OpenGrok
Home
Sort by relevance
Sort by last modified time
Full Search
Definition
Symbol
File Path
History
|
|
Help
Searched
full:polynomial
(Results
51 - 75
of
228
) sorted by null
1
2
3
4
5
6
7
8
9
10
/system/core/libsparse/
sparse_crc32.c
7
* First, the
polynomial
itself and its table of feedback terms. The
8
*
polynomial
is
39
*
polynomial
$edb88320
/external/e2fsprogs/e2fsck/
crc32defs.h
3
* *the* standard CRC-32
polynomial
, first popularized by Ethernet.
crc32.c
256
* CRC
polynomial
. To check the CRC, you can either check that the
268
* A 32-bit CRC
polynomial
is actually 33 bits long. But since it's
282
* the divisor (the CRC
polynomial
) you're dividing by. Each step of the
291
* the
polynomial
from the remainder and we're back to where we started,
358
* but again the multiple of the
polynomial
to subtract depends only on
363
* generator
polynomial
. This is simply the CRC-32 of the given
367
* is already a multiple of a
polynomial
produces a larger multiple of that
368
*
polynomial
. To enable a CRC to detect this condition, it's common to
/external/qemu/distrib/zlib-1.2.3/
crc32.c
81
Generate tables for a byte-wise 32-bit CRC calculation on the
polynomial
:
86
is just exclusive-or, and multiplying a
polynomial
by x is a right shift by
87
one. If we call the above
polynomial
p, and represent a byte as the
88
polynomial
q, also with the lowest power in the most significant bit (so the
89
byte 0xb1 is the
polynomial
x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
110
unsigned long poly; /*
polynomial
exclusive-or pattern */
111
/* terms of
polynomial
defining this crc (except x^32): */
121
/* make exclusive-or pattern from
polynomial
(0xedb88320UL) */
385
odd[0] = 0xedb88320L; /* CRC-32
polynomial
*/
/external/zlib/src/
crc32.c
65
Generate tables for a byte-wise 32-bit CRC calculation on the
polynomial
:
70
is just exclusive-or, and multiplying a
polynomial
by x is a right shift by
71
one. If we call the above
polynomial
p, and represent a byte as the
72
polynomial
q, also with the lowest power in the most significant bit (so the
73
byte 0xb1 is the
polynomial
x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
94
z_crc_t poly; /*
polynomial
exclusive-or pattern */
95
/* terms of
polynomial
defining this crc (except x^32): */
105
/* make exclusive-or pattern from
polynomial
(0xedb88320UL) */
370
odd[0] = 0xedb88320UL; /* CRC-32
polynomial
*/
/frameworks/base/core/java/android/view/
VelocityTracker.java
220
* An estimator for the movements of a pointer based on a
polynomial
model.
236
*
Polynomial
coefficients describing motion in X.
241
*
Polynomial
coefficients describing motion in Y.
246
*
Polynomial
degree, or zero if only position information is available.
/bionic/libm/upstream-freebsd/lib/msun/src/
e_log.c
30
* a
polynomial
of degree 14 to approximate R The maximum error
31
* of this
polynomial
approximation is bounded by 2**-58.45. In
k_tan.c
26
* odd
polynomial
is not evaluated in a way that preserves -0.
28
* 3. tan(x) is approximated by a odd
polynomial
of degree 27 on
/packages/apps/Camera/jni/feature_stab/db_vlvm/
db_utilities_poly.cpp
101
/*Cubic
polynomial
roots, nr of roots and coefficients*/
173
/*Cubic
polynomial
roots, nr of roots and coefficients*/
/packages/apps/Gallery2/jni_mosaic/feature_stab/db_vlvm/
db_utilities_poly.cpp
101
/*Cubic
polynomial
roots, nr of roots and coefficients*/
173
/*Cubic
polynomial
roots, nr of roots and coefficients*/
/packages/apps/LegacyCamera/jni/feature_stab/db_vlvm/
db_utilities_poly.cpp
101
/*Cubic
polynomial
roots, nr of roots and coefficients*/
173
/*Cubic
polynomial
roots, nr of roots and coefficients*/
/prebuilts/gcc/darwin-x86/x86/i686-linux-android-4.6/lib/gcc/i686-linux-android/4.6/include/
ia32intrin.h
53
/* 32bit accumulate CRC32 (
polynomial
0x11EDC6F41) value. */
182
/* 64bit accumulate CRC32 (
polynomial
0x11EDC6F41) value. */
/prebuilts/gcc/darwin-x86/x86/i686-linux-android-4.7/lib/gcc/i686-linux-android/4.7/include/
ia32intrin.h
53
/* 32bit accumulate CRC32 (
polynomial
0x11EDC6F41) value. */
190
/* 64bit accumulate CRC32 (
polynomial
0x11EDC6F41) value. */
/prebuilts/gcc/linux-x86/host/i686-linux-glibc2.7-4.6/lib/gcc/i686-linux/4.6.x-google/include/
ia32intrin.h
53
/* 32bit accumulate CRC32 (
polynomial
0x11EDC6F41) value. */
182
/* 64bit accumulate CRC32 (
polynomial
0x11EDC6F41) value. */
/prebuilts/gcc/linux-x86/host/x86_64-linux-glibc2.7-4.6/lib/gcc/x86_64-linux/4.6.x-google/include/
ia32intrin.h
53
/* 32bit accumulate CRC32 (
polynomial
0x11EDC6F41) value. */
182
/* 64bit accumulate CRC32 (
polynomial
0x11EDC6F41) value. */
/prebuilts/gcc/linux-x86/x86/i686-linux-android-4.6/lib/gcc/i686-linux-android/4.6/include/
ia32intrin.h
53
/* 32bit accumulate CRC32 (
polynomial
0x11EDC6F41) value. */
182
/* 64bit accumulate CRC32 (
polynomial
0x11EDC6F41) value. */
/prebuilts/gcc/linux-x86/x86/i686-linux-android-4.7/lib/gcc/i686-linux-android/4.7/include/
ia32intrin.h
53
/* 32bit accumulate CRC32 (
polynomial
0x11EDC6F41) value. */
190
/* 64bit accumulate CRC32 (
polynomial
0x11EDC6F41) value. */
/external/webrtc/src/modules/audio_processing/aec/
aec_core_sse2.c
207
// exp2(x) and log2(x) are calculated using
polynomial
approximations.
220
// five
polynomial
approximation. The coefficients have been
222
//
polynomial
has a maximum relative error of 0.00086%.
297
//
polynomial
approximation. The coefficients have been estimated
298
// with the Remez algorithm and the resulting
polynomial
has a
/external/webrtc/src/modules/audio_coding/codecs/isac/main/source/
entropy_coding.h
98
* Encode LPC parameters, given as A-
polynomial
, of upper-band. The encoding
116
* - interpolLPCCoeff : Decoded and interpolated LPC (A-
polynomial
)
149
* - percepFilterParam : Decoded and interpolated LPC (A-
polynomial
) of
/prebuilts/gcc/linux-x86/host/i686-linux-glibc2.7-4.4.3/i686-linux/include/c++/4.4.3/tr1/
legendre_function.tcc
62
* @brief Return the Legendre
polynomial
by recursion on order
71
* @param l The order of the Legendre
polynomial
. @f$l >= 0@f$.
72
* @param x The argument of the Legendre
polynomial
. @f$|x| <= 1@f$.
/prebuilts/gcc/linux-x86/host/i686-linux-glibc2.7-4.6/i686-linux/include/c++/4.6.x-google/tr1/
legendre_function.tcc
62
* @brief Return the Legendre
polynomial
by recursion on order
71
* @param l The order of the Legendre
polynomial
. @f$l >= 0@f$.
72
* @param x The argument of the Legendre
polynomial
. @f$|x| <= 1@f$.
/prebuilts/gcc/linux-x86/host/x86_64-linux-glibc2.7-4.6/x86_64-linux/include/c++/4.6.x-google/tr1/
legendre_function.tcc
62
* @brief Return the Legendre
polynomial
by recursion on order
71
* @param l The order of the Legendre
polynomial
. @f$l >= 0@f$.
72
* @param x The argument of the Legendre
polynomial
. @f$|x| <= 1@f$.
/prebuilts/ndk/5/sources/cxx-stl/gnu-libstdc++/include/tr1/
legendre_function.tcc
62
* @brief Return the Legendre
polynomial
by recursion on order
71
* @param l The order of the Legendre
polynomial
. @f$l >= 0@f$.
72
* @param x The argument of the Legendre
polynomial
. @f$|x| <= 1@f$.
/prebuilts/ndk/6/sources/cxx-stl/gnu-libstdc++/include/tr1/
legendre_function.tcc
62
* @brief Return the Legendre
polynomial
by recursion on order
71
* @param l The order of the Legendre
polynomial
. @f$l >= 0@f$.
72
* @param x The argument of the Legendre
polynomial
. @f$|x| <= 1@f$.
/prebuilts/ndk/7/sources/cxx-stl/gnu-libstdc++/include/tr1/
legendre_function.tcc
62
* @brief Return the Legendre
polynomial
by recursion on order
71
* @param l The order of the Legendre
polynomial
. @f$l >= 0@f$.
72
* @param x The argument of the Legendre
polynomial
. @f$|x| <= 1@f$.
Completed in 1292 milliseconds
1
2
3
4
5
6
7
8
9
10