Home | History | Annotate | Download | only in Sema
      1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// \brief Implements semantic analysis for C++ expressions.
     12 ///
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "clang/Sema/SemaInternal.h"
     16 #include "TypeLocBuilder.h"
     17 #include "clang/AST/ASTContext.h"
     18 #include "clang/AST/CXXInheritance.h"
     19 #include "clang/AST/CharUnits.h"
     20 #include "clang/AST/DeclObjC.h"
     21 #include "clang/AST/EvaluatedExprVisitor.h"
     22 #include "clang/AST/ExprCXX.h"
     23 #include "clang/AST/ExprObjC.h"
     24 #include "clang/AST/TypeLoc.h"
     25 #include "clang/Basic/PartialDiagnostic.h"
     26 #include "clang/Basic/TargetInfo.h"
     27 #include "clang/Lex/Preprocessor.h"
     28 #include "clang/Sema/DeclSpec.h"
     29 #include "clang/Sema/Initialization.h"
     30 #include "clang/Sema/Lookup.h"
     31 #include "clang/Sema/ParsedTemplate.h"
     32 #include "clang/Sema/Scope.h"
     33 #include "clang/Sema/ScopeInfo.h"
     34 #include "clang/Sema/TemplateDeduction.h"
     35 #include "llvm/ADT/APInt.h"
     36 #include "llvm/ADT/STLExtras.h"
     37 #include "llvm/Support/ErrorHandling.h"
     38 using namespace clang;
     39 using namespace sema;
     40 
     41 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
     42                                    IdentifierInfo &II,
     43                                    SourceLocation NameLoc,
     44                                    Scope *S, CXXScopeSpec &SS,
     45                                    ParsedType ObjectTypePtr,
     46                                    bool EnteringContext) {
     47   // Determine where to perform name lookup.
     48 
     49   // FIXME: This area of the standard is very messy, and the current
     50   // wording is rather unclear about which scopes we search for the
     51   // destructor name; see core issues 399 and 555. Issue 399 in
     52   // particular shows where the current description of destructor name
     53   // lookup is completely out of line with existing practice, e.g.,
     54   // this appears to be ill-formed:
     55   //
     56   //   namespace N {
     57   //     template <typename T> struct S {
     58   //       ~S();
     59   //     };
     60   //   }
     61   //
     62   //   void f(N::S<int>* s) {
     63   //     s->N::S<int>::~S();
     64   //   }
     65   //
     66   // See also PR6358 and PR6359.
     67   // For this reason, we're currently only doing the C++03 version of this
     68   // code; the C++0x version has to wait until we get a proper spec.
     69   QualType SearchType;
     70   DeclContext *LookupCtx = 0;
     71   bool isDependent = false;
     72   bool LookInScope = false;
     73 
     74   // If we have an object type, it's because we are in a
     75   // pseudo-destructor-expression or a member access expression, and
     76   // we know what type we're looking for.
     77   if (ObjectTypePtr)
     78     SearchType = GetTypeFromParser(ObjectTypePtr);
     79 
     80   if (SS.isSet()) {
     81     NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
     82 
     83     bool AlreadySearched = false;
     84     bool LookAtPrefix = true;
     85     // C++ [basic.lookup.qual]p6:
     86     //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
     87     //   the type-names are looked up as types in the scope designated by the
     88     //   nested-name-specifier. In a qualified-id of the form:
     89     //
     90     //     ::[opt] nested-name-specifier  ~ class-name
     91     //
     92     //   where the nested-name-specifier designates a namespace scope, and in
     93     //   a qualified-id of the form:
     94     //
     95     //     ::opt nested-name-specifier class-name ::  ~ class-name
     96     //
     97     //   the class-names are looked up as types in the scope designated by
     98     //   the nested-name-specifier.
     99     //
    100     // Here, we check the first case (completely) and determine whether the
    101     // code below is permitted to look at the prefix of the
    102     // nested-name-specifier.
    103     DeclContext *DC = computeDeclContext(SS, EnteringContext);
    104     if (DC && DC->isFileContext()) {
    105       AlreadySearched = true;
    106       LookupCtx = DC;
    107       isDependent = false;
    108     } else if (DC && isa<CXXRecordDecl>(DC))
    109       LookAtPrefix = false;
    110 
    111     // The second case from the C++03 rules quoted further above.
    112     NestedNameSpecifier *Prefix = 0;
    113     if (AlreadySearched) {
    114       // Nothing left to do.
    115     } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
    116       CXXScopeSpec PrefixSS;
    117       PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
    118       LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
    119       isDependent = isDependentScopeSpecifier(PrefixSS);
    120     } else if (ObjectTypePtr) {
    121       LookupCtx = computeDeclContext(SearchType);
    122       isDependent = SearchType->isDependentType();
    123     } else {
    124       LookupCtx = computeDeclContext(SS, EnteringContext);
    125       isDependent = LookupCtx && LookupCtx->isDependentContext();
    126     }
    127 
    128     LookInScope = false;
    129   } else if (ObjectTypePtr) {
    130     // C++ [basic.lookup.classref]p3:
    131     //   If the unqualified-id is ~type-name, the type-name is looked up
    132     //   in the context of the entire postfix-expression. If the type T
    133     //   of the object expression is of a class type C, the type-name is
    134     //   also looked up in the scope of class C. At least one of the
    135     //   lookups shall find a name that refers to (possibly
    136     //   cv-qualified) T.
    137     LookupCtx = computeDeclContext(SearchType);
    138     isDependent = SearchType->isDependentType();
    139     assert((isDependent || !SearchType->isIncompleteType()) &&
    140            "Caller should have completed object type");
    141 
    142     LookInScope = true;
    143   } else {
    144     // Perform lookup into the current scope (only).
    145     LookInScope = true;
    146   }
    147 
    148   TypeDecl *NonMatchingTypeDecl = 0;
    149   LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
    150   for (unsigned Step = 0; Step != 2; ++Step) {
    151     // Look for the name first in the computed lookup context (if we
    152     // have one) and, if that fails to find a match, in the scope (if
    153     // we're allowed to look there).
    154     Found.clear();
    155     if (Step == 0 && LookupCtx)
    156       LookupQualifiedName(Found, LookupCtx);
    157     else if (Step == 1 && LookInScope && S)
    158       LookupName(Found, S);
    159     else
    160       continue;
    161 
    162     // FIXME: Should we be suppressing ambiguities here?
    163     if (Found.isAmbiguous())
    164       return ParsedType();
    165 
    166     if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
    167       QualType T = Context.getTypeDeclType(Type);
    168 
    169       if (SearchType.isNull() || SearchType->isDependentType() ||
    170           Context.hasSameUnqualifiedType(T, SearchType)) {
    171         // We found our type!
    172 
    173         return ParsedType::make(T);
    174       }
    175 
    176       if (!SearchType.isNull())
    177         NonMatchingTypeDecl = Type;
    178     }
    179 
    180     // If the name that we found is a class template name, and it is
    181     // the same name as the template name in the last part of the
    182     // nested-name-specifier (if present) or the object type, then
    183     // this is the destructor for that class.
    184     // FIXME: This is a workaround until we get real drafting for core
    185     // issue 399, for which there isn't even an obvious direction.
    186     if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
    187       QualType MemberOfType;
    188       if (SS.isSet()) {
    189         if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
    190           // Figure out the type of the context, if it has one.
    191           if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
    192             MemberOfType = Context.getTypeDeclType(Record);
    193         }
    194       }
    195       if (MemberOfType.isNull())
    196         MemberOfType = SearchType;
    197 
    198       if (MemberOfType.isNull())
    199         continue;
    200 
    201       // We're referring into a class template specialization. If the
    202       // class template we found is the same as the template being
    203       // specialized, we found what we are looking for.
    204       if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
    205         if (ClassTemplateSpecializationDecl *Spec
    206               = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
    207           if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
    208                 Template->getCanonicalDecl())
    209             return ParsedType::make(MemberOfType);
    210         }
    211 
    212         continue;
    213       }
    214 
    215       // We're referring to an unresolved class template
    216       // specialization. Determine whether we class template we found
    217       // is the same as the template being specialized or, if we don't
    218       // know which template is being specialized, that it at least
    219       // has the same name.
    220       if (const TemplateSpecializationType *SpecType
    221             = MemberOfType->getAs<TemplateSpecializationType>()) {
    222         TemplateName SpecName = SpecType->getTemplateName();
    223 
    224         // The class template we found is the same template being
    225         // specialized.
    226         if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
    227           if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
    228             return ParsedType::make(MemberOfType);
    229 
    230           continue;
    231         }
    232 
    233         // The class template we found has the same name as the
    234         // (dependent) template name being specialized.
    235         if (DependentTemplateName *DepTemplate
    236                                     = SpecName.getAsDependentTemplateName()) {
    237           if (DepTemplate->isIdentifier() &&
    238               DepTemplate->getIdentifier() == Template->getIdentifier())
    239             return ParsedType::make(MemberOfType);
    240 
    241           continue;
    242         }
    243       }
    244     }
    245   }
    246 
    247   if (isDependent) {
    248     // We didn't find our type, but that's okay: it's dependent
    249     // anyway.
    250 
    251     // FIXME: What if we have no nested-name-specifier?
    252     QualType T = CheckTypenameType(ETK_None, SourceLocation(),
    253                                    SS.getWithLocInContext(Context),
    254                                    II, NameLoc);
    255     return ParsedType::make(T);
    256   }
    257 
    258   if (NonMatchingTypeDecl) {
    259     QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
    260     Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
    261       << T << SearchType;
    262     Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
    263       << T;
    264   } else if (ObjectTypePtr)
    265     Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
    266       << &II;
    267   else
    268     Diag(NameLoc, diag::err_destructor_class_name);
    269 
    270   return ParsedType();
    271 }
    272 
    273 ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
    274     if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
    275       return ParsedType();
    276     assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
    277            && "only get destructor types from declspecs");
    278     QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
    279     QualType SearchType = GetTypeFromParser(ObjectType);
    280     if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
    281       return ParsedType::make(T);
    282     }
    283 
    284     Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
    285       << T << SearchType;
    286     return ParsedType();
    287 }
    288 
    289 /// \brief Build a C++ typeid expression with a type operand.
    290 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
    291                                 SourceLocation TypeidLoc,
    292                                 TypeSourceInfo *Operand,
    293                                 SourceLocation RParenLoc) {
    294   // C++ [expr.typeid]p4:
    295   //   The top-level cv-qualifiers of the lvalue expression or the type-id
    296   //   that is the operand of typeid are always ignored.
    297   //   If the type of the type-id is a class type or a reference to a class
    298   //   type, the class shall be completely-defined.
    299   Qualifiers Quals;
    300   QualType T
    301     = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
    302                                       Quals);
    303   if (T->getAs<RecordType>() &&
    304       RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
    305     return ExprError();
    306 
    307   return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
    308                                            Operand,
    309                                            SourceRange(TypeidLoc, RParenLoc)));
    310 }
    311 
    312 /// \brief Build a C++ typeid expression with an expression operand.
    313 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
    314                                 SourceLocation TypeidLoc,
    315                                 Expr *E,
    316                                 SourceLocation RParenLoc) {
    317   if (E && !E->isTypeDependent()) {
    318     if (E->getType()->isPlaceholderType()) {
    319       ExprResult result = CheckPlaceholderExpr(E);
    320       if (result.isInvalid()) return ExprError();
    321       E = result.take();
    322     }
    323 
    324     QualType T = E->getType();
    325     if (const RecordType *RecordT = T->getAs<RecordType>()) {
    326       CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
    327       // C++ [expr.typeid]p3:
    328       //   [...] If the type of the expression is a class type, the class
    329       //   shall be completely-defined.
    330       if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
    331         return ExprError();
    332 
    333       // C++ [expr.typeid]p3:
    334       //   When typeid is applied to an expression other than an glvalue of a
    335       //   polymorphic class type [...] [the] expression is an unevaluated
    336       //   operand. [...]
    337       if (RecordD->isPolymorphic() && E->isGLValue()) {
    338         // The subexpression is potentially evaluated; switch the context
    339         // and recheck the subexpression.
    340         ExprResult Result = TransformToPotentiallyEvaluated(E);
    341         if (Result.isInvalid()) return ExprError();
    342         E = Result.take();
    343 
    344         // We require a vtable to query the type at run time.
    345         MarkVTableUsed(TypeidLoc, RecordD);
    346       }
    347     }
    348 
    349     // C++ [expr.typeid]p4:
    350     //   [...] If the type of the type-id is a reference to a possibly
    351     //   cv-qualified type, the result of the typeid expression refers to a
    352     //   std::type_info object representing the cv-unqualified referenced
    353     //   type.
    354     Qualifiers Quals;
    355     QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
    356     if (!Context.hasSameType(T, UnqualT)) {
    357       T = UnqualT;
    358       E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).take();
    359     }
    360   }
    361 
    362   return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
    363                                            E,
    364                                            SourceRange(TypeidLoc, RParenLoc)));
    365 }
    366 
    367 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
    368 ExprResult
    369 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
    370                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
    371   // Find the std::type_info type.
    372   if (!getStdNamespace())
    373     return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
    374 
    375   if (!CXXTypeInfoDecl) {
    376     IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
    377     LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
    378     LookupQualifiedName(R, getStdNamespace());
    379     CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
    380     // Microsoft's typeinfo doesn't have type_info in std but in the global
    381     // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
    382     if (!CXXTypeInfoDecl && LangOpts.MicrosoftMode) {
    383       LookupQualifiedName(R, Context.getTranslationUnitDecl());
    384       CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
    385     }
    386     if (!CXXTypeInfoDecl)
    387       return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
    388   }
    389 
    390   if (!getLangOpts().RTTI) {
    391     return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
    392   }
    393 
    394   QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
    395 
    396   if (isType) {
    397     // The operand is a type; handle it as such.
    398     TypeSourceInfo *TInfo = 0;
    399     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
    400                                    &TInfo);
    401     if (T.isNull())
    402       return ExprError();
    403 
    404     if (!TInfo)
    405       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
    406 
    407     return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
    408   }
    409 
    410   // The operand is an expression.
    411   return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
    412 }
    413 
    414 /// \brief Build a Microsoft __uuidof expression with a type operand.
    415 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
    416                                 SourceLocation TypeidLoc,
    417                                 TypeSourceInfo *Operand,
    418                                 SourceLocation RParenLoc) {
    419   if (!Operand->getType()->isDependentType()) {
    420     if (!CXXUuidofExpr::GetUuidAttrOfType(Operand->getType()))
    421       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
    422   }
    423 
    424   // FIXME: add __uuidof semantic analysis for type operand.
    425   return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
    426                                            Operand,
    427                                            SourceRange(TypeidLoc, RParenLoc)));
    428 }
    429 
    430 /// \brief Build a Microsoft __uuidof expression with an expression operand.
    431 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
    432                                 SourceLocation TypeidLoc,
    433                                 Expr *E,
    434                                 SourceLocation RParenLoc) {
    435   if (!E->getType()->isDependentType()) {
    436     if (!CXXUuidofExpr::GetUuidAttrOfType(E->getType()) &&
    437         !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
    438       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
    439   }
    440   // FIXME: add __uuidof semantic analysis for type operand.
    441   return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
    442                                            E,
    443                                            SourceRange(TypeidLoc, RParenLoc)));
    444 }
    445 
    446 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
    447 ExprResult
    448 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
    449                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
    450   // If MSVCGuidDecl has not been cached, do the lookup.
    451   if (!MSVCGuidDecl) {
    452     IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
    453     LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
    454     LookupQualifiedName(R, Context.getTranslationUnitDecl());
    455     MSVCGuidDecl = R.getAsSingle<RecordDecl>();
    456     if (!MSVCGuidDecl)
    457       return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
    458   }
    459 
    460   QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
    461 
    462   if (isType) {
    463     // The operand is a type; handle it as such.
    464     TypeSourceInfo *TInfo = 0;
    465     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
    466                                    &TInfo);
    467     if (T.isNull())
    468       return ExprError();
    469 
    470     if (!TInfo)
    471       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
    472 
    473     return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
    474   }
    475 
    476   // The operand is an expression.
    477   return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
    478 }
    479 
    480 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
    481 ExprResult
    482 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
    483   assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
    484          "Unknown C++ Boolean value!");
    485   return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
    486                                                 Context.BoolTy, OpLoc));
    487 }
    488 
    489 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
    490 ExprResult
    491 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
    492   return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
    493 }
    494 
    495 /// ActOnCXXThrow - Parse throw expressions.
    496 ExprResult
    497 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
    498   bool IsThrownVarInScope = false;
    499   if (Ex) {
    500     // C++0x [class.copymove]p31:
    501     //   When certain criteria are met, an implementation is allowed to omit the
    502     //   copy/move construction of a class object [...]
    503     //
    504     //     - in a throw-expression, when the operand is the name of a
    505     //       non-volatile automatic object (other than a function or catch-
    506     //       clause parameter) whose scope does not extend beyond the end of the
    507     //       innermost enclosing try-block (if there is one), the copy/move
    508     //       operation from the operand to the exception object (15.1) can be
    509     //       omitted by constructing the automatic object directly into the
    510     //       exception object
    511     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
    512       if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
    513         if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
    514           for( ; S; S = S->getParent()) {
    515             if (S->isDeclScope(Var)) {
    516               IsThrownVarInScope = true;
    517               break;
    518             }
    519 
    520             if (S->getFlags() &
    521                 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
    522                  Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
    523                  Scope::TryScope))
    524               break;
    525           }
    526         }
    527       }
    528   }
    529 
    530   return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
    531 }
    532 
    533 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
    534                                bool IsThrownVarInScope) {
    535   // Don't report an error if 'throw' is used in system headers.
    536   if (!getLangOpts().CXXExceptions &&
    537       !getSourceManager().isInSystemHeader(OpLoc))
    538     Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
    539 
    540   if (Ex && !Ex->isTypeDependent()) {
    541     ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
    542     if (ExRes.isInvalid())
    543       return ExprError();
    544     Ex = ExRes.take();
    545   }
    546 
    547   return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc,
    548                                           IsThrownVarInScope));
    549 }
    550 
    551 /// CheckCXXThrowOperand - Validate the operand of a throw.
    552 ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
    553                                       bool IsThrownVarInScope) {
    554   // C++ [except.throw]p3:
    555   //   A throw-expression initializes a temporary object, called the exception
    556   //   object, the type of which is determined by removing any top-level
    557   //   cv-qualifiers from the static type of the operand of throw and adjusting
    558   //   the type from "array of T" or "function returning T" to "pointer to T"
    559   //   or "pointer to function returning T", [...]
    560   if (E->getType().hasQualifiers())
    561     E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
    562                           E->getValueKind()).take();
    563 
    564   ExprResult Res = DefaultFunctionArrayConversion(E);
    565   if (Res.isInvalid())
    566     return ExprError();
    567   E = Res.take();
    568 
    569   //   If the type of the exception would be an incomplete type or a pointer
    570   //   to an incomplete type other than (cv) void the program is ill-formed.
    571   QualType Ty = E->getType();
    572   bool isPointer = false;
    573   if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
    574     Ty = Ptr->getPointeeType();
    575     isPointer = true;
    576   }
    577   if (!isPointer || !Ty->isVoidType()) {
    578     if (RequireCompleteType(ThrowLoc, Ty,
    579                             isPointer? diag::err_throw_incomplete_ptr
    580                                      : diag::err_throw_incomplete,
    581                             E->getSourceRange()))
    582       return ExprError();
    583 
    584     if (RequireNonAbstractType(ThrowLoc, E->getType(),
    585                                diag::err_throw_abstract_type, E))
    586       return ExprError();
    587   }
    588 
    589   // Initialize the exception result.  This implicitly weeds out
    590   // abstract types or types with inaccessible copy constructors.
    591 
    592   // C++0x [class.copymove]p31:
    593   //   When certain criteria are met, an implementation is allowed to omit the
    594   //   copy/move construction of a class object [...]
    595   //
    596   //     - in a throw-expression, when the operand is the name of a
    597   //       non-volatile automatic object (other than a function or catch-clause
    598   //       parameter) whose scope does not extend beyond the end of the
    599   //       innermost enclosing try-block (if there is one), the copy/move
    600   //       operation from the operand to the exception object (15.1) can be
    601   //       omitted by constructing the automatic object directly into the
    602   //       exception object
    603   const VarDecl *NRVOVariable = 0;
    604   if (IsThrownVarInScope)
    605     NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
    606 
    607   InitializedEntity Entity =
    608       InitializedEntity::InitializeException(ThrowLoc, E->getType(),
    609                                              /*NRVO=*/NRVOVariable != 0);
    610   Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
    611                                         QualType(), E,
    612                                         IsThrownVarInScope);
    613   if (Res.isInvalid())
    614     return ExprError();
    615   E = Res.take();
    616 
    617   // If the exception has class type, we need additional handling.
    618   const RecordType *RecordTy = Ty->getAs<RecordType>();
    619   if (!RecordTy)
    620     return Owned(E);
    621   CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
    622 
    623   // If we are throwing a polymorphic class type or pointer thereof,
    624   // exception handling will make use of the vtable.
    625   MarkVTableUsed(ThrowLoc, RD);
    626 
    627   // If a pointer is thrown, the referenced object will not be destroyed.
    628   if (isPointer)
    629     return Owned(E);
    630 
    631   // If the class has a destructor, we must be able to call it.
    632   if (RD->hasIrrelevantDestructor())
    633     return Owned(E);
    634 
    635   CXXDestructorDecl *Destructor = LookupDestructor(RD);
    636   if (!Destructor)
    637     return Owned(E);
    638 
    639   MarkFunctionReferenced(E->getExprLoc(), Destructor);
    640   CheckDestructorAccess(E->getExprLoc(), Destructor,
    641                         PDiag(diag::err_access_dtor_exception) << Ty);
    642   DiagnoseUseOfDecl(Destructor, E->getExprLoc());
    643   return Owned(E);
    644 }
    645 
    646 QualType Sema::getCurrentThisType() {
    647   DeclContext *DC = getFunctionLevelDeclContext();
    648   QualType ThisTy = CXXThisTypeOverride;
    649   if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
    650     if (method && method->isInstance())
    651       ThisTy = method->getThisType(Context);
    652   }
    653 
    654   return ThisTy;
    655 }
    656 
    657 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
    658                                          Decl *ContextDecl,
    659                                          unsigned CXXThisTypeQuals,
    660                                          bool Enabled)
    661   : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
    662 {
    663   if (!Enabled || !ContextDecl)
    664     return;
    665 
    666   CXXRecordDecl *Record = 0;
    667   if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
    668     Record = Template->getTemplatedDecl();
    669   else
    670     Record = cast<CXXRecordDecl>(ContextDecl);
    671 
    672   S.CXXThisTypeOverride
    673     = S.Context.getPointerType(
    674         S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
    675 
    676   this->Enabled = true;
    677 }
    678 
    679 
    680 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
    681   if (Enabled) {
    682     S.CXXThisTypeOverride = OldCXXThisTypeOverride;
    683   }
    684 }
    685 
    686 void Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit) {
    687   // We don't need to capture this in an unevaluated context.
    688   if (ExprEvalContexts.back().Context == Unevaluated && !Explicit)
    689     return;
    690 
    691   // Otherwise, check that we can capture 'this'.
    692   unsigned NumClosures = 0;
    693   for (unsigned idx = FunctionScopes.size() - 1; idx != 0; idx--) {
    694     if (CapturingScopeInfo *CSI =
    695             dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
    696       if (CSI->CXXThisCaptureIndex != 0) {
    697         // 'this' is already being captured; there isn't anything more to do.
    698         break;
    699       }
    700 
    701       if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
    702           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
    703           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
    704           Explicit) {
    705         // This closure can capture 'this'; continue looking upwards.
    706         NumClosures++;
    707         Explicit = false;
    708         continue;
    709       }
    710       // This context can't implicitly capture 'this'; fail out.
    711       Diag(Loc, diag::err_this_capture) << Explicit;
    712       return;
    713     }
    714     break;
    715   }
    716 
    717   // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
    718   // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
    719   // contexts.
    720   for (unsigned idx = FunctionScopes.size() - 1;
    721        NumClosures; --idx, --NumClosures) {
    722     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
    723     Expr *ThisExpr = 0;
    724     QualType ThisTy = getCurrentThisType();
    725     if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
    726       // For lambda expressions, build a field and an initializing expression.
    727       CXXRecordDecl *Lambda = LSI->Lambda;
    728       FieldDecl *Field
    729         = FieldDecl::Create(Context, Lambda, Loc, Loc, 0, ThisTy,
    730                             Context.getTrivialTypeSourceInfo(ThisTy, Loc),
    731                             0, false, ICIS_NoInit);
    732       Field->setImplicit(true);
    733       Field->setAccess(AS_private);
    734       Lambda->addDecl(Field);
    735       ThisExpr = new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/true);
    736     }
    737     bool isNested = NumClosures > 1;
    738     CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
    739   }
    740 }
    741 
    742 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
    743   /// C++ 9.3.2: In the body of a non-static member function, the keyword this
    744   /// is a non-lvalue expression whose value is the address of the object for
    745   /// which the function is called.
    746 
    747   QualType ThisTy = getCurrentThisType();
    748   if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
    749 
    750   CheckCXXThisCapture(Loc);
    751   return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false));
    752 }
    753 
    754 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
    755   // If we're outside the body of a member function, then we'll have a specified
    756   // type for 'this'.
    757   if (CXXThisTypeOverride.isNull())
    758     return false;
    759 
    760   // Determine whether we're looking into a class that's currently being
    761   // defined.
    762   CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
    763   return Class && Class->isBeingDefined();
    764 }
    765 
    766 ExprResult
    767 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
    768                                 SourceLocation LParenLoc,
    769                                 MultiExprArg exprs,
    770                                 SourceLocation RParenLoc) {
    771   if (!TypeRep)
    772     return ExprError();
    773 
    774   TypeSourceInfo *TInfo;
    775   QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
    776   if (!TInfo)
    777     TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
    778 
    779   return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
    780 }
    781 
    782 /// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
    783 /// Can be interpreted either as function-style casting ("int(x)")
    784 /// or class type construction ("ClassType(x,y,z)")
    785 /// or creation of a value-initialized type ("int()").
    786 ExprResult
    787 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
    788                                 SourceLocation LParenLoc,
    789                                 MultiExprArg exprs,
    790                                 SourceLocation RParenLoc) {
    791   QualType Ty = TInfo->getType();
    792   SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
    793 
    794   if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(exprs)) {
    795     return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
    796                                                     LParenLoc,
    797                                                     exprs,
    798                                                     RParenLoc));
    799   }
    800 
    801   unsigned NumExprs = exprs.size();
    802   Expr **Exprs = exprs.data();
    803 
    804   bool ListInitialization = LParenLoc.isInvalid();
    805   assert((!ListInitialization || (NumExprs == 1 && isa<InitListExpr>(Exprs[0])))
    806          && "List initialization must have initializer list as expression.");
    807   SourceRange FullRange = SourceRange(TyBeginLoc,
    808       ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
    809 
    810   // C++ [expr.type.conv]p1:
    811   // If the expression list is a single expression, the type conversion
    812   // expression is equivalent (in definedness, and if defined in meaning) to the
    813   // corresponding cast expression.
    814   if (NumExprs == 1 && !ListInitialization) {
    815     Expr *Arg = Exprs[0];
    816     return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
    817   }
    818 
    819   QualType ElemTy = Ty;
    820   if (Ty->isArrayType()) {
    821     if (!ListInitialization)
    822       return ExprError(Diag(TyBeginLoc,
    823                             diag::err_value_init_for_array_type) << FullRange);
    824     ElemTy = Context.getBaseElementType(Ty);
    825   }
    826 
    827   if (!Ty->isVoidType() &&
    828       RequireCompleteType(TyBeginLoc, ElemTy,
    829                           diag::err_invalid_incomplete_type_use, FullRange))
    830     return ExprError();
    831 
    832   if (RequireNonAbstractType(TyBeginLoc, Ty,
    833                              diag::err_allocation_of_abstract_type))
    834     return ExprError();
    835 
    836   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
    837   InitializationKind Kind
    838     = NumExprs ? ListInitialization
    839                     ? InitializationKind::CreateDirectList(TyBeginLoc)
    840                     : InitializationKind::CreateDirect(TyBeginLoc,
    841                                                        LParenLoc, RParenLoc)
    842                : InitializationKind::CreateValue(TyBeginLoc,
    843                                                  LParenLoc, RParenLoc);
    844   InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
    845   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, exprs);
    846 
    847   if (!Result.isInvalid() && ListInitialization &&
    848       isa<InitListExpr>(Result.get())) {
    849     // If the list-initialization doesn't involve a constructor call, we'll get
    850     // the initializer-list (with corrected type) back, but that's not what we
    851     // want, since it will be treated as an initializer list in further
    852     // processing. Explicitly insert a cast here.
    853     InitListExpr *List = cast<InitListExpr>(Result.take());
    854     Result = Owned(CXXFunctionalCastExpr::Create(Context, List->getType(),
    855                                     Expr::getValueKindForType(TInfo->getType()),
    856                                                  TInfo, TyBeginLoc, CK_NoOp,
    857                                                  List, /*Path=*/0, RParenLoc));
    858   }
    859 
    860   // FIXME: Improve AST representation?
    861   return Result;
    862 }
    863 
    864 /// doesUsualArrayDeleteWantSize - Answers whether the usual
    865 /// operator delete[] for the given type has a size_t parameter.
    866 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
    867                                          QualType allocType) {
    868   const RecordType *record =
    869     allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
    870   if (!record) return false;
    871 
    872   // Try to find an operator delete[] in class scope.
    873 
    874   DeclarationName deleteName =
    875     S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
    876   LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
    877   S.LookupQualifiedName(ops, record->getDecl());
    878 
    879   // We're just doing this for information.
    880   ops.suppressDiagnostics();
    881 
    882   // Very likely: there's no operator delete[].
    883   if (ops.empty()) return false;
    884 
    885   // If it's ambiguous, it should be illegal to call operator delete[]
    886   // on this thing, so it doesn't matter if we allocate extra space or not.
    887   if (ops.isAmbiguous()) return false;
    888 
    889   LookupResult::Filter filter = ops.makeFilter();
    890   while (filter.hasNext()) {
    891     NamedDecl *del = filter.next()->getUnderlyingDecl();
    892 
    893     // C++0x [basic.stc.dynamic.deallocation]p2:
    894     //   A template instance is never a usual deallocation function,
    895     //   regardless of its signature.
    896     if (isa<FunctionTemplateDecl>(del)) {
    897       filter.erase();
    898       continue;
    899     }
    900 
    901     // C++0x [basic.stc.dynamic.deallocation]p2:
    902     //   If class T does not declare [an operator delete[] with one
    903     //   parameter] but does declare a member deallocation function
    904     //   named operator delete[] with exactly two parameters, the
    905     //   second of which has type std::size_t, then this function
    906     //   is a usual deallocation function.
    907     if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
    908       filter.erase();
    909       continue;
    910     }
    911   }
    912   filter.done();
    913 
    914   if (!ops.isSingleResult()) return false;
    915 
    916   const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
    917   return (del->getNumParams() == 2);
    918 }
    919 
    920 /// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
    921 ///
    922 /// E.g.:
    923 /// @code new (memory) int[size][4] @endcode
    924 /// or
    925 /// @code ::new Foo(23, "hello") @endcode
    926 ///
    927 /// \param StartLoc The first location of the expression.
    928 /// \param UseGlobal True if 'new' was prefixed with '::'.
    929 /// \param PlacementLParen Opening paren of the placement arguments.
    930 /// \param PlacementArgs Placement new arguments.
    931 /// \param PlacementRParen Closing paren of the placement arguments.
    932 /// \param TypeIdParens If the type is in parens, the source range.
    933 /// \param D The type to be allocated, as well as array dimensions.
    934 /// \param Initializer The initializing expression or initializer-list, or null
    935 ///   if there is none.
    936 ExprResult
    937 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
    938                   SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
    939                   SourceLocation PlacementRParen, SourceRange TypeIdParens,
    940                   Declarator &D, Expr *Initializer) {
    941   bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
    942 
    943   Expr *ArraySize = 0;
    944   // If the specified type is an array, unwrap it and save the expression.
    945   if (D.getNumTypeObjects() > 0 &&
    946       D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
    947      DeclaratorChunk &Chunk = D.getTypeObject(0);
    948     if (TypeContainsAuto)
    949       return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
    950         << D.getSourceRange());
    951     if (Chunk.Arr.hasStatic)
    952       return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
    953         << D.getSourceRange());
    954     if (!Chunk.Arr.NumElts)
    955       return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
    956         << D.getSourceRange());
    957 
    958     ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
    959     D.DropFirstTypeObject();
    960   }
    961 
    962   // Every dimension shall be of constant size.
    963   if (ArraySize) {
    964     for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
    965       if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
    966         break;
    967 
    968       DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
    969       if (Expr *NumElts = (Expr *)Array.NumElts) {
    970         if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
    971           Array.NumElts
    972             = VerifyIntegerConstantExpression(NumElts, 0,
    973                                               diag::err_new_array_nonconst)
    974                 .take();
    975           if (!Array.NumElts)
    976             return ExprError();
    977         }
    978       }
    979     }
    980   }
    981 
    982   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
    983   QualType AllocType = TInfo->getType();
    984   if (D.isInvalidType())
    985     return ExprError();
    986 
    987   SourceRange DirectInitRange;
    988   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
    989     DirectInitRange = List->getSourceRange();
    990 
    991   return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal,
    992                      PlacementLParen,
    993                      PlacementArgs,
    994                      PlacementRParen,
    995                      TypeIdParens,
    996                      AllocType,
    997                      TInfo,
    998                      ArraySize,
    999                      DirectInitRange,
   1000                      Initializer,
   1001                      TypeContainsAuto);
   1002 }
   1003 
   1004 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
   1005                                        Expr *Init) {
   1006   if (!Init)
   1007     return true;
   1008   if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
   1009     return PLE->getNumExprs() == 0;
   1010   if (isa<ImplicitValueInitExpr>(Init))
   1011     return true;
   1012   else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
   1013     return !CCE->isListInitialization() &&
   1014            CCE->getConstructor()->isDefaultConstructor();
   1015   else if (Style == CXXNewExpr::ListInit) {
   1016     assert(isa<InitListExpr>(Init) &&
   1017            "Shouldn't create list CXXConstructExprs for arrays.");
   1018     return true;
   1019   }
   1020   return false;
   1021 }
   1022 
   1023 ExprResult
   1024 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
   1025                   SourceLocation PlacementLParen,
   1026                   MultiExprArg PlacementArgs,
   1027                   SourceLocation PlacementRParen,
   1028                   SourceRange TypeIdParens,
   1029                   QualType AllocType,
   1030                   TypeSourceInfo *AllocTypeInfo,
   1031                   Expr *ArraySize,
   1032                   SourceRange DirectInitRange,
   1033                   Expr *Initializer,
   1034                   bool TypeMayContainAuto) {
   1035   SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
   1036   SourceLocation StartLoc = Range.getBegin();
   1037 
   1038   CXXNewExpr::InitializationStyle initStyle;
   1039   if (DirectInitRange.isValid()) {
   1040     assert(Initializer && "Have parens but no initializer.");
   1041     initStyle = CXXNewExpr::CallInit;
   1042   } else if (Initializer && isa<InitListExpr>(Initializer))
   1043     initStyle = CXXNewExpr::ListInit;
   1044   else {
   1045     assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
   1046             isa<CXXConstructExpr>(Initializer)) &&
   1047            "Initializer expression that cannot have been implicitly created.");
   1048     initStyle = CXXNewExpr::NoInit;
   1049   }
   1050 
   1051   Expr **Inits = &Initializer;
   1052   unsigned NumInits = Initializer ? 1 : 0;
   1053   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
   1054     assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
   1055     Inits = List->getExprs();
   1056     NumInits = List->getNumExprs();
   1057   }
   1058 
   1059   // Determine whether we've already built the initializer.
   1060   bool HaveCompleteInit = false;
   1061   if (Initializer && isa<CXXConstructExpr>(Initializer) &&
   1062       !isa<CXXTemporaryObjectExpr>(Initializer))
   1063     HaveCompleteInit = true;
   1064   else if (Initializer && isa<ImplicitValueInitExpr>(Initializer))
   1065     HaveCompleteInit = true;
   1066 
   1067   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
   1068   AutoType *AT = 0;
   1069   if (TypeMayContainAuto &&
   1070       (AT = AllocType->getContainedAutoType()) && !AT->isDeduced()) {
   1071     if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
   1072       return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
   1073                        << AllocType << TypeRange);
   1074     if (initStyle == CXXNewExpr::ListInit)
   1075       return ExprError(Diag(Inits[0]->getLocStart(),
   1076                             diag::err_auto_new_requires_parens)
   1077                        << AllocType << TypeRange);
   1078     if (NumInits > 1) {
   1079       Expr *FirstBad = Inits[1];
   1080       return ExprError(Diag(FirstBad->getLocStart(),
   1081                             diag::err_auto_new_ctor_multiple_expressions)
   1082                        << AllocType << TypeRange);
   1083     }
   1084     Expr *Deduce = Inits[0];
   1085     TypeSourceInfo *DeducedType = 0;
   1086     if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
   1087       return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
   1088                        << AllocType << Deduce->getType()
   1089                        << TypeRange << Deduce->getSourceRange());
   1090     if (!DeducedType)
   1091       return ExprError();
   1092 
   1093     AllocTypeInfo = DeducedType;
   1094     AllocType = AllocTypeInfo->getType();
   1095   }
   1096 
   1097   // Per C++0x [expr.new]p5, the type being constructed may be a
   1098   // typedef of an array type.
   1099   if (!ArraySize) {
   1100     if (const ConstantArrayType *Array
   1101                               = Context.getAsConstantArrayType(AllocType)) {
   1102       ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
   1103                                          Context.getSizeType(),
   1104                                          TypeRange.getEnd());
   1105       AllocType = Array->getElementType();
   1106     }
   1107   }
   1108 
   1109   if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
   1110     return ExprError();
   1111 
   1112   if (initStyle == CXXNewExpr::ListInit && isStdInitializerList(AllocType, 0)) {
   1113     Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
   1114          diag::warn_dangling_std_initializer_list)
   1115         << /*at end of FE*/0 << Inits[0]->getSourceRange();
   1116   }
   1117 
   1118   // In ARC, infer 'retaining' for the allocated
   1119   if (getLangOpts().ObjCAutoRefCount &&
   1120       AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
   1121       AllocType->isObjCLifetimeType()) {
   1122     AllocType = Context.getLifetimeQualifiedType(AllocType,
   1123                                     AllocType->getObjCARCImplicitLifetime());
   1124   }
   1125 
   1126   QualType ResultType = Context.getPointerType(AllocType);
   1127 
   1128   // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
   1129   //   integral or enumeration type with a non-negative value."
   1130   // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
   1131   //   enumeration type, or a class type for which a single non-explicit
   1132   //   conversion function to integral or unscoped enumeration type exists.
   1133   if (ArraySize && !ArraySize->isTypeDependent()) {
   1134     class SizeConvertDiagnoser : public ICEConvertDiagnoser {
   1135       Expr *ArraySize;
   1136 
   1137     public:
   1138       SizeConvertDiagnoser(Expr *ArraySize)
   1139         : ICEConvertDiagnoser(false, false), ArraySize(ArraySize) { }
   1140 
   1141       virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
   1142                                                QualType T) {
   1143         return S.Diag(Loc, diag::err_array_size_not_integral)
   1144                  << S.getLangOpts().CPlusPlus11 << T;
   1145       }
   1146 
   1147       virtual DiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
   1148                                                    QualType T) {
   1149         return S.Diag(Loc, diag::err_array_size_incomplete_type)
   1150                  << T << ArraySize->getSourceRange();
   1151       }
   1152 
   1153       virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
   1154                                                      SourceLocation Loc,
   1155                                                      QualType T,
   1156                                                      QualType ConvTy) {
   1157         return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
   1158       }
   1159 
   1160       virtual DiagnosticBuilder noteExplicitConv(Sema &S,
   1161                                                  CXXConversionDecl *Conv,
   1162                                                  QualType ConvTy) {
   1163         return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
   1164                  << ConvTy->isEnumeralType() << ConvTy;
   1165       }
   1166 
   1167       virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
   1168                                                   QualType T) {
   1169         return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
   1170       }
   1171 
   1172       virtual DiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
   1173                                               QualType ConvTy) {
   1174         return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
   1175                  << ConvTy->isEnumeralType() << ConvTy;
   1176       }
   1177 
   1178       virtual DiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
   1179                                                    QualType T,
   1180                                                    QualType ConvTy) {
   1181         return S.Diag(Loc,
   1182                       S.getLangOpts().CPlusPlus11
   1183                         ? diag::warn_cxx98_compat_array_size_conversion
   1184                         : diag::ext_array_size_conversion)
   1185                  << T << ConvTy->isEnumeralType() << ConvTy;
   1186       }
   1187     } SizeDiagnoser(ArraySize);
   1188 
   1189     ExprResult ConvertedSize
   1190       = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize, SizeDiagnoser,
   1191                                            /*AllowScopedEnumerations*/ false);
   1192     if (ConvertedSize.isInvalid())
   1193       return ExprError();
   1194 
   1195     ArraySize = ConvertedSize.take();
   1196     QualType SizeType = ArraySize->getType();
   1197     if (!SizeType->isIntegralOrUnscopedEnumerationType())
   1198       return ExprError();
   1199 
   1200     // C++98 [expr.new]p7:
   1201     //   The expression in a direct-new-declarator shall have integral type
   1202     //   with a non-negative value.
   1203     //
   1204     // Let's see if this is a constant < 0. If so, we reject it out of
   1205     // hand. Otherwise, if it's not a constant, we must have an unparenthesized
   1206     // array type.
   1207     //
   1208     // Note: such a construct has well-defined semantics in C++11: it throws
   1209     // std::bad_array_new_length.
   1210     if (!ArraySize->isValueDependent()) {
   1211       llvm::APSInt Value;
   1212       // We've already performed any required implicit conversion to integer or
   1213       // unscoped enumeration type.
   1214       if (ArraySize->isIntegerConstantExpr(Value, Context)) {
   1215         if (Value < llvm::APSInt(
   1216                         llvm::APInt::getNullValue(Value.getBitWidth()),
   1217                                  Value.isUnsigned())) {
   1218           if (getLangOpts().CPlusPlus11)
   1219             Diag(ArraySize->getLocStart(),
   1220                  diag::warn_typecheck_negative_array_new_size)
   1221               << ArraySize->getSourceRange();
   1222           else
   1223             return ExprError(Diag(ArraySize->getLocStart(),
   1224                                   diag::err_typecheck_negative_array_size)
   1225                              << ArraySize->getSourceRange());
   1226         } else if (!AllocType->isDependentType()) {
   1227           unsigned ActiveSizeBits =
   1228             ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
   1229           if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
   1230             if (getLangOpts().CPlusPlus11)
   1231               Diag(ArraySize->getLocStart(),
   1232                    diag::warn_array_new_too_large)
   1233                 << Value.toString(10)
   1234                 << ArraySize->getSourceRange();
   1235             else
   1236               return ExprError(Diag(ArraySize->getLocStart(),
   1237                                     diag::err_array_too_large)
   1238                                << Value.toString(10)
   1239                                << ArraySize->getSourceRange());
   1240           }
   1241         }
   1242       } else if (TypeIdParens.isValid()) {
   1243         // Can't have dynamic array size when the type-id is in parentheses.
   1244         Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
   1245           << ArraySize->getSourceRange()
   1246           << FixItHint::CreateRemoval(TypeIdParens.getBegin())
   1247           << FixItHint::CreateRemoval(TypeIdParens.getEnd());
   1248 
   1249         TypeIdParens = SourceRange();
   1250       }
   1251     }
   1252 
   1253     // Note that we do *not* convert the argument in any way.  It can
   1254     // be signed, larger than size_t, whatever.
   1255   }
   1256 
   1257   FunctionDecl *OperatorNew = 0;
   1258   FunctionDecl *OperatorDelete = 0;
   1259   Expr **PlaceArgs = PlacementArgs.data();
   1260   unsigned NumPlaceArgs = PlacementArgs.size();
   1261 
   1262   if (!AllocType->isDependentType() &&
   1263       !Expr::hasAnyTypeDependentArguments(
   1264         llvm::makeArrayRef(PlaceArgs, NumPlaceArgs)) &&
   1265       FindAllocationFunctions(StartLoc,
   1266                               SourceRange(PlacementLParen, PlacementRParen),
   1267                               UseGlobal, AllocType, ArraySize, PlaceArgs,
   1268                               NumPlaceArgs, OperatorNew, OperatorDelete))
   1269     return ExprError();
   1270 
   1271   // If this is an array allocation, compute whether the usual array
   1272   // deallocation function for the type has a size_t parameter.
   1273   bool UsualArrayDeleteWantsSize = false;
   1274   if (ArraySize && !AllocType->isDependentType())
   1275     UsualArrayDeleteWantsSize
   1276       = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
   1277 
   1278   SmallVector<Expr *, 8> AllPlaceArgs;
   1279   if (OperatorNew) {
   1280     // Add default arguments, if any.
   1281     const FunctionProtoType *Proto =
   1282       OperatorNew->getType()->getAs<FunctionProtoType>();
   1283     VariadicCallType CallType =
   1284       Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
   1285 
   1286     if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
   1287                                Proto, 1, PlaceArgs, NumPlaceArgs,
   1288                                AllPlaceArgs, CallType))
   1289       return ExprError();
   1290 
   1291     NumPlaceArgs = AllPlaceArgs.size();
   1292     if (NumPlaceArgs > 0)
   1293       PlaceArgs = &AllPlaceArgs[0];
   1294 
   1295     DiagnoseSentinelCalls(OperatorNew, PlacementLParen,
   1296                           PlaceArgs, NumPlaceArgs);
   1297 
   1298     // FIXME: Missing call to CheckFunctionCall or equivalent
   1299   }
   1300 
   1301   // Warn if the type is over-aligned and is being allocated by global operator
   1302   // new.
   1303   if (NumPlaceArgs == 0 && OperatorNew &&
   1304       (OperatorNew->isImplicit() ||
   1305        getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
   1306     if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
   1307       unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
   1308       if (Align > SuitableAlign)
   1309         Diag(StartLoc, diag::warn_overaligned_type)
   1310             << AllocType
   1311             << unsigned(Align / Context.getCharWidth())
   1312             << unsigned(SuitableAlign / Context.getCharWidth());
   1313     }
   1314   }
   1315 
   1316   QualType InitType = AllocType;
   1317   // Array 'new' can't have any initializers except empty parentheses.
   1318   // Initializer lists are also allowed, in C++11. Rely on the parser for the
   1319   // dialect distinction.
   1320   if (ResultType->isArrayType() || ArraySize) {
   1321     if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
   1322       SourceRange InitRange(Inits[0]->getLocStart(),
   1323                             Inits[NumInits - 1]->getLocEnd());
   1324       Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
   1325       return ExprError();
   1326     }
   1327     if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
   1328       // We do the initialization typechecking against the array type
   1329       // corresponding to the number of initializers + 1 (to also check
   1330       // default-initialization).
   1331       unsigned NumElements = ILE->getNumInits() + 1;
   1332       InitType = Context.getConstantArrayType(AllocType,
   1333           llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
   1334                                               ArrayType::Normal, 0);
   1335     }
   1336   }
   1337 
   1338   // If we can perform the initialization, and we've not already done so,
   1339   // do it now.
   1340   if (!AllocType->isDependentType() &&
   1341       !Expr::hasAnyTypeDependentArguments(
   1342         llvm::makeArrayRef(Inits, NumInits)) &&
   1343       !HaveCompleteInit) {
   1344     // C++11 [expr.new]p15:
   1345     //   A new-expression that creates an object of type T initializes that
   1346     //   object as follows:
   1347     InitializationKind Kind
   1348     //     - If the new-initializer is omitted, the object is default-
   1349     //       initialized (8.5); if no initialization is performed,
   1350     //       the object has indeterminate value
   1351       = initStyle == CXXNewExpr::NoInit
   1352           ? InitializationKind::CreateDefault(TypeRange.getBegin())
   1353     //     - Otherwise, the new-initializer is interpreted according to the
   1354     //       initialization rules of 8.5 for direct-initialization.
   1355           : initStyle == CXXNewExpr::ListInit
   1356               ? InitializationKind::CreateDirectList(TypeRange.getBegin())
   1357               : InitializationKind::CreateDirect(TypeRange.getBegin(),
   1358                                                  DirectInitRange.getBegin(),
   1359                                                  DirectInitRange.getEnd());
   1360 
   1361     InitializedEntity Entity
   1362       = InitializedEntity::InitializeNew(StartLoc, InitType);
   1363     InitializationSequence InitSeq(*this, Entity, Kind, Inits, NumInits);
   1364     ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
   1365                                           MultiExprArg(Inits, NumInits));
   1366     if (FullInit.isInvalid())
   1367       return ExprError();
   1368 
   1369     // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
   1370     // we don't want the initialized object to be destructed.
   1371     if (CXXBindTemporaryExpr *Binder =
   1372             dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
   1373       FullInit = Owned(Binder->getSubExpr());
   1374 
   1375     Initializer = FullInit.take();
   1376   }
   1377 
   1378   // Mark the new and delete operators as referenced.
   1379   if (OperatorNew) {
   1380     DiagnoseUseOfDecl(OperatorNew, StartLoc);
   1381     MarkFunctionReferenced(StartLoc, OperatorNew);
   1382   }
   1383   if (OperatorDelete) {
   1384     DiagnoseUseOfDecl(OperatorDelete, StartLoc);
   1385     MarkFunctionReferenced(StartLoc, OperatorDelete);
   1386   }
   1387 
   1388   // C++0x [expr.new]p17:
   1389   //   If the new expression creates an array of objects of class type,
   1390   //   access and ambiguity control are done for the destructor.
   1391   QualType BaseAllocType = Context.getBaseElementType(AllocType);
   1392   if (ArraySize && !BaseAllocType->isDependentType()) {
   1393     if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
   1394       if (CXXDestructorDecl *dtor = LookupDestructor(
   1395               cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
   1396         MarkFunctionReferenced(StartLoc, dtor);
   1397         CheckDestructorAccess(StartLoc, dtor,
   1398                               PDiag(diag::err_access_dtor)
   1399                                 << BaseAllocType);
   1400         DiagnoseUseOfDecl(dtor, StartLoc);
   1401       }
   1402     }
   1403   }
   1404 
   1405   return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
   1406                                         OperatorDelete,
   1407                                         UsualArrayDeleteWantsSize,
   1408                                    llvm::makeArrayRef(PlaceArgs, NumPlaceArgs),
   1409                                         TypeIdParens,
   1410                                         ArraySize, initStyle, Initializer,
   1411                                         ResultType, AllocTypeInfo,
   1412                                         Range, DirectInitRange));
   1413 }
   1414 
   1415 /// \brief Checks that a type is suitable as the allocated type
   1416 /// in a new-expression.
   1417 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
   1418                               SourceRange R) {
   1419   // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
   1420   //   abstract class type or array thereof.
   1421   if (AllocType->isFunctionType())
   1422     return Diag(Loc, diag::err_bad_new_type)
   1423       << AllocType << 0 << R;
   1424   else if (AllocType->isReferenceType())
   1425     return Diag(Loc, diag::err_bad_new_type)
   1426       << AllocType << 1 << R;
   1427   else if (!AllocType->isDependentType() &&
   1428            RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
   1429     return true;
   1430   else if (RequireNonAbstractType(Loc, AllocType,
   1431                                   diag::err_allocation_of_abstract_type))
   1432     return true;
   1433   else if (AllocType->isVariablyModifiedType())
   1434     return Diag(Loc, diag::err_variably_modified_new_type)
   1435              << AllocType;
   1436   else if (unsigned AddressSpace = AllocType.getAddressSpace())
   1437     return Diag(Loc, diag::err_address_space_qualified_new)
   1438       << AllocType.getUnqualifiedType() << AddressSpace;
   1439   else if (getLangOpts().ObjCAutoRefCount) {
   1440     if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
   1441       QualType BaseAllocType = Context.getBaseElementType(AT);
   1442       if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
   1443           BaseAllocType->isObjCLifetimeType())
   1444         return Diag(Loc, diag::err_arc_new_array_without_ownership)
   1445           << BaseAllocType;
   1446     }
   1447   }
   1448 
   1449   return false;
   1450 }
   1451 
   1452 /// \brief Determine whether the given function is a non-placement
   1453 /// deallocation function.
   1454 static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
   1455   if (FD->isInvalidDecl())
   1456     return false;
   1457 
   1458   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
   1459     return Method->isUsualDeallocationFunction();
   1460 
   1461   return ((FD->getOverloadedOperator() == OO_Delete ||
   1462            FD->getOverloadedOperator() == OO_Array_Delete) &&
   1463           FD->getNumParams() == 1);
   1464 }
   1465 
   1466 /// FindAllocationFunctions - Finds the overloads of operator new and delete
   1467 /// that are appropriate for the allocation.
   1468 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
   1469                                    bool UseGlobal, QualType AllocType,
   1470                                    bool IsArray, Expr **PlaceArgs,
   1471                                    unsigned NumPlaceArgs,
   1472                                    FunctionDecl *&OperatorNew,
   1473                                    FunctionDecl *&OperatorDelete) {
   1474   // --- Choosing an allocation function ---
   1475   // C++ 5.3.4p8 - 14 & 18
   1476   // 1) If UseGlobal is true, only look in the global scope. Else, also look
   1477   //   in the scope of the allocated class.
   1478   // 2) If an array size is given, look for operator new[], else look for
   1479   //   operator new.
   1480   // 3) The first argument is always size_t. Append the arguments from the
   1481   //   placement form.
   1482 
   1483   SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
   1484   // We don't care about the actual value of this argument.
   1485   // FIXME: Should the Sema create the expression and embed it in the syntax
   1486   // tree? Or should the consumer just recalculate the value?
   1487   IntegerLiteral Size(Context, llvm::APInt::getNullValue(
   1488                       Context.getTargetInfo().getPointerWidth(0)),
   1489                       Context.getSizeType(),
   1490                       SourceLocation());
   1491   AllocArgs[0] = &Size;
   1492   std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
   1493 
   1494   // C++ [expr.new]p8:
   1495   //   If the allocated type is a non-array type, the allocation
   1496   //   function's name is operator new and the deallocation function's
   1497   //   name is operator delete. If the allocated type is an array
   1498   //   type, the allocation function's name is operator new[] and the
   1499   //   deallocation function's name is operator delete[].
   1500   DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
   1501                                         IsArray ? OO_Array_New : OO_New);
   1502   DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
   1503                                         IsArray ? OO_Array_Delete : OO_Delete);
   1504 
   1505   QualType AllocElemType = Context.getBaseElementType(AllocType);
   1506 
   1507   if (AllocElemType->isRecordType() && !UseGlobal) {
   1508     CXXRecordDecl *Record
   1509       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
   1510     if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
   1511                           AllocArgs.size(), Record, /*AllowMissing=*/true,
   1512                           OperatorNew))
   1513       return true;
   1514   }
   1515   if (!OperatorNew) {
   1516     // Didn't find a member overload. Look for a global one.
   1517     DeclareGlobalNewDelete();
   1518     DeclContext *TUDecl = Context.getTranslationUnitDecl();
   1519     if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
   1520                           AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
   1521                           OperatorNew))
   1522       return true;
   1523   }
   1524 
   1525   // We don't need an operator delete if we're running under
   1526   // -fno-exceptions.
   1527   if (!getLangOpts().Exceptions) {
   1528     OperatorDelete = 0;
   1529     return false;
   1530   }
   1531 
   1532   // FindAllocationOverload can change the passed in arguments, so we need to
   1533   // copy them back.
   1534   if (NumPlaceArgs > 0)
   1535     std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
   1536 
   1537   // C++ [expr.new]p19:
   1538   //
   1539   //   If the new-expression begins with a unary :: operator, the
   1540   //   deallocation function's name is looked up in the global
   1541   //   scope. Otherwise, if the allocated type is a class type T or an
   1542   //   array thereof, the deallocation function's name is looked up in
   1543   //   the scope of T. If this lookup fails to find the name, or if
   1544   //   the allocated type is not a class type or array thereof, the
   1545   //   deallocation function's name is looked up in the global scope.
   1546   LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
   1547   if (AllocElemType->isRecordType() && !UseGlobal) {
   1548     CXXRecordDecl *RD
   1549       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
   1550     LookupQualifiedName(FoundDelete, RD);
   1551   }
   1552   if (FoundDelete.isAmbiguous())
   1553     return true; // FIXME: clean up expressions?
   1554 
   1555   if (FoundDelete.empty()) {
   1556     DeclareGlobalNewDelete();
   1557     LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
   1558   }
   1559 
   1560   FoundDelete.suppressDiagnostics();
   1561 
   1562   SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
   1563 
   1564   // Whether we're looking for a placement operator delete is dictated
   1565   // by whether we selected a placement operator new, not by whether
   1566   // we had explicit placement arguments.  This matters for things like
   1567   //   struct A { void *operator new(size_t, int = 0); ... };
   1568   //   A *a = new A()
   1569   bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
   1570 
   1571   if (isPlacementNew) {
   1572     // C++ [expr.new]p20:
   1573     //   A declaration of a placement deallocation function matches the
   1574     //   declaration of a placement allocation function if it has the
   1575     //   same number of parameters and, after parameter transformations
   1576     //   (8.3.5), all parameter types except the first are
   1577     //   identical. [...]
   1578     //
   1579     // To perform this comparison, we compute the function type that
   1580     // the deallocation function should have, and use that type both
   1581     // for template argument deduction and for comparison purposes.
   1582     //
   1583     // FIXME: this comparison should ignore CC and the like.
   1584     QualType ExpectedFunctionType;
   1585     {
   1586       const FunctionProtoType *Proto
   1587         = OperatorNew->getType()->getAs<FunctionProtoType>();
   1588 
   1589       SmallVector<QualType, 4> ArgTypes;
   1590       ArgTypes.push_back(Context.VoidPtrTy);
   1591       for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
   1592         ArgTypes.push_back(Proto->getArgType(I));
   1593 
   1594       FunctionProtoType::ExtProtoInfo EPI;
   1595       EPI.Variadic = Proto->isVariadic();
   1596 
   1597       ExpectedFunctionType
   1598         = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
   1599     }
   1600 
   1601     for (LookupResult::iterator D = FoundDelete.begin(),
   1602                              DEnd = FoundDelete.end();
   1603          D != DEnd; ++D) {
   1604       FunctionDecl *Fn = 0;
   1605       if (FunctionTemplateDecl *FnTmpl
   1606             = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
   1607         // Perform template argument deduction to try to match the
   1608         // expected function type.
   1609         TemplateDeductionInfo Info(StartLoc);
   1610         if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
   1611           continue;
   1612       } else
   1613         Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
   1614 
   1615       if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
   1616         Matches.push_back(std::make_pair(D.getPair(), Fn));
   1617     }
   1618   } else {
   1619     // C++ [expr.new]p20:
   1620     //   [...] Any non-placement deallocation function matches a
   1621     //   non-placement allocation function. [...]
   1622     for (LookupResult::iterator D = FoundDelete.begin(),
   1623                              DEnd = FoundDelete.end();
   1624          D != DEnd; ++D) {
   1625       if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
   1626         if (isNonPlacementDeallocationFunction(Fn))
   1627           Matches.push_back(std::make_pair(D.getPair(), Fn));
   1628     }
   1629   }
   1630 
   1631   // C++ [expr.new]p20:
   1632   //   [...] If the lookup finds a single matching deallocation
   1633   //   function, that function will be called; otherwise, no
   1634   //   deallocation function will be called.
   1635   if (Matches.size() == 1) {
   1636     OperatorDelete = Matches[0].second;
   1637 
   1638     // C++0x [expr.new]p20:
   1639     //   If the lookup finds the two-parameter form of a usual
   1640     //   deallocation function (3.7.4.2) and that function, considered
   1641     //   as a placement deallocation function, would have been
   1642     //   selected as a match for the allocation function, the program
   1643     //   is ill-formed.
   1644     if (NumPlaceArgs && getLangOpts().CPlusPlus11 &&
   1645         isNonPlacementDeallocationFunction(OperatorDelete)) {
   1646       Diag(StartLoc, diag::err_placement_new_non_placement_delete)
   1647         << SourceRange(PlaceArgs[0]->getLocStart(),
   1648                        PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
   1649       Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
   1650         << DeleteName;
   1651     } else {
   1652       CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
   1653                             Matches[0].first);
   1654     }
   1655   }
   1656 
   1657   return false;
   1658 }
   1659 
   1660 /// FindAllocationOverload - Find an fitting overload for the allocation
   1661 /// function in the specified scope.
   1662 bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
   1663                                   DeclarationName Name, Expr** Args,
   1664                                   unsigned NumArgs, DeclContext *Ctx,
   1665                                   bool AllowMissing, FunctionDecl *&Operator,
   1666                                   bool Diagnose) {
   1667   LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
   1668   LookupQualifiedName(R, Ctx);
   1669   if (R.empty()) {
   1670     if (AllowMissing || !Diagnose)
   1671       return false;
   1672     return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
   1673       << Name << Range;
   1674   }
   1675 
   1676   if (R.isAmbiguous())
   1677     return true;
   1678 
   1679   R.suppressDiagnostics();
   1680 
   1681   OverloadCandidateSet Candidates(StartLoc);
   1682   for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
   1683        Alloc != AllocEnd; ++Alloc) {
   1684     // Even member operator new/delete are implicitly treated as
   1685     // static, so don't use AddMemberCandidate.
   1686     NamedDecl *D = (*Alloc)->getUnderlyingDecl();
   1687 
   1688     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
   1689       AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
   1690                                    /*ExplicitTemplateArgs=*/0,
   1691                                    llvm::makeArrayRef(Args, NumArgs),
   1692                                    Candidates,
   1693                                    /*SuppressUserConversions=*/false);
   1694       continue;
   1695     }
   1696 
   1697     FunctionDecl *Fn = cast<FunctionDecl>(D);
   1698     AddOverloadCandidate(Fn, Alloc.getPair(),
   1699                          llvm::makeArrayRef(Args, NumArgs), Candidates,
   1700                          /*SuppressUserConversions=*/false);
   1701   }
   1702 
   1703   // Do the resolution.
   1704   OverloadCandidateSet::iterator Best;
   1705   switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
   1706   case OR_Success: {
   1707     // Got one!
   1708     FunctionDecl *FnDecl = Best->Function;
   1709     MarkFunctionReferenced(StartLoc, FnDecl);
   1710     // The first argument is size_t, and the first parameter must be size_t,
   1711     // too. This is checked on declaration and can be assumed. (It can't be
   1712     // asserted on, though, since invalid decls are left in there.)
   1713     // Watch out for variadic allocator function.
   1714     unsigned NumArgsInFnDecl = FnDecl->getNumParams();
   1715     for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
   1716       InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
   1717                                                        FnDecl->getParamDecl(i));
   1718 
   1719       if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
   1720         return true;
   1721 
   1722       ExprResult Result
   1723         = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
   1724       if (Result.isInvalid())
   1725         return true;
   1726 
   1727       Args[i] = Result.takeAs<Expr>();
   1728     }
   1729 
   1730     Operator = FnDecl;
   1731 
   1732     if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
   1733                               Best->FoundDecl, Diagnose) == AR_inaccessible)
   1734       return true;
   1735 
   1736     return false;
   1737   }
   1738 
   1739   case OR_No_Viable_Function:
   1740     if (Diagnose) {
   1741       Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
   1742         << Name << Range;
   1743       Candidates.NoteCandidates(*this, OCD_AllCandidates,
   1744                                 llvm::makeArrayRef(Args, NumArgs));
   1745     }
   1746     return true;
   1747 
   1748   case OR_Ambiguous:
   1749     if (Diagnose) {
   1750       Diag(StartLoc, diag::err_ovl_ambiguous_call)
   1751         << Name << Range;
   1752       Candidates.NoteCandidates(*this, OCD_ViableCandidates,
   1753                                 llvm::makeArrayRef(Args, NumArgs));
   1754     }
   1755     return true;
   1756 
   1757   case OR_Deleted: {
   1758     if (Diagnose) {
   1759       Diag(StartLoc, diag::err_ovl_deleted_call)
   1760         << Best->Function->isDeleted()
   1761         << Name
   1762         << getDeletedOrUnavailableSuffix(Best->Function)
   1763         << Range;
   1764       Candidates.NoteCandidates(*this, OCD_AllCandidates,
   1765                                 llvm::makeArrayRef(Args, NumArgs));
   1766     }
   1767     return true;
   1768   }
   1769   }
   1770   llvm_unreachable("Unreachable, bad result from BestViableFunction");
   1771 }
   1772 
   1773 
   1774 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
   1775 /// delete. These are:
   1776 /// @code
   1777 ///   // C++03:
   1778 ///   void* operator new(std::size_t) throw(std::bad_alloc);
   1779 ///   void* operator new[](std::size_t) throw(std::bad_alloc);
   1780 ///   void operator delete(void *) throw();
   1781 ///   void operator delete[](void *) throw();
   1782 ///   // C++0x:
   1783 ///   void* operator new(std::size_t);
   1784 ///   void* operator new[](std::size_t);
   1785 ///   void operator delete(void *);
   1786 ///   void operator delete[](void *);
   1787 /// @endcode
   1788 /// C++0x operator delete is implicitly noexcept.
   1789 /// Note that the placement and nothrow forms of new are *not* implicitly
   1790 /// declared. Their use requires including \<new\>.
   1791 void Sema::DeclareGlobalNewDelete() {
   1792   if (GlobalNewDeleteDeclared)
   1793     return;
   1794 
   1795   // C++ [basic.std.dynamic]p2:
   1796   //   [...] The following allocation and deallocation functions (18.4) are
   1797   //   implicitly declared in global scope in each translation unit of a
   1798   //   program
   1799   //
   1800   //     C++03:
   1801   //     void* operator new(std::size_t) throw(std::bad_alloc);
   1802   //     void* operator new[](std::size_t) throw(std::bad_alloc);
   1803   //     void  operator delete(void*) throw();
   1804   //     void  operator delete[](void*) throw();
   1805   //     C++0x:
   1806   //     void* operator new(std::size_t);
   1807   //     void* operator new[](std::size_t);
   1808   //     void  operator delete(void*);
   1809   //     void  operator delete[](void*);
   1810   //
   1811   //   These implicit declarations introduce only the function names operator
   1812   //   new, operator new[], operator delete, operator delete[].
   1813   //
   1814   // Here, we need to refer to std::bad_alloc, so we will implicitly declare
   1815   // "std" or "bad_alloc" as necessary to form the exception specification.
   1816   // However, we do not make these implicit declarations visible to name
   1817   // lookup.
   1818   // Note that the C++0x versions of operator delete are deallocation functions,
   1819   // and thus are implicitly noexcept.
   1820   if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
   1821     // The "std::bad_alloc" class has not yet been declared, so build it
   1822     // implicitly.
   1823     StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
   1824                                         getOrCreateStdNamespace(),
   1825                                         SourceLocation(), SourceLocation(),
   1826                                       &PP.getIdentifierTable().get("bad_alloc"),
   1827                                         0);
   1828     getStdBadAlloc()->setImplicit(true);
   1829   }
   1830 
   1831   GlobalNewDeleteDeclared = true;
   1832 
   1833   QualType VoidPtr = Context.getPointerType(Context.VoidTy);
   1834   QualType SizeT = Context.getSizeType();
   1835   bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
   1836 
   1837   DeclareGlobalAllocationFunction(
   1838       Context.DeclarationNames.getCXXOperatorName(OO_New),
   1839       VoidPtr, SizeT, AssumeSaneOperatorNew);
   1840   DeclareGlobalAllocationFunction(
   1841       Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
   1842       VoidPtr, SizeT, AssumeSaneOperatorNew);
   1843   DeclareGlobalAllocationFunction(
   1844       Context.DeclarationNames.getCXXOperatorName(OO_Delete),
   1845       Context.VoidTy, VoidPtr);
   1846   DeclareGlobalAllocationFunction(
   1847       Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
   1848       Context.VoidTy, VoidPtr);
   1849 }
   1850 
   1851 /// DeclareGlobalAllocationFunction - Declares a single implicit global
   1852 /// allocation function if it doesn't already exist.
   1853 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
   1854                                            QualType Return, QualType Argument,
   1855                                            bool AddMallocAttr) {
   1856   DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
   1857 
   1858   // Check if this function is already declared.
   1859   {
   1860     DeclContext::lookup_result R = GlobalCtx->lookup(Name);
   1861     for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
   1862          Alloc != AllocEnd; ++Alloc) {
   1863       // Only look at non-template functions, as it is the predefined,
   1864       // non-templated allocation function we are trying to declare here.
   1865       if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
   1866         QualType InitialParamType =
   1867           Context.getCanonicalType(
   1868             Func->getParamDecl(0)->getType().getUnqualifiedType());
   1869         // FIXME: Do we need to check for default arguments here?
   1870         if (Func->getNumParams() == 1 && InitialParamType == Argument) {
   1871           if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
   1872             Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
   1873           return;
   1874         }
   1875       }
   1876     }
   1877   }
   1878 
   1879   QualType BadAllocType;
   1880   bool HasBadAllocExceptionSpec
   1881     = (Name.getCXXOverloadedOperator() == OO_New ||
   1882        Name.getCXXOverloadedOperator() == OO_Array_New);
   1883   if (HasBadAllocExceptionSpec && !getLangOpts().CPlusPlus11) {
   1884     assert(StdBadAlloc && "Must have std::bad_alloc declared");
   1885     BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
   1886   }
   1887 
   1888   FunctionProtoType::ExtProtoInfo EPI;
   1889   if (HasBadAllocExceptionSpec) {
   1890     if (!getLangOpts().CPlusPlus11) {
   1891       EPI.ExceptionSpecType = EST_Dynamic;
   1892       EPI.NumExceptions = 1;
   1893       EPI.Exceptions = &BadAllocType;
   1894     }
   1895   } else {
   1896     EPI.ExceptionSpecType = getLangOpts().CPlusPlus11 ?
   1897                                 EST_BasicNoexcept : EST_DynamicNone;
   1898   }
   1899 
   1900   QualType FnType = Context.getFunctionType(Return, Argument, EPI);
   1901   FunctionDecl *Alloc =
   1902     FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
   1903                          SourceLocation(), Name,
   1904                          FnType, /*TInfo=*/0, SC_None,
   1905                          SC_None, false, true);
   1906   Alloc->setImplicit();
   1907 
   1908   if (AddMallocAttr)
   1909     Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
   1910 
   1911   ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
   1912                                            SourceLocation(), 0,
   1913                                            Argument, /*TInfo=*/0,
   1914                                            SC_None, SC_None, 0);
   1915   Alloc->setParams(Param);
   1916 
   1917   // FIXME: Also add this declaration to the IdentifierResolver, but
   1918   // make sure it is at the end of the chain to coincide with the
   1919   // global scope.
   1920   Context.getTranslationUnitDecl()->addDecl(Alloc);
   1921 }
   1922 
   1923 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
   1924                                     DeclarationName Name,
   1925                                     FunctionDecl* &Operator, bool Diagnose) {
   1926   LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
   1927   // Try to find operator delete/operator delete[] in class scope.
   1928   LookupQualifiedName(Found, RD);
   1929 
   1930   if (Found.isAmbiguous())
   1931     return true;
   1932 
   1933   Found.suppressDiagnostics();
   1934 
   1935   SmallVector<DeclAccessPair,4> Matches;
   1936   for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
   1937        F != FEnd; ++F) {
   1938     NamedDecl *ND = (*F)->getUnderlyingDecl();
   1939 
   1940     // Ignore template operator delete members from the check for a usual
   1941     // deallocation function.
   1942     if (isa<FunctionTemplateDecl>(ND))
   1943       continue;
   1944 
   1945     if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
   1946       Matches.push_back(F.getPair());
   1947   }
   1948 
   1949   // There's exactly one suitable operator;  pick it.
   1950   if (Matches.size() == 1) {
   1951     Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
   1952 
   1953     if (Operator->isDeleted()) {
   1954       if (Diagnose) {
   1955         Diag(StartLoc, diag::err_deleted_function_use);
   1956         NoteDeletedFunction(Operator);
   1957       }
   1958       return true;
   1959     }
   1960 
   1961     if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
   1962                               Matches[0], Diagnose) == AR_inaccessible)
   1963       return true;
   1964 
   1965     return false;
   1966 
   1967   // We found multiple suitable operators;  complain about the ambiguity.
   1968   } else if (!Matches.empty()) {
   1969     if (Diagnose) {
   1970       Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
   1971         << Name << RD;
   1972 
   1973       for (SmallVectorImpl<DeclAccessPair>::iterator
   1974              F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
   1975         Diag((*F)->getUnderlyingDecl()->getLocation(),
   1976              diag::note_member_declared_here) << Name;
   1977     }
   1978     return true;
   1979   }
   1980 
   1981   // We did find operator delete/operator delete[] declarations, but
   1982   // none of them were suitable.
   1983   if (!Found.empty()) {
   1984     if (Diagnose) {
   1985       Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
   1986         << Name << RD;
   1987 
   1988       for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
   1989            F != FEnd; ++F)
   1990         Diag((*F)->getUnderlyingDecl()->getLocation(),
   1991              diag::note_member_declared_here) << Name;
   1992     }
   1993     return true;
   1994   }
   1995 
   1996   // Look for a global declaration.
   1997   DeclareGlobalNewDelete();
   1998   DeclContext *TUDecl = Context.getTranslationUnitDecl();
   1999 
   2000   CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
   2001   Expr* DeallocArgs[1];
   2002   DeallocArgs[0] = &Null;
   2003   if (FindAllocationOverload(StartLoc, SourceRange(), Name,
   2004                              DeallocArgs, 1, TUDecl, !Diagnose,
   2005                              Operator, Diagnose))
   2006     return true;
   2007 
   2008   assert(Operator && "Did not find a deallocation function!");
   2009   return false;
   2010 }
   2011 
   2012 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
   2013 /// @code ::delete ptr; @endcode
   2014 /// or
   2015 /// @code delete [] ptr; @endcode
   2016 ExprResult
   2017 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
   2018                      bool ArrayForm, Expr *ExE) {
   2019   // C++ [expr.delete]p1:
   2020   //   The operand shall have a pointer type, or a class type having a single
   2021   //   conversion function to a pointer type. The result has type void.
   2022   //
   2023   // DR599 amends "pointer type" to "pointer to object type" in both cases.
   2024 
   2025   ExprResult Ex = Owned(ExE);
   2026   FunctionDecl *OperatorDelete = 0;
   2027   bool ArrayFormAsWritten = ArrayForm;
   2028   bool UsualArrayDeleteWantsSize = false;
   2029 
   2030   if (!Ex.get()->isTypeDependent()) {
   2031     // Perform lvalue-to-rvalue cast, if needed.
   2032     Ex = DefaultLvalueConversion(Ex.take());
   2033     if (Ex.isInvalid())
   2034       return ExprError();
   2035 
   2036     QualType Type = Ex.get()->getType();
   2037 
   2038     if (const RecordType *Record = Type->getAs<RecordType>()) {
   2039       if (RequireCompleteType(StartLoc, Type,
   2040                               diag::err_delete_incomplete_class_type))
   2041         return ExprError();
   2042 
   2043       SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
   2044 
   2045       CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
   2046       std::pair<CXXRecordDecl::conversion_iterator,
   2047                 CXXRecordDecl::conversion_iterator>
   2048         Conversions = RD->getVisibleConversionFunctions();
   2049       for (CXXRecordDecl::conversion_iterator
   2050              I = Conversions.first, E = Conversions.second; I != E; ++I) {
   2051         NamedDecl *D = I.getDecl();
   2052         if (isa<UsingShadowDecl>(D))
   2053           D = cast<UsingShadowDecl>(D)->getTargetDecl();
   2054 
   2055         // Skip over templated conversion functions; they aren't considered.
   2056         if (isa<FunctionTemplateDecl>(D))
   2057           continue;
   2058 
   2059         CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
   2060 
   2061         QualType ConvType = Conv->getConversionType().getNonReferenceType();
   2062         if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
   2063           if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
   2064             ObjectPtrConversions.push_back(Conv);
   2065       }
   2066       if (ObjectPtrConversions.size() == 1) {
   2067         // We have a single conversion to a pointer-to-object type. Perform
   2068         // that conversion.
   2069         // TODO: don't redo the conversion calculation.
   2070         ExprResult Res =
   2071           PerformImplicitConversion(Ex.get(),
   2072                             ObjectPtrConversions.front()->getConversionType(),
   2073                                     AA_Converting);
   2074         if (Res.isUsable()) {
   2075           Ex = Res;
   2076           Type = Ex.get()->getType();
   2077         }
   2078       }
   2079       else if (ObjectPtrConversions.size() > 1) {
   2080         Diag(StartLoc, diag::err_ambiguous_delete_operand)
   2081               << Type << Ex.get()->getSourceRange();
   2082         for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
   2083           NoteOverloadCandidate(ObjectPtrConversions[i]);
   2084         return ExprError();
   2085       }
   2086     }
   2087 
   2088     if (!Type->isPointerType())
   2089       return ExprError(Diag(StartLoc, diag::err_delete_operand)
   2090         << Type << Ex.get()->getSourceRange());
   2091 
   2092     QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
   2093     QualType PointeeElem = Context.getBaseElementType(Pointee);
   2094 
   2095     if (unsigned AddressSpace = Pointee.getAddressSpace())
   2096       return Diag(Ex.get()->getLocStart(),
   2097                   diag::err_address_space_qualified_delete)
   2098                << Pointee.getUnqualifiedType() << AddressSpace;
   2099 
   2100     CXXRecordDecl *PointeeRD = 0;
   2101     if (Pointee->isVoidType() && !isSFINAEContext()) {
   2102       // The C++ standard bans deleting a pointer to a non-object type, which
   2103       // effectively bans deletion of "void*". However, most compilers support
   2104       // this, so we treat it as a warning unless we're in a SFINAE context.
   2105       Diag(StartLoc, diag::ext_delete_void_ptr_operand)
   2106         << Type << Ex.get()->getSourceRange();
   2107     } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
   2108       return ExprError(Diag(StartLoc, diag::err_delete_operand)
   2109         << Type << Ex.get()->getSourceRange());
   2110     } else if (!Pointee->isDependentType()) {
   2111       if (!RequireCompleteType(StartLoc, Pointee,
   2112                                diag::warn_delete_incomplete, Ex.get())) {
   2113         if (const RecordType *RT = PointeeElem->getAs<RecordType>())
   2114           PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
   2115       }
   2116     }
   2117 
   2118     // C++ [expr.delete]p2:
   2119     //   [Note: a pointer to a const type can be the operand of a
   2120     //   delete-expression; it is not necessary to cast away the constness
   2121     //   (5.2.11) of the pointer expression before it is used as the operand
   2122     //   of the delete-expression. ]
   2123 
   2124     if (Pointee->isArrayType() && !ArrayForm) {
   2125       Diag(StartLoc, diag::warn_delete_array_type)
   2126           << Type << Ex.get()->getSourceRange()
   2127           << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
   2128       ArrayForm = true;
   2129     }
   2130 
   2131     DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
   2132                                       ArrayForm ? OO_Array_Delete : OO_Delete);
   2133 
   2134     if (PointeeRD) {
   2135       if (!UseGlobal &&
   2136           FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
   2137                                    OperatorDelete))
   2138         return ExprError();
   2139 
   2140       // If we're allocating an array of records, check whether the
   2141       // usual operator delete[] has a size_t parameter.
   2142       if (ArrayForm) {
   2143         // If the user specifically asked to use the global allocator,
   2144         // we'll need to do the lookup into the class.
   2145         if (UseGlobal)
   2146           UsualArrayDeleteWantsSize =
   2147             doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
   2148 
   2149         // Otherwise, the usual operator delete[] should be the
   2150         // function we just found.
   2151         else if (isa<CXXMethodDecl>(OperatorDelete))
   2152           UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
   2153       }
   2154 
   2155       if (!PointeeRD->hasIrrelevantDestructor())
   2156         if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
   2157           MarkFunctionReferenced(StartLoc,
   2158                                     const_cast<CXXDestructorDecl*>(Dtor));
   2159           DiagnoseUseOfDecl(Dtor, StartLoc);
   2160         }
   2161 
   2162       // C++ [expr.delete]p3:
   2163       //   In the first alternative (delete object), if the static type of the
   2164       //   object to be deleted is different from its dynamic type, the static
   2165       //   type shall be a base class of the dynamic type of the object to be
   2166       //   deleted and the static type shall have a virtual destructor or the
   2167       //   behavior is undefined.
   2168       //
   2169       // Note: a final class cannot be derived from, no issue there
   2170       if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
   2171         CXXDestructorDecl *dtor = PointeeRD->getDestructor();
   2172         if (dtor && !dtor->isVirtual()) {
   2173           if (PointeeRD->isAbstract()) {
   2174             // If the class is abstract, we warn by default, because we're
   2175             // sure the code has undefined behavior.
   2176             Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
   2177                 << PointeeElem;
   2178           } else if (!ArrayForm) {
   2179             // Otherwise, if this is not an array delete, it's a bit suspect,
   2180             // but not necessarily wrong.
   2181             Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
   2182           }
   2183         }
   2184       }
   2185 
   2186     }
   2187 
   2188     if (!OperatorDelete) {
   2189       // Look for a global declaration.
   2190       DeclareGlobalNewDelete();
   2191       DeclContext *TUDecl = Context.getTranslationUnitDecl();
   2192       Expr *Arg = Ex.get();
   2193       if (!Context.hasSameType(Arg->getType(), Context.VoidPtrTy))
   2194         Arg = ImplicitCastExpr::Create(Context, Context.VoidPtrTy,
   2195                                        CK_BitCast, Arg, 0, VK_RValue);
   2196       if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
   2197                                  &Arg, 1, TUDecl, /*AllowMissing=*/false,
   2198                                  OperatorDelete))
   2199         return ExprError();
   2200     }
   2201 
   2202     MarkFunctionReferenced(StartLoc, OperatorDelete);
   2203 
   2204     // Check access and ambiguity of operator delete and destructor.
   2205     if (PointeeRD) {
   2206       if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
   2207           CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
   2208                       PDiag(diag::err_access_dtor) << PointeeElem);
   2209       }
   2210     }
   2211 
   2212   }
   2213 
   2214   return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
   2215                                            ArrayFormAsWritten,
   2216                                            UsualArrayDeleteWantsSize,
   2217                                            OperatorDelete, Ex.take(), StartLoc));
   2218 }
   2219 
   2220 /// \brief Check the use of the given variable as a C++ condition in an if,
   2221 /// while, do-while, or switch statement.
   2222 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
   2223                                         SourceLocation StmtLoc,
   2224                                         bool ConvertToBoolean) {
   2225   QualType T = ConditionVar->getType();
   2226 
   2227   // C++ [stmt.select]p2:
   2228   //   The declarator shall not specify a function or an array.
   2229   if (T->isFunctionType())
   2230     return ExprError(Diag(ConditionVar->getLocation(),
   2231                           diag::err_invalid_use_of_function_type)
   2232                        << ConditionVar->getSourceRange());
   2233   else if (T->isArrayType())
   2234     return ExprError(Diag(ConditionVar->getLocation(),
   2235                           diag::err_invalid_use_of_array_type)
   2236                      << ConditionVar->getSourceRange());
   2237 
   2238   ExprResult Condition =
   2239     Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
   2240                               SourceLocation(),
   2241                               ConditionVar,
   2242                               /*enclosing*/ false,
   2243                               ConditionVar->getLocation(),
   2244                               ConditionVar->getType().getNonReferenceType(),
   2245                               VK_LValue));
   2246 
   2247   MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
   2248 
   2249   if (ConvertToBoolean) {
   2250     Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
   2251     if (Condition.isInvalid())
   2252       return ExprError();
   2253   }
   2254 
   2255   return Condition;
   2256 }
   2257 
   2258 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
   2259 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
   2260   // C++ 6.4p4:
   2261   // The value of a condition that is an initialized declaration in a statement
   2262   // other than a switch statement is the value of the declared variable
   2263   // implicitly converted to type bool. If that conversion is ill-formed, the
   2264   // program is ill-formed.
   2265   // The value of a condition that is an expression is the value of the
   2266   // expression, implicitly converted to bool.
   2267   //
   2268   return PerformContextuallyConvertToBool(CondExpr);
   2269 }
   2270 
   2271 /// Helper function to determine whether this is the (deprecated) C++
   2272 /// conversion from a string literal to a pointer to non-const char or
   2273 /// non-const wchar_t (for narrow and wide string literals,
   2274 /// respectively).
   2275 bool
   2276 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
   2277   // Look inside the implicit cast, if it exists.
   2278   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
   2279     From = Cast->getSubExpr();
   2280 
   2281   // A string literal (2.13.4) that is not a wide string literal can
   2282   // be converted to an rvalue of type "pointer to char"; a wide
   2283   // string literal can be converted to an rvalue of type "pointer
   2284   // to wchar_t" (C++ 4.2p2).
   2285   if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
   2286     if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
   2287       if (const BuiltinType *ToPointeeType
   2288           = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
   2289         // This conversion is considered only when there is an
   2290         // explicit appropriate pointer target type (C++ 4.2p2).
   2291         if (!ToPtrType->getPointeeType().hasQualifiers()) {
   2292           switch (StrLit->getKind()) {
   2293             case StringLiteral::UTF8:
   2294             case StringLiteral::UTF16:
   2295             case StringLiteral::UTF32:
   2296               // We don't allow UTF literals to be implicitly converted
   2297               break;
   2298             case StringLiteral::Ascii:
   2299               return (ToPointeeType->getKind() == BuiltinType::Char_U ||
   2300                       ToPointeeType->getKind() == BuiltinType::Char_S);
   2301             case StringLiteral::Wide:
   2302               return ToPointeeType->isWideCharType();
   2303           }
   2304         }
   2305       }
   2306 
   2307   return false;
   2308 }
   2309 
   2310 static ExprResult BuildCXXCastArgument(Sema &S,
   2311                                        SourceLocation CastLoc,
   2312                                        QualType Ty,
   2313                                        CastKind Kind,
   2314                                        CXXMethodDecl *Method,
   2315                                        DeclAccessPair FoundDecl,
   2316                                        bool HadMultipleCandidates,
   2317                                        Expr *From) {
   2318   switch (Kind) {
   2319   default: llvm_unreachable("Unhandled cast kind!");
   2320   case CK_ConstructorConversion: {
   2321     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
   2322     SmallVector<Expr*, 8> ConstructorArgs;
   2323 
   2324     if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
   2325       return ExprError();
   2326 
   2327     S.CheckConstructorAccess(CastLoc, Constructor,
   2328                              InitializedEntity::InitializeTemporary(Ty),
   2329                              Constructor->getAccess());
   2330 
   2331     ExprResult Result
   2332       = S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
   2333                                 ConstructorArgs, HadMultipleCandidates,
   2334                                 /*ListInit*/ false, /*ZeroInit*/ false,
   2335                                 CXXConstructExpr::CK_Complete, SourceRange());
   2336     if (Result.isInvalid())
   2337       return ExprError();
   2338 
   2339     return S.MaybeBindToTemporary(Result.takeAs<Expr>());
   2340   }
   2341 
   2342   case CK_UserDefinedConversion: {
   2343     assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
   2344 
   2345     // Create an implicit call expr that calls it.
   2346     CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
   2347     ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
   2348                                                  HadMultipleCandidates);
   2349     if (Result.isInvalid())
   2350       return ExprError();
   2351     // Record usage of conversion in an implicit cast.
   2352     Result = S.Owned(ImplicitCastExpr::Create(S.Context,
   2353                                               Result.get()->getType(),
   2354                                               CK_UserDefinedConversion,
   2355                                               Result.get(), 0,
   2356                                               Result.get()->getValueKind()));
   2357 
   2358     S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ 0, FoundDecl);
   2359 
   2360     return S.MaybeBindToTemporary(Result.get());
   2361   }
   2362   }
   2363 }
   2364 
   2365 /// PerformImplicitConversion - Perform an implicit conversion of the
   2366 /// expression From to the type ToType using the pre-computed implicit
   2367 /// conversion sequence ICS. Returns the converted
   2368 /// expression. Action is the kind of conversion we're performing,
   2369 /// used in the error message.
   2370 ExprResult
   2371 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
   2372                                 const ImplicitConversionSequence &ICS,
   2373                                 AssignmentAction Action,
   2374                                 CheckedConversionKind CCK) {
   2375   switch (ICS.getKind()) {
   2376   case ImplicitConversionSequence::StandardConversion: {
   2377     ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
   2378                                                Action, CCK);
   2379     if (Res.isInvalid())
   2380       return ExprError();
   2381     From = Res.take();
   2382     break;
   2383   }
   2384 
   2385   case ImplicitConversionSequence::UserDefinedConversion: {
   2386 
   2387       FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
   2388       CastKind CastKind;
   2389       QualType BeforeToType;
   2390       assert(FD && "FIXME: aggregate initialization from init list");
   2391       if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
   2392         CastKind = CK_UserDefinedConversion;
   2393 
   2394         // If the user-defined conversion is specified by a conversion function,
   2395         // the initial standard conversion sequence converts the source type to
   2396         // the implicit object parameter of the conversion function.
   2397         BeforeToType = Context.getTagDeclType(Conv->getParent());
   2398       } else {
   2399         const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
   2400         CastKind = CK_ConstructorConversion;
   2401         // Do no conversion if dealing with ... for the first conversion.
   2402         if (!ICS.UserDefined.EllipsisConversion) {
   2403           // If the user-defined conversion is specified by a constructor, the
   2404           // initial standard conversion sequence converts the source type to the
   2405           // type required by the argument of the constructor
   2406           BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
   2407         }
   2408       }
   2409       // Watch out for elipsis conversion.
   2410       if (!ICS.UserDefined.EllipsisConversion) {
   2411         ExprResult Res =
   2412           PerformImplicitConversion(From, BeforeToType,
   2413                                     ICS.UserDefined.Before, AA_Converting,
   2414                                     CCK);
   2415         if (Res.isInvalid())
   2416           return ExprError();
   2417         From = Res.take();
   2418       }
   2419 
   2420       ExprResult CastArg
   2421         = BuildCXXCastArgument(*this,
   2422                                From->getLocStart(),
   2423                                ToType.getNonReferenceType(),
   2424                                CastKind, cast<CXXMethodDecl>(FD),
   2425                                ICS.UserDefined.FoundConversionFunction,
   2426                                ICS.UserDefined.HadMultipleCandidates,
   2427                                From);
   2428 
   2429       if (CastArg.isInvalid())
   2430         return ExprError();
   2431 
   2432       From = CastArg.take();
   2433 
   2434       return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
   2435                                        AA_Converting, CCK);
   2436   }
   2437 
   2438   case ImplicitConversionSequence::AmbiguousConversion:
   2439     ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
   2440                           PDiag(diag::err_typecheck_ambiguous_condition)
   2441                             << From->getSourceRange());
   2442      return ExprError();
   2443 
   2444   case ImplicitConversionSequence::EllipsisConversion:
   2445     llvm_unreachable("Cannot perform an ellipsis conversion");
   2446 
   2447   case ImplicitConversionSequence::BadConversion:
   2448     return ExprError();
   2449   }
   2450 
   2451   // Everything went well.
   2452   return Owned(From);
   2453 }
   2454 
   2455 /// PerformImplicitConversion - Perform an implicit conversion of the
   2456 /// expression From to the type ToType by following the standard
   2457 /// conversion sequence SCS. Returns the converted
   2458 /// expression. Flavor is the context in which we're performing this
   2459 /// conversion, for use in error messages.
   2460 ExprResult
   2461 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
   2462                                 const StandardConversionSequence& SCS,
   2463                                 AssignmentAction Action,
   2464                                 CheckedConversionKind CCK) {
   2465   bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
   2466 
   2467   // Overall FIXME: we are recomputing too many types here and doing far too
   2468   // much extra work. What this means is that we need to keep track of more
   2469   // information that is computed when we try the implicit conversion initially,
   2470   // so that we don't need to recompute anything here.
   2471   QualType FromType = From->getType();
   2472 
   2473   if (SCS.CopyConstructor) {
   2474     // FIXME: When can ToType be a reference type?
   2475     assert(!ToType->isReferenceType());
   2476     if (SCS.Second == ICK_Derived_To_Base) {
   2477       SmallVector<Expr*, 8> ConstructorArgs;
   2478       if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
   2479                                   From, /*FIXME:ConstructLoc*/SourceLocation(),
   2480                                   ConstructorArgs))
   2481         return ExprError();
   2482       return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
   2483                                    ToType, SCS.CopyConstructor,
   2484                                    ConstructorArgs,
   2485                                    /*HadMultipleCandidates*/ false,
   2486                                    /*ListInit*/ false, /*ZeroInit*/ false,
   2487                                    CXXConstructExpr::CK_Complete,
   2488                                    SourceRange());
   2489     }
   2490     return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
   2491                                  ToType, SCS.CopyConstructor,
   2492                                  From, /*HadMultipleCandidates*/ false,
   2493                                  /*ListInit*/ false, /*ZeroInit*/ false,
   2494                                  CXXConstructExpr::CK_Complete,
   2495                                  SourceRange());
   2496   }
   2497 
   2498   // Resolve overloaded function references.
   2499   if (Context.hasSameType(FromType, Context.OverloadTy)) {
   2500     DeclAccessPair Found;
   2501     FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
   2502                                                           true, Found);
   2503     if (!Fn)
   2504       return ExprError();
   2505 
   2506     if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
   2507       return ExprError();
   2508 
   2509     From = FixOverloadedFunctionReference(From, Found, Fn);
   2510     FromType = From->getType();
   2511   }
   2512 
   2513   // Perform the first implicit conversion.
   2514   switch (SCS.First) {
   2515   case ICK_Identity:
   2516     // Nothing to do.
   2517     break;
   2518 
   2519   case ICK_Lvalue_To_Rvalue: {
   2520     assert(From->getObjectKind() != OK_ObjCProperty);
   2521     FromType = FromType.getUnqualifiedType();
   2522     ExprResult FromRes = DefaultLvalueConversion(From);
   2523     assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
   2524     From = FromRes.take();
   2525     break;
   2526   }
   2527 
   2528   case ICK_Array_To_Pointer:
   2529     FromType = Context.getArrayDecayedType(FromType);
   2530     From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
   2531                              VK_RValue, /*BasePath=*/0, CCK).take();
   2532     break;
   2533 
   2534   case ICK_Function_To_Pointer:
   2535     FromType = Context.getPointerType(FromType);
   2536     From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
   2537                              VK_RValue, /*BasePath=*/0, CCK).take();
   2538     break;
   2539 
   2540   default:
   2541     llvm_unreachable("Improper first standard conversion");
   2542   }
   2543 
   2544   // Perform the second implicit conversion
   2545   switch (SCS.Second) {
   2546   case ICK_Identity:
   2547     // If both sides are functions (or pointers/references to them), there could
   2548     // be incompatible exception declarations.
   2549     if (CheckExceptionSpecCompatibility(From, ToType))
   2550       return ExprError();
   2551     // Nothing else to do.
   2552     break;
   2553 
   2554   case ICK_NoReturn_Adjustment:
   2555     // If both sides are functions (or pointers/references to them), there could
   2556     // be incompatible exception declarations.
   2557     if (CheckExceptionSpecCompatibility(From, ToType))
   2558       return ExprError();
   2559 
   2560     From = ImpCastExprToType(From, ToType, CK_NoOp,
   2561                              VK_RValue, /*BasePath=*/0, CCK).take();
   2562     break;
   2563 
   2564   case ICK_Integral_Promotion:
   2565   case ICK_Integral_Conversion:
   2566     if (ToType->isBooleanType()) {
   2567       assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
   2568              SCS.Second == ICK_Integral_Promotion &&
   2569              "only enums with fixed underlying type can promote to bool");
   2570       From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
   2571                                VK_RValue, /*BasePath=*/0, CCK).take();
   2572     } else {
   2573       From = ImpCastExprToType(From, ToType, CK_IntegralCast,
   2574                                VK_RValue, /*BasePath=*/0, CCK).take();
   2575     }
   2576     break;
   2577 
   2578   case ICK_Floating_Promotion:
   2579   case ICK_Floating_Conversion:
   2580     From = ImpCastExprToType(From, ToType, CK_FloatingCast,
   2581                              VK_RValue, /*BasePath=*/0, CCK).take();
   2582     break;
   2583 
   2584   case ICK_Complex_Promotion:
   2585   case ICK_Complex_Conversion: {
   2586     QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
   2587     QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
   2588     CastKind CK;
   2589     if (FromEl->isRealFloatingType()) {
   2590       if (ToEl->isRealFloatingType())
   2591         CK = CK_FloatingComplexCast;
   2592       else
   2593         CK = CK_FloatingComplexToIntegralComplex;
   2594     } else if (ToEl->isRealFloatingType()) {
   2595       CK = CK_IntegralComplexToFloatingComplex;
   2596     } else {
   2597       CK = CK_IntegralComplexCast;
   2598     }
   2599     From = ImpCastExprToType(From, ToType, CK,
   2600                              VK_RValue, /*BasePath=*/0, CCK).take();
   2601     break;
   2602   }
   2603 
   2604   case ICK_Floating_Integral:
   2605     if (ToType->isRealFloatingType())
   2606       From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
   2607                                VK_RValue, /*BasePath=*/0, CCK).take();
   2608     else
   2609       From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
   2610                                VK_RValue, /*BasePath=*/0, CCK).take();
   2611     break;
   2612 
   2613   case ICK_Compatible_Conversion:
   2614       From = ImpCastExprToType(From, ToType, CK_NoOp,
   2615                                VK_RValue, /*BasePath=*/0, CCK).take();
   2616     break;
   2617 
   2618   case ICK_Writeback_Conversion:
   2619   case ICK_Pointer_Conversion: {
   2620     if (SCS.IncompatibleObjC && Action != AA_Casting) {
   2621       // Diagnose incompatible Objective-C conversions
   2622       if (Action == AA_Initializing || Action == AA_Assigning)
   2623         Diag(From->getLocStart(),
   2624              diag::ext_typecheck_convert_incompatible_pointer)
   2625           << ToType << From->getType() << Action
   2626           << From->getSourceRange() << 0;
   2627       else
   2628         Diag(From->getLocStart(),
   2629              diag::ext_typecheck_convert_incompatible_pointer)
   2630           << From->getType() << ToType << Action
   2631           << From->getSourceRange() << 0;
   2632 
   2633       if (From->getType()->isObjCObjectPointerType() &&
   2634           ToType->isObjCObjectPointerType())
   2635         EmitRelatedResultTypeNote(From);
   2636     }
   2637     else if (getLangOpts().ObjCAutoRefCount &&
   2638              !CheckObjCARCUnavailableWeakConversion(ToType,
   2639                                                     From->getType())) {
   2640       if (Action == AA_Initializing)
   2641         Diag(From->getLocStart(),
   2642              diag::err_arc_weak_unavailable_assign);
   2643       else
   2644         Diag(From->getLocStart(),
   2645              diag::err_arc_convesion_of_weak_unavailable)
   2646           << (Action == AA_Casting) << From->getType() << ToType
   2647           << From->getSourceRange();
   2648     }
   2649 
   2650     CastKind Kind = CK_Invalid;
   2651     CXXCastPath BasePath;
   2652     if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
   2653       return ExprError();
   2654 
   2655     // Make sure we extend blocks if necessary.
   2656     // FIXME: doing this here is really ugly.
   2657     if (Kind == CK_BlockPointerToObjCPointerCast) {
   2658       ExprResult E = From;
   2659       (void) PrepareCastToObjCObjectPointer(E);
   2660       From = E.take();
   2661     }
   2662 
   2663     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
   2664              .take();
   2665     break;
   2666   }
   2667 
   2668   case ICK_Pointer_Member: {
   2669     CastKind Kind = CK_Invalid;
   2670     CXXCastPath BasePath;
   2671     if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
   2672       return ExprError();
   2673     if (CheckExceptionSpecCompatibility(From, ToType))
   2674       return ExprError();
   2675     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
   2676              .take();
   2677     break;
   2678   }
   2679 
   2680   case ICK_Boolean_Conversion:
   2681     // Perform half-to-boolean conversion via float.
   2682     if (From->getType()->isHalfType()) {
   2683       From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).take();
   2684       FromType = Context.FloatTy;
   2685     }
   2686 
   2687     From = ImpCastExprToType(From, Context.BoolTy,
   2688                              ScalarTypeToBooleanCastKind(FromType),
   2689                              VK_RValue, /*BasePath=*/0, CCK).take();
   2690     break;
   2691 
   2692   case ICK_Derived_To_Base: {
   2693     CXXCastPath BasePath;
   2694     if (CheckDerivedToBaseConversion(From->getType(),
   2695                                      ToType.getNonReferenceType(),
   2696                                      From->getLocStart(),
   2697                                      From->getSourceRange(),
   2698                                      &BasePath,
   2699                                      CStyle))
   2700       return ExprError();
   2701 
   2702     From = ImpCastExprToType(From, ToType.getNonReferenceType(),
   2703                       CK_DerivedToBase, From->getValueKind(),
   2704                       &BasePath, CCK).take();
   2705     break;
   2706   }
   2707 
   2708   case ICK_Vector_Conversion:
   2709     From = ImpCastExprToType(From, ToType, CK_BitCast,
   2710                              VK_RValue, /*BasePath=*/0, CCK).take();
   2711     break;
   2712 
   2713   case ICK_Vector_Splat:
   2714     From = ImpCastExprToType(From, ToType, CK_VectorSplat,
   2715                              VK_RValue, /*BasePath=*/0, CCK).take();
   2716     break;
   2717 
   2718   case ICK_Complex_Real:
   2719     // Case 1.  x -> _Complex y
   2720     if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
   2721       QualType ElType = ToComplex->getElementType();
   2722       bool isFloatingComplex = ElType->isRealFloatingType();
   2723 
   2724       // x -> y
   2725       if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
   2726         // do nothing
   2727       } else if (From->getType()->isRealFloatingType()) {
   2728         From = ImpCastExprToType(From, ElType,
   2729                 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
   2730       } else {
   2731         assert(From->getType()->isIntegerType());
   2732         From = ImpCastExprToType(From, ElType,
   2733                 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
   2734       }
   2735       // y -> _Complex y
   2736       From = ImpCastExprToType(From, ToType,
   2737                    isFloatingComplex ? CK_FloatingRealToComplex
   2738                                      : CK_IntegralRealToComplex).take();
   2739 
   2740     // Case 2.  _Complex x -> y
   2741     } else {
   2742       const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
   2743       assert(FromComplex);
   2744 
   2745       QualType ElType = FromComplex->getElementType();
   2746       bool isFloatingComplex = ElType->isRealFloatingType();
   2747 
   2748       // _Complex x -> x
   2749       From = ImpCastExprToType(From, ElType,
   2750                    isFloatingComplex ? CK_FloatingComplexToReal
   2751                                      : CK_IntegralComplexToReal,
   2752                                VK_RValue, /*BasePath=*/0, CCK).take();
   2753 
   2754       // x -> y
   2755       if (Context.hasSameUnqualifiedType(ElType, ToType)) {
   2756         // do nothing
   2757       } else if (ToType->isRealFloatingType()) {
   2758         From = ImpCastExprToType(From, ToType,
   2759                    isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
   2760                                  VK_RValue, /*BasePath=*/0, CCK).take();
   2761       } else {
   2762         assert(ToType->isIntegerType());
   2763         From = ImpCastExprToType(From, ToType,
   2764                    isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
   2765                                  VK_RValue, /*BasePath=*/0, CCK).take();
   2766       }
   2767     }
   2768     break;
   2769 
   2770   case ICK_Block_Pointer_Conversion: {
   2771     From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
   2772                              VK_RValue, /*BasePath=*/0, CCK).take();
   2773     break;
   2774   }
   2775 
   2776   case ICK_TransparentUnionConversion: {
   2777     ExprResult FromRes = Owned(From);
   2778     Sema::AssignConvertType ConvTy =
   2779       CheckTransparentUnionArgumentConstraints(ToType, FromRes);
   2780     if (FromRes.isInvalid())
   2781       return ExprError();
   2782     From = FromRes.take();
   2783     assert ((ConvTy == Sema::Compatible) &&
   2784             "Improper transparent union conversion");
   2785     (void)ConvTy;
   2786     break;
   2787   }
   2788 
   2789   case ICK_Zero_Event_Conversion:
   2790     From = ImpCastExprToType(From, ToType,
   2791                              CK_ZeroToOCLEvent,
   2792                              From->getValueKind()).take();
   2793     break;
   2794 
   2795   case ICK_Lvalue_To_Rvalue:
   2796   case ICK_Array_To_Pointer:
   2797   case ICK_Function_To_Pointer:
   2798   case ICK_Qualification:
   2799   case ICK_Num_Conversion_Kinds:
   2800     llvm_unreachable("Improper second standard conversion");
   2801   }
   2802 
   2803   switch (SCS.Third) {
   2804   case ICK_Identity:
   2805     // Nothing to do.
   2806     break;
   2807 
   2808   case ICK_Qualification: {
   2809     // The qualification keeps the category of the inner expression, unless the
   2810     // target type isn't a reference.
   2811     ExprValueKind VK = ToType->isReferenceType() ?
   2812                                   From->getValueKind() : VK_RValue;
   2813     From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
   2814                              CK_NoOp, VK, /*BasePath=*/0, CCK).take();
   2815 
   2816     if (SCS.DeprecatedStringLiteralToCharPtr &&
   2817         !getLangOpts().WritableStrings)
   2818       Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
   2819         << ToType.getNonReferenceType();
   2820 
   2821     break;
   2822     }
   2823 
   2824   default:
   2825     llvm_unreachable("Improper third standard conversion");
   2826   }
   2827 
   2828   // If this conversion sequence involved a scalar -> atomic conversion, perform
   2829   // that conversion now.
   2830   if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>())
   2831     if (Context.hasSameType(ToAtomic->getValueType(), From->getType()))
   2832       From = ImpCastExprToType(From, ToType, CK_NonAtomicToAtomic, VK_RValue, 0,
   2833                                CCK).take();
   2834 
   2835   return Owned(From);
   2836 }
   2837 
   2838 ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
   2839                                      SourceLocation KWLoc,
   2840                                      ParsedType Ty,
   2841                                      SourceLocation RParen) {
   2842   TypeSourceInfo *TSInfo;
   2843   QualType T = GetTypeFromParser(Ty, &TSInfo);
   2844 
   2845   if (!TSInfo)
   2846     TSInfo = Context.getTrivialTypeSourceInfo(T);
   2847   return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
   2848 }
   2849 
   2850 /// \brief Check the completeness of a type in a unary type trait.
   2851 ///
   2852 /// If the particular type trait requires a complete type, tries to complete
   2853 /// it. If completing the type fails, a diagnostic is emitted and false
   2854 /// returned. If completing the type succeeds or no completion was required,
   2855 /// returns true.
   2856 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S,
   2857                                                 UnaryTypeTrait UTT,
   2858                                                 SourceLocation Loc,
   2859                                                 QualType ArgTy) {
   2860   // C++0x [meta.unary.prop]p3:
   2861   //   For all of the class templates X declared in this Clause, instantiating
   2862   //   that template with a template argument that is a class template
   2863   //   specialization may result in the implicit instantiation of the template
   2864   //   argument if and only if the semantics of X require that the argument
   2865   //   must be a complete type.
   2866   // We apply this rule to all the type trait expressions used to implement
   2867   // these class templates. We also try to follow any GCC documented behavior
   2868   // in these expressions to ensure portability of standard libraries.
   2869   switch (UTT) {
   2870     // is_complete_type somewhat obviously cannot require a complete type.
   2871   case UTT_IsCompleteType:
   2872     // Fall-through
   2873 
   2874     // These traits are modeled on the type predicates in C++0x
   2875     // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
   2876     // requiring a complete type, as whether or not they return true cannot be
   2877     // impacted by the completeness of the type.
   2878   case UTT_IsVoid:
   2879   case UTT_IsIntegral:
   2880   case UTT_IsFloatingPoint:
   2881   case UTT_IsArray:
   2882   case UTT_IsPointer:
   2883   case UTT_IsLvalueReference:
   2884   case UTT_IsRvalueReference:
   2885   case UTT_IsMemberFunctionPointer:
   2886   case UTT_IsMemberObjectPointer:
   2887   case UTT_IsEnum:
   2888   case UTT_IsUnion:
   2889   case UTT_IsClass:
   2890   case UTT_IsFunction:
   2891   case UTT_IsReference:
   2892   case UTT_IsArithmetic:
   2893   case UTT_IsFundamental:
   2894   case UTT_IsObject:
   2895   case UTT_IsScalar:
   2896   case UTT_IsCompound:
   2897   case UTT_IsMemberPointer:
   2898     // Fall-through
   2899 
   2900     // These traits are modeled on type predicates in C++0x [meta.unary.prop]
   2901     // which requires some of its traits to have the complete type. However,
   2902     // the completeness of the type cannot impact these traits' semantics, and
   2903     // so they don't require it. This matches the comments on these traits in
   2904     // Table 49.
   2905   case UTT_IsConst:
   2906   case UTT_IsVolatile:
   2907   case UTT_IsSigned:
   2908   case UTT_IsUnsigned:
   2909     return true;
   2910 
   2911     // C++0x [meta.unary.prop] Table 49 requires the following traits to be
   2912     // applied to a complete type.
   2913   case UTT_IsTrivial:
   2914   case UTT_IsTriviallyCopyable:
   2915   case UTT_IsStandardLayout:
   2916   case UTT_IsPOD:
   2917   case UTT_IsLiteral:
   2918   case UTT_IsEmpty:
   2919   case UTT_IsPolymorphic:
   2920   case UTT_IsAbstract:
   2921   case UTT_IsInterfaceClass:
   2922     // Fall-through
   2923 
   2924   // These traits require a complete type.
   2925   case UTT_IsFinal:
   2926 
   2927     // These trait expressions are designed to help implement predicates in
   2928     // [meta.unary.prop] despite not being named the same. They are specified
   2929     // by both GCC and the Embarcadero C++ compiler, and require the complete
   2930     // type due to the overarching C++0x type predicates being implemented
   2931     // requiring the complete type.
   2932   case UTT_HasNothrowAssign:
   2933   case UTT_HasNothrowConstructor:
   2934   case UTT_HasNothrowCopy:
   2935   case UTT_HasTrivialAssign:
   2936   case UTT_HasTrivialDefaultConstructor:
   2937   case UTT_HasTrivialCopy:
   2938   case UTT_HasTrivialDestructor:
   2939   case UTT_HasVirtualDestructor:
   2940     // Arrays of unknown bound are expressly allowed.
   2941     QualType ElTy = ArgTy;
   2942     if (ArgTy->isIncompleteArrayType())
   2943       ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
   2944 
   2945     // The void type is expressly allowed.
   2946     if (ElTy->isVoidType())
   2947       return true;
   2948 
   2949     return !S.RequireCompleteType(
   2950       Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
   2951   }
   2952   llvm_unreachable("Type trait not handled by switch");
   2953 }
   2954 
   2955 static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT,
   2956                                    SourceLocation KeyLoc, QualType T) {
   2957   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
   2958 
   2959   ASTContext &C = Self.Context;
   2960   switch(UTT) {
   2961     // Type trait expressions corresponding to the primary type category
   2962     // predicates in C++0x [meta.unary.cat].
   2963   case UTT_IsVoid:
   2964     return T->isVoidType();
   2965   case UTT_IsIntegral:
   2966     return T->isIntegralType(C);
   2967   case UTT_IsFloatingPoint:
   2968     return T->isFloatingType();
   2969   case UTT_IsArray:
   2970     return T->isArrayType();
   2971   case UTT_IsPointer:
   2972     return T->isPointerType();
   2973   case UTT_IsLvalueReference:
   2974     return T->isLValueReferenceType();
   2975   case UTT_IsRvalueReference:
   2976     return T->isRValueReferenceType();
   2977   case UTT_IsMemberFunctionPointer:
   2978     return T->isMemberFunctionPointerType();
   2979   case UTT_IsMemberObjectPointer:
   2980     return T->isMemberDataPointerType();
   2981   case UTT_IsEnum:
   2982     return T->isEnumeralType();
   2983   case UTT_IsUnion:
   2984     return T->isUnionType();
   2985   case UTT_IsClass:
   2986     return T->isClassType() || T->isStructureType() || T->isInterfaceType();
   2987   case UTT_IsFunction:
   2988     return T->isFunctionType();
   2989 
   2990     // Type trait expressions which correspond to the convenient composition
   2991     // predicates in C++0x [meta.unary.comp].
   2992   case UTT_IsReference:
   2993     return T->isReferenceType();
   2994   case UTT_IsArithmetic:
   2995     return T->isArithmeticType() && !T->isEnumeralType();
   2996   case UTT_IsFundamental:
   2997     return T->isFundamentalType();
   2998   case UTT_IsObject:
   2999     return T->isObjectType();
   3000   case UTT_IsScalar:
   3001     // Note: semantic analysis depends on Objective-C lifetime types to be
   3002     // considered scalar types. However, such types do not actually behave
   3003     // like scalar types at run time (since they may require retain/release
   3004     // operations), so we report them as non-scalar.
   3005     if (T->isObjCLifetimeType()) {
   3006       switch (T.getObjCLifetime()) {
   3007       case Qualifiers::OCL_None:
   3008       case Qualifiers::OCL_ExplicitNone:
   3009         return true;
   3010 
   3011       case Qualifiers::OCL_Strong:
   3012       case Qualifiers::OCL_Weak:
   3013       case Qualifiers::OCL_Autoreleasing:
   3014         return false;
   3015       }
   3016     }
   3017 
   3018     return T->isScalarType();
   3019   case UTT_IsCompound:
   3020     return T->isCompoundType();
   3021   case UTT_IsMemberPointer:
   3022     return T->isMemberPointerType();
   3023 
   3024     // Type trait expressions which correspond to the type property predicates
   3025     // in C++0x [meta.unary.prop].
   3026   case UTT_IsConst:
   3027     return T.isConstQualified();
   3028   case UTT_IsVolatile:
   3029     return T.isVolatileQualified();
   3030   case UTT_IsTrivial:
   3031     return T.isTrivialType(Self.Context);
   3032   case UTT_IsTriviallyCopyable:
   3033     return T.isTriviallyCopyableType(Self.Context);
   3034   case UTT_IsStandardLayout:
   3035     return T->isStandardLayoutType();
   3036   case UTT_IsPOD:
   3037     return T.isPODType(Self.Context);
   3038   case UTT_IsLiteral:
   3039     return T->isLiteralType();
   3040   case UTT_IsEmpty:
   3041     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3042       return !RD->isUnion() && RD->isEmpty();
   3043     return false;
   3044   case UTT_IsPolymorphic:
   3045     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3046       return RD->isPolymorphic();
   3047     return false;
   3048   case UTT_IsAbstract:
   3049     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3050       return RD->isAbstract();
   3051     return false;
   3052   case UTT_IsInterfaceClass:
   3053     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3054       return RD->isInterface();
   3055     return false;
   3056   case UTT_IsFinal:
   3057     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3058       return RD->hasAttr<FinalAttr>();
   3059     return false;
   3060   case UTT_IsSigned:
   3061     return T->isSignedIntegerType();
   3062   case UTT_IsUnsigned:
   3063     return T->isUnsignedIntegerType();
   3064 
   3065     // Type trait expressions which query classes regarding their construction,
   3066     // destruction, and copying. Rather than being based directly on the
   3067     // related type predicates in the standard, they are specified by both
   3068     // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
   3069     // specifications.
   3070     //
   3071     //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
   3072     //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
   3073     //
   3074     // Note that these builtins do not behave as documented in g++: if a class
   3075     // has both a trivial and a non-trivial special member of a particular kind,
   3076     // they return false! For now, we emulate this behavior.
   3077     // FIXME: This appears to be a g++ bug: more complex cases reveal that it
   3078     // does not correctly compute triviality in the presence of multiple special
   3079     // members of the same kind. Revisit this once the g++ bug is fixed.
   3080   case UTT_HasTrivialDefaultConstructor:
   3081     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3082     //   If __is_pod (type) is true then the trait is true, else if type is
   3083     //   a cv class or union type (or array thereof) with a trivial default
   3084     //   constructor ([class.ctor]) then the trait is true, else it is false.
   3085     if (T.isPODType(Self.Context))
   3086       return true;
   3087     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
   3088       return RD->hasTrivialDefaultConstructor() &&
   3089              !RD->hasNonTrivialDefaultConstructor();
   3090     return false;
   3091   case UTT_HasTrivialCopy:
   3092     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3093     //   If __is_pod (type) is true or type is a reference type then
   3094     //   the trait is true, else if type is a cv class or union type
   3095     //   with a trivial copy constructor ([class.copy]) then the trait
   3096     //   is true, else it is false.
   3097     if (T.isPODType(Self.Context) || T->isReferenceType())
   3098       return true;
   3099     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3100       return RD->hasTrivialCopyConstructor() &&
   3101              !RD->hasNonTrivialCopyConstructor();
   3102     return false;
   3103   case UTT_HasTrivialAssign:
   3104     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3105     //   If type is const qualified or is a reference type then the
   3106     //   trait is false. Otherwise if __is_pod (type) is true then the
   3107     //   trait is true, else if type is a cv class or union type with
   3108     //   a trivial copy assignment ([class.copy]) then the trait is
   3109     //   true, else it is false.
   3110     // Note: the const and reference restrictions are interesting,
   3111     // given that const and reference members don't prevent a class
   3112     // from having a trivial copy assignment operator (but do cause
   3113     // errors if the copy assignment operator is actually used, q.v.
   3114     // [class.copy]p12).
   3115 
   3116     if (T.isConstQualified())
   3117       return false;
   3118     if (T.isPODType(Self.Context))
   3119       return true;
   3120     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3121       return RD->hasTrivialCopyAssignment() &&
   3122              !RD->hasNonTrivialCopyAssignment();
   3123     return false;
   3124   case UTT_HasTrivialDestructor:
   3125     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3126     //   If __is_pod (type) is true or type is a reference type
   3127     //   then the trait is true, else if type is a cv class or union
   3128     //   type (or array thereof) with a trivial destructor
   3129     //   ([class.dtor]) then the trait is true, else it is
   3130     //   false.
   3131     if (T.isPODType(Self.Context) || T->isReferenceType())
   3132       return true;
   3133 
   3134     // Objective-C++ ARC: autorelease types don't require destruction.
   3135     if (T->isObjCLifetimeType() &&
   3136         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
   3137       return true;
   3138 
   3139     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
   3140       return RD->hasTrivialDestructor();
   3141     return false;
   3142   // TODO: Propagate nothrowness for implicitly declared special members.
   3143   case UTT_HasNothrowAssign:
   3144     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3145     //   If type is const qualified or is a reference type then the
   3146     //   trait is false. Otherwise if __has_trivial_assign (type)
   3147     //   is true then the trait is true, else if type is a cv class
   3148     //   or union type with copy assignment operators that are known
   3149     //   not to throw an exception then the trait is true, else it is
   3150     //   false.
   3151     if (C.getBaseElementType(T).isConstQualified())
   3152       return false;
   3153     if (T->isReferenceType())
   3154       return false;
   3155     if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
   3156       return true;
   3157     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
   3158       if (RD->hasTrivialCopyAssignment() && !RD->hasNonTrivialCopyAssignment())
   3159         return true;
   3160 
   3161       bool FoundAssign = false;
   3162       DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
   3163       LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
   3164                        Sema::LookupOrdinaryName);
   3165       if (Self.LookupQualifiedName(Res, RD)) {
   3166         Res.suppressDiagnostics();
   3167         for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
   3168              Op != OpEnd; ++Op) {
   3169           if (isa<FunctionTemplateDecl>(*Op))
   3170             continue;
   3171 
   3172           CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
   3173           if (Operator->isCopyAssignmentOperator()) {
   3174             FoundAssign = true;
   3175             const FunctionProtoType *CPT
   3176                 = Operator->getType()->getAs<FunctionProtoType>();
   3177             CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
   3178             if (!CPT)
   3179               return false;
   3180             if (!CPT->isNothrow(Self.Context))
   3181               return false;
   3182           }
   3183         }
   3184       }
   3185 
   3186       return FoundAssign;
   3187     }
   3188     return false;
   3189   case UTT_HasNothrowCopy:
   3190     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3191     //   If __has_trivial_copy (type) is true then the trait is true, else
   3192     //   if type is a cv class or union type with copy constructors that are
   3193     //   known not to throw an exception then the trait is true, else it is
   3194     //   false.
   3195     if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
   3196       return true;
   3197     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
   3198       if (RD->hasTrivialCopyConstructor() &&
   3199           !RD->hasNonTrivialCopyConstructor())
   3200         return true;
   3201 
   3202       bool FoundConstructor = false;
   3203       unsigned FoundTQs;
   3204       DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
   3205       for (DeclContext::lookup_const_iterator Con = R.begin(),
   3206            ConEnd = R.end(); Con != ConEnd; ++Con) {
   3207         // A template constructor is never a copy constructor.
   3208         // FIXME: However, it may actually be selected at the actual overload
   3209         // resolution point.
   3210         if (isa<FunctionTemplateDecl>(*Con))
   3211           continue;
   3212         CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
   3213         if (Constructor->isCopyConstructor(FoundTQs)) {
   3214           FoundConstructor = true;
   3215           const FunctionProtoType *CPT
   3216               = Constructor->getType()->getAs<FunctionProtoType>();
   3217           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
   3218           if (!CPT)
   3219             return false;
   3220           // FIXME: check whether evaluating default arguments can throw.
   3221           // For now, we'll be conservative and assume that they can throw.
   3222           if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1)
   3223             return false;
   3224         }
   3225       }
   3226 
   3227       return FoundConstructor;
   3228     }
   3229     return false;
   3230   case UTT_HasNothrowConstructor:
   3231     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3232     //   If __has_trivial_constructor (type) is true then the trait is
   3233     //   true, else if type is a cv class or union type (or array
   3234     //   thereof) with a default constructor that is known not to
   3235     //   throw an exception then the trait is true, else it is false.
   3236     if (T.isPODType(C) || T->isObjCLifetimeType())
   3237       return true;
   3238     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
   3239       if (RD->hasTrivialDefaultConstructor() &&
   3240           !RD->hasNonTrivialDefaultConstructor())
   3241         return true;
   3242 
   3243       DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
   3244       for (DeclContext::lookup_const_iterator Con = R.begin(),
   3245            ConEnd = R.end(); Con != ConEnd; ++Con) {
   3246         // FIXME: In C++0x, a constructor template can be a default constructor.
   3247         if (isa<FunctionTemplateDecl>(*Con))
   3248           continue;
   3249         CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
   3250         if (Constructor->isDefaultConstructor()) {
   3251           const FunctionProtoType *CPT
   3252               = Constructor->getType()->getAs<FunctionProtoType>();
   3253           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
   3254           if (!CPT)
   3255             return false;
   3256           // TODO: check whether evaluating default arguments can throw.
   3257           // For now, we'll be conservative and assume that they can throw.
   3258           return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
   3259         }
   3260       }
   3261     }
   3262     return false;
   3263   case UTT_HasVirtualDestructor:
   3264     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3265     //   If type is a class type with a virtual destructor ([class.dtor])
   3266     //   then the trait is true, else it is false.
   3267     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3268       if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
   3269         return Destructor->isVirtual();
   3270     return false;
   3271 
   3272     // These type trait expressions are modeled on the specifications for the
   3273     // Embarcadero C++0x type trait functions:
   3274     //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
   3275   case UTT_IsCompleteType:
   3276     // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
   3277     //   Returns True if and only if T is a complete type at the point of the
   3278     //   function call.
   3279     return !T->isIncompleteType();
   3280   }
   3281   llvm_unreachable("Type trait not covered by switch");
   3282 }
   3283 
   3284 ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
   3285                                      SourceLocation KWLoc,
   3286                                      TypeSourceInfo *TSInfo,
   3287                                      SourceLocation RParen) {
   3288   QualType T = TSInfo->getType();
   3289   if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T))
   3290     return ExprError();
   3291 
   3292   bool Value = false;
   3293   if (!T->isDependentType())
   3294     Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T);
   3295 
   3296   return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
   3297                                                 RParen, Context.BoolTy));
   3298 }
   3299 
   3300 ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
   3301                                       SourceLocation KWLoc,
   3302                                       ParsedType LhsTy,
   3303                                       ParsedType RhsTy,
   3304                                       SourceLocation RParen) {
   3305   TypeSourceInfo *LhsTSInfo;
   3306   QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
   3307   if (!LhsTSInfo)
   3308     LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
   3309 
   3310   TypeSourceInfo *RhsTSInfo;
   3311   QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
   3312   if (!RhsTSInfo)
   3313     RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
   3314 
   3315   return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
   3316 }
   3317 
   3318 /// \brief Determine whether T has a non-trivial Objective-C lifetime in
   3319 /// ARC mode.
   3320 static bool hasNontrivialObjCLifetime(QualType T) {
   3321   switch (T.getObjCLifetime()) {
   3322   case Qualifiers::OCL_ExplicitNone:
   3323     return false;
   3324 
   3325   case Qualifiers::OCL_Strong:
   3326   case Qualifiers::OCL_Weak:
   3327   case Qualifiers::OCL_Autoreleasing:
   3328     return true;
   3329 
   3330   case Qualifiers::OCL_None:
   3331     return T->isObjCLifetimeType();
   3332   }
   3333 
   3334   llvm_unreachable("Unknown ObjC lifetime qualifier");
   3335 }
   3336 
   3337 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
   3338                               ArrayRef<TypeSourceInfo *> Args,
   3339                               SourceLocation RParenLoc) {
   3340   switch (Kind) {
   3341   case clang::TT_IsTriviallyConstructible: {
   3342     // C++11 [meta.unary.prop]:
   3343     //   is_trivially_constructible is defined as:
   3344     //
   3345     //     is_constructible<T, Args...>::value is true and the variable
   3346     //     definition for is_constructible, as defined below, is known to call no
   3347     //     operation that is not trivial.
   3348     //
   3349     //   The predicate condition for a template specialization
   3350     //   is_constructible<T, Args...> shall be satisfied if and only if the
   3351     //   following variable definition would be well-formed for some invented
   3352     //   variable t:
   3353     //
   3354     //     T t(create<Args>()...);
   3355     if (Args.empty()) {
   3356       S.Diag(KWLoc, diag::err_type_trait_arity)
   3357         << 1 << 1 << 1 << (int)Args.size();
   3358       return false;
   3359     }
   3360 
   3361     bool SawVoid = false;
   3362     for (unsigned I = 0, N = Args.size(); I != N; ++I) {
   3363       if (Args[I]->getType()->isVoidType()) {
   3364         SawVoid = true;
   3365         continue;
   3366       }
   3367 
   3368       if (!Args[I]->getType()->isIncompleteType() &&
   3369         S.RequireCompleteType(KWLoc, Args[I]->getType(),
   3370           diag::err_incomplete_type_used_in_type_trait_expr))
   3371         return false;
   3372     }
   3373 
   3374     // If any argument was 'void', of course it won't type-check.
   3375     if (SawVoid)
   3376       return false;
   3377 
   3378     SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
   3379     SmallVector<Expr *, 2> ArgExprs;
   3380     ArgExprs.reserve(Args.size() - 1);
   3381     for (unsigned I = 1, N = Args.size(); I != N; ++I) {
   3382       QualType T = Args[I]->getType();
   3383       if (T->isObjectType() || T->isFunctionType())
   3384         T = S.Context.getRValueReferenceType(T);
   3385       OpaqueArgExprs.push_back(
   3386         OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
   3387                         T.getNonLValueExprType(S.Context),
   3388                         Expr::getValueKindForType(T)));
   3389       ArgExprs.push_back(&OpaqueArgExprs.back());
   3390     }
   3391 
   3392     // Perform the initialization in an unevaluated context within a SFINAE
   3393     // trap at translation unit scope.
   3394     EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
   3395     Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
   3396     Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
   3397     InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
   3398     InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
   3399                                                                  RParenLoc));
   3400     InitializationSequence Init(S, To, InitKind,
   3401                                 ArgExprs.begin(), ArgExprs.size());
   3402     if (Init.Failed())
   3403       return false;
   3404 
   3405     ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
   3406     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
   3407       return false;
   3408 
   3409     // Under Objective-C ARC, if the destination has non-trivial Objective-C
   3410     // lifetime, this is a non-trivial construction.
   3411     if (S.getLangOpts().ObjCAutoRefCount &&
   3412         hasNontrivialObjCLifetime(Args[0]->getType().getNonReferenceType()))
   3413       return false;
   3414 
   3415     // The initialization succeeded; now make sure there are no non-trivial
   3416     // calls.
   3417     return !Result.get()->hasNonTrivialCall(S.Context);
   3418   }
   3419   }
   3420 
   3421   return false;
   3422 }
   3423 
   3424 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
   3425                                 ArrayRef<TypeSourceInfo *> Args,
   3426                                 SourceLocation RParenLoc) {
   3427   bool Dependent = false;
   3428   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
   3429     if (Args[I]->getType()->isDependentType()) {
   3430       Dependent = true;
   3431       break;
   3432     }
   3433   }
   3434 
   3435   bool Value = false;
   3436   if (!Dependent)
   3437     Value = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
   3438 
   3439   return TypeTraitExpr::Create(Context, Context.BoolTy, KWLoc, Kind,
   3440                                Args, RParenLoc, Value);
   3441 }
   3442 
   3443 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
   3444                                 ArrayRef<ParsedType> Args,
   3445                                 SourceLocation RParenLoc) {
   3446   SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
   3447   ConvertedArgs.reserve(Args.size());
   3448 
   3449   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
   3450     TypeSourceInfo *TInfo;
   3451     QualType T = GetTypeFromParser(Args[I], &TInfo);
   3452     if (!TInfo)
   3453       TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
   3454 
   3455     ConvertedArgs.push_back(TInfo);
   3456   }
   3457 
   3458   return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
   3459 }
   3460 
   3461 static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
   3462                                     QualType LhsT, QualType RhsT,
   3463                                     SourceLocation KeyLoc) {
   3464   assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
   3465          "Cannot evaluate traits of dependent types");
   3466 
   3467   switch(BTT) {
   3468   case BTT_IsBaseOf: {
   3469     // C++0x [meta.rel]p2
   3470     // Base is a base class of Derived without regard to cv-qualifiers or
   3471     // Base and Derived are not unions and name the same class type without
   3472     // regard to cv-qualifiers.
   3473 
   3474     const RecordType *lhsRecord = LhsT->getAs<RecordType>();
   3475     if (!lhsRecord) return false;
   3476 
   3477     const RecordType *rhsRecord = RhsT->getAs<RecordType>();
   3478     if (!rhsRecord) return false;
   3479 
   3480     assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
   3481              == (lhsRecord == rhsRecord));
   3482 
   3483     if (lhsRecord == rhsRecord)
   3484       return !lhsRecord->getDecl()->isUnion();
   3485 
   3486     // C++0x [meta.rel]p2:
   3487     //   If Base and Derived are class types and are different types
   3488     //   (ignoring possible cv-qualifiers) then Derived shall be a
   3489     //   complete type.
   3490     if (Self.RequireCompleteType(KeyLoc, RhsT,
   3491                           diag::err_incomplete_type_used_in_type_trait_expr))
   3492       return false;
   3493 
   3494     return cast<CXXRecordDecl>(rhsRecord->getDecl())
   3495       ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
   3496   }
   3497   case BTT_IsSame:
   3498     return Self.Context.hasSameType(LhsT, RhsT);
   3499   case BTT_TypeCompatible:
   3500     return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
   3501                                            RhsT.getUnqualifiedType());
   3502   case BTT_IsConvertible:
   3503   case BTT_IsConvertibleTo: {
   3504     // C++0x [meta.rel]p4:
   3505     //   Given the following function prototype:
   3506     //
   3507     //     template <class T>
   3508     //       typename add_rvalue_reference<T>::type create();
   3509     //
   3510     //   the predicate condition for a template specialization
   3511     //   is_convertible<From, To> shall be satisfied if and only if
   3512     //   the return expression in the following code would be
   3513     //   well-formed, including any implicit conversions to the return
   3514     //   type of the function:
   3515     //
   3516     //     To test() {
   3517     //       return create<From>();
   3518     //     }
   3519     //
   3520     //   Access checking is performed as if in a context unrelated to To and
   3521     //   From. Only the validity of the immediate context of the expression
   3522     //   of the return-statement (including conversions to the return type)
   3523     //   is considered.
   3524     //
   3525     // We model the initialization as a copy-initialization of a temporary
   3526     // of the appropriate type, which for this expression is identical to the
   3527     // return statement (since NRVO doesn't apply).
   3528 
   3529     // Functions aren't allowed to return function or array types.
   3530     if (RhsT->isFunctionType() || RhsT->isArrayType())
   3531       return false;
   3532 
   3533     // A return statement in a void function must have void type.
   3534     if (RhsT->isVoidType())
   3535       return LhsT->isVoidType();
   3536 
   3537     // A function definition requires a complete, non-abstract return type.
   3538     if (Self.RequireCompleteType(KeyLoc, RhsT, 0) ||
   3539         Self.RequireNonAbstractType(KeyLoc, RhsT, 0))
   3540       return false;
   3541 
   3542     // Compute the result of add_rvalue_reference.
   3543     if (LhsT->isObjectType() || LhsT->isFunctionType())
   3544       LhsT = Self.Context.getRValueReferenceType(LhsT);
   3545 
   3546     // Build a fake source and destination for initialization.
   3547     InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
   3548     OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
   3549                          Expr::getValueKindForType(LhsT));
   3550     Expr *FromPtr = &From;
   3551     InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
   3552                                                            SourceLocation()));
   3553 
   3554     // Perform the initialization in an unevaluated context within a SFINAE
   3555     // trap at translation unit scope.
   3556     EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
   3557     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
   3558     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
   3559     InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
   3560     if (Init.Failed())
   3561       return false;
   3562 
   3563     ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
   3564     return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
   3565   }
   3566 
   3567   case BTT_IsTriviallyAssignable: {
   3568     // C++11 [meta.unary.prop]p3:
   3569     //   is_trivially_assignable is defined as:
   3570     //     is_assignable<T, U>::value is true and the assignment, as defined by
   3571     //     is_assignable, is known to call no operation that is not trivial
   3572     //
   3573     //   is_assignable is defined as:
   3574     //     The expression declval<T>() = declval<U>() is well-formed when
   3575     //     treated as an unevaluated operand (Clause 5).
   3576     //
   3577     //   For both, T and U shall be complete types, (possibly cv-qualified)
   3578     //   void, or arrays of unknown bound.
   3579     if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
   3580         Self.RequireCompleteType(KeyLoc, LhsT,
   3581           diag::err_incomplete_type_used_in_type_trait_expr))
   3582       return false;
   3583     if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
   3584         Self.RequireCompleteType(KeyLoc, RhsT,
   3585           diag::err_incomplete_type_used_in_type_trait_expr))
   3586       return false;
   3587 
   3588     // cv void is never assignable.
   3589     if (LhsT->isVoidType() || RhsT->isVoidType())
   3590       return false;
   3591 
   3592     // Build expressions that emulate the effect of declval<T>() and
   3593     // declval<U>().
   3594     if (LhsT->isObjectType() || LhsT->isFunctionType())
   3595       LhsT = Self.Context.getRValueReferenceType(LhsT);
   3596     if (RhsT->isObjectType() || RhsT->isFunctionType())
   3597       RhsT = Self.Context.getRValueReferenceType(RhsT);
   3598     OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
   3599                         Expr::getValueKindForType(LhsT));
   3600     OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
   3601                         Expr::getValueKindForType(RhsT));
   3602 
   3603     // Attempt the assignment in an unevaluated context within a SFINAE
   3604     // trap at translation unit scope.
   3605     EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
   3606     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
   3607     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
   3608     ExprResult Result = Self.BuildBinOp(/*S=*/0, KeyLoc, BO_Assign, &Lhs, &Rhs);
   3609     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
   3610       return false;
   3611 
   3612     // Under Objective-C ARC, if the destination has non-trivial Objective-C
   3613     // lifetime, this is a non-trivial assignment.
   3614     if (Self.getLangOpts().ObjCAutoRefCount &&
   3615         hasNontrivialObjCLifetime(LhsT.getNonReferenceType()))
   3616       return false;
   3617 
   3618     return !Result.get()->hasNonTrivialCall(Self.Context);
   3619   }
   3620   }
   3621   llvm_unreachable("Unknown type trait or not implemented");
   3622 }
   3623 
   3624 ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
   3625                                       SourceLocation KWLoc,
   3626                                       TypeSourceInfo *LhsTSInfo,
   3627                                       TypeSourceInfo *RhsTSInfo,
   3628                                       SourceLocation RParen) {
   3629   QualType LhsT = LhsTSInfo->getType();
   3630   QualType RhsT = RhsTSInfo->getType();
   3631 
   3632   if (BTT == BTT_TypeCompatible) {
   3633     if (getLangOpts().CPlusPlus) {
   3634       Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
   3635         << SourceRange(KWLoc, RParen);
   3636       return ExprError();
   3637     }
   3638   }
   3639 
   3640   bool Value = false;
   3641   if (!LhsT->isDependentType() && !RhsT->isDependentType())
   3642     Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
   3643 
   3644   // Select trait result type.
   3645   QualType ResultType;
   3646   switch (BTT) {
   3647   case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
   3648   case BTT_IsConvertible:  ResultType = Context.BoolTy; break;
   3649   case BTT_IsSame:         ResultType = Context.BoolTy; break;
   3650   case BTT_TypeCompatible: ResultType = Context.IntTy; break;
   3651   case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
   3652   case BTT_IsTriviallyAssignable: ResultType = Context.BoolTy;
   3653   }
   3654 
   3655   return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
   3656                                                  RhsTSInfo, Value, RParen,
   3657                                                  ResultType));
   3658 }
   3659 
   3660 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
   3661                                      SourceLocation KWLoc,
   3662                                      ParsedType Ty,
   3663                                      Expr* DimExpr,
   3664                                      SourceLocation RParen) {
   3665   TypeSourceInfo *TSInfo;
   3666   QualType T = GetTypeFromParser(Ty, &TSInfo);
   3667   if (!TSInfo)
   3668     TSInfo = Context.getTrivialTypeSourceInfo(T);
   3669 
   3670   return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
   3671 }
   3672 
   3673 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
   3674                                            QualType T, Expr *DimExpr,
   3675                                            SourceLocation KeyLoc) {
   3676   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
   3677 
   3678   switch(ATT) {
   3679   case ATT_ArrayRank:
   3680     if (T->isArrayType()) {
   3681       unsigned Dim = 0;
   3682       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
   3683         ++Dim;
   3684         T = AT->getElementType();
   3685       }
   3686       return Dim;
   3687     }
   3688     return 0;
   3689 
   3690   case ATT_ArrayExtent: {
   3691     llvm::APSInt Value;
   3692     uint64_t Dim;
   3693     if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
   3694           diag::err_dimension_expr_not_constant_integer,
   3695           false).isInvalid())
   3696       return 0;
   3697     if (Value.isSigned() && Value.isNegative()) {
   3698       Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
   3699         << DimExpr->getSourceRange();
   3700       return 0;
   3701     }
   3702     Dim = Value.getLimitedValue();
   3703 
   3704     if (T->isArrayType()) {
   3705       unsigned D = 0;
   3706       bool Matched = false;
   3707       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
   3708         if (Dim == D) {
   3709           Matched = true;
   3710           break;
   3711         }
   3712         ++D;
   3713         T = AT->getElementType();
   3714       }
   3715 
   3716       if (Matched && T->isArrayType()) {
   3717         if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
   3718           return CAT->getSize().getLimitedValue();
   3719       }
   3720     }
   3721     return 0;
   3722   }
   3723   }
   3724   llvm_unreachable("Unknown type trait or not implemented");
   3725 }
   3726 
   3727 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
   3728                                      SourceLocation KWLoc,
   3729                                      TypeSourceInfo *TSInfo,
   3730                                      Expr* DimExpr,
   3731                                      SourceLocation RParen) {
   3732   QualType T = TSInfo->getType();
   3733 
   3734   // FIXME: This should likely be tracked as an APInt to remove any host
   3735   // assumptions about the width of size_t on the target.
   3736   uint64_t Value = 0;
   3737   if (!T->isDependentType())
   3738     Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
   3739 
   3740   // While the specification for these traits from the Embarcadero C++
   3741   // compiler's documentation says the return type is 'unsigned int', Clang
   3742   // returns 'size_t'. On Windows, the primary platform for the Embarcadero
   3743   // compiler, there is no difference. On several other platforms this is an
   3744   // important distinction.
   3745   return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value,
   3746                                                 DimExpr, RParen,
   3747                                                 Context.getSizeType()));
   3748 }
   3749 
   3750 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
   3751                                       SourceLocation KWLoc,
   3752                                       Expr *Queried,
   3753                                       SourceLocation RParen) {
   3754   // If error parsing the expression, ignore.
   3755   if (!Queried)
   3756     return ExprError();
   3757 
   3758   ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
   3759 
   3760   return Result;
   3761 }
   3762 
   3763 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
   3764   switch (ET) {
   3765   case ET_IsLValueExpr: return E->isLValue();
   3766   case ET_IsRValueExpr: return E->isRValue();
   3767   }
   3768   llvm_unreachable("Expression trait not covered by switch");
   3769 }
   3770 
   3771 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
   3772                                       SourceLocation KWLoc,
   3773                                       Expr *Queried,
   3774                                       SourceLocation RParen) {
   3775   if (Queried->isTypeDependent()) {
   3776     // Delay type-checking for type-dependent expressions.
   3777   } else if (Queried->getType()->isPlaceholderType()) {
   3778     ExprResult PE = CheckPlaceholderExpr(Queried);
   3779     if (PE.isInvalid()) return ExprError();
   3780     return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
   3781   }
   3782 
   3783   bool Value = EvaluateExpressionTrait(ET, Queried);
   3784 
   3785   return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value,
   3786                                                  RParen, Context.BoolTy));
   3787 }
   3788 
   3789 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
   3790                                             ExprValueKind &VK,
   3791                                             SourceLocation Loc,
   3792                                             bool isIndirect) {
   3793   assert(!LHS.get()->getType()->isPlaceholderType() &&
   3794          !RHS.get()->getType()->isPlaceholderType() &&
   3795          "placeholders should have been weeded out by now");
   3796 
   3797   // The LHS undergoes lvalue conversions if this is ->*.
   3798   if (isIndirect) {
   3799     LHS = DefaultLvalueConversion(LHS.take());
   3800     if (LHS.isInvalid()) return QualType();
   3801   }
   3802 
   3803   // The RHS always undergoes lvalue conversions.
   3804   RHS = DefaultLvalueConversion(RHS.take());
   3805   if (RHS.isInvalid()) return QualType();
   3806 
   3807   const char *OpSpelling = isIndirect ? "->*" : ".*";
   3808   // C++ 5.5p2
   3809   //   The binary operator .* [p3: ->*] binds its second operand, which shall
   3810   //   be of type "pointer to member of T" (where T is a completely-defined
   3811   //   class type) [...]
   3812   QualType RHSType = RHS.get()->getType();
   3813   const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
   3814   if (!MemPtr) {
   3815     Diag(Loc, diag::err_bad_memptr_rhs)
   3816       << OpSpelling << RHSType << RHS.get()->getSourceRange();
   3817     return QualType();
   3818   }
   3819 
   3820   QualType Class(MemPtr->getClass(), 0);
   3821 
   3822   // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
   3823   // member pointer points must be completely-defined. However, there is no
   3824   // reason for this semantic distinction, and the rule is not enforced by
   3825   // other compilers. Therefore, we do not check this property, as it is
   3826   // likely to be considered a defect.
   3827 
   3828   // C++ 5.5p2
   3829   //   [...] to its first operand, which shall be of class T or of a class of
   3830   //   which T is an unambiguous and accessible base class. [p3: a pointer to
   3831   //   such a class]
   3832   QualType LHSType = LHS.get()->getType();
   3833   if (isIndirect) {
   3834     if (const PointerType *Ptr = LHSType->getAs<PointerType>())
   3835       LHSType = Ptr->getPointeeType();
   3836     else {
   3837       Diag(Loc, diag::err_bad_memptr_lhs)
   3838         << OpSpelling << 1 << LHSType
   3839         << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
   3840       return QualType();
   3841     }
   3842   }
   3843 
   3844   if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
   3845     // If we want to check the hierarchy, we need a complete type.
   3846     if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
   3847                             OpSpelling, (int)isIndirect)) {
   3848       return QualType();
   3849     }
   3850     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
   3851                        /*DetectVirtual=*/false);
   3852     // FIXME: Would it be useful to print full ambiguity paths, or is that
   3853     // overkill?
   3854     if (!IsDerivedFrom(LHSType, Class, Paths) ||
   3855         Paths.isAmbiguous(Context.getCanonicalType(Class))) {
   3856       Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
   3857         << (int)isIndirect << LHS.get()->getType();
   3858       return QualType();
   3859     }
   3860     // Cast LHS to type of use.
   3861     QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
   3862     ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
   3863 
   3864     CXXCastPath BasePath;
   3865     BuildBasePathArray(Paths, BasePath);
   3866     LHS = ImpCastExprToType(LHS.take(), UseType, CK_DerivedToBase, VK,
   3867                             &BasePath);
   3868   }
   3869 
   3870   if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
   3871     // Diagnose use of pointer-to-member type which when used as
   3872     // the functional cast in a pointer-to-member expression.
   3873     Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
   3874      return QualType();
   3875   }
   3876 
   3877   // C++ 5.5p2
   3878   //   The result is an object or a function of the type specified by the
   3879   //   second operand.
   3880   // The cv qualifiers are the union of those in the pointer and the left side,
   3881   // in accordance with 5.5p5 and 5.2.5.
   3882   QualType Result = MemPtr->getPointeeType();
   3883   Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
   3884 
   3885   // C++0x [expr.mptr.oper]p6:
   3886   //   In a .* expression whose object expression is an rvalue, the program is
   3887   //   ill-formed if the second operand is a pointer to member function with
   3888   //   ref-qualifier &. In a ->* expression or in a .* expression whose object
   3889   //   expression is an lvalue, the program is ill-formed if the second operand
   3890   //   is a pointer to member function with ref-qualifier &&.
   3891   if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
   3892     switch (Proto->getRefQualifier()) {
   3893     case RQ_None:
   3894       // Do nothing
   3895       break;
   3896 
   3897     case RQ_LValue:
   3898       if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
   3899         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
   3900           << RHSType << 1 << LHS.get()->getSourceRange();
   3901       break;
   3902 
   3903     case RQ_RValue:
   3904       if (isIndirect || !LHS.get()->Classify(Context).isRValue())
   3905         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
   3906           << RHSType << 0 << LHS.get()->getSourceRange();
   3907       break;
   3908     }
   3909   }
   3910 
   3911   // C++ [expr.mptr.oper]p6:
   3912   //   The result of a .* expression whose second operand is a pointer
   3913   //   to a data member is of the same value category as its
   3914   //   first operand. The result of a .* expression whose second
   3915   //   operand is a pointer to a member function is a prvalue. The
   3916   //   result of an ->* expression is an lvalue if its second operand
   3917   //   is a pointer to data member and a prvalue otherwise.
   3918   if (Result->isFunctionType()) {
   3919     VK = VK_RValue;
   3920     return Context.BoundMemberTy;
   3921   } else if (isIndirect) {
   3922     VK = VK_LValue;
   3923   } else {
   3924     VK = LHS.get()->getValueKind();
   3925   }
   3926 
   3927   return Result;
   3928 }
   3929 
   3930 /// \brief Try to convert a type to another according to C++0x 5.16p3.
   3931 ///
   3932 /// This is part of the parameter validation for the ? operator. If either
   3933 /// value operand is a class type, the two operands are attempted to be
   3934 /// converted to each other. This function does the conversion in one direction.
   3935 /// It returns true if the program is ill-formed and has already been diagnosed
   3936 /// as such.
   3937 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
   3938                                 SourceLocation QuestionLoc,
   3939                                 bool &HaveConversion,
   3940                                 QualType &ToType) {
   3941   HaveConversion = false;
   3942   ToType = To->getType();
   3943 
   3944   InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
   3945                                                            SourceLocation());
   3946   // C++0x 5.16p3
   3947   //   The process for determining whether an operand expression E1 of type T1
   3948   //   can be converted to match an operand expression E2 of type T2 is defined
   3949   //   as follows:
   3950   //   -- If E2 is an lvalue:
   3951   bool ToIsLvalue = To->isLValue();
   3952   if (ToIsLvalue) {
   3953     //   E1 can be converted to match E2 if E1 can be implicitly converted to
   3954     //   type "lvalue reference to T2", subject to the constraint that in the
   3955     //   conversion the reference must bind directly to E1.
   3956     QualType T = Self.Context.getLValueReferenceType(ToType);
   3957     InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
   3958 
   3959     InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
   3960     if (InitSeq.isDirectReferenceBinding()) {
   3961       ToType = T;
   3962       HaveConversion = true;
   3963       return false;
   3964     }
   3965 
   3966     if (InitSeq.isAmbiguous())
   3967       return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
   3968   }
   3969 
   3970   //   -- If E2 is an rvalue, or if the conversion above cannot be done:
   3971   //      -- if E1 and E2 have class type, and the underlying class types are
   3972   //         the same or one is a base class of the other:
   3973   QualType FTy = From->getType();
   3974   QualType TTy = To->getType();
   3975   const RecordType *FRec = FTy->getAs<RecordType>();
   3976   const RecordType *TRec = TTy->getAs<RecordType>();
   3977   bool FDerivedFromT = FRec && TRec && FRec != TRec &&
   3978                        Self.IsDerivedFrom(FTy, TTy);
   3979   if (FRec && TRec &&
   3980       (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
   3981     //         E1 can be converted to match E2 if the class of T2 is the
   3982     //         same type as, or a base class of, the class of T1, and
   3983     //         [cv2 > cv1].
   3984     if (FRec == TRec || FDerivedFromT) {
   3985       if (TTy.isAtLeastAsQualifiedAs(FTy)) {
   3986         InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
   3987         InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
   3988         if (InitSeq) {
   3989           HaveConversion = true;
   3990           return false;
   3991         }
   3992 
   3993         if (InitSeq.isAmbiguous())
   3994           return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
   3995       }
   3996     }
   3997 
   3998     return false;
   3999   }
   4000 
   4001   //     -- Otherwise: E1 can be converted to match E2 if E1 can be
   4002   //        implicitly converted to the type that expression E2 would have
   4003   //        if E2 were converted to an rvalue (or the type it has, if E2 is
   4004   //        an rvalue).
   4005   //
   4006   // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
   4007   // to the array-to-pointer or function-to-pointer conversions.
   4008   if (!TTy->getAs<TagType>())
   4009     TTy = TTy.getUnqualifiedType();
   4010 
   4011   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
   4012   InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
   4013   HaveConversion = !InitSeq.Failed();
   4014   ToType = TTy;
   4015   if (InitSeq.isAmbiguous())
   4016     return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
   4017 
   4018   return false;
   4019 }
   4020 
   4021 /// \brief Try to find a common type for two according to C++0x 5.16p5.
   4022 ///
   4023 /// This is part of the parameter validation for the ? operator. If either
   4024 /// value operand is a class type, overload resolution is used to find a
   4025 /// conversion to a common type.
   4026 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
   4027                                     SourceLocation QuestionLoc) {
   4028   Expr *Args[2] = { LHS.get(), RHS.get() };
   4029   OverloadCandidateSet CandidateSet(QuestionLoc);
   4030   Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
   4031                                     CandidateSet);
   4032 
   4033   OverloadCandidateSet::iterator Best;
   4034   switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
   4035     case OR_Success: {
   4036       // We found a match. Perform the conversions on the arguments and move on.
   4037       ExprResult LHSRes =
   4038         Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
   4039                                        Best->Conversions[0], Sema::AA_Converting);
   4040       if (LHSRes.isInvalid())
   4041         break;
   4042       LHS = LHSRes;
   4043 
   4044       ExprResult RHSRes =
   4045         Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
   4046                                        Best->Conversions[1], Sema::AA_Converting);
   4047       if (RHSRes.isInvalid())
   4048         break;
   4049       RHS = RHSRes;
   4050       if (Best->Function)
   4051         Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
   4052       return false;
   4053     }
   4054 
   4055     case OR_No_Viable_Function:
   4056 
   4057       // Emit a better diagnostic if one of the expressions is a null pointer
   4058       // constant and the other is a pointer type. In this case, the user most
   4059       // likely forgot to take the address of the other expression.
   4060       if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
   4061         return true;
   4062 
   4063       Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
   4064         << LHS.get()->getType() << RHS.get()->getType()
   4065         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4066       return true;
   4067 
   4068     case OR_Ambiguous:
   4069       Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
   4070         << LHS.get()->getType() << RHS.get()->getType()
   4071         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4072       // FIXME: Print the possible common types by printing the return types of
   4073       // the viable candidates.
   4074       break;
   4075 
   4076     case OR_Deleted:
   4077       llvm_unreachable("Conditional operator has only built-in overloads");
   4078   }
   4079   return true;
   4080 }
   4081 
   4082 /// \brief Perform an "extended" implicit conversion as returned by
   4083 /// TryClassUnification.
   4084 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
   4085   InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
   4086   InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
   4087                                                            SourceLocation());
   4088   Expr *Arg = E.take();
   4089   InitializationSequence InitSeq(Self, Entity, Kind, &Arg, 1);
   4090   ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
   4091   if (Result.isInvalid())
   4092     return true;
   4093 
   4094   E = Result;
   4095   return false;
   4096 }
   4097 
   4098 /// \brief Check the operands of ?: under C++ semantics.
   4099 ///
   4100 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
   4101 /// extension. In this case, LHS == Cond. (But they're not aliases.)
   4102 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
   4103                                            ExprResult &RHS, ExprValueKind &VK,
   4104                                            ExprObjectKind &OK,
   4105                                            SourceLocation QuestionLoc) {
   4106   // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
   4107   // interface pointers.
   4108 
   4109   // C++11 [expr.cond]p1
   4110   //   The first expression is contextually converted to bool.
   4111   if (!Cond.get()->isTypeDependent()) {
   4112     ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
   4113     if (CondRes.isInvalid())
   4114       return QualType();
   4115     Cond = CondRes;
   4116   }
   4117 
   4118   // Assume r-value.
   4119   VK = VK_RValue;
   4120   OK = OK_Ordinary;
   4121 
   4122   // Either of the arguments dependent?
   4123   if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
   4124     return Context.DependentTy;
   4125 
   4126   // C++11 [expr.cond]p2
   4127   //   If either the second or the third operand has type (cv) void, ...
   4128   QualType LTy = LHS.get()->getType();
   4129   QualType RTy = RHS.get()->getType();
   4130   bool LVoid = LTy->isVoidType();
   4131   bool RVoid = RTy->isVoidType();
   4132   if (LVoid || RVoid) {
   4133     //   ... then the [l2r] conversions are performed on the second and third
   4134     //   operands ...
   4135     LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
   4136     RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
   4137     if (LHS.isInvalid() || RHS.isInvalid())
   4138       return QualType();
   4139 
   4140     // Finish off the lvalue-to-rvalue conversion by copy-initializing a
   4141     // temporary if necessary. DefaultFunctionArrayLvalueConversion doesn't
   4142     // do this part for us.
   4143     ExprResult &NonVoid = LVoid ? RHS : LHS;
   4144     if (NonVoid.get()->getType()->isRecordType() &&
   4145         NonVoid.get()->isGLValue()) {
   4146       if (RequireNonAbstractType(QuestionLoc, NonVoid.get()->getType(),
   4147                              diag::err_allocation_of_abstract_type))
   4148         return QualType();
   4149       InitializedEntity Entity =
   4150           InitializedEntity::InitializeTemporary(NonVoid.get()->getType());
   4151       NonVoid = PerformCopyInitialization(Entity, SourceLocation(), NonVoid);
   4152       if (NonVoid.isInvalid())
   4153         return QualType();
   4154     }
   4155 
   4156     LTy = LHS.get()->getType();
   4157     RTy = RHS.get()->getType();
   4158 
   4159     //   ... and one of the following shall hold:
   4160     //   -- The second or the third operand (but not both) is a throw-
   4161     //      expression; the result is of the type of the other and is a prvalue.
   4162     bool LThrow = isa<CXXThrowExpr>(LHS.get());
   4163     bool RThrow = isa<CXXThrowExpr>(RHS.get());
   4164     if (LThrow && !RThrow)
   4165       return RTy;
   4166     if (RThrow && !LThrow)
   4167       return LTy;
   4168 
   4169     //   -- Both the second and third operands have type void; the result is of
   4170     //      type void and is a prvalue.
   4171     if (LVoid && RVoid)
   4172       return Context.VoidTy;
   4173 
   4174     // Neither holds, error.
   4175     Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
   4176       << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
   4177       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4178     return QualType();
   4179   }
   4180 
   4181   // Neither is void.
   4182 
   4183   // C++11 [expr.cond]p3
   4184   //   Otherwise, if the second and third operand have different types, and
   4185   //   either has (cv) class type [...] an attempt is made to convert each of
   4186   //   those operands to the type of the other.
   4187   if (!Context.hasSameType(LTy, RTy) &&
   4188       (LTy->isRecordType() || RTy->isRecordType())) {
   4189     ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
   4190     // These return true if a single direction is already ambiguous.
   4191     QualType L2RType, R2LType;
   4192     bool HaveL2R, HaveR2L;
   4193     if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
   4194       return QualType();
   4195     if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
   4196       return QualType();
   4197 
   4198     //   If both can be converted, [...] the program is ill-formed.
   4199     if (HaveL2R && HaveR2L) {
   4200       Diag(QuestionLoc, diag::err_conditional_ambiguous)
   4201         << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4202       return QualType();
   4203     }
   4204 
   4205     //   If exactly one conversion is possible, that conversion is applied to
   4206     //   the chosen operand and the converted operands are used in place of the
   4207     //   original operands for the remainder of this section.
   4208     if (HaveL2R) {
   4209       if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
   4210         return QualType();
   4211       LTy = LHS.get()->getType();
   4212     } else if (HaveR2L) {
   4213       if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
   4214         return QualType();
   4215       RTy = RHS.get()->getType();
   4216     }
   4217   }
   4218 
   4219   // C++11 [expr.cond]p3
   4220   //   if both are glvalues of the same value category and the same type except
   4221   //   for cv-qualification, an attempt is made to convert each of those
   4222   //   operands to the type of the other.
   4223   ExprValueKind LVK = LHS.get()->getValueKind();
   4224   ExprValueKind RVK = RHS.get()->getValueKind();
   4225   if (!Context.hasSameType(LTy, RTy) &&
   4226       Context.hasSameUnqualifiedType(LTy, RTy) &&
   4227       LVK == RVK && LVK != VK_RValue) {
   4228     // Since the unqualified types are reference-related and we require the
   4229     // result to be as if a reference bound directly, the only conversion
   4230     // we can perform is to add cv-qualifiers.
   4231     Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers());
   4232     Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers());
   4233     if (RCVR.isStrictSupersetOf(LCVR)) {
   4234       LHS = ImpCastExprToType(LHS.take(), RTy, CK_NoOp, LVK);
   4235       LTy = LHS.get()->getType();
   4236     }
   4237     else if (LCVR.isStrictSupersetOf(RCVR)) {
   4238       RHS = ImpCastExprToType(RHS.take(), LTy, CK_NoOp, RVK);
   4239       RTy = RHS.get()->getType();
   4240     }
   4241   }
   4242 
   4243   // C++11 [expr.cond]p4
   4244   //   If the second and third operands are glvalues of the same value
   4245   //   category and have the same type, the result is of that type and
   4246   //   value category and it is a bit-field if the second or the third
   4247   //   operand is a bit-field, or if both are bit-fields.
   4248   // We only extend this to bitfields, not to the crazy other kinds of
   4249   // l-values.
   4250   bool Same = Context.hasSameType(LTy, RTy);
   4251   if (Same && LVK == RVK && LVK != VK_RValue &&
   4252       LHS.get()->isOrdinaryOrBitFieldObject() &&
   4253       RHS.get()->isOrdinaryOrBitFieldObject()) {
   4254     VK = LHS.get()->getValueKind();
   4255     if (LHS.get()->getObjectKind() == OK_BitField ||
   4256         RHS.get()->getObjectKind() == OK_BitField)
   4257       OK = OK_BitField;
   4258     return LTy;
   4259   }
   4260 
   4261   // C++11 [expr.cond]p5
   4262   //   Otherwise, the result is a prvalue. If the second and third operands
   4263   //   do not have the same type, and either has (cv) class type, ...
   4264   if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
   4265     //   ... overload resolution is used to determine the conversions (if any)
   4266     //   to be applied to the operands. If the overload resolution fails, the
   4267     //   program is ill-formed.
   4268     if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
   4269       return QualType();
   4270   }
   4271 
   4272   // C++11 [expr.cond]p6
   4273   //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
   4274   //   conversions are performed on the second and third operands.
   4275   LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
   4276   RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
   4277   if (LHS.isInvalid() || RHS.isInvalid())
   4278     return QualType();
   4279   LTy = LHS.get()->getType();
   4280   RTy = RHS.get()->getType();
   4281 
   4282   //   After those conversions, one of the following shall hold:
   4283   //   -- The second and third operands have the same type; the result
   4284   //      is of that type. If the operands have class type, the result
   4285   //      is a prvalue temporary of the result type, which is
   4286   //      copy-initialized from either the second operand or the third
   4287   //      operand depending on the value of the first operand.
   4288   if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
   4289     if (LTy->isRecordType()) {
   4290       // The operands have class type. Make a temporary copy.
   4291       if (RequireNonAbstractType(QuestionLoc, LTy,
   4292                                  diag::err_allocation_of_abstract_type))
   4293         return QualType();
   4294       InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
   4295 
   4296       ExprResult LHSCopy = PerformCopyInitialization(Entity,
   4297                                                      SourceLocation(),
   4298                                                      LHS);
   4299       if (LHSCopy.isInvalid())
   4300         return QualType();
   4301 
   4302       ExprResult RHSCopy = PerformCopyInitialization(Entity,
   4303                                                      SourceLocation(),
   4304                                                      RHS);
   4305       if (RHSCopy.isInvalid())
   4306         return QualType();
   4307 
   4308       LHS = LHSCopy;
   4309       RHS = RHSCopy;
   4310     }
   4311 
   4312     return LTy;
   4313   }
   4314 
   4315   // Extension: conditional operator involving vector types.
   4316   if (LTy->isVectorType() || RTy->isVectorType())
   4317     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
   4318 
   4319   //   -- The second and third operands have arithmetic or enumeration type;
   4320   //      the usual arithmetic conversions are performed to bring them to a
   4321   //      common type, and the result is of that type.
   4322   if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
   4323     UsualArithmeticConversions(LHS, RHS);
   4324     if (LHS.isInvalid() || RHS.isInvalid())
   4325       return QualType();
   4326     return LHS.get()->getType();
   4327   }
   4328 
   4329   //   -- The second and third operands have pointer type, or one has pointer
   4330   //      type and the other is a null pointer constant, or both are null
   4331   //      pointer constants, at least one of which is non-integral; pointer
   4332   //      conversions and qualification conversions are performed to bring them
   4333   //      to their composite pointer type. The result is of the composite
   4334   //      pointer type.
   4335   //   -- The second and third operands have pointer to member type, or one has
   4336   //      pointer to member type and the other is a null pointer constant;
   4337   //      pointer to member conversions and qualification conversions are
   4338   //      performed to bring them to a common type, whose cv-qualification
   4339   //      shall match the cv-qualification of either the second or the third
   4340   //      operand. The result is of the common type.
   4341   bool NonStandardCompositeType = false;
   4342   QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
   4343                               isSFINAEContext()? 0 : &NonStandardCompositeType);
   4344   if (!Composite.isNull()) {
   4345     if (NonStandardCompositeType)
   4346       Diag(QuestionLoc,
   4347            diag::ext_typecheck_cond_incompatible_operands_nonstandard)
   4348         << LTy << RTy << Composite
   4349         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4350 
   4351     return Composite;
   4352   }
   4353 
   4354   // Similarly, attempt to find composite type of two objective-c pointers.
   4355   Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
   4356   if (!Composite.isNull())
   4357     return Composite;
   4358 
   4359   // Check if we are using a null with a non-pointer type.
   4360   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
   4361     return QualType();
   4362 
   4363   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
   4364     << LHS.get()->getType() << RHS.get()->getType()
   4365     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4366   return QualType();
   4367 }
   4368 
   4369 /// \brief Find a merged pointer type and convert the two expressions to it.
   4370 ///
   4371 /// This finds the composite pointer type (or member pointer type) for @p E1
   4372 /// and @p E2 according to C++11 5.9p2. It converts both expressions to this
   4373 /// type and returns it.
   4374 /// It does not emit diagnostics.
   4375 ///
   4376 /// \param Loc The location of the operator requiring these two expressions to
   4377 /// be converted to the composite pointer type.
   4378 ///
   4379 /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
   4380 /// a non-standard (but still sane) composite type to which both expressions
   4381 /// can be converted. When such a type is chosen, \c *NonStandardCompositeType
   4382 /// will be set true.
   4383 QualType Sema::FindCompositePointerType(SourceLocation Loc,
   4384                                         Expr *&E1, Expr *&E2,
   4385                                         bool *NonStandardCompositeType) {
   4386   if (NonStandardCompositeType)
   4387     *NonStandardCompositeType = false;
   4388 
   4389   assert(getLangOpts().CPlusPlus && "This function assumes C++");
   4390   QualType T1 = E1->getType(), T2 = E2->getType();
   4391 
   4392   // C++11 5.9p2
   4393   //   Pointer conversions and qualification conversions are performed on
   4394   //   pointer operands to bring them to their composite pointer type. If
   4395   //   one operand is a null pointer constant, the composite pointer type is
   4396   //   std::nullptr_t if the other operand is also a null pointer constant or,
   4397   //   if the other operand is a pointer, the type of the other operand.
   4398   if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
   4399       !T2->isAnyPointerType() && !T2->isMemberPointerType()) {
   4400     if (T1->isNullPtrType() &&
   4401         E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
   4402       E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
   4403       return T1;
   4404     }
   4405     if (T2->isNullPtrType() &&
   4406         E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
   4407       E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
   4408       return T2;
   4409     }
   4410     return QualType();
   4411   }
   4412 
   4413   if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
   4414     if (T2->isMemberPointerType())
   4415       E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
   4416     else
   4417       E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
   4418     return T2;
   4419   }
   4420   if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
   4421     if (T1->isMemberPointerType())
   4422       E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
   4423     else
   4424       E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
   4425     return T1;
   4426   }
   4427 
   4428   // Now both have to be pointers or member pointers.
   4429   if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
   4430       (!T2->isPointerType() && !T2->isMemberPointerType()))
   4431     return QualType();
   4432 
   4433   //   Otherwise, of one of the operands has type "pointer to cv1 void," then
   4434   //   the other has type "pointer to cv2 T" and the composite pointer type is
   4435   //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
   4436   //   Otherwise, the composite pointer type is a pointer type similar to the
   4437   //   type of one of the operands, with a cv-qualification signature that is
   4438   //   the union of the cv-qualification signatures of the operand types.
   4439   // In practice, the first part here is redundant; it's subsumed by the second.
   4440   // What we do here is, we build the two possible composite types, and try the
   4441   // conversions in both directions. If only one works, or if the two composite
   4442   // types are the same, we have succeeded.
   4443   // FIXME: extended qualifiers?
   4444   typedef SmallVector<unsigned, 4> QualifierVector;
   4445   QualifierVector QualifierUnion;
   4446   typedef SmallVector<std::pair<const Type *, const Type *>, 4>
   4447       ContainingClassVector;
   4448   ContainingClassVector MemberOfClass;
   4449   QualType Composite1 = Context.getCanonicalType(T1),
   4450            Composite2 = Context.getCanonicalType(T2);
   4451   unsigned NeedConstBefore = 0;
   4452   do {
   4453     const PointerType *Ptr1, *Ptr2;
   4454     if ((Ptr1 = Composite1->getAs<PointerType>()) &&
   4455         (Ptr2 = Composite2->getAs<PointerType>())) {
   4456       Composite1 = Ptr1->getPointeeType();
   4457       Composite2 = Ptr2->getPointeeType();
   4458 
   4459       // If we're allowed to create a non-standard composite type, keep track
   4460       // of where we need to fill in additional 'const' qualifiers.
   4461       if (NonStandardCompositeType &&
   4462           Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
   4463         NeedConstBefore = QualifierUnion.size();
   4464 
   4465       QualifierUnion.push_back(
   4466                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
   4467       MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
   4468       continue;
   4469     }
   4470 
   4471     const MemberPointerType *MemPtr1, *MemPtr2;
   4472     if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
   4473         (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
   4474       Composite1 = MemPtr1->getPointeeType();
   4475       Composite2 = MemPtr2->getPointeeType();
   4476 
   4477       // If we're allowed to create a non-standard composite type, keep track
   4478       // of where we need to fill in additional 'const' qualifiers.
   4479       if (NonStandardCompositeType &&
   4480           Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
   4481         NeedConstBefore = QualifierUnion.size();
   4482 
   4483       QualifierUnion.push_back(
   4484                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
   4485       MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
   4486                                              MemPtr2->getClass()));
   4487       continue;
   4488     }
   4489 
   4490     // FIXME: block pointer types?
   4491 
   4492     // Cannot unwrap any more types.
   4493     break;
   4494   } while (true);
   4495 
   4496   if (NeedConstBefore && NonStandardCompositeType) {
   4497     // Extension: Add 'const' to qualifiers that come before the first qualifier
   4498     // mismatch, so that our (non-standard!) composite type meets the
   4499     // requirements of C++ [conv.qual]p4 bullet 3.
   4500     for (unsigned I = 0; I != NeedConstBefore; ++I) {
   4501       if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
   4502         QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
   4503         *NonStandardCompositeType = true;
   4504       }
   4505     }
   4506   }
   4507 
   4508   // Rewrap the composites as pointers or member pointers with the union CVRs.
   4509   ContainingClassVector::reverse_iterator MOC
   4510     = MemberOfClass.rbegin();
   4511   for (QualifierVector::reverse_iterator
   4512          I = QualifierUnion.rbegin(),
   4513          E = QualifierUnion.rend();
   4514        I != E; (void)++I, ++MOC) {
   4515     Qualifiers Quals = Qualifiers::fromCVRMask(*I);
   4516     if (MOC->first && MOC->second) {
   4517       // Rebuild member pointer type
   4518       Composite1 = Context.getMemberPointerType(
   4519                                     Context.getQualifiedType(Composite1, Quals),
   4520                                     MOC->first);
   4521       Composite2 = Context.getMemberPointerType(
   4522                                     Context.getQualifiedType(Composite2, Quals),
   4523                                     MOC->second);
   4524     } else {
   4525       // Rebuild pointer type
   4526       Composite1
   4527         = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
   4528       Composite2
   4529         = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
   4530     }
   4531   }
   4532 
   4533   // Try to convert to the first composite pointer type.
   4534   InitializedEntity Entity1
   4535     = InitializedEntity::InitializeTemporary(Composite1);
   4536   InitializationKind Kind
   4537     = InitializationKind::CreateCopy(Loc, SourceLocation());
   4538   InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
   4539   InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
   4540 
   4541   if (E1ToC1 && E2ToC1) {
   4542     // Conversion to Composite1 is viable.
   4543     if (!Context.hasSameType(Composite1, Composite2)) {
   4544       // Composite2 is a different type from Composite1. Check whether
   4545       // Composite2 is also viable.
   4546       InitializedEntity Entity2
   4547         = InitializedEntity::InitializeTemporary(Composite2);
   4548       InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
   4549       InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
   4550       if (E1ToC2 && E2ToC2) {
   4551         // Both Composite1 and Composite2 are viable and are different;
   4552         // this is an ambiguity.
   4553         return QualType();
   4554       }
   4555     }
   4556 
   4557     // Convert E1 to Composite1
   4558     ExprResult E1Result
   4559       = E1ToC1.Perform(*this, Entity1, Kind, E1);
   4560     if (E1Result.isInvalid())
   4561       return QualType();
   4562     E1 = E1Result.takeAs<Expr>();
   4563 
   4564     // Convert E2 to Composite1
   4565     ExprResult E2Result
   4566       = E2ToC1.Perform(*this, Entity1, Kind, E2);
   4567     if (E2Result.isInvalid())
   4568       return QualType();
   4569     E2 = E2Result.takeAs<Expr>();
   4570 
   4571     return Composite1;
   4572   }
   4573 
   4574   // Check whether Composite2 is viable.
   4575   InitializedEntity Entity2
   4576     = InitializedEntity::InitializeTemporary(Composite2);
   4577   InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
   4578   InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
   4579   if (!E1ToC2 || !E2ToC2)
   4580     return QualType();
   4581 
   4582   // Convert E1 to Composite2
   4583   ExprResult E1Result
   4584     = E1ToC2.Perform(*this, Entity2, Kind, E1);
   4585   if (E1Result.isInvalid())
   4586     return QualType();
   4587   E1 = E1Result.takeAs<Expr>();
   4588 
   4589   // Convert E2 to Composite2
   4590   ExprResult E2Result
   4591     = E2ToC2.Perform(*this, Entity2, Kind, E2);
   4592   if (E2Result.isInvalid())
   4593     return QualType();
   4594   E2 = E2Result.takeAs<Expr>();
   4595 
   4596   return Composite2;
   4597 }
   4598 
   4599 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
   4600   if (!E)
   4601     return ExprError();
   4602 
   4603   assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
   4604 
   4605   // If the result is a glvalue, we shouldn't bind it.
   4606   if (!E->isRValue())
   4607     return Owned(E);
   4608 
   4609   // In ARC, calls that return a retainable type can return retained,
   4610   // in which case we have to insert a consuming cast.
   4611   if (getLangOpts().ObjCAutoRefCount &&
   4612       E->getType()->isObjCRetainableType()) {
   4613 
   4614     bool ReturnsRetained;
   4615 
   4616     // For actual calls, we compute this by examining the type of the
   4617     // called value.
   4618     if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
   4619       Expr *Callee = Call->getCallee()->IgnoreParens();
   4620       QualType T = Callee->getType();
   4621 
   4622       if (T == Context.BoundMemberTy) {
   4623         // Handle pointer-to-members.
   4624         if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
   4625           T = BinOp->getRHS()->getType();
   4626         else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
   4627           T = Mem->getMemberDecl()->getType();
   4628       }
   4629 
   4630       if (const PointerType *Ptr = T->getAs<PointerType>())
   4631         T = Ptr->getPointeeType();
   4632       else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
   4633         T = Ptr->getPointeeType();
   4634       else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
   4635         T = MemPtr->getPointeeType();
   4636 
   4637       const FunctionType *FTy = T->getAs<FunctionType>();
   4638       assert(FTy && "call to value not of function type?");
   4639       ReturnsRetained = FTy->getExtInfo().getProducesResult();
   4640 
   4641     // ActOnStmtExpr arranges things so that StmtExprs of retainable
   4642     // type always produce a +1 object.
   4643     } else if (isa<StmtExpr>(E)) {
   4644       ReturnsRetained = true;
   4645 
   4646     // We hit this case with the lambda conversion-to-block optimization;
   4647     // we don't want any extra casts here.
   4648     } else if (isa<CastExpr>(E) &&
   4649                isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
   4650       return Owned(E);
   4651 
   4652     // For message sends and property references, we try to find an
   4653     // actual method.  FIXME: we should infer retention by selector in
   4654     // cases where we don't have an actual method.
   4655     } else {
   4656       ObjCMethodDecl *D = 0;
   4657       if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
   4658         D = Send->getMethodDecl();
   4659       } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
   4660         D = BoxedExpr->getBoxingMethod();
   4661       } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
   4662         D = ArrayLit->getArrayWithObjectsMethod();
   4663       } else if (ObjCDictionaryLiteral *DictLit
   4664                                         = dyn_cast<ObjCDictionaryLiteral>(E)) {
   4665         D = DictLit->getDictWithObjectsMethod();
   4666       }
   4667 
   4668       ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
   4669 
   4670       // Don't do reclaims on performSelector calls; despite their
   4671       // return type, the invoked method doesn't necessarily actually
   4672       // return an object.
   4673       if (!ReturnsRetained &&
   4674           D && D->getMethodFamily() == OMF_performSelector)
   4675         return Owned(E);
   4676     }
   4677 
   4678     // Don't reclaim an object of Class type.
   4679     if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
   4680       return Owned(E);
   4681 
   4682     ExprNeedsCleanups = true;
   4683 
   4684     CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
   4685                                    : CK_ARCReclaimReturnedObject);
   4686     return Owned(ImplicitCastExpr::Create(Context, E->getType(), ck, E, 0,
   4687                                           VK_RValue));
   4688   }
   4689 
   4690   if (!getLangOpts().CPlusPlus)
   4691     return Owned(E);
   4692 
   4693   // Search for the base element type (cf. ASTContext::getBaseElementType) with
   4694   // a fast path for the common case that the type is directly a RecordType.
   4695   const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
   4696   const RecordType *RT = 0;
   4697   while (!RT) {
   4698     switch (T->getTypeClass()) {
   4699     case Type::Record:
   4700       RT = cast<RecordType>(T);
   4701       break;
   4702     case Type::ConstantArray:
   4703     case Type::IncompleteArray:
   4704     case Type::VariableArray:
   4705     case Type::DependentSizedArray:
   4706       T = cast<ArrayType>(T)->getElementType().getTypePtr();
   4707       break;
   4708     default:
   4709       return Owned(E);
   4710     }
   4711   }
   4712 
   4713   // That should be enough to guarantee that this type is complete, if we're
   4714   // not processing a decltype expression.
   4715   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   4716   if (RD->isInvalidDecl() || RD->isDependentContext())
   4717     return Owned(E);
   4718 
   4719   bool IsDecltype = ExprEvalContexts.back().IsDecltype;
   4720   CXXDestructorDecl *Destructor = IsDecltype ? 0 : LookupDestructor(RD);
   4721 
   4722   if (Destructor) {
   4723     MarkFunctionReferenced(E->getExprLoc(), Destructor);
   4724     CheckDestructorAccess(E->getExprLoc(), Destructor,
   4725                           PDiag(diag::err_access_dtor_temp)
   4726                             << E->getType());
   4727     DiagnoseUseOfDecl(Destructor, E->getExprLoc());
   4728 
   4729     // If destructor is trivial, we can avoid the extra copy.
   4730     if (Destructor->isTrivial())
   4731       return Owned(E);
   4732 
   4733     // We need a cleanup, but we don't need to remember the temporary.
   4734     ExprNeedsCleanups = true;
   4735   }
   4736 
   4737   CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
   4738   CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
   4739 
   4740   if (IsDecltype)
   4741     ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
   4742 
   4743   return Owned(Bind);
   4744 }
   4745 
   4746 ExprResult
   4747 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
   4748   if (SubExpr.isInvalid())
   4749     return ExprError();
   4750 
   4751   return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
   4752 }
   4753 
   4754 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
   4755   assert(SubExpr && "sub expression can't be null!");
   4756 
   4757   CleanupVarDeclMarking();
   4758 
   4759   unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
   4760   assert(ExprCleanupObjects.size() >= FirstCleanup);
   4761   assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
   4762   if (!ExprNeedsCleanups)
   4763     return SubExpr;
   4764 
   4765   ArrayRef<ExprWithCleanups::CleanupObject> Cleanups
   4766     = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
   4767                          ExprCleanupObjects.size() - FirstCleanup);
   4768 
   4769   Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
   4770   DiscardCleanupsInEvaluationContext();
   4771 
   4772   return E;
   4773 }
   4774 
   4775 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
   4776   assert(SubStmt && "sub statement can't be null!");
   4777 
   4778   CleanupVarDeclMarking();
   4779 
   4780   if (!ExprNeedsCleanups)
   4781     return SubStmt;
   4782 
   4783   // FIXME: In order to attach the temporaries, wrap the statement into
   4784   // a StmtExpr; currently this is only used for asm statements.
   4785   // This is hacky, either create a new CXXStmtWithTemporaries statement or
   4786   // a new AsmStmtWithTemporaries.
   4787   CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, SubStmt,
   4788                                                       SourceLocation(),
   4789                                                       SourceLocation());
   4790   Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
   4791                                    SourceLocation());
   4792   return MaybeCreateExprWithCleanups(E);
   4793 }
   4794 
   4795 /// Process the expression contained within a decltype. For such expressions,
   4796 /// certain semantic checks on temporaries are delayed until this point, and
   4797 /// are omitted for the 'topmost' call in the decltype expression. If the
   4798 /// topmost call bound a temporary, strip that temporary off the expression.
   4799 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
   4800   assert(ExprEvalContexts.back().IsDecltype && "not in a decltype expression");
   4801 
   4802   // C++11 [expr.call]p11:
   4803   //   If a function call is a prvalue of object type,
   4804   // -- if the function call is either
   4805   //   -- the operand of a decltype-specifier, or
   4806   //   -- the right operand of a comma operator that is the operand of a
   4807   //      decltype-specifier,
   4808   //   a temporary object is not introduced for the prvalue.
   4809 
   4810   // Recursively rebuild ParenExprs and comma expressions to strip out the
   4811   // outermost CXXBindTemporaryExpr, if any.
   4812   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
   4813     ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
   4814     if (SubExpr.isInvalid())
   4815       return ExprError();
   4816     if (SubExpr.get() == PE->getSubExpr())
   4817       return Owned(E);
   4818     return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.take());
   4819   }
   4820   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
   4821     if (BO->getOpcode() == BO_Comma) {
   4822       ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
   4823       if (RHS.isInvalid())
   4824         return ExprError();
   4825       if (RHS.get() == BO->getRHS())
   4826         return Owned(E);
   4827       return Owned(new (Context) BinaryOperator(BO->getLHS(), RHS.take(),
   4828                                                 BO_Comma, BO->getType(),
   4829                                                 BO->getValueKind(),
   4830                                                 BO->getObjectKind(),
   4831                                                 BO->getOperatorLoc(),
   4832                                                 BO->isFPContractable()));
   4833     }
   4834   }
   4835 
   4836   CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
   4837   if (TopBind)
   4838     E = TopBind->getSubExpr();
   4839 
   4840   // Disable the special decltype handling now.
   4841   ExprEvalContexts.back().IsDecltype = false;
   4842 
   4843   // In MS mode, don't perform any extra checking of call return types within a
   4844   // decltype expression.
   4845   if (getLangOpts().MicrosoftMode)
   4846     return Owned(E);
   4847 
   4848   // Perform the semantic checks we delayed until this point.
   4849   CallExpr *TopCall = dyn_cast<CallExpr>(E);
   4850   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
   4851        I != N; ++I) {
   4852     CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
   4853     if (Call == TopCall)
   4854       continue;
   4855 
   4856     if (CheckCallReturnType(Call->getCallReturnType(),
   4857                             Call->getLocStart(),
   4858                             Call, Call->getDirectCallee()))
   4859       return ExprError();
   4860   }
   4861 
   4862   // Now all relevant types are complete, check the destructors are accessible
   4863   // and non-deleted, and annotate them on the temporaries.
   4864   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
   4865        I != N; ++I) {
   4866     CXXBindTemporaryExpr *Bind =
   4867       ExprEvalContexts.back().DelayedDecltypeBinds[I];
   4868     if (Bind == TopBind)
   4869       continue;
   4870 
   4871     CXXTemporary *Temp = Bind->getTemporary();
   4872 
   4873     CXXRecordDecl *RD =
   4874       Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
   4875     CXXDestructorDecl *Destructor = LookupDestructor(RD);
   4876     Temp->setDestructor(Destructor);
   4877 
   4878     MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
   4879     CheckDestructorAccess(Bind->getExprLoc(), Destructor,
   4880                           PDiag(diag::err_access_dtor_temp)
   4881                             << Bind->getType());
   4882     DiagnoseUseOfDecl(Destructor, Bind->getExprLoc());
   4883 
   4884     // We need a cleanup, but we don't need to remember the temporary.
   4885     ExprNeedsCleanups = true;
   4886   }
   4887 
   4888   // Possibly strip off the top CXXBindTemporaryExpr.
   4889   return Owned(E);
   4890 }
   4891 
   4892 ExprResult
   4893 Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
   4894                                    tok::TokenKind OpKind, ParsedType &ObjectType,
   4895                                    bool &MayBePseudoDestructor) {
   4896   // Since this might be a postfix expression, get rid of ParenListExprs.
   4897   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
   4898   if (Result.isInvalid()) return ExprError();
   4899   Base = Result.get();
   4900 
   4901   Result = CheckPlaceholderExpr(Base);
   4902   if (Result.isInvalid()) return ExprError();
   4903   Base = Result.take();
   4904 
   4905   QualType BaseType = Base->getType();
   4906   MayBePseudoDestructor = false;
   4907   if (BaseType->isDependentType()) {
   4908     // If we have a pointer to a dependent type and are using the -> operator,
   4909     // the object type is the type that the pointer points to. We might still
   4910     // have enough information about that type to do something useful.
   4911     if (OpKind == tok::arrow)
   4912       if (const PointerType *Ptr = BaseType->getAs<PointerType>())
   4913         BaseType = Ptr->getPointeeType();
   4914 
   4915     ObjectType = ParsedType::make(BaseType);
   4916     MayBePseudoDestructor = true;
   4917     return Owned(Base);
   4918   }
   4919 
   4920   // C++ [over.match.oper]p8:
   4921   //   [...] When operator->returns, the operator-> is applied  to the value
   4922   //   returned, with the original second operand.
   4923   if (OpKind == tok::arrow) {
   4924     // The set of types we've considered so far.
   4925     llvm::SmallPtrSet<CanQualType,8> CTypes;
   4926     SmallVector<SourceLocation, 8> Locations;
   4927     CTypes.insert(Context.getCanonicalType(BaseType));
   4928 
   4929     while (BaseType->isRecordType()) {
   4930       Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
   4931       if (Result.isInvalid())
   4932         return ExprError();
   4933       Base = Result.get();
   4934       if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
   4935         Locations.push_back(OpCall->getDirectCallee()->getLocation());
   4936       BaseType = Base->getType();
   4937       CanQualType CBaseType = Context.getCanonicalType(BaseType);
   4938       if (!CTypes.insert(CBaseType)) {
   4939         Diag(OpLoc, diag::err_operator_arrow_circular);
   4940         for (unsigned i = 0; i < Locations.size(); i++)
   4941           Diag(Locations[i], diag::note_declared_at);
   4942         return ExprError();
   4943       }
   4944     }
   4945 
   4946     if (BaseType->isPointerType() || BaseType->isObjCObjectPointerType())
   4947       BaseType = BaseType->getPointeeType();
   4948   }
   4949 
   4950   // Objective-C properties allow "." access on Objective-C pointer types,
   4951   // so adjust the base type to the object type itself.
   4952   if (BaseType->isObjCObjectPointerType())
   4953     BaseType = BaseType->getPointeeType();
   4954 
   4955   // C++ [basic.lookup.classref]p2:
   4956   //   [...] If the type of the object expression is of pointer to scalar
   4957   //   type, the unqualified-id is looked up in the context of the complete
   4958   //   postfix-expression.
   4959   //
   4960   // This also indicates that we could be parsing a pseudo-destructor-name.
   4961   // Note that Objective-C class and object types can be pseudo-destructor
   4962   // expressions or normal member (ivar or property) access expressions.
   4963   if (BaseType->isObjCObjectOrInterfaceType()) {
   4964     MayBePseudoDestructor = true;
   4965   } else if (!BaseType->isRecordType()) {
   4966     ObjectType = ParsedType();
   4967     MayBePseudoDestructor = true;
   4968     return Owned(Base);
   4969   }
   4970 
   4971   // The object type must be complete (or dependent), or
   4972   // C++11 [expr.prim.general]p3:
   4973   //   Unlike the object expression in other contexts, *this is not required to
   4974   //   be of complete type for purposes of class member access (5.2.5) outside
   4975   //   the member function body.
   4976   if (!BaseType->isDependentType() &&
   4977       !isThisOutsideMemberFunctionBody(BaseType) &&
   4978       RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
   4979     return ExprError();
   4980 
   4981   // C++ [basic.lookup.classref]p2:
   4982   //   If the id-expression in a class member access (5.2.5) is an
   4983   //   unqualified-id, and the type of the object expression is of a class
   4984   //   type C (or of pointer to a class type C), the unqualified-id is looked
   4985   //   up in the scope of class C. [...]
   4986   ObjectType = ParsedType::make(BaseType);
   4987   return Base;
   4988 }
   4989 
   4990 ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
   4991                                                    Expr *MemExpr) {
   4992   SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
   4993   Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
   4994     << isa<CXXPseudoDestructorExpr>(MemExpr)
   4995     << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
   4996 
   4997   return ActOnCallExpr(/*Scope*/ 0,
   4998                        MemExpr,
   4999                        /*LPLoc*/ ExpectedLParenLoc,
   5000                        MultiExprArg(),
   5001                        /*RPLoc*/ ExpectedLParenLoc);
   5002 }
   5003 
   5004 static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
   5005                    tok::TokenKind& OpKind, SourceLocation OpLoc) {
   5006   if (Base->hasPlaceholderType()) {
   5007     ExprResult result = S.CheckPlaceholderExpr(Base);
   5008     if (result.isInvalid()) return true;
   5009     Base = result.take();
   5010   }
   5011   ObjectType = Base->getType();
   5012 
   5013   // C++ [expr.pseudo]p2:
   5014   //   The left-hand side of the dot operator shall be of scalar type. The
   5015   //   left-hand side of the arrow operator shall be of pointer to scalar type.
   5016   //   This scalar type is the object type.
   5017   // Note that this is rather different from the normal handling for the
   5018   // arrow operator.
   5019   if (OpKind == tok::arrow) {
   5020     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
   5021       ObjectType = Ptr->getPointeeType();
   5022     } else if (!Base->isTypeDependent()) {
   5023       // The user wrote "p->" when she probably meant "p."; fix it.
   5024       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
   5025         << ObjectType << true
   5026         << FixItHint::CreateReplacement(OpLoc, ".");
   5027       if (S.isSFINAEContext())
   5028         return true;
   5029 
   5030       OpKind = tok::period;
   5031     }
   5032   }
   5033 
   5034   return false;
   5035 }
   5036 
   5037 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
   5038                                            SourceLocation OpLoc,
   5039                                            tok::TokenKind OpKind,
   5040                                            const CXXScopeSpec &SS,
   5041                                            TypeSourceInfo *ScopeTypeInfo,
   5042                                            SourceLocation CCLoc,
   5043                                            SourceLocation TildeLoc,
   5044                                          PseudoDestructorTypeStorage Destructed,
   5045                                            bool HasTrailingLParen) {
   5046   TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
   5047 
   5048   QualType ObjectType;
   5049   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
   5050     return ExprError();
   5051 
   5052   if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
   5053       !ObjectType->isVectorType()) {
   5054     if (getLangOpts().MicrosoftMode && ObjectType->isVoidType())
   5055       Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
   5056     else
   5057       Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
   5058         << ObjectType << Base->getSourceRange();
   5059     return ExprError();
   5060   }
   5061 
   5062   // C++ [expr.pseudo]p2:
   5063   //   [...] The cv-unqualified versions of the object type and of the type
   5064   //   designated by the pseudo-destructor-name shall be the same type.
   5065   if (DestructedTypeInfo) {
   5066     QualType DestructedType = DestructedTypeInfo->getType();
   5067     SourceLocation DestructedTypeStart
   5068       = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
   5069     if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
   5070       if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
   5071         Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
   5072           << ObjectType << DestructedType << Base->getSourceRange()
   5073           << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
   5074 
   5075         // Recover by setting the destructed type to the object type.
   5076         DestructedType = ObjectType;
   5077         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
   5078                                                            DestructedTypeStart);
   5079         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
   5080       } else if (DestructedType.getObjCLifetime() !=
   5081                                                 ObjectType.getObjCLifetime()) {
   5082 
   5083         if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
   5084           // Okay: just pretend that the user provided the correctly-qualified
   5085           // type.
   5086         } else {
   5087           Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
   5088             << ObjectType << DestructedType << Base->getSourceRange()
   5089             << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
   5090         }
   5091 
   5092         // Recover by setting the destructed type to the object type.
   5093         DestructedType = ObjectType;
   5094         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
   5095                                                            DestructedTypeStart);
   5096         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
   5097       }
   5098     }
   5099   }
   5100 
   5101   // C++ [expr.pseudo]p2:
   5102   //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
   5103   //   form
   5104   //
   5105   //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
   5106   //
   5107   //   shall designate the same scalar type.
   5108   if (ScopeTypeInfo) {
   5109     QualType ScopeType = ScopeTypeInfo->getType();
   5110     if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
   5111         !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
   5112 
   5113       Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
   5114            diag::err_pseudo_dtor_type_mismatch)
   5115         << ObjectType << ScopeType << Base->getSourceRange()
   5116         << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
   5117 
   5118       ScopeType = QualType();
   5119       ScopeTypeInfo = 0;
   5120     }
   5121   }
   5122 
   5123   Expr *Result
   5124     = new (Context) CXXPseudoDestructorExpr(Context, Base,
   5125                                             OpKind == tok::arrow, OpLoc,
   5126                                             SS.getWithLocInContext(Context),
   5127                                             ScopeTypeInfo,
   5128                                             CCLoc,
   5129                                             TildeLoc,
   5130                                             Destructed);
   5131 
   5132   if (HasTrailingLParen)
   5133     return Owned(Result);
   5134 
   5135   return DiagnoseDtorReference(Destructed.getLocation(), Result);
   5136 }
   5137 
   5138 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
   5139                                            SourceLocation OpLoc,
   5140                                            tok::TokenKind OpKind,
   5141                                            CXXScopeSpec &SS,
   5142                                            UnqualifiedId &FirstTypeName,
   5143                                            SourceLocation CCLoc,
   5144                                            SourceLocation TildeLoc,
   5145                                            UnqualifiedId &SecondTypeName,
   5146                                            bool HasTrailingLParen) {
   5147   assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
   5148           FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
   5149          "Invalid first type name in pseudo-destructor");
   5150   assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
   5151           SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
   5152          "Invalid second type name in pseudo-destructor");
   5153 
   5154   QualType ObjectType;
   5155   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
   5156     return ExprError();
   5157 
   5158   // Compute the object type that we should use for name lookup purposes. Only
   5159   // record types and dependent types matter.
   5160   ParsedType ObjectTypePtrForLookup;
   5161   if (!SS.isSet()) {
   5162     if (ObjectType->isRecordType())
   5163       ObjectTypePtrForLookup = ParsedType::make(ObjectType);
   5164     else if (ObjectType->isDependentType())
   5165       ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
   5166   }
   5167 
   5168   // Convert the name of the type being destructed (following the ~) into a
   5169   // type (with source-location information).
   5170   QualType DestructedType;
   5171   TypeSourceInfo *DestructedTypeInfo = 0;
   5172   PseudoDestructorTypeStorage Destructed;
   5173   if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
   5174     ParsedType T = getTypeName(*SecondTypeName.Identifier,
   5175                                SecondTypeName.StartLocation,
   5176                                S, &SS, true, false, ObjectTypePtrForLookup);
   5177     if (!T &&
   5178         ((SS.isSet() && !computeDeclContext(SS, false)) ||
   5179          (!SS.isSet() && ObjectType->isDependentType()))) {
   5180       // The name of the type being destroyed is a dependent name, and we
   5181       // couldn't find anything useful in scope. Just store the identifier and
   5182       // it's location, and we'll perform (qualified) name lookup again at
   5183       // template instantiation time.
   5184       Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
   5185                                                SecondTypeName.StartLocation);
   5186     } else if (!T) {
   5187       Diag(SecondTypeName.StartLocation,
   5188            diag::err_pseudo_dtor_destructor_non_type)
   5189         << SecondTypeName.Identifier << ObjectType;
   5190       if (isSFINAEContext())
   5191         return ExprError();
   5192 
   5193       // Recover by assuming we had the right type all along.
   5194       DestructedType = ObjectType;
   5195     } else
   5196       DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
   5197   } else {
   5198     // Resolve the template-id to a type.
   5199     TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
   5200     ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
   5201                                        TemplateId->NumArgs);
   5202     TypeResult T = ActOnTemplateIdType(TemplateId->SS,
   5203                                        TemplateId->TemplateKWLoc,
   5204                                        TemplateId->Template,
   5205                                        TemplateId->TemplateNameLoc,
   5206                                        TemplateId->LAngleLoc,
   5207                                        TemplateArgsPtr,
   5208                                        TemplateId->RAngleLoc);
   5209     if (T.isInvalid() || !T.get()) {
   5210       // Recover by assuming we had the right type all along.
   5211       DestructedType = ObjectType;
   5212     } else
   5213       DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
   5214   }
   5215 
   5216   // If we've performed some kind of recovery, (re-)build the type source
   5217   // information.
   5218   if (!DestructedType.isNull()) {
   5219     if (!DestructedTypeInfo)
   5220       DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
   5221                                                   SecondTypeName.StartLocation);
   5222     Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
   5223   }
   5224 
   5225   // Convert the name of the scope type (the type prior to '::') into a type.
   5226   TypeSourceInfo *ScopeTypeInfo = 0;
   5227   QualType ScopeType;
   5228   if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
   5229       FirstTypeName.Identifier) {
   5230     if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
   5231       ParsedType T = getTypeName(*FirstTypeName.Identifier,
   5232                                  FirstTypeName.StartLocation,
   5233                                  S, &SS, true, false, ObjectTypePtrForLookup);
   5234       if (!T) {
   5235         Diag(FirstTypeName.StartLocation,
   5236              diag::err_pseudo_dtor_destructor_non_type)
   5237           << FirstTypeName.Identifier << ObjectType;
   5238 
   5239         if (isSFINAEContext())
   5240           return ExprError();
   5241 
   5242         // Just drop this type. It's unnecessary anyway.
   5243         ScopeType = QualType();
   5244       } else
   5245         ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
   5246     } else {
   5247       // Resolve the template-id to a type.
   5248       TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
   5249       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
   5250                                          TemplateId->NumArgs);
   5251       TypeResult T = ActOnTemplateIdType(TemplateId->SS,
   5252                                          TemplateId->TemplateKWLoc,
   5253                                          TemplateId->Template,
   5254                                          TemplateId->TemplateNameLoc,
   5255                                          TemplateId->LAngleLoc,
   5256                                          TemplateArgsPtr,
   5257                                          TemplateId->RAngleLoc);
   5258       if (T.isInvalid() || !T.get()) {
   5259         // Recover by dropping this type.
   5260         ScopeType = QualType();
   5261       } else
   5262         ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
   5263     }
   5264   }
   5265 
   5266   if (!ScopeType.isNull() && !ScopeTypeInfo)
   5267     ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
   5268                                                   FirstTypeName.StartLocation);
   5269 
   5270 
   5271   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
   5272                                    ScopeTypeInfo, CCLoc, TildeLoc,
   5273                                    Destructed, HasTrailingLParen);
   5274 }
   5275 
   5276 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
   5277                                            SourceLocation OpLoc,
   5278                                            tok::TokenKind OpKind,
   5279                                            SourceLocation TildeLoc,
   5280                                            const DeclSpec& DS,
   5281                                            bool HasTrailingLParen) {
   5282   QualType ObjectType;
   5283   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
   5284     return ExprError();
   5285 
   5286   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
   5287 
   5288   TypeLocBuilder TLB;
   5289   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
   5290   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
   5291   TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
   5292   PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
   5293 
   5294   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
   5295                                    0, SourceLocation(), TildeLoc,
   5296                                    Destructed, HasTrailingLParen);
   5297 }
   5298 
   5299 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
   5300                                         CXXConversionDecl *Method,
   5301                                         bool HadMultipleCandidates) {
   5302   if (Method->getParent()->isLambda() &&
   5303       Method->getConversionType()->isBlockPointerType()) {
   5304     // This is a lambda coversion to block pointer; check if the argument
   5305     // is a LambdaExpr.
   5306     Expr *SubE = E;
   5307     CastExpr *CE = dyn_cast<CastExpr>(SubE);
   5308     if (CE && CE->getCastKind() == CK_NoOp)
   5309       SubE = CE->getSubExpr();
   5310     SubE = SubE->IgnoreParens();
   5311     if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
   5312       SubE = BE->getSubExpr();
   5313     if (isa<LambdaExpr>(SubE)) {
   5314       // For the conversion to block pointer on a lambda expression, we
   5315       // construct a special BlockLiteral instead; this doesn't really make
   5316       // a difference in ARC, but outside of ARC the resulting block literal
   5317       // follows the normal lifetime rules for block literals instead of being
   5318       // autoreleased.
   5319       DiagnosticErrorTrap Trap(Diags);
   5320       ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
   5321                                                      E->getExprLoc(),
   5322                                                      Method, E);
   5323       if (Exp.isInvalid())
   5324         Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
   5325       return Exp;
   5326     }
   5327   }
   5328 
   5329 
   5330   ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
   5331                                           FoundDecl, Method);
   5332   if (Exp.isInvalid())
   5333     return true;
   5334 
   5335   MemberExpr *ME =
   5336       new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
   5337                                SourceLocation(), Context.BoundMemberTy,
   5338                                VK_RValue, OK_Ordinary);
   5339   if (HadMultipleCandidates)
   5340     ME->setHadMultipleCandidates(true);
   5341   MarkMemberReferenced(ME);
   5342 
   5343   QualType ResultType = Method->getResultType();
   5344   ExprValueKind VK = Expr::getValueKindForType(ResultType);
   5345   ResultType = ResultType.getNonLValueExprType(Context);
   5346 
   5347   CXXMemberCallExpr *CE =
   5348     new (Context) CXXMemberCallExpr(Context, ME, MultiExprArg(), ResultType, VK,
   5349                                     Exp.get()->getLocEnd());
   5350   return CE;
   5351 }
   5352 
   5353 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
   5354                                       SourceLocation RParen) {
   5355   CanThrowResult CanThrow = canThrow(Operand);
   5356   return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
   5357                                              CanThrow, KeyLoc, RParen));
   5358 }
   5359 
   5360 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
   5361                                    Expr *Operand, SourceLocation RParen) {
   5362   return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
   5363 }
   5364 
   5365 static bool IsSpecialDiscardedValue(Expr *E) {
   5366   // In C++11, discarded-value expressions of a certain form are special,
   5367   // according to [expr]p10:
   5368   //   The lvalue-to-rvalue conversion (4.1) is applied only if the
   5369   //   expression is an lvalue of volatile-qualified type and it has
   5370   //   one of the following forms:
   5371   E = E->IgnoreParens();
   5372 
   5373   //   - id-expression (5.1.1),
   5374   if (isa<DeclRefExpr>(E))
   5375     return true;
   5376 
   5377   //   - subscripting (5.2.1),
   5378   if (isa<ArraySubscriptExpr>(E))
   5379     return true;
   5380 
   5381   //   - class member access (5.2.5),
   5382   if (isa<MemberExpr>(E))
   5383     return true;
   5384 
   5385   //   - indirection (5.3.1),
   5386   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
   5387     if (UO->getOpcode() == UO_Deref)
   5388       return true;
   5389 
   5390   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
   5391     //   - pointer-to-member operation (5.5),
   5392     if (BO->isPtrMemOp())
   5393       return true;
   5394 
   5395     //   - comma expression (5.18) where the right operand is one of the above.
   5396     if (BO->getOpcode() == BO_Comma)
   5397       return IsSpecialDiscardedValue(BO->getRHS());
   5398   }
   5399 
   5400   //   - conditional expression (5.16) where both the second and the third
   5401   //     operands are one of the above, or
   5402   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
   5403     return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
   5404            IsSpecialDiscardedValue(CO->getFalseExpr());
   5405   // The related edge case of "*x ?: *x".
   5406   if (BinaryConditionalOperator *BCO =
   5407           dyn_cast<BinaryConditionalOperator>(E)) {
   5408     if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
   5409       return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
   5410              IsSpecialDiscardedValue(BCO->getFalseExpr());
   5411   }
   5412 
   5413   // Objective-C++ extensions to the rule.
   5414   if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
   5415     return true;
   5416 
   5417   return false;
   5418 }
   5419 
   5420 /// Perform the conversions required for an expression used in a
   5421 /// context that ignores the result.
   5422 ExprResult Sema::IgnoredValueConversions(Expr *E) {
   5423   if (E->hasPlaceholderType()) {
   5424     ExprResult result = CheckPlaceholderExpr(E);
   5425     if (result.isInvalid()) return Owned(E);
   5426     E = result.take();
   5427   }
   5428 
   5429   // C99 6.3.2.1:
   5430   //   [Except in specific positions,] an lvalue that does not have
   5431   //   array type is converted to the value stored in the
   5432   //   designated object (and is no longer an lvalue).
   5433   if (E->isRValue()) {
   5434     // In C, function designators (i.e. expressions of function type)
   5435     // are r-values, but we still want to do function-to-pointer decay
   5436     // on them.  This is both technically correct and convenient for
   5437     // some clients.
   5438     if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
   5439       return DefaultFunctionArrayConversion(E);
   5440 
   5441     return Owned(E);
   5442   }
   5443 
   5444   if (getLangOpts().CPlusPlus)  {
   5445     // The C++11 standard defines the notion of a discarded-value expression;
   5446     // normally, we don't need to do anything to handle it, but if it is a
   5447     // volatile lvalue with a special form, we perform an lvalue-to-rvalue
   5448     // conversion.
   5449     if (getLangOpts().CPlusPlus11 && E->isGLValue() &&
   5450         E->getType().isVolatileQualified() &&
   5451         IsSpecialDiscardedValue(E)) {
   5452       ExprResult Res = DefaultLvalueConversion(E);
   5453       if (Res.isInvalid())
   5454         return Owned(E);
   5455       E = Res.take();
   5456     }
   5457     return Owned(E);
   5458   }
   5459 
   5460   // GCC seems to also exclude expressions of incomplete enum type.
   5461   if (const EnumType *T = E->getType()->getAs<EnumType>()) {
   5462     if (!T->getDecl()->isComplete()) {
   5463       // FIXME: stupid workaround for a codegen bug!
   5464       E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
   5465       return Owned(E);
   5466     }
   5467   }
   5468 
   5469   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
   5470   if (Res.isInvalid())
   5471     return Owned(E);
   5472   E = Res.take();
   5473 
   5474   if (!E->getType()->isVoidType())
   5475     RequireCompleteType(E->getExprLoc(), E->getType(),
   5476                         diag::err_incomplete_type);
   5477   return Owned(E);
   5478 }
   5479 
   5480 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
   5481                                      bool DiscardedValue,
   5482                                      bool IsConstexpr) {
   5483   ExprResult FullExpr = Owned(FE);
   5484 
   5485   if (!FullExpr.get())
   5486     return ExprError();
   5487 
   5488   if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
   5489     return ExprError();
   5490 
   5491   // Top-level expressions default to 'id' when we're in a debugger.
   5492   if (DiscardedValue && getLangOpts().DebuggerCastResultToId &&
   5493       FullExpr.get()->getType() == Context.UnknownAnyTy) {
   5494     FullExpr = forceUnknownAnyToType(FullExpr.take(), Context.getObjCIdType());
   5495     if (FullExpr.isInvalid())
   5496       return ExprError();
   5497   }
   5498 
   5499   if (DiscardedValue) {
   5500     FullExpr = CheckPlaceholderExpr(FullExpr.take());
   5501     if (FullExpr.isInvalid())
   5502       return ExprError();
   5503 
   5504     FullExpr = IgnoredValueConversions(FullExpr.take());
   5505     if (FullExpr.isInvalid())
   5506       return ExprError();
   5507   }
   5508 
   5509   CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
   5510   return MaybeCreateExprWithCleanups(FullExpr);
   5511 }
   5512 
   5513 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
   5514   if (!FullStmt) return StmtError();
   5515 
   5516   return MaybeCreateStmtWithCleanups(FullStmt);
   5517 }
   5518 
   5519 Sema::IfExistsResult
   5520 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
   5521                                    CXXScopeSpec &SS,
   5522                                    const DeclarationNameInfo &TargetNameInfo) {
   5523   DeclarationName TargetName = TargetNameInfo.getName();
   5524   if (!TargetName)
   5525     return IER_DoesNotExist;
   5526 
   5527   // If the name itself is dependent, then the result is dependent.
   5528   if (TargetName.isDependentName())
   5529     return IER_Dependent;
   5530 
   5531   // Do the redeclaration lookup in the current scope.
   5532   LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
   5533                  Sema::NotForRedeclaration);
   5534   LookupParsedName(R, S, &SS);
   5535   R.suppressDiagnostics();
   5536 
   5537   switch (R.getResultKind()) {
   5538   case LookupResult::Found:
   5539   case LookupResult::FoundOverloaded:
   5540   case LookupResult::FoundUnresolvedValue:
   5541   case LookupResult::Ambiguous:
   5542     return IER_Exists;
   5543 
   5544   case LookupResult::NotFound:
   5545     return IER_DoesNotExist;
   5546 
   5547   case LookupResult::NotFoundInCurrentInstantiation:
   5548     return IER_Dependent;
   5549   }
   5550 
   5551   llvm_unreachable("Invalid LookupResult Kind!");
   5552 }
   5553 
   5554 Sema::IfExistsResult
   5555 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
   5556                                    bool IsIfExists, CXXScopeSpec &SS,
   5557                                    UnqualifiedId &Name) {
   5558   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
   5559 
   5560   // Check for unexpanded parameter packs.
   5561   SmallVector<UnexpandedParameterPack, 4> Unexpanded;
   5562   collectUnexpandedParameterPacks(SS, Unexpanded);
   5563   collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
   5564   if (!Unexpanded.empty()) {
   5565     DiagnoseUnexpandedParameterPacks(KeywordLoc,
   5566                                      IsIfExists? UPPC_IfExists
   5567                                                : UPPC_IfNotExists,
   5568                                      Unexpanded);
   5569     return IER_Error;
   5570   }
   5571 
   5572   return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
   5573 }
   5574