Lines Matching refs:number
56 There are a number of different ways of solving this problem, each giving rise to a different concrete trust-region algorithm. Currently Ceres, implements two trust-region algorithms - Levenberg-Marquardt and Dogleg.
77 For all but the smallest problems the solution of~\eqref{eq:simple} in each iteration of the Levenberg-Marquardt algorithm is the dominant computational cost in Ceres. Ceres provides a number of different options for solving~\eqref{eq:simple}. There are two major classes of methods - factorization and iterative.
85 Here, $k$ indicates the Levenberg-Marquardt iteration number and $0 < \eta_k <1$ is known as the forcing sequence. Wright \& Holt \cite{wright1985inexact} prove that a truncated Levenberg-Marquardt algorithm that uses an inexact Newton step based on~\eqref{eq:inexact} converges for any sequence $\eta_k \leq \eta_0 < 1$ and the rate of convergence depends on the choice of the forcing sequence $\eta_k$.
184 Setting \texttt{Solver::Options::num\_threads} to the maximum number
228 Ceres provides a number of different options for solving~\eqref{eq:normal}.
299 Thus, the solution of what was an $n\times n$, $n=pc+qs$ linear system is reduced to the inversion of the block diagonal matrix $C$, a few matrix-matrix and matrix-vector multiplies, and the solution of block sparse $pc\times pc$ linear system~\eqref{eq:schur}. For almost all problems, the number of cameras is much smaller than the number of points, $p \ll q$, thus solving~\eqref{eq:schur} is significantly cheaper than solving~\eqref{eq:linear2}. This is the {\em Schur complement trick}~\cite{brown-58}.
345 The convergence rate of Conjugate Gradients for solving~\eqref{eq:normal} depends on the distribution of eigenvalues of $H$~\cite{saad2003iterative}. A useful upper bound is $\sqrt{\kappa(H)}$, where, $\kappa(H)$f is the condition number of the matrix $H$. For most bundle adjustment problems, $\kappa(H)$ is high and a direct application of Conjugate Gradients to~\eqref{eq:normal} results in extremely poor performance.
347 The solution to this problem is to replace~\eqref{eq:normal} with a {\em preconditioned} system. Given a linear system, $Ax =b$ and a preconditioner $M$ the preconditioned system is given by $M^{-1}Ax = M^{-1}b$. The resulting algorithm is known as Preconditioned Conjugate Gradients algorithm (PCG) and its worst case complexity now depends on the condition number of the {\em preconditioned} matrix $\kappa(M^{-1}A)$.
349 The computational cost of using a preconditioner $M$ is the cost of computing $M$ and evaluating the product $M^{-1}y$ for arbitrary vectors $y$. Thus, there are two competing factors to consider: How much of $H$'s structure is captured by $M$ so that the condition number $\kappa(HM^{-1})$ is low, and the computational cost of constructing and using $M$. The ideal preconditioner would be one for which $\kappa(M^{-1}A) =1$. $M=A$ achieves this, but it is not a practical choice, as applying this preconditioner would require solving a linear system equivalent to the unpreconditioned problem. It is usually the case that the more information $M$ has about $H$, the more expensive it is use. For example, Incomplete Cholesky factorization based preconditioners have much better convergence behavior than the Jacobi preconditioner, but are also much more expensive.
453 \item{\texttt{max\_num\_iterations }}(\texttt{50}) Maximum number of
459 \item{\texttt{num\_threads }}(\texttt{1}) Number of threads used by
464 strategy is used, the reciprocal of this number is the initial
491 parameter sets the number of consecutive retries before the
544 \item{\texttt{num\_linear\_solver\_threads }}(\texttt{1}) Number of
563 numbered groups are optimized before the higher number groups during
593 Minimum number of iterations used by the linear solver. This only
598 Minimum number of iterations used by the linear solver. This only
604 number to control the relative accuracy with which the Newton step is
720 this number, then the Jacobian for that cost term is dumped.
760 performance. Currently, only the iteration number, total