Home | History | Annotate | Download | only in docs

Lines Matching refs:domain

47 Here, $\mu$ is the trust region radius, $D(x)$ is some matrix used to define a metric on the domain of $F(x)$ and $\rho$ measures the quality of the step $\Delta x$, i.e., how well did the linear model predict the decrease in the value of the non-linear objective. The idea is to increase or decrease the radius of the trust region depending on how well the linearization predicts the behavior of the non-linear objective, which in turn is reflected in the value of $\rho$.
342 Equation~\eqref{eq:schurtrick1} is closely related to {\em Domain Decomposition methods} for solving large linear systems that arise in structural engineering and partial differential equations. In the language of Domain Decomposition, each point in a bundle adjustment problem is a domain, and the cameras form the interface between these domains. The iterative solution of the Schur complement then falls within the sub-category of techniques known as Iterative Sub-structuring~\cite{saad2003iterative,mathew2008domain}.