represent a byte as the
72 polynomial q, also with the lowest power in the most significant bit (so the
73 byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
94 z_crc_t poly; /* polynomial exclusive-or pattern */
95 /* terms of polynomial defining this crc (except x^32): */
105 /* make exclusive-or pattern from polynomial (0xedb88320UL) */
370 odd[0] = 0xedb88320UL; /* CRC-32 polynomial */
  /frameworks/base/core/java/android/view/
VelocityTracker.java 220 * An estimator for the movements of a pointer based on a polynomial model.
236 * Polynomial coefficients describing motion in X.
241 * Polynomial coefficients describing motion in Y.
246 * Polynomial degree, or zero if only position information is available.
  /bionic/libm/upstream-freebsd/lib/msun/src/
e_log.c 30 * a polynomial of degree 14 to approximate R The maximum error
31 * of this polynomial approximation is bounded by 2**-58.45. In
k_tan.c 26 * odd polynomial is not evaluated in a way that preserves -0.
28 * 3. tan(x) is approximated by a odd polynomial of degree 27 on
  /packages/apps/Camera/jni/feature_stab/db_vlvm/
db_utilities_poly.cpp 101 /*Cubic polynomial roots, nr of roots and coefficients*/
173 /*Cubic polynomial roots, nr of roots and coefficients*/
  /packages/apps/Gallery2/jni_mosaic/feature_stab/db_vlvm/
db_utilities_poly.cpp 101 /*Cubic polynomial roots, nr of roots and coefficients*/
173 /*Cubic polynomial roots, nr of roots and coefficients*/
  /packages/apps/LegacyCamera/jni/feature_stab/db_vlvm/
db_utilities_poly.cpp 101 /*Cubic polynomial roots, nr of roots and coefficients*/
173 /*Cubic polynomial roots, nr of roots and coefficients*/
  /prebuilts/gcc/darwin-x86/x86/i686-linux-android-4.6/lib/gcc/i686-linux-android/4.6/include/
ia32intrin.h 53 /* 32bit accumulate CRC32 (polynomial 0x11EDC6F41) value. */
182 /* 64bit accumulate CRC32 (polynomial 0x11EDC6F41) value. */
  /prebuilts/gcc/darwin-x86/x86/i686-linux-android-4.7/lib/gcc/i686-linux-android/4.7/include/
ia32intrin.h 53 /* 32bit accumulate CRC32 (polynomial 0x11EDC6F41) value. */
190 /* 64bit accumulate CRC32 (polynomial 0x11EDC6F41) value. */
  /prebuilts/gcc/linux-x86/host/i686-linux-glibc2.7-4.6/lib/gcc/i686-linux/4.6.x-google/include/
ia32intrin.h 53 /* 32bit accumulate CRC32 (polynomial 0x11EDC6F41) value. */
182 /* 64bit accumulate CRC32 (polynomial 0x11EDC6F41) value. */
  /prebuilts/gcc/linux-x86/host/x86_64-linux-glibc2.7-4.6/lib/gcc/x86_64-linux/4.6.x-google/include/
ia32intrin.h 53 /* 32bit accumulate CRC32 (polynomial 0x11EDC6F41) value. */
182 /* 64bit accumulate CRC32 (polynomial 0x11EDC6F41) value. */
  /prebuilts/gcc/linux-x86/x86/i686-linux-android-4.6/lib/gcc/i686-linux-android/4.6/include/
ia32intrin.h 53 /* 32bit accumulate CRC32 (polynomial 0x11EDC6F41) value. */
182 /* 64bit accumulate CRC32 (polynomial 0x11EDC6F41) value. */
  /prebuilts/gcc/linux-x86/x86/i686-linux-android-4.7/lib/gcc/i686-linux-android/4.7/include/
ia32intrin.h 53 /* 32bit accumulate CRC32 (polynomial 0x11EDC6F41) value. */
190 /* 64bit accumulate CRC32 (polynomial 0x11EDC6F41) value. */
  /external/webrtc/src/modules/audio_processing/aec/
aec_core_sse2.c 207 // exp2(x) and log2(x) are calculated using polynomial approximations.
220 // five polynomial approximation. The coefficients have been
222 // polynomial has a maximum relative error of 0.00086%.
297 // polynomial approximation. The coefficients have been estimated
298 // with the Remez algorithm and the resulting polynomial has a
  /external/webrtc/src/modules/audio_coding/codecs/isac/main/source/
entropy_coding.h 98 * Encode LPC parameters, given as A-polynomial, of upper-band. The encoding
116 * - interpolLPCCoeff : Decoded and interpolated LPC (A-polynomial)
149 * - percepFilterParam : Decoded and interpolated LPC (A-polynomial) of
  /prebuilts/gcc/linux-x86/host/i686-linux-glibc2.7-4.4.3/i686-linux/include/c++/4.4.3/tr1/
legendre_function.tcc 62 * @brief Return the Legendre polynomial by recursion on order
71 * @param l The order of the Legendre polynomial. @f$l >= 0@f$.
72 * @param x The argument of the Legendre polynomial. @f$|x| <= 1@f$.
  /prebuilts/gcc/linux-x86/host/i686-linux-glibc2.7-4.6/i686-linux/include/c++/4.6.x-google/tr1/
legendre_function.tcc 62 * @brief Return the Legendre polynomial by recursion on order
71 * @param l The order of the Legendre polynomial. @f$l >= 0@f$.
72 * @param x The argument of the Legendre polynomial. @f$|x| <= 1@f$.
  /prebuilts/gcc/linux-x86/host/x86_64-linux-glibc2.7-4.6/x86_64-linux/include/c++/4.6.x-google/tr1/
legendre_function.tcc 62 * @brief Return the Legendre polynomial by recursion on order
71 * @param l The order of the Legendre polynomial. @f$l >= 0@f$.
72 * @param x The argument of the Legendre polynomial. @f$|x| <= 1@f$.
  /prebuilts/ndk/5/sources/cxx-stl/gnu-libstdc++/include/tr1/
legendre_function.tcc 62 * @brief Return the Legendre polynomial by recursion on order
71 * @param l The order of the Legendre polynomial. @f$l >= 0@f$.
72 * @param x The argument of the Legendre polynomial. @f$|x| <= 1@f$.
  /prebuilts/ndk/6/sources/cxx-stl/gnu-libstdc++/include/tr1/
legendre_function.tcc 62 * @brief Return the Legendre polynomial by recursion on order
71 * @param l The order of the Legendre polynomial. @f$l >= 0@f$.
72 * @param x The argument of the Legendre polynomial. @f$|x| <= 1@f$.
  /prebuilts/ndk/7/sources/cxx-stl/gnu-libstdc++/include/tr1/
legendre_function.tcc 62 * @brief Return the Legendre polynomial by recursion on order
71 * @param l The order of the Legendre polynomial. @f$l >= 0@f$.
72 * @param x The argument of the Legendre polynomial. @f$|x| <= 1@f$.

Completed in 1292 milliseconds

1 23 4 5 6 7 8 910