Lines Matching refs:number
391 mp_int number;
394 if ((result = mp_init(&number)) != MP_OKAY) \{
395 printf("Error initializing the number. \%s",
400 /* use the number */
422 mp_int number;
425 if ((result = mp_init(&number)) != MP_OKAY) \{
426 printf("Error initializing the number. \%s",
431 /* use the number */
434 mp_clear(&number);
515 default number of digits. By default, all initializers allocate \textbf{MP\_PREC} digits. This function lets
529 mp_int number;
532 /* we need a 60-digit number */
533 if ((result = mp_init_size(&number, 60)) != MP_OKAY) \{
534 printf("Error initializing the number. \%s",
539 /* use the number */
564 mp_int number;
567 if ((result = mp_init(&number)) != MP_OKAY) \{
568 printf("Error initializing the number. \%s",
573 /* use the number [e.g. pre-computation] */
576 if ((result = mp_shrink(&number)) != MP_OKAY) \{
577 printf("Error shrinking the number. \%s",
586 mp_clear(&number);
611 mp_int number;
614 if ((result = mp_init(&number)) != MP_OKAY) \{
615 printf("Error initializing the number. \%s",
620 /* use the number */
622 /* We need to add 20 digits to the number */
623 if ((result = mp_grow(&number, number.alloc + 20)) != MP_OKAY) \{
624 printf("Error growing the number. \%s",
630 /* use the number */
633 mp_clear(&number);
662 mp_int number;
665 if ((result = mp_init(&number)) != MP_OKAY) \{
666 printf("Error initializing the number. \%s",
671 /* set the number to 5 */
672 mp_set(&number, 5);
675 mp_clear(&number);
707 mp_int number;
710 if ((result = mp_init(&number)) != MP_OKAY) \{
711 printf("Error initializing the number. \%s",
716 /* set the number to 654321 (note this is bigger than 127) */
717 if ((result = mp_set_int(&number, 654321)) != MP_OKAY) \{
718 printf("Error setting the value of the number. \%s",
723 printf("number == \%lu", mp_get_int(&number));
726 mp_clear(&number);
735 number == 654321
939 mp_int number;
942 if ((result = mp_init(&number)) != MP_OKAY) \{
943 printf("Error initializing the number. \%s",
948 /* set the number to 5 */
949 mp_set(&number, 5);
951 switch(mp_cmp_d(&number, 7)) \{
952 case MP_GT: printf("number > 7"); break;
953 case MP_EQ: printf("number = 7"); break;
954 case MP_LT: printf("number < 7"); break;
958 mp_clear(&number);
967 number < 7
993 mp_int number;
996 if ((result = mp_init(&number)) != MP_OKAY) \{
997 printf("Error initializing the number. \%s",
1002 /* set the number to 5 */
1003 mp_set(&number, 5);
1006 if ((result = mp\_mul\_2(&number, &number)) != MP_OKAY) \{
1007 printf("Error multiplying the number. \%s",
1011 switch(mp_cmp_d(&number, 7)) \{
1012 case MP_GT: printf("2*number > 7"); break;
1013 case MP_EQ: printf("2*number = 7"); break;
1014 case MP_LT: printf("2*number < 7"); break;
1018 if ((result = mp\_div\_2(&number, &number)) != MP_OKAY) \{
1019 printf("Error dividing the number. \%s",
1023 switch(mp_cmp_d(&number, 7)) \{
1024 case MP_GT: printf("2*number/2 > 7"); break;
1025 case MP_EQ: printf("2*number/2 = 7"); break;
1026 case MP_LT: printf("2*number/2 < 7"); break;
1030 mp_clear(&number);
1039 2*number > 7
1040 2*number/2 < 7
1180 if ((result = mp_set_int(&number, 257)) != MP_OKAY) \{
1400 where $R = \beta^n$, $n$ is the n number of digits in $m$ and $\beta$ is radix used (default is $2^{28}$).
1620 \subsection{Required Number of Tests}
1621 Generally to ensure a number is very likely to be prime you have to perform the Miller-Rabin with at least a half-dozen
1629 This returns the number of trials required for a $2^{-96}$ (or lower) probability of failure for a given ``size'' expressed
1630 in bits. This comes in handy specially since larger numbers are slower to test. For example, a 512-bit number would
1631 require ten tests whereas a 1024-bit number would only require four tests.
1642 $1 \le t < PRIME\_SIZE$ where $PRIME\_SIZE$ is the number of primes in the prime number table (by default this is $256$).
1720 This stores in ``size'' the number of characters (including space for the NUL terminator) required. Upon error this
1730 can be used to denote a negative number.
1741 This will return the number of bytes (octets) required to store the unsigned copy of the integer $a$.
1831 an entire mp\_int to store a number like $1$ or $2$.