Home | History | Annotate | Download | only in bn
      1 /* crypto/bn/bn_sqrt.c */
      2 /* Written by Lenka Fibikova <fibikova (at) exp-math.uni-essen.de>
      3  * and Bodo Moeller for the OpenSSL project. */
      4 /* ====================================================================
      5  * Copyright (c) 1998-2000 The OpenSSL Project.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  *
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in
     16  *    the documentation and/or other materials provided with the
     17  *    distribution.
     18  *
     19  * 3. All advertising materials mentioning features or use of this
     20  *    software must display the following acknowledgment:
     21  *    "This product includes software developed by the OpenSSL Project
     22  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     23  *
     24  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     25  *    endorse or promote products derived from this software without
     26  *    prior written permission. For written permission, please contact
     27  *    openssl-core (at) openssl.org.
     28  *
     29  * 5. Products derived from this software may not be called "OpenSSL"
     30  *    nor may "OpenSSL" appear in their names without prior written
     31  *    permission of the OpenSSL Project.
     32  *
     33  * 6. Redistributions of any form whatsoever must retain the following
     34  *    acknowledgment:
     35  *    "This product includes software developed by the OpenSSL Project
     36  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     37  *
     38  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     39  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     40  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     41  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     42  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     43  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     44  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     45  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     46  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     47  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     48  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     49  * OF THE POSSIBILITY OF SUCH DAMAGE.
     50  * ====================================================================
     51  *
     52  * This product includes cryptographic software written by Eric Young
     53  * (eay (at) cryptsoft.com).  This product includes software written by Tim
     54  * Hudson (tjh (at) cryptsoft.com).
     55  *
     56  */
     57 
     58 #include "cryptlib.h"
     59 #include "bn_lcl.h"
     60 
     61 
     62 BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
     63 /* Returns 'ret' such that
     64  *      ret^2 == a (mod p),
     65  * using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course
     66  * in Algebraic Computational Number Theory", algorithm 1.5.1).
     67  * 'p' must be prime!
     68  */
     69 	{
     70 	BIGNUM *ret = in;
     71 	int err = 1;
     72 	int r;
     73 	BIGNUM *A, *b, *q, *t, *x, *y;
     74 	int e, i, j;
     75 
     76 	if (!BN_is_odd(p) || BN_abs_is_word(p, 1))
     77 		{
     78 		if (BN_abs_is_word(p, 2))
     79 			{
     80 			if (ret == NULL)
     81 				ret = BN_new();
     82 			if (ret == NULL)
     83 				goto end;
     84 			if (!BN_set_word(ret, BN_is_bit_set(a, 0)))
     85 				{
     86 				if (ret != in)
     87 					BN_free(ret);
     88 				return NULL;
     89 				}
     90 			bn_check_top(ret);
     91 			return ret;
     92 			}
     93 
     94 		BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
     95 		return(NULL);
     96 		}
     97 
     98 	if (BN_is_zero(a) || BN_is_one(a))
     99 		{
    100 		if (ret == NULL)
    101 			ret = BN_new();
    102 		if (ret == NULL)
    103 			goto end;
    104 		if (!BN_set_word(ret, BN_is_one(a)))
    105 			{
    106 			if (ret != in)
    107 				BN_free(ret);
    108 			return NULL;
    109 			}
    110 		bn_check_top(ret);
    111 		return ret;
    112 		}
    113 
    114 	BN_CTX_start(ctx);
    115 	A = BN_CTX_get(ctx);
    116 	b = BN_CTX_get(ctx);
    117 	q = BN_CTX_get(ctx);
    118 	t = BN_CTX_get(ctx);
    119 	x = BN_CTX_get(ctx);
    120 	y = BN_CTX_get(ctx);
    121 	if (y == NULL) goto end;
    122 
    123 	if (ret == NULL)
    124 		ret = BN_new();
    125 	if (ret == NULL) goto end;
    126 
    127 	/* A = a mod p */
    128 	if (!BN_nnmod(A, a, p, ctx)) goto end;
    129 
    130 	/* now write  |p| - 1  as  2^e*q  where  q  is odd */
    131 	e = 1;
    132 	while (!BN_is_bit_set(p, e))
    133 		e++;
    134 	/* we'll set  q  later (if needed) */
    135 
    136 	if (e == 1)
    137 		{
    138 		/* The easy case:  (|p|-1)/2  is odd, so 2 has an inverse
    139 		 * modulo  (|p|-1)/2,  and square roots can be computed
    140 		 * directly by modular exponentiation.
    141 		 * We have
    142 		 *     2 * (|p|+1)/4 == 1   (mod (|p|-1)/2),
    143 		 * so we can use exponent  (|p|+1)/4,  i.e.  (|p|-3)/4 + 1.
    144 		 */
    145 		if (!BN_rshift(q, p, 2)) goto end;
    146 		q->neg = 0;
    147 		if (!BN_add_word(q, 1)) goto end;
    148 		if (!BN_mod_exp(ret, A, q, p, ctx)) goto end;
    149 		err = 0;
    150 		goto vrfy;
    151 		}
    152 
    153 	if (e == 2)
    154 		{
    155 		/* |p| == 5  (mod 8)
    156 		 *
    157 		 * In this case  2  is always a non-square since
    158 		 * Legendre(2,p) = (-1)^((p^2-1)/8)  for any odd prime.
    159 		 * So if  a  really is a square, then  2*a  is a non-square.
    160 		 * Thus for
    161 		 *      b := (2*a)^((|p|-5)/8),
    162 		 *      i := (2*a)*b^2
    163 		 * we have
    164 		 *     i^2 = (2*a)^((1 + (|p|-5)/4)*2)
    165 		 *         = (2*a)^((p-1)/2)
    166 		 *         = -1;
    167 		 * so if we set
    168 		 *      x := a*b*(i-1),
    169 		 * then
    170 		 *     x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
    171 		 *         = a^2 * b^2 * (-2*i)
    172 		 *         = a*(-i)*(2*a*b^2)
    173 		 *         = a*(-i)*i
    174 		 *         = a.
    175 		 *
    176 		 * (This is due to A.O.L. Atkin,
    177 		 * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,
    178 		 * November 1992.)
    179 		 */
    180 
    181 		/* t := 2*a */
    182 		if (!BN_mod_lshift1_quick(t, A, p)) goto end;
    183 
    184 		/* b := (2*a)^((|p|-5)/8) */
    185 		if (!BN_rshift(q, p, 3)) goto end;
    186 		q->neg = 0;
    187 		if (!BN_mod_exp(b, t, q, p, ctx)) goto end;
    188 
    189 		/* y := b^2 */
    190 		if (!BN_mod_sqr(y, b, p, ctx)) goto end;
    191 
    192 		/* t := (2*a)*b^2 - 1*/
    193 		if (!BN_mod_mul(t, t, y, p, ctx)) goto end;
    194 		if (!BN_sub_word(t, 1)) goto end;
    195 
    196 		/* x = a*b*t */
    197 		if (!BN_mod_mul(x, A, b, p, ctx)) goto end;
    198 		if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
    199 
    200 		if (!BN_copy(ret, x)) goto end;
    201 		err = 0;
    202 		goto vrfy;
    203 		}
    204 
    205 	/* e > 2, so we really have to use the Tonelli/Shanks algorithm.
    206 	 * First, find some  y  that is not a square. */
    207 	if (!BN_copy(q, p)) goto end; /* use 'q' as temp */
    208 	q->neg = 0;
    209 	i = 2;
    210 	do
    211 		{
    212 		/* For efficiency, try small numbers first;
    213 		 * if this fails, try random numbers.
    214 		 */
    215 		if (i < 22)
    216 			{
    217 			if (!BN_set_word(y, i)) goto end;
    218 			}
    219 		else
    220 			{
    221 			if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) goto end;
    222 			if (BN_ucmp(y, p) >= 0)
    223 				{
    224 				if (!(p->neg ? BN_add : BN_sub)(y, y, p)) goto end;
    225 				}
    226 			/* now 0 <= y < |p| */
    227 			if (BN_is_zero(y))
    228 				if (!BN_set_word(y, i)) goto end;
    229 			}
    230 
    231 		r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */
    232 		if (r < -1) goto end;
    233 		if (r == 0)
    234 			{
    235 			/* m divides p */
    236 			BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
    237 			goto end;
    238 			}
    239 		}
    240 	while (r == 1 && ++i < 82);
    241 
    242 	if (r != -1)
    243 		{
    244 		/* Many rounds and still no non-square -- this is more likely
    245 		 * a bug than just bad luck.
    246 		 * Even if  p  is not prime, we should have found some  y
    247 		 * such that r == -1.
    248 		 */
    249 		BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS);
    250 		goto end;
    251 		}
    252 
    253 	/* Here's our actual 'q': */
    254 	if (!BN_rshift(q, q, e)) goto end;
    255 
    256 	/* Now that we have some non-square, we can find an element
    257 	 * of order  2^e  by computing its q'th power. */
    258 	if (!BN_mod_exp(y, y, q, p, ctx)) goto end;
    259 	if (BN_is_one(y))
    260 		{
    261 		BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
    262 		goto end;
    263 		}
    264 
    265 	/* Now we know that (if  p  is indeed prime) there is an integer
    266 	 * k,  0 <= k < 2^e,  such that
    267 	 *
    268 	 *      a^q * y^k == 1   (mod p).
    269 	 *
    270 	 * As  a^q  is a square and  y  is not,  k  must be even.
    271 	 * q+1  is even, too, so there is an element
    272 	 *
    273 	 *     X := a^((q+1)/2) * y^(k/2),
    274 	 *
    275 	 * and it satisfies
    276 	 *
    277 	 *     X^2 = a^q * a     * y^k
    278 	 *         = a,
    279 	 *
    280 	 * so it is the square root that we are looking for.
    281 	 */
    282 
    283 	/* t := (q-1)/2  (note that  q  is odd) */
    284 	if (!BN_rshift1(t, q)) goto end;
    285 
    286 	/* x := a^((q-1)/2) */
    287 	if (BN_is_zero(t)) /* special case: p = 2^e + 1 */
    288 		{
    289 		if (!BN_nnmod(t, A, p, ctx)) goto end;
    290 		if (BN_is_zero(t))
    291 			{
    292 			/* special case: a == 0  (mod p) */
    293 			BN_zero(ret);
    294 			err = 0;
    295 			goto end;
    296 			}
    297 		else
    298 			if (!BN_one(x)) goto end;
    299 		}
    300 	else
    301 		{
    302 		if (!BN_mod_exp(x, A, t, p, ctx)) goto end;
    303 		if (BN_is_zero(x))
    304 			{
    305 			/* special case: a == 0  (mod p) */
    306 			BN_zero(ret);
    307 			err = 0;
    308 			goto end;
    309 			}
    310 		}
    311 
    312 	/* b := a*x^2  (= a^q) */
    313 	if (!BN_mod_sqr(b, x, p, ctx)) goto end;
    314 	if (!BN_mod_mul(b, b, A, p, ctx)) goto end;
    315 
    316 	/* x := a*x    (= a^((q+1)/2)) */
    317 	if (!BN_mod_mul(x, x, A, p, ctx)) goto end;
    318 
    319 	while (1)
    320 		{
    321 		/* Now  b  is  a^q * y^k  for some even  k  (0 <= k < 2^E
    322 		 * where  E  refers to the original value of  e,  which we
    323 		 * don't keep in a variable),  and  x  is  a^((q+1)/2) * y^(k/2).
    324 		 *
    325 		 * We have  a*b = x^2,
    326 		 *    y^2^(e-1) = -1,
    327 		 *    b^2^(e-1) = 1.
    328 		 */
    329 
    330 		if (BN_is_one(b))
    331 			{
    332 			if (!BN_copy(ret, x)) goto end;
    333 			err = 0;
    334 			goto vrfy;
    335 			}
    336 
    337 
    338 		/* find smallest  i  such that  b^(2^i) = 1 */
    339 		i = 1;
    340 		if (!BN_mod_sqr(t, b, p, ctx)) goto end;
    341 		while (!BN_is_one(t))
    342 			{
    343 			i++;
    344 			if (i == e)
    345 				{
    346 				BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
    347 				goto end;
    348 				}
    349 			if (!BN_mod_mul(t, t, t, p, ctx)) goto end;
    350 			}
    351 
    352 
    353 		/* t := y^2^(e - i - 1) */
    354 		if (!BN_copy(t, y)) goto end;
    355 		for (j = e - i - 1; j > 0; j--)
    356 			{
    357 			if (!BN_mod_sqr(t, t, p, ctx)) goto end;
    358 			}
    359 		if (!BN_mod_mul(y, t, t, p, ctx)) goto end;
    360 		if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
    361 		if (!BN_mod_mul(b, b, y, p, ctx)) goto end;
    362 		e = i;
    363 		}
    364 
    365  vrfy:
    366 	if (!err)
    367 		{
    368 		/* verify the result -- the input might have been not a square
    369 		 * (test added in 0.9.8) */
    370 
    371 		if (!BN_mod_sqr(x, ret, p, ctx))
    372 			err = 1;
    373 
    374 		if (!err && 0 != BN_cmp(x, A))
    375 			{
    376 			BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
    377 			err = 1;
    378 			}
    379 		}
    380 
    381  end:
    382 	if (err)
    383 		{
    384 		if (ret != NULL && ret != in)
    385 			{
    386 			BN_clear_free(ret);
    387 			}
    388 		ret = NULL;
    389 		}
    390 	BN_CTX_end(ctx);
    391 	bn_check_top(ret);
    392 	return ret;
    393 	}
    394