Home | History | Annotate | Download | only in AST
      1 //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "clang/AST/RecordLayout.h"
     11 #include "clang/AST/ASTContext.h"
     12 #include "clang/AST/Attr.h"
     13 #include "clang/AST/CXXInheritance.h"
     14 #include "clang/AST/Decl.h"
     15 #include "clang/AST/DeclCXX.h"
     16 #include "clang/AST/DeclObjC.h"
     17 #include "clang/AST/Expr.h"
     18 #include "clang/Basic/TargetInfo.h"
     19 #include "clang/Sema/SemaDiagnostic.h"
     20 #include "llvm/ADT/SmallSet.h"
     21 #include "llvm/Support/CrashRecoveryContext.h"
     22 #include "llvm/Support/Format.h"
     23 #include "llvm/Support/MathExtras.h"
     24 
     25 using namespace clang;
     26 
     27 namespace {
     28 
     29 /// BaseSubobjectInfo - Represents a single base subobject in a complete class.
     30 /// For a class hierarchy like
     31 ///
     32 /// class A { };
     33 /// class B : A { };
     34 /// class C : A, B { };
     35 ///
     36 /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
     37 /// instances, one for B and two for A.
     38 ///
     39 /// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
     40 struct BaseSubobjectInfo {
     41   /// Class - The class for this base info.
     42   const CXXRecordDecl *Class;
     43 
     44   /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
     45   bool IsVirtual;
     46 
     47   /// Bases - Information about the base subobjects.
     48   SmallVector<BaseSubobjectInfo*, 4> Bases;
     49 
     50   /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
     51   /// of this base info (if one exists).
     52   BaseSubobjectInfo *PrimaryVirtualBaseInfo;
     53 
     54   // FIXME: Document.
     55   const BaseSubobjectInfo *Derived;
     56 };
     57 
     58 /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
     59 /// offsets while laying out a C++ class.
     60 class EmptySubobjectMap {
     61   const ASTContext &Context;
     62   uint64_t CharWidth;
     63 
     64   /// Class - The class whose empty entries we're keeping track of.
     65   const CXXRecordDecl *Class;
     66 
     67   /// EmptyClassOffsets - A map from offsets to empty record decls.
     68   typedef SmallVector<const CXXRecordDecl *, 1> ClassVectorTy;
     69   typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
     70   EmptyClassOffsetsMapTy EmptyClassOffsets;
     71 
     72   /// MaxEmptyClassOffset - The highest offset known to contain an empty
     73   /// base subobject.
     74   CharUnits MaxEmptyClassOffset;
     75 
     76   /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
     77   /// member subobject that is empty.
     78   void ComputeEmptySubobjectSizes();
     79 
     80   void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
     81 
     82   void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
     83                                  CharUnits Offset, bool PlacingEmptyBase);
     84 
     85   void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
     86                                   const CXXRecordDecl *Class,
     87                                   CharUnits Offset);
     88   void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset);
     89 
     90   /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
     91   /// subobjects beyond the given offset.
     92   bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
     93     return Offset <= MaxEmptyClassOffset;
     94   }
     95 
     96   CharUnits
     97   getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
     98     uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
     99     assert(FieldOffset % CharWidth == 0 &&
    100            "Field offset not at char boundary!");
    101 
    102     return Context.toCharUnitsFromBits(FieldOffset);
    103   }
    104 
    105 protected:
    106   bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
    107                                  CharUnits Offset) const;
    108 
    109   bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
    110                                      CharUnits Offset);
    111 
    112   bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
    113                                       const CXXRecordDecl *Class,
    114                                       CharUnits Offset) const;
    115   bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
    116                                       CharUnits Offset) const;
    117 
    118 public:
    119   /// This holds the size of the largest empty subobject (either a base
    120   /// or a member). Will be zero if the record being built doesn't contain
    121   /// any empty classes.
    122   CharUnits SizeOfLargestEmptySubobject;
    123 
    124   EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
    125   : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
    126       ComputeEmptySubobjectSizes();
    127   }
    128 
    129   /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
    130   /// at the given offset.
    131   /// Returns false if placing the record will result in two components
    132   /// (direct or indirect) of the same type having the same offset.
    133   bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
    134                             CharUnits Offset);
    135 
    136   /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
    137   /// offset.
    138   bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
    139 };
    140 
    141 void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
    142   // Check the bases.
    143   for (CXXRecordDecl::base_class_const_iterator I = Class->bases_begin(),
    144        E = Class->bases_end(); I != E; ++I) {
    145     const CXXRecordDecl *BaseDecl =
    146       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    147 
    148     CharUnits EmptySize;
    149     const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
    150     if (BaseDecl->isEmpty()) {
    151       // If the class decl is empty, get its size.
    152       EmptySize = Layout.getSize();
    153     } else {
    154       // Otherwise, we get the largest empty subobject for the decl.
    155       EmptySize = Layout.getSizeOfLargestEmptySubobject();
    156     }
    157 
    158     if (EmptySize > SizeOfLargestEmptySubobject)
    159       SizeOfLargestEmptySubobject = EmptySize;
    160   }
    161 
    162   // Check the fields.
    163   for (CXXRecordDecl::field_iterator I = Class->field_begin(),
    164        E = Class->field_end(); I != E; ++I) {
    165 
    166     const RecordType *RT =
    167       Context.getBaseElementType(I->getType())->getAs<RecordType>();
    168 
    169     // We only care about record types.
    170     if (!RT)
    171       continue;
    172 
    173     CharUnits EmptySize;
    174     const CXXRecordDecl *MemberDecl = cast<CXXRecordDecl>(RT->getDecl());
    175     const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
    176     if (MemberDecl->isEmpty()) {
    177       // If the class decl is empty, get its size.
    178       EmptySize = Layout.getSize();
    179     } else {
    180       // Otherwise, we get the largest empty subobject for the decl.
    181       EmptySize = Layout.getSizeOfLargestEmptySubobject();
    182     }
    183 
    184     if (EmptySize > SizeOfLargestEmptySubobject)
    185       SizeOfLargestEmptySubobject = EmptySize;
    186   }
    187 }
    188 
    189 bool
    190 EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
    191                                              CharUnits Offset) const {
    192   // We only need to check empty bases.
    193   if (!RD->isEmpty())
    194     return true;
    195 
    196   EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
    197   if (I == EmptyClassOffsets.end())
    198     return true;
    199 
    200   const ClassVectorTy& Classes = I->second;
    201   if (std::find(Classes.begin(), Classes.end(), RD) == Classes.end())
    202     return true;
    203 
    204   // There is already an empty class of the same type at this offset.
    205   return false;
    206 }
    207 
    208 void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
    209                                              CharUnits Offset) {
    210   // We only care about empty bases.
    211   if (!RD->isEmpty())
    212     return;
    213 
    214   // If we have empty structures inside an union, we can assign both
    215   // the same offset. Just avoid pushing them twice in the list.
    216   ClassVectorTy& Classes = EmptyClassOffsets[Offset];
    217   if (std::find(Classes.begin(), Classes.end(), RD) != Classes.end())
    218     return;
    219 
    220   Classes.push_back(RD);
    221 
    222   // Update the empty class offset.
    223   if (Offset > MaxEmptyClassOffset)
    224     MaxEmptyClassOffset = Offset;
    225 }
    226 
    227 bool
    228 EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
    229                                                  CharUnits Offset) {
    230   // We don't have to keep looking past the maximum offset that's known to
    231   // contain an empty class.
    232   if (!AnyEmptySubobjectsBeyondOffset(Offset))
    233     return true;
    234 
    235   if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
    236     return false;
    237 
    238   // Traverse all non-virtual bases.
    239   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
    240   for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
    241     BaseSubobjectInfo* Base = Info->Bases[I];
    242     if (Base->IsVirtual)
    243       continue;
    244 
    245     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
    246 
    247     if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
    248       return false;
    249   }
    250 
    251   if (Info->PrimaryVirtualBaseInfo) {
    252     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
    253 
    254     if (Info == PrimaryVirtualBaseInfo->Derived) {
    255       if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
    256         return false;
    257     }
    258   }
    259 
    260   // Traverse all member variables.
    261   unsigned FieldNo = 0;
    262   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
    263        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
    264     if (I->isBitField())
    265       continue;
    266 
    267     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
    268     if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
    269       return false;
    270   }
    271 
    272   return true;
    273 }
    274 
    275 void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
    276                                                   CharUnits Offset,
    277                                                   bool PlacingEmptyBase) {
    278   if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
    279     // We know that the only empty subobjects that can conflict with empty
    280     // subobject of non-empty bases, are empty bases that can be placed at
    281     // offset zero. Because of this, we only need to keep track of empty base
    282     // subobjects with offsets less than the size of the largest empty
    283     // subobject for our class.
    284     return;
    285   }
    286 
    287   AddSubobjectAtOffset(Info->Class, Offset);
    288 
    289   // Traverse all non-virtual bases.
    290   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
    291   for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
    292     BaseSubobjectInfo* Base = Info->Bases[I];
    293     if (Base->IsVirtual)
    294       continue;
    295 
    296     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
    297     UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
    298   }
    299 
    300   if (Info->PrimaryVirtualBaseInfo) {
    301     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
    302 
    303     if (Info == PrimaryVirtualBaseInfo->Derived)
    304       UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
    305                                 PlacingEmptyBase);
    306   }
    307 
    308   // Traverse all member variables.
    309   unsigned FieldNo = 0;
    310   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
    311        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
    312     if (I->isBitField())
    313       continue;
    314 
    315     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
    316     UpdateEmptyFieldSubobjects(*I, FieldOffset);
    317   }
    318 }
    319 
    320 bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
    321                                              CharUnits Offset) {
    322   // If we know this class doesn't have any empty subobjects we don't need to
    323   // bother checking.
    324   if (SizeOfLargestEmptySubobject.isZero())
    325     return true;
    326 
    327   if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
    328     return false;
    329 
    330   // We are able to place the base at this offset. Make sure to update the
    331   // empty base subobject map.
    332   UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
    333   return true;
    334 }
    335 
    336 bool
    337 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
    338                                                   const CXXRecordDecl *Class,
    339                                                   CharUnits Offset) const {
    340   // We don't have to keep looking past the maximum offset that's known to
    341   // contain an empty class.
    342   if (!AnyEmptySubobjectsBeyondOffset(Offset))
    343     return true;
    344 
    345   if (!CanPlaceSubobjectAtOffset(RD, Offset))
    346     return false;
    347 
    348   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    349 
    350   // Traverse all non-virtual bases.
    351   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
    352        E = RD->bases_end(); I != E; ++I) {
    353     if (I->isVirtual())
    354       continue;
    355 
    356     const CXXRecordDecl *BaseDecl =
    357       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    358 
    359     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
    360     if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
    361       return false;
    362   }
    363 
    364   if (RD == Class) {
    365     // This is the most derived class, traverse virtual bases as well.
    366     for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
    367          E = RD->vbases_end(); I != E; ++I) {
    368       const CXXRecordDecl *VBaseDecl =
    369         cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    370 
    371       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
    372       if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
    373         return false;
    374     }
    375   }
    376 
    377   // Traverse all member variables.
    378   unsigned FieldNo = 0;
    379   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
    380        I != E; ++I, ++FieldNo) {
    381     if (I->isBitField())
    382       continue;
    383 
    384     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
    385 
    386     if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
    387       return false;
    388   }
    389 
    390   return true;
    391 }
    392 
    393 bool
    394 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
    395                                                   CharUnits Offset) const {
    396   // We don't have to keep looking past the maximum offset that's known to
    397   // contain an empty class.
    398   if (!AnyEmptySubobjectsBeyondOffset(Offset))
    399     return true;
    400 
    401   QualType T = FD->getType();
    402   if (const RecordType *RT = T->getAs<RecordType>()) {
    403     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    404     return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
    405   }
    406 
    407   // If we have an array type we need to look at every element.
    408   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
    409     QualType ElemTy = Context.getBaseElementType(AT);
    410     const RecordType *RT = ElemTy->getAs<RecordType>();
    411     if (!RT)
    412       return true;
    413 
    414     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    415     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    416 
    417     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
    418     CharUnits ElementOffset = Offset;
    419     for (uint64_t I = 0; I != NumElements; ++I) {
    420       // We don't have to keep looking past the maximum offset that's known to
    421       // contain an empty class.
    422       if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
    423         return true;
    424 
    425       if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
    426         return false;
    427 
    428       ElementOffset += Layout.getSize();
    429     }
    430   }
    431 
    432   return true;
    433 }
    434 
    435 bool
    436 EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
    437                                          CharUnits Offset) {
    438   if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
    439     return false;
    440 
    441   // We are able to place the member variable at this offset.
    442   // Make sure to update the empty base subobject map.
    443   UpdateEmptyFieldSubobjects(FD, Offset);
    444   return true;
    445 }
    446 
    447 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
    448                                                    const CXXRecordDecl *Class,
    449                                                    CharUnits Offset) {
    450   // We know that the only empty subobjects that can conflict with empty
    451   // field subobjects are subobjects of empty bases that can be placed at offset
    452   // zero. Because of this, we only need to keep track of empty field
    453   // subobjects with offsets less than the size of the largest empty
    454   // subobject for our class.
    455   if (Offset >= SizeOfLargestEmptySubobject)
    456     return;
    457 
    458   AddSubobjectAtOffset(RD, Offset);
    459 
    460   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    461 
    462   // Traverse all non-virtual bases.
    463   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
    464        E = RD->bases_end(); I != E; ++I) {
    465     if (I->isVirtual())
    466       continue;
    467 
    468     const CXXRecordDecl *BaseDecl =
    469       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    470 
    471     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
    472     UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset);
    473   }
    474 
    475   if (RD == Class) {
    476     // This is the most derived class, traverse virtual bases as well.
    477     for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
    478          E = RD->vbases_end(); I != E; ++I) {
    479       const CXXRecordDecl *VBaseDecl =
    480       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    481 
    482       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
    483       UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset);
    484     }
    485   }
    486 
    487   // Traverse all member variables.
    488   unsigned FieldNo = 0;
    489   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
    490        I != E; ++I, ++FieldNo) {
    491     if (I->isBitField())
    492       continue;
    493 
    494     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
    495 
    496     UpdateEmptyFieldSubobjects(*I, FieldOffset);
    497   }
    498 }
    499 
    500 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const FieldDecl *FD,
    501                                                    CharUnits Offset) {
    502   QualType T = FD->getType();
    503   if (const RecordType *RT = T->getAs<RecordType>()) {
    504     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    505     UpdateEmptyFieldSubobjects(RD, RD, Offset);
    506     return;
    507   }
    508 
    509   // If we have an array type we need to update every element.
    510   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
    511     QualType ElemTy = Context.getBaseElementType(AT);
    512     const RecordType *RT = ElemTy->getAs<RecordType>();
    513     if (!RT)
    514       return;
    515 
    516     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    517     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    518 
    519     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
    520     CharUnits ElementOffset = Offset;
    521 
    522     for (uint64_t I = 0; I != NumElements; ++I) {
    523       // We know that the only empty subobjects that can conflict with empty
    524       // field subobjects are subobjects of empty bases that can be placed at
    525       // offset zero. Because of this, we only need to keep track of empty field
    526       // subobjects with offsets less than the size of the largest empty
    527       // subobject for our class.
    528       if (ElementOffset >= SizeOfLargestEmptySubobject)
    529         return;
    530 
    531       UpdateEmptyFieldSubobjects(RD, RD, ElementOffset);
    532       ElementOffset += Layout.getSize();
    533     }
    534   }
    535 }
    536 
    537 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
    538 
    539 class RecordLayoutBuilder {
    540 protected:
    541   // FIXME: Remove this and make the appropriate fields public.
    542   friend class clang::ASTContext;
    543 
    544   const ASTContext &Context;
    545 
    546   EmptySubobjectMap *EmptySubobjects;
    547 
    548   /// Size - The current size of the record layout.
    549   uint64_t Size;
    550 
    551   /// Alignment - The current alignment of the record layout.
    552   CharUnits Alignment;
    553 
    554   /// \brief The alignment if attribute packed is not used.
    555   CharUnits UnpackedAlignment;
    556 
    557   SmallVector<uint64_t, 16> FieldOffsets;
    558 
    559   /// \brief Whether the external AST source has provided a layout for this
    560   /// record.
    561   unsigned ExternalLayout : 1;
    562 
    563   /// \brief Whether we need to infer alignment, even when we have an
    564   /// externally-provided layout.
    565   unsigned InferAlignment : 1;
    566 
    567   /// Packed - Whether the record is packed or not.
    568   unsigned Packed : 1;
    569 
    570   unsigned IsUnion : 1;
    571 
    572   unsigned IsMac68kAlign : 1;
    573 
    574   unsigned IsMsStruct : 1;
    575 
    576   /// UnfilledBitsInLastByte - If the last field laid out was a bitfield,
    577   /// this contains the number of bits in the last byte that can be used for
    578   /// an adjacent bitfield if necessary.
    579   unsigned char UnfilledBitsInLastByte;
    580 
    581   /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
    582   /// #pragma pack.
    583   CharUnits MaxFieldAlignment;
    584 
    585   /// DataSize - The data size of the record being laid out.
    586   uint64_t DataSize;
    587 
    588   CharUnits NonVirtualSize;
    589   CharUnits NonVirtualAlignment;
    590 
    591   FieldDecl *ZeroLengthBitfield;
    592 
    593   /// PrimaryBase - the primary base class (if one exists) of the class
    594   /// we're laying out.
    595   const CXXRecordDecl *PrimaryBase;
    596 
    597   /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
    598   /// out is virtual.
    599   bool PrimaryBaseIsVirtual;
    600 
    601   /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
    602   /// pointer, as opposed to inheriting one from a primary base class.
    603   bool HasOwnVFPtr;
    604 
    605   /// VBPtrOffset - Virtual base table offset. Only for MS layout.
    606   CharUnits VBPtrOffset;
    607 
    608   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
    609 
    610   /// Bases - base classes and their offsets in the record.
    611   BaseOffsetsMapTy Bases;
    612 
    613   // VBases - virtual base classes and their offsets in the record.
    614   ASTRecordLayout::VBaseOffsetsMapTy VBases;
    615 
    616   /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
    617   /// primary base classes for some other direct or indirect base class.
    618   CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
    619 
    620   /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
    621   /// inheritance graph order. Used for determining the primary base class.
    622   const CXXRecordDecl *FirstNearlyEmptyVBase;
    623 
    624   /// VisitedVirtualBases - A set of all the visited virtual bases, used to
    625   /// avoid visiting virtual bases more than once.
    626   llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
    627 
    628   /// \brief Externally-provided size.
    629   uint64_t ExternalSize;
    630 
    631   /// \brief Externally-provided alignment.
    632   uint64_t ExternalAlign;
    633 
    634   /// \brief Externally-provided field offsets.
    635   llvm::DenseMap<const FieldDecl *, uint64_t> ExternalFieldOffsets;
    636 
    637   /// \brief Externally-provided direct, non-virtual base offsets.
    638   llvm::DenseMap<const CXXRecordDecl *, CharUnits> ExternalBaseOffsets;
    639 
    640   /// \brief Externally-provided virtual base offsets.
    641   llvm::DenseMap<const CXXRecordDecl *, CharUnits> ExternalVirtualBaseOffsets;
    642 
    643   RecordLayoutBuilder(const ASTContext &Context,
    644                       EmptySubobjectMap *EmptySubobjects)
    645     : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
    646       Alignment(CharUnits::One()), UnpackedAlignment(CharUnits::One()),
    647       ExternalLayout(false), InferAlignment(false),
    648       Packed(false), IsUnion(false), IsMac68kAlign(false), IsMsStruct(false),
    649       UnfilledBitsInLastByte(0), MaxFieldAlignment(CharUnits::Zero()),
    650       DataSize(0), NonVirtualSize(CharUnits::Zero()),
    651       NonVirtualAlignment(CharUnits::One()),
    652       ZeroLengthBitfield(0), PrimaryBase(0),
    653       PrimaryBaseIsVirtual(false),
    654       HasOwnVFPtr(false),
    655       VBPtrOffset(CharUnits::fromQuantity(-1)),
    656       FirstNearlyEmptyVBase(0) { }
    657 
    658   /// Reset this RecordLayoutBuilder to a fresh state, using the given
    659   /// alignment as the initial alignment.  This is used for the
    660   /// correct layout of vb-table pointers in MSVC.
    661   void resetWithTargetAlignment(CharUnits TargetAlignment) {
    662     const ASTContext &Context = this->Context;
    663     EmptySubobjectMap *EmptySubobjects = this->EmptySubobjects;
    664     this->~RecordLayoutBuilder();
    665     new (this) RecordLayoutBuilder(Context, EmptySubobjects);
    666     Alignment = UnpackedAlignment = TargetAlignment;
    667   }
    668 
    669   void Layout(const RecordDecl *D);
    670   void Layout(const CXXRecordDecl *D);
    671   void Layout(const ObjCInterfaceDecl *D);
    672 
    673   void LayoutFields(const RecordDecl *D);
    674   void LayoutField(const FieldDecl *D);
    675   void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize,
    676                           bool FieldPacked, const FieldDecl *D);
    677   void LayoutBitField(const FieldDecl *D);
    678 
    679   TargetCXXABI getCXXABI() const {
    680     return Context.getTargetInfo().getCXXABI();
    681   }
    682 
    683   bool isMicrosoftCXXABI() const {
    684     return getCXXABI().isMicrosoft();
    685   }
    686 
    687   void MSLayoutVirtualBases(const CXXRecordDecl *RD);
    688 
    689   /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
    690   llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
    691 
    692   typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
    693     BaseSubobjectInfoMapTy;
    694 
    695   /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
    696   /// of the class we're laying out to their base subobject info.
    697   BaseSubobjectInfoMapTy VirtualBaseInfo;
    698 
    699   /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
    700   /// class we're laying out to their base subobject info.
    701   BaseSubobjectInfoMapTy NonVirtualBaseInfo;
    702 
    703   /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
    704   /// bases of the given class.
    705   void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
    706 
    707   /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
    708   /// single class and all of its base classes.
    709   BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
    710                                               bool IsVirtual,
    711                                               BaseSubobjectInfo *Derived);
    712 
    713   /// DeterminePrimaryBase - Determine the primary base of the given class.
    714   void DeterminePrimaryBase(const CXXRecordDecl *RD);
    715 
    716   void SelectPrimaryVBase(const CXXRecordDecl *RD);
    717 
    718   void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
    719 
    720   /// LayoutNonVirtualBases - Determines the primary base class (if any) and
    721   /// lays it out. Will then proceed to lay out all non-virtual base clasess.
    722   void LayoutNonVirtualBases(const CXXRecordDecl *RD);
    723 
    724   /// LayoutNonVirtualBase - Lays out a single non-virtual base.
    725   void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
    726 
    727   void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
    728                                     CharUnits Offset);
    729 
    730   bool needsVFTable(const CXXRecordDecl *RD) const;
    731   bool hasNewVirtualFunction(const CXXRecordDecl *RD,
    732                              bool IgnoreDestructor = false) const;
    733   bool isPossiblePrimaryBase(const CXXRecordDecl *Base) const;
    734 
    735   void computeVtordisps(const CXXRecordDecl *RD,
    736                         ClassSetTy &VtordispVBases);
    737 
    738   /// LayoutVirtualBases - Lays out all the virtual bases.
    739   void LayoutVirtualBases(const CXXRecordDecl *RD,
    740                           const CXXRecordDecl *MostDerivedClass);
    741 
    742   /// LayoutVirtualBase - Lays out a single virtual base.
    743   void LayoutVirtualBase(const BaseSubobjectInfo *Base,
    744                          bool IsVtordispNeed = false);
    745 
    746   /// LayoutBase - Will lay out a base and return the offset where it was
    747   /// placed, in chars.
    748   CharUnits LayoutBase(const BaseSubobjectInfo *Base);
    749 
    750   /// InitializeLayout - Initialize record layout for the given record decl.
    751   void InitializeLayout(const Decl *D);
    752 
    753   /// FinishLayout - Finalize record layout. Adjust record size based on the
    754   /// alignment.
    755   void FinishLayout(const NamedDecl *D);
    756 
    757   void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment);
    758   void UpdateAlignment(CharUnits NewAlignment) {
    759     UpdateAlignment(NewAlignment, NewAlignment);
    760   }
    761 
    762   /// \brief Retrieve the externally-supplied field offset for the given
    763   /// field.
    764   ///
    765   /// \param Field The field whose offset is being queried.
    766   /// \param ComputedOffset The offset that we've computed for this field.
    767   uint64_t updateExternalFieldOffset(const FieldDecl *Field,
    768                                      uint64_t ComputedOffset);
    769 
    770   void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
    771                           uint64_t UnpackedOffset, unsigned UnpackedAlign,
    772                           bool isPacked, const FieldDecl *D);
    773 
    774   DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
    775 
    776   CharUnits getSize() const {
    777     assert(Size % Context.getCharWidth() == 0);
    778     return Context.toCharUnitsFromBits(Size);
    779   }
    780   uint64_t getSizeInBits() const { return Size; }
    781 
    782   void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
    783   void setSize(uint64_t NewSize) { Size = NewSize; }
    784 
    785   CharUnits getAligment() const { return Alignment; }
    786 
    787   CharUnits getDataSize() const {
    788     assert(DataSize % Context.getCharWidth() == 0);
    789     return Context.toCharUnitsFromBits(DataSize);
    790   }
    791   uint64_t getDataSizeInBits() const { return DataSize; }
    792 
    793   void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
    794   void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
    795 
    796   RecordLayoutBuilder(const RecordLayoutBuilder &) LLVM_DELETED_FUNCTION;
    797   void operator=(const RecordLayoutBuilder &) LLVM_DELETED_FUNCTION;
    798 };
    799 } // end anonymous namespace
    800 
    801 void
    802 RecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
    803   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
    804          E = RD->bases_end(); I != E; ++I) {
    805     assert(!I->getType()->isDependentType() &&
    806            "Cannot layout class with dependent bases.");
    807 
    808     const CXXRecordDecl *Base =
    809       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    810 
    811     // Check if this is a nearly empty virtual base.
    812     if (I->isVirtual() && Context.isNearlyEmpty(Base)) {
    813       // If it's not an indirect primary base, then we've found our primary
    814       // base.
    815       if (!IndirectPrimaryBases.count(Base)) {
    816         PrimaryBase = Base;
    817         PrimaryBaseIsVirtual = true;
    818         return;
    819       }
    820 
    821       // Is this the first nearly empty virtual base?
    822       if (!FirstNearlyEmptyVBase)
    823         FirstNearlyEmptyVBase = Base;
    824     }
    825 
    826     SelectPrimaryVBase(Base);
    827     if (PrimaryBase)
    828       return;
    829   }
    830 }
    831 
    832 /// DeterminePrimaryBase - Determine the primary base of the given class.
    833 void RecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
    834   // If the class isn't dynamic, it won't have a primary base.
    835   if (!RD->isDynamicClass())
    836     return;
    837 
    838   // Compute all the primary virtual bases for all of our direct and
    839   // indirect bases, and record all their primary virtual base classes.
    840   RD->getIndirectPrimaryBases(IndirectPrimaryBases);
    841 
    842   // If the record has a dynamic base class, attempt to choose a primary base
    843   // class. It is the first (in direct base class order) non-virtual dynamic
    844   // base class, if one exists.
    845   for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
    846          e = RD->bases_end(); i != e; ++i) {
    847     // Ignore virtual bases.
    848     if (i->isVirtual())
    849       continue;
    850 
    851     const CXXRecordDecl *Base =
    852       cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
    853 
    854     if (isPossiblePrimaryBase(Base)) {
    855       // We found it.
    856       PrimaryBase = Base;
    857       PrimaryBaseIsVirtual = false;
    858       return;
    859     }
    860   }
    861 
    862   // The Microsoft ABI doesn't have primary virtual bases.
    863   if (isMicrosoftCXXABI()) {
    864     assert(!PrimaryBase && "Should not get here with a primary base!");
    865     return;
    866   }
    867 
    868   // Under the Itanium ABI, if there is no non-virtual primary base class,
    869   // try to compute the primary virtual base.  The primary virtual base is
    870   // the first nearly empty virtual base that is not an indirect primary
    871   // virtual base class, if one exists.
    872   if (RD->getNumVBases() != 0) {
    873     SelectPrimaryVBase(RD);
    874     if (PrimaryBase)
    875       return;
    876   }
    877 
    878   // Otherwise, it is the first indirect primary base class, if one exists.
    879   if (FirstNearlyEmptyVBase) {
    880     PrimaryBase = FirstNearlyEmptyVBase;
    881     PrimaryBaseIsVirtual = true;
    882     return;
    883   }
    884 
    885   assert(!PrimaryBase && "Should not get here with a primary base!");
    886 }
    887 
    888 BaseSubobjectInfo *
    889 RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
    890                                               bool IsVirtual,
    891                                               BaseSubobjectInfo *Derived) {
    892   BaseSubobjectInfo *Info;
    893 
    894   if (IsVirtual) {
    895     // Check if we already have info about this virtual base.
    896     BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
    897     if (InfoSlot) {
    898       assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
    899       return InfoSlot;
    900     }
    901 
    902     // We don't, create it.
    903     InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
    904     Info = InfoSlot;
    905   } else {
    906     Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
    907   }
    908 
    909   Info->Class = RD;
    910   Info->IsVirtual = IsVirtual;
    911   Info->Derived = 0;
    912   Info->PrimaryVirtualBaseInfo = 0;
    913 
    914   const CXXRecordDecl *PrimaryVirtualBase = 0;
    915   BaseSubobjectInfo *PrimaryVirtualBaseInfo = 0;
    916 
    917   // Check if this base has a primary virtual base.
    918   if (RD->getNumVBases()) {
    919     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    920     if (Layout.isPrimaryBaseVirtual()) {
    921       // This base does have a primary virtual base.
    922       PrimaryVirtualBase = Layout.getPrimaryBase();
    923       assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
    924 
    925       // Now check if we have base subobject info about this primary base.
    926       PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
    927 
    928       if (PrimaryVirtualBaseInfo) {
    929         if (PrimaryVirtualBaseInfo->Derived) {
    930           // We did have info about this primary base, and it turns out that it
    931           // has already been claimed as a primary virtual base for another
    932           // base.
    933           PrimaryVirtualBase = 0;
    934         } else {
    935           // We can claim this base as our primary base.
    936           Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
    937           PrimaryVirtualBaseInfo->Derived = Info;
    938         }
    939       }
    940     }
    941   }
    942 
    943   // Now go through all direct bases.
    944   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
    945        E = RD->bases_end(); I != E; ++I) {
    946     bool IsVirtual = I->isVirtual();
    947 
    948     const CXXRecordDecl *BaseDecl =
    949       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    950 
    951     Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
    952   }
    953 
    954   if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
    955     // Traversing the bases must have created the base info for our primary
    956     // virtual base.
    957     PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
    958     assert(PrimaryVirtualBaseInfo &&
    959            "Did not create a primary virtual base!");
    960 
    961     // Claim the primary virtual base as our primary virtual base.
    962     Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
    963     PrimaryVirtualBaseInfo->Derived = Info;
    964   }
    965 
    966   return Info;
    967 }
    968 
    969 void RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD) {
    970   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
    971        E = RD->bases_end(); I != E; ++I) {
    972     bool IsVirtual = I->isVirtual();
    973 
    974     const CXXRecordDecl *BaseDecl =
    975       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    976 
    977     // Compute the base subobject info for this base.
    978     BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, 0);
    979 
    980     if (IsVirtual) {
    981       // ComputeBaseInfo has already added this base for us.
    982       assert(VirtualBaseInfo.count(BaseDecl) &&
    983              "Did not add virtual base!");
    984     } else {
    985       // Add the base info to the map of non-virtual bases.
    986       assert(!NonVirtualBaseInfo.count(BaseDecl) &&
    987              "Non-virtual base already exists!");
    988       NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
    989     }
    990   }
    991 }
    992 
    993 void
    994 RecordLayoutBuilder::EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign) {
    995   CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
    996 
    997   // The maximum field alignment overrides base align.
    998   if (!MaxFieldAlignment.isZero()) {
    999     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
   1000     UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
   1001   }
   1002 
   1003   // Round up the current record size to pointer alignment.
   1004   setSize(getSize().RoundUpToAlignment(BaseAlign));
   1005   setDataSize(getSize());
   1006 
   1007   // Update the alignment.
   1008   UpdateAlignment(BaseAlign, UnpackedBaseAlign);
   1009 }
   1010 
   1011 void
   1012 RecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD) {
   1013   // Then, determine the primary base class.
   1014   DeterminePrimaryBase(RD);
   1015 
   1016   // Compute base subobject info.
   1017   ComputeBaseSubobjectInfo(RD);
   1018 
   1019   // If we have a primary base class, lay it out.
   1020   if (PrimaryBase) {
   1021     if (PrimaryBaseIsVirtual) {
   1022       // If the primary virtual base was a primary virtual base of some other
   1023       // base class we'll have to steal it.
   1024       BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
   1025       PrimaryBaseInfo->Derived = 0;
   1026 
   1027       // We have a virtual primary base, insert it as an indirect primary base.
   1028       IndirectPrimaryBases.insert(PrimaryBase);
   1029 
   1030       assert(!VisitedVirtualBases.count(PrimaryBase) &&
   1031              "vbase already visited!");
   1032       VisitedVirtualBases.insert(PrimaryBase);
   1033 
   1034       LayoutVirtualBase(PrimaryBaseInfo);
   1035     } else {
   1036       BaseSubobjectInfo *PrimaryBaseInfo =
   1037         NonVirtualBaseInfo.lookup(PrimaryBase);
   1038       assert(PrimaryBaseInfo &&
   1039              "Did not find base info for non-virtual primary base!");
   1040 
   1041       LayoutNonVirtualBase(PrimaryBaseInfo);
   1042     }
   1043 
   1044   // If this class needs a vtable/vf-table and didn't get one from a
   1045   // primary base, add it in now.
   1046   } else if (needsVFTable(RD)) {
   1047     assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
   1048     CharUnits PtrWidth =
   1049       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
   1050     CharUnits PtrAlign =
   1051       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
   1052     EnsureVTablePointerAlignment(PtrAlign);
   1053     HasOwnVFPtr = true;
   1054     setSize(getSize() + PtrWidth);
   1055     setDataSize(getSize());
   1056   }
   1057 
   1058   bool HasDirectVirtualBases = false;
   1059   bool HasNonVirtualBaseWithVBTable = false;
   1060 
   1061   // Now lay out the non-virtual bases.
   1062   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
   1063          E = RD->bases_end(); I != E; ++I) {
   1064 
   1065     // Ignore virtual bases, but remember that we saw one.
   1066     if (I->isVirtual()) {
   1067       HasDirectVirtualBases = true;
   1068       continue;
   1069     }
   1070 
   1071     const CXXRecordDecl *BaseDecl =
   1072       cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
   1073 
   1074     // Remember if this base has virtual bases itself.
   1075     if (BaseDecl->getNumVBases())
   1076       HasNonVirtualBaseWithVBTable = true;
   1077 
   1078     // Skip the primary base, because we've already laid it out.  The
   1079     // !PrimaryBaseIsVirtual check is required because we might have a
   1080     // non-virtual base of the same type as a primary virtual base.
   1081     if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
   1082       continue;
   1083 
   1084     // Lay out the base.
   1085     BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
   1086     assert(BaseInfo && "Did not find base info for non-virtual base!");
   1087 
   1088     LayoutNonVirtualBase(BaseInfo);
   1089   }
   1090 
   1091   // In the MS ABI, add the vb-table pointer if we need one, which is
   1092   // whenever we have a virtual base and we can't re-use a vb-table
   1093   // pointer from a non-virtual base.
   1094   if (isMicrosoftCXXABI() &&
   1095       HasDirectVirtualBases && !HasNonVirtualBaseWithVBTable) {
   1096     CharUnits PtrWidth =
   1097       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
   1098     CharUnits PtrAlign =
   1099       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
   1100 
   1101     // MSVC potentially over-aligns the vb-table pointer by giving it
   1102     // the max alignment of all the non-virtual objects in the class.
   1103     // This is completely unnecessary, but we're not here to pass
   1104     // judgment.
   1105     //
   1106     // Note that we've only laid out the non-virtual bases, so on the
   1107     // first pass Alignment won't be set correctly here, but if the
   1108     // vb-table doesn't end up aligned correctly we'll come through
   1109     // and redo the layout from scratch with the right alignment.
   1110     //
   1111     // TODO: Instead of doing this, just lay out the fields as if the
   1112     // vb-table were at offset zero, then retroactively bump the field
   1113     // offsets up.
   1114     PtrAlign = std::max(PtrAlign, Alignment);
   1115 
   1116     EnsureVTablePointerAlignment(PtrAlign);
   1117     VBPtrOffset = getSize();
   1118     setSize(getSize() + PtrWidth);
   1119     setDataSize(getSize());
   1120   }
   1121 }
   1122 
   1123 void RecordLayoutBuilder::LayoutNonVirtualBase(const BaseSubobjectInfo *Base) {
   1124   // Layout the base.
   1125   CharUnits Offset = LayoutBase(Base);
   1126 
   1127   // Add its base class offset.
   1128   assert(!Bases.count(Base->Class) && "base offset already exists!");
   1129   Bases.insert(std::make_pair(Base->Class, Offset));
   1130 
   1131   AddPrimaryVirtualBaseOffsets(Base, Offset);
   1132 }
   1133 
   1134 void
   1135 RecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
   1136                                                   CharUnits Offset) {
   1137   // This base isn't interesting, it has no virtual bases.
   1138   if (!Info->Class->getNumVBases())
   1139     return;
   1140 
   1141   // First, check if we have a virtual primary base to add offsets for.
   1142   if (Info->PrimaryVirtualBaseInfo) {
   1143     assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
   1144            "Primary virtual base is not virtual!");
   1145     if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
   1146       // Add the offset.
   1147       assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
   1148              "primary vbase offset already exists!");
   1149       VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
   1150                                    ASTRecordLayout::VBaseInfo(Offset, false)));
   1151 
   1152       // Traverse the primary virtual base.
   1153       AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
   1154     }
   1155   }
   1156 
   1157   // Now go through all direct non-virtual bases.
   1158   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
   1159   for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
   1160     const BaseSubobjectInfo *Base = Info->Bases[I];
   1161     if (Base->IsVirtual)
   1162       continue;
   1163 
   1164     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
   1165     AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
   1166   }
   1167 }
   1168 
   1169 /// needsVFTable - Return true if this class needs a vtable or vf-table
   1170 /// when laid out as a base class.  These are treated the same because
   1171 /// they're both always laid out at offset zero.
   1172 ///
   1173 /// This function assumes that the class has no primary base.
   1174 bool RecordLayoutBuilder::needsVFTable(const CXXRecordDecl *RD) const {
   1175   assert(!PrimaryBase);
   1176 
   1177   // In the Itanium ABI, every dynamic class needs a vtable: even if
   1178   // this class has no virtual functions as a base class (i.e. it's
   1179   // non-polymorphic or only has virtual functions from virtual
   1180   // bases),x it still needs a vtable to locate its virtual bases.
   1181   if (!isMicrosoftCXXABI())
   1182     return RD->isDynamicClass();
   1183 
   1184   // In the MS ABI, we need a vfptr if the class has virtual functions
   1185   // other than those declared by its virtual bases.  The AST doesn't
   1186   // tell us that directly, and checking manually for virtual
   1187   // functions that aren't overrides is expensive, but there are
   1188   // some important shortcuts:
   1189 
   1190   //  - Non-polymorphic classes have no virtual functions at all.
   1191   if (!RD->isPolymorphic()) return false;
   1192 
   1193   //  - Polymorphic classes with no virtual bases must either declare
   1194   //    virtual functions directly or inherit them, but in the latter
   1195   //    case we would have a primary base.
   1196   if (RD->getNumVBases() == 0) return true;
   1197 
   1198   return hasNewVirtualFunction(RD);
   1199 }
   1200 
   1201 /// Does the given class inherit non-virtually from any of the classes
   1202 /// in the given set?
   1203 static bool hasNonVirtualBaseInSet(const CXXRecordDecl *RD,
   1204                                    const ClassSetTy &set) {
   1205   for (CXXRecordDecl::base_class_const_iterator
   1206          I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) {
   1207     // Ignore virtual links.
   1208     if (I->isVirtual()) continue;
   1209 
   1210     // Check whether the set contains the base.
   1211     const CXXRecordDecl *base = I->getType()->getAsCXXRecordDecl();
   1212     if (set.count(base))
   1213       return true;
   1214 
   1215     // Otherwise, recurse and propagate.
   1216     if (hasNonVirtualBaseInSet(base, set))
   1217       return true;
   1218   }
   1219 
   1220   return false;
   1221 }
   1222 
   1223 /// Does the given method (B::foo()) already override a method (A::foo())
   1224 /// such that A requires a vtordisp in B?  If so, we don't need to add a
   1225 /// new vtordisp for B in a yet-more-derived class C providing C::foo().
   1226 static bool overridesMethodRequiringVtorDisp(const ASTContext &Context,
   1227                                              const CXXMethodDecl *M) {
   1228   CXXMethodDecl::method_iterator
   1229     I = M->begin_overridden_methods(), E = M->end_overridden_methods();
   1230   if (I == E) return false;
   1231 
   1232   const ASTRecordLayout::VBaseOffsetsMapTy &offsets =
   1233     Context.getASTRecordLayout(M->getParent()).getVBaseOffsetsMap();
   1234   do {
   1235     const CXXMethodDecl *overridden = *I;
   1236 
   1237     // If the overridden method's class isn't recognized as a virtual
   1238     // base in the derived class, ignore it.
   1239     ASTRecordLayout::VBaseOffsetsMapTy::const_iterator
   1240       it = offsets.find(overridden->getParent());
   1241     if (it == offsets.end()) continue;
   1242 
   1243     // Otherwise, check if the overridden method's class needs a vtordisp.
   1244     if (it->second.hasVtorDisp()) return true;
   1245 
   1246   } while (++I != E);
   1247   return false;
   1248 }
   1249 
   1250 /// In the Microsoft ABI, decide which of the virtual bases require a
   1251 /// vtordisp field.
   1252 void RecordLayoutBuilder::computeVtordisps(const CXXRecordDecl *RD,
   1253                                            ClassSetTy &vtordispVBases) {
   1254   // Bail out if we have no virtual bases.
   1255   assert(RD->getNumVBases());
   1256 
   1257   // Build up the set of virtual bases that we haven't decided yet.
   1258   ClassSetTy undecidedVBases;
   1259   for (CXXRecordDecl::base_class_const_iterator
   1260          I = RD->vbases_begin(), E = RD->vbases_end(); I != E; ++I) {
   1261     const CXXRecordDecl *vbase = I->getType()->getAsCXXRecordDecl();
   1262     undecidedVBases.insert(vbase);
   1263   }
   1264   assert(!undecidedVBases.empty());
   1265 
   1266   // A virtual base requires a vtordisp field in a derived class if it
   1267   // requires a vtordisp field in a base class.  Walk all the direct
   1268   // bases and collect this information.
   1269   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
   1270        E = RD->bases_end(); I != E; ++I) {
   1271     const CXXRecordDecl *base = I->getType()->getAsCXXRecordDecl();
   1272     const ASTRecordLayout &baseLayout = Context.getASTRecordLayout(base);
   1273 
   1274     // Iterate over the set of virtual bases provided by this class.
   1275     for (ASTRecordLayout::VBaseOffsetsMapTy::const_iterator
   1276            VI = baseLayout.getVBaseOffsetsMap().begin(),
   1277            VE = baseLayout.getVBaseOffsetsMap().end(); VI != VE; ++VI) {
   1278       // If it doesn't need a vtordisp in this base, ignore it.
   1279       if (!VI->second.hasVtorDisp()) continue;
   1280 
   1281       // If we've already seen it and decided it needs a vtordisp, ignore it.
   1282       if (!undecidedVBases.erase(VI->first))
   1283         continue;
   1284 
   1285       // Add it.
   1286       vtordispVBases.insert(VI->first);
   1287 
   1288       // Quit as soon as we've decided everything.
   1289       if (undecidedVBases.empty())
   1290         return;
   1291     }
   1292   }
   1293 
   1294   // Okay, we have virtual bases that we haven't yet decided about.  A
   1295   // virtual base requires a vtordisp if any the non-destructor
   1296   // virtual methods declared in this class directly override a method
   1297   // provided by that virtual base.  (If so, we need to emit a thunk
   1298   // for that method, to be used in the construction vftable, which
   1299   // applies an additional 'vtordisp' this-adjustment.)
   1300 
   1301   // Collect the set of bases directly overridden by any method in this class.
   1302   // It's possible that some of these classes won't be virtual bases, or won't be
   1303   // provided by virtual bases, or won't be virtual bases in the overridden
   1304   // instance but are virtual bases elsewhere.  Only the last matters for what
   1305   // we're doing, and we can ignore those:  if we don't directly override
   1306   // a method provided by a virtual copy of a base class, but we do directly
   1307   // override a method provided by a non-virtual copy of that base class,
   1308   // then we must indirectly override the method provided by the virtual base,
   1309   // and so we should already have collected it in the loop above.
   1310   ClassSetTy overriddenBases;
   1311   for (CXXRecordDecl::method_iterator
   1312          M = RD->method_begin(), E = RD->method_end(); M != E; ++M) {
   1313     // Ignore non-virtual methods and destructors.
   1314     if (isa<CXXDestructorDecl>(*M) || !M->isVirtual())
   1315       continue;
   1316 
   1317     for (CXXMethodDecl::method_iterator I = M->begin_overridden_methods(),
   1318           E = M->end_overridden_methods(); I != E; ++I) {
   1319       const CXXMethodDecl *overriddenMethod = (*I);
   1320 
   1321       // Ignore methods that override methods from vbases that require
   1322       // require vtordisps.
   1323       if (overridesMethodRequiringVtorDisp(Context, overriddenMethod))
   1324         continue;
   1325 
   1326       // As an optimization, check immediately whether we're overriding
   1327       // something from the undecided set.
   1328       const CXXRecordDecl *overriddenBase = overriddenMethod->getParent();
   1329       if (undecidedVBases.erase(overriddenBase)) {
   1330         vtordispVBases.insert(overriddenBase);
   1331         if (undecidedVBases.empty()) return;
   1332 
   1333         // We can't 'continue;' here because one of our undecided
   1334         // vbases might non-virtually inherit from this base.
   1335         // Consider:
   1336         //   struct A { virtual void foo(); };
   1337         //   struct B : A {};
   1338         //   struct C : virtual A, virtual B { virtual void foo(); };
   1339         // We need a vtordisp for B here.
   1340       }
   1341 
   1342       // Otherwise, just collect it.
   1343       overriddenBases.insert(overriddenBase);
   1344     }
   1345   }
   1346 
   1347   // Walk the undecided v-bases and check whether they (non-virtually)
   1348   // provide any of the overridden bases.  We don't need to consider
   1349   // virtual links because the vtordisp inheres to the layout
   1350   // subobject containing the base.
   1351   for (ClassSetTy::const_iterator
   1352          I = undecidedVBases.begin(), E = undecidedVBases.end(); I != E; ++I) {
   1353     if (hasNonVirtualBaseInSet(*I, overriddenBases))
   1354       vtordispVBases.insert(*I);
   1355   }
   1356 }
   1357 
   1358 /// hasNewVirtualFunction - Does the given polymorphic class declare a
   1359 /// virtual function that does not override a method from any of its
   1360 /// base classes?
   1361 bool
   1362 RecordLayoutBuilder::hasNewVirtualFunction(const CXXRecordDecl *RD,
   1363                                            bool IgnoreDestructor) const {
   1364   if (!RD->getNumBases())
   1365     return true;
   1366 
   1367   for (CXXRecordDecl::method_iterator method = RD->method_begin();
   1368        method != RD->method_end();
   1369        ++method) {
   1370     if (method->isVirtual() && !method->size_overridden_methods() &&
   1371         !(IgnoreDestructor && method->getKind() == Decl::CXXDestructor)) {
   1372       return true;
   1373     }
   1374   }
   1375   return false;
   1376 }
   1377 
   1378 /// isPossiblePrimaryBase - Is the given base class an acceptable
   1379 /// primary base class?
   1380 bool
   1381 RecordLayoutBuilder::isPossiblePrimaryBase(const CXXRecordDecl *base) const {
   1382   // In the Itanium ABI, a class can be a primary base class if it has
   1383   // a vtable for any reason.
   1384   if (!isMicrosoftCXXABI())
   1385     return base->isDynamicClass();
   1386 
   1387   // In the MS ABI, a class can only be a primary base class if it
   1388   // provides a vf-table at a static offset.  That means it has to be
   1389   // non-virtual base.  The existence of a separate vb-table means
   1390   // that it's possible to get virtual functions only from a virtual
   1391   // base, which we have to guard against.
   1392 
   1393   // First off, it has to have virtual functions.
   1394   if (!base->isPolymorphic()) return false;
   1395 
   1396   // If it has no virtual bases, then the vfptr must be at a static offset.
   1397   if (!base->getNumVBases()) return true;
   1398 
   1399   // Otherwise, the necessary information is cached in the layout.
   1400   const ASTRecordLayout &layout = Context.getASTRecordLayout(base);
   1401 
   1402   // If the base has its own vfptr, it can be a primary base.
   1403   if (layout.hasOwnVFPtr()) return true;
   1404 
   1405   // If the base has a primary base class, then it can be a primary base.
   1406   if (layout.getPrimaryBase()) return true;
   1407 
   1408   // Otherwise it can't.
   1409   return false;
   1410 }
   1411 
   1412 void
   1413 RecordLayoutBuilder::LayoutVirtualBases(const CXXRecordDecl *RD,
   1414                                         const CXXRecordDecl *MostDerivedClass) {
   1415   const CXXRecordDecl *PrimaryBase;
   1416   bool PrimaryBaseIsVirtual;
   1417 
   1418   if (MostDerivedClass == RD) {
   1419     PrimaryBase = this->PrimaryBase;
   1420     PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
   1421   } else {
   1422     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
   1423     PrimaryBase = Layout.getPrimaryBase();
   1424     PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
   1425   }
   1426 
   1427   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
   1428          E = RD->bases_end(); I != E; ++I) {
   1429     assert(!I->getType()->isDependentType() &&
   1430            "Cannot layout class with dependent bases.");
   1431 
   1432     const CXXRecordDecl *BaseDecl =
   1433       cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
   1434 
   1435     if (I->isVirtual()) {
   1436       if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
   1437         bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
   1438 
   1439         // Only lay out the virtual base if it's not an indirect primary base.
   1440         if (!IndirectPrimaryBase) {
   1441           // Only visit virtual bases once.
   1442           if (!VisitedVirtualBases.insert(BaseDecl))
   1443             continue;
   1444 
   1445           const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
   1446           assert(BaseInfo && "Did not find virtual base info!");
   1447           LayoutVirtualBase(BaseInfo);
   1448         }
   1449       }
   1450     }
   1451 
   1452     if (!BaseDecl->getNumVBases()) {
   1453       // This base isn't interesting since it doesn't have any virtual bases.
   1454       continue;
   1455     }
   1456 
   1457     LayoutVirtualBases(BaseDecl, MostDerivedClass);
   1458   }
   1459 }
   1460 
   1461 void RecordLayoutBuilder::MSLayoutVirtualBases(const CXXRecordDecl *RD) {
   1462   if (!RD->getNumVBases())
   1463     return;
   1464 
   1465   ClassSetTy VtordispVBases;
   1466   computeVtordisps(RD, VtordispVBases);
   1467 
   1468   // This is substantially simplified because there are no virtual
   1469   // primary bases.
   1470   for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
   1471        E = RD->vbases_end(); I != E; ++I) {
   1472     const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
   1473     const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
   1474     assert(BaseInfo && "Did not find virtual base info!");
   1475 
   1476     // If this base requires a vtordisp, add enough space for an int field.
   1477     // This is apparently always 32-bits, even on x64.
   1478     bool vtordispNeeded = false;
   1479     if (VtordispVBases.count(BaseDecl)) {
   1480       CharUnits IntSize =
   1481         CharUnits::fromQuantity(Context.getTargetInfo().getIntWidth() / 8);
   1482 
   1483       setSize(getSize() + IntSize);
   1484       setDataSize(getSize());
   1485       vtordispNeeded = true;
   1486     }
   1487 
   1488     LayoutVirtualBase(BaseInfo, vtordispNeeded);
   1489   }
   1490 }
   1491 
   1492 void RecordLayoutBuilder::LayoutVirtualBase(const BaseSubobjectInfo *Base,
   1493                                             bool IsVtordispNeed) {
   1494   assert(!Base->Derived && "Trying to lay out a primary virtual base!");
   1495 
   1496   // Layout the base.
   1497   CharUnits Offset = LayoutBase(Base);
   1498 
   1499   // Add its base class offset.
   1500   assert(!VBases.count(Base->Class) && "vbase offset already exists!");
   1501   VBases.insert(std::make_pair(Base->Class,
   1502                        ASTRecordLayout::VBaseInfo(Offset, IsVtordispNeed)));
   1503 
   1504   if (!isMicrosoftCXXABI())
   1505     AddPrimaryVirtualBaseOffsets(Base, Offset);
   1506 }
   1507 
   1508 CharUnits RecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
   1509   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
   1510 
   1511 
   1512   CharUnits Offset;
   1513 
   1514   // Query the external layout to see if it provides an offset.
   1515   bool HasExternalLayout = false;
   1516   if (ExternalLayout) {
   1517     llvm::DenseMap<const CXXRecordDecl *, CharUnits>::iterator Known;
   1518     if (Base->IsVirtual) {
   1519       Known = ExternalVirtualBaseOffsets.find(Base->Class);
   1520       if (Known != ExternalVirtualBaseOffsets.end()) {
   1521         Offset = Known->second;
   1522         HasExternalLayout = true;
   1523       }
   1524     } else {
   1525       Known = ExternalBaseOffsets.find(Base->Class);
   1526       if (Known != ExternalBaseOffsets.end()) {
   1527         Offset = Known->second;
   1528         HasExternalLayout = true;
   1529       }
   1530     }
   1531   }
   1532 
   1533   // If we have an empty base class, try to place it at offset 0.
   1534   if (Base->Class->isEmpty() &&
   1535       (!HasExternalLayout || Offset == CharUnits::Zero()) &&
   1536       EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
   1537     setSize(std::max(getSize(), Layout.getSize()));
   1538 
   1539     return CharUnits::Zero();
   1540   }
   1541 
   1542   CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlign();
   1543   CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
   1544 
   1545   // The maximum field alignment overrides base align.
   1546   if (!MaxFieldAlignment.isZero()) {
   1547     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
   1548     UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
   1549   }
   1550 
   1551   if (!HasExternalLayout) {
   1552     // Round up the current record size to the base's alignment boundary.
   1553     Offset = getDataSize().RoundUpToAlignment(BaseAlign);
   1554 
   1555     // Try to place the base.
   1556     while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
   1557       Offset += BaseAlign;
   1558   } else {
   1559     bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
   1560     (void)Allowed;
   1561     assert(Allowed && "Base subobject externally placed at overlapping offset");
   1562 
   1563     if (InferAlignment && Offset < getDataSize().RoundUpToAlignment(BaseAlign)){
   1564       // The externally-supplied base offset is before the base offset we
   1565       // computed. Assume that the structure is packed.
   1566       Alignment = CharUnits::One();
   1567       InferAlignment = false;
   1568     }
   1569   }
   1570 
   1571   if (!Base->Class->isEmpty()) {
   1572     // Update the data size.
   1573     setDataSize(Offset + Layout.getNonVirtualSize());
   1574 
   1575     setSize(std::max(getSize(), getDataSize()));
   1576   } else
   1577     setSize(std::max(getSize(), Offset + Layout.getSize()));
   1578 
   1579   // Remember max struct/class alignment.
   1580   UpdateAlignment(BaseAlign, UnpackedBaseAlign);
   1581 
   1582   return Offset;
   1583 }
   1584 
   1585 void RecordLayoutBuilder::InitializeLayout(const Decl *D) {
   1586   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
   1587     IsUnion = RD->isUnion();
   1588     IsMsStruct = RD->isMsStruct(Context);
   1589   }
   1590 
   1591   Packed = D->hasAttr<PackedAttr>();
   1592 
   1593   // Honor the default struct packing maximum alignment flag.
   1594   if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
   1595     MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
   1596   }
   1597 
   1598   // mac68k alignment supersedes maximum field alignment and attribute aligned,
   1599   // and forces all structures to have 2-byte alignment. The IBM docs on it
   1600   // allude to additional (more complicated) semantics, especially with regard
   1601   // to bit-fields, but gcc appears not to follow that.
   1602   if (D->hasAttr<AlignMac68kAttr>()) {
   1603     IsMac68kAlign = true;
   1604     MaxFieldAlignment = CharUnits::fromQuantity(2);
   1605     Alignment = CharUnits::fromQuantity(2);
   1606   } else {
   1607     if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
   1608       MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
   1609 
   1610     if (unsigned MaxAlign = D->getMaxAlignment())
   1611       UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
   1612   }
   1613 
   1614   // If there is an external AST source, ask it for the various offsets.
   1615   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
   1616     if (ExternalASTSource *External = Context.getExternalSource()) {
   1617       ExternalLayout = External->layoutRecordType(RD,
   1618                                                   ExternalSize,
   1619                                                   ExternalAlign,
   1620                                                   ExternalFieldOffsets,
   1621                                                   ExternalBaseOffsets,
   1622                                                   ExternalVirtualBaseOffsets);
   1623 
   1624       // Update based on external alignment.
   1625       if (ExternalLayout) {
   1626         if (ExternalAlign > 0) {
   1627           Alignment = Context.toCharUnitsFromBits(ExternalAlign);
   1628         } else {
   1629           // The external source didn't have alignment information; infer it.
   1630           InferAlignment = true;
   1631         }
   1632       }
   1633     }
   1634 }
   1635 
   1636 void RecordLayoutBuilder::Layout(const RecordDecl *D) {
   1637   InitializeLayout(D);
   1638   LayoutFields(D);
   1639 
   1640   // Finally, round the size of the total struct up to the alignment of the
   1641   // struct itself.
   1642   FinishLayout(D);
   1643 }
   1644 
   1645 void RecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
   1646   InitializeLayout(RD);
   1647 
   1648   // Lay out the vtable and the non-virtual bases.
   1649   LayoutNonVirtualBases(RD);
   1650 
   1651   LayoutFields(RD);
   1652 
   1653   NonVirtualSize = Context.toCharUnitsFromBits(
   1654         llvm::RoundUpToAlignment(getSizeInBits(),
   1655                                  Context.getTargetInfo().getCharAlign()));
   1656   NonVirtualAlignment = Alignment;
   1657 
   1658   if (isMicrosoftCXXABI()) {
   1659     if (NonVirtualSize != NonVirtualSize.RoundUpToAlignment(Alignment)) {
   1660     CharUnits AlignMember =
   1661       NonVirtualSize.RoundUpToAlignment(Alignment) - NonVirtualSize;
   1662 
   1663     setSize(getSize() + AlignMember);
   1664     setDataSize(getSize());
   1665 
   1666     NonVirtualSize = Context.toCharUnitsFromBits(
   1667                              llvm::RoundUpToAlignment(getSizeInBits(),
   1668                              Context.getTargetInfo().getCharAlign()));
   1669     }
   1670 
   1671     MSLayoutVirtualBases(RD);
   1672   } else {
   1673     // Lay out the virtual bases and add the primary virtual base offsets.
   1674     LayoutVirtualBases(RD, RD);
   1675   }
   1676 
   1677   // Finally, round the size of the total struct up to the alignment
   1678   // of the struct itself.
   1679   FinishLayout(RD);
   1680 
   1681 #ifndef NDEBUG
   1682   // Check that we have base offsets for all bases.
   1683   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
   1684        E = RD->bases_end(); I != E; ++I) {
   1685     if (I->isVirtual())
   1686       continue;
   1687 
   1688     const CXXRecordDecl *BaseDecl =
   1689       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
   1690 
   1691     assert(Bases.count(BaseDecl) && "Did not find base offset!");
   1692   }
   1693 
   1694   // And all virtual bases.
   1695   for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
   1696        E = RD->vbases_end(); I != E; ++I) {
   1697     const CXXRecordDecl *BaseDecl =
   1698       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
   1699 
   1700     assert(VBases.count(BaseDecl) && "Did not find base offset!");
   1701   }
   1702 #endif
   1703 }
   1704 
   1705 void RecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
   1706   if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
   1707     const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
   1708 
   1709     UpdateAlignment(SL.getAlignment());
   1710 
   1711     // We start laying out ivars not at the end of the superclass
   1712     // structure, but at the next byte following the last field.
   1713     setSize(SL.getDataSize());
   1714     setDataSize(getSize());
   1715   }
   1716 
   1717   InitializeLayout(D);
   1718   // Layout each ivar sequentially.
   1719   for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
   1720        IVD = IVD->getNextIvar())
   1721     LayoutField(IVD);
   1722 
   1723   // Finally, round the size of the total struct up to the alignment of the
   1724   // struct itself.
   1725   FinishLayout(D);
   1726 }
   1727 
   1728 void RecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
   1729   // Layout each field, for now, just sequentially, respecting alignment.  In
   1730   // the future, this will need to be tweakable by targets.
   1731   const FieldDecl *LastFD = 0;
   1732   ZeroLengthBitfield = 0;
   1733   unsigned RemainingInAlignment = 0;
   1734   for (RecordDecl::field_iterator Field = D->field_begin(),
   1735        FieldEnd = D->field_end(); Field != FieldEnd; ++Field) {
   1736     if (IsMsStruct) {
   1737       FieldDecl *FD = *Field;
   1738       if (Context.ZeroBitfieldFollowsBitfield(FD, LastFD))
   1739         ZeroLengthBitfield = FD;
   1740       // Zero-length bitfields following non-bitfield members are
   1741       // ignored:
   1742       else if (Context.ZeroBitfieldFollowsNonBitfield(FD, LastFD))
   1743         continue;
   1744       // FIXME. streamline these conditions into a simple one.
   1745       else if (Context.BitfieldFollowsBitfield(FD, LastFD) ||
   1746                Context.BitfieldFollowsNonBitfield(FD, LastFD) ||
   1747                Context.NonBitfieldFollowsBitfield(FD, LastFD)) {
   1748         // 1) Adjacent bit fields are packed into the same 1-, 2-, or
   1749         // 4-byte allocation unit if the integral types are the same
   1750         // size and if the next bit field fits into the current
   1751         // allocation unit without crossing the boundary imposed by the
   1752         // common alignment requirements of the bit fields.
   1753         // 2) Establish a new alignment for a bitfield following
   1754         // a non-bitfield if size of their types differ.
   1755         // 3) Establish a new alignment for a non-bitfield following
   1756         // a bitfield if size of their types differ.
   1757         std::pair<uint64_t, unsigned> FieldInfo =
   1758           Context.getTypeInfo(FD->getType());
   1759         uint64_t TypeSize = FieldInfo.first;
   1760         unsigned FieldAlign = FieldInfo.second;
   1761         // This check is needed for 'long long' in -m32 mode.
   1762         if (TypeSize > FieldAlign &&
   1763             (Context.hasSameType(FD->getType(),
   1764                                 Context.UnsignedLongLongTy)
   1765              ||Context.hasSameType(FD->getType(),
   1766                                    Context.LongLongTy)))
   1767           FieldAlign = TypeSize;
   1768         FieldInfo = Context.getTypeInfo(LastFD->getType());
   1769         uint64_t TypeSizeLastFD = FieldInfo.first;
   1770         unsigned FieldAlignLastFD = FieldInfo.second;
   1771         // This check is needed for 'long long' in -m32 mode.
   1772         if (TypeSizeLastFD > FieldAlignLastFD &&
   1773             (Context.hasSameType(LastFD->getType(),
   1774                                 Context.UnsignedLongLongTy)
   1775              || Context.hasSameType(LastFD->getType(),
   1776                                     Context.LongLongTy)))
   1777           FieldAlignLastFD = TypeSizeLastFD;
   1778 
   1779         if (TypeSizeLastFD != TypeSize) {
   1780           if (RemainingInAlignment &&
   1781               LastFD && LastFD->isBitField() &&
   1782               LastFD->getBitWidthValue(Context)) {
   1783             // If previous field was a bitfield with some remaining unfilled
   1784             // bits, pad the field so current field starts on its type boundary.
   1785             uint64_t FieldOffset =
   1786             getDataSizeInBits() - UnfilledBitsInLastByte;
   1787             uint64_t NewSizeInBits = RemainingInAlignment + FieldOffset;
   1788             setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
   1789                                                  Context.getTargetInfo().getCharAlign()));
   1790             setSize(std::max(getSizeInBits(), getDataSizeInBits()));
   1791             RemainingInAlignment = 0;
   1792           }
   1793 
   1794           uint64_t UnpaddedFieldOffset =
   1795             getDataSizeInBits() - UnfilledBitsInLastByte;
   1796           FieldAlign = std::max(FieldAlign, FieldAlignLastFD);
   1797 
   1798           // The maximum field alignment overrides the aligned attribute.
   1799           if (!MaxFieldAlignment.isZero()) {
   1800             unsigned MaxFieldAlignmentInBits =
   1801               Context.toBits(MaxFieldAlignment);
   1802             FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
   1803           }
   1804 
   1805           uint64_t NewSizeInBits =
   1806             llvm::RoundUpToAlignment(UnpaddedFieldOffset, FieldAlign);
   1807           setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
   1808                                                Context.getTargetInfo().getCharAlign()));
   1809           UnfilledBitsInLastByte = getDataSizeInBits() - NewSizeInBits;
   1810           setSize(std::max(getSizeInBits(), getDataSizeInBits()));
   1811         }
   1812         if (FD->isBitField()) {
   1813           uint64_t FieldSize = FD->getBitWidthValue(Context);
   1814           assert (FieldSize > 0 && "LayoutFields - ms_struct layout");
   1815           if (RemainingInAlignment < FieldSize)
   1816             RemainingInAlignment = TypeSize - FieldSize;
   1817           else
   1818             RemainingInAlignment -= FieldSize;
   1819         }
   1820       }
   1821       else if (FD->isBitField()) {
   1822         uint64_t FieldSize = FD->getBitWidthValue(Context);
   1823         std::pair<uint64_t, unsigned> FieldInfo =
   1824           Context.getTypeInfo(FD->getType());
   1825         uint64_t TypeSize = FieldInfo.first;
   1826         RemainingInAlignment = TypeSize - FieldSize;
   1827       }
   1828       LastFD = FD;
   1829     }
   1830     else if (!Context.getTargetInfo().useBitFieldTypeAlignment() &&
   1831              Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
   1832       if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
   1833         ZeroLengthBitfield = *Field;
   1834     }
   1835     LayoutField(*Field);
   1836   }
   1837   if (IsMsStruct && RemainingInAlignment &&
   1838       LastFD && LastFD->isBitField() && LastFD->getBitWidthValue(Context)) {
   1839     // If we ended a bitfield before the full length of the type then
   1840     // pad the struct out to the full length of the last type.
   1841     uint64_t FieldOffset =
   1842       getDataSizeInBits() - UnfilledBitsInLastByte;
   1843     uint64_t NewSizeInBits = RemainingInAlignment + FieldOffset;
   1844     setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
   1845                                          Context.getTargetInfo().getCharAlign()));
   1846     setSize(std::max(getSizeInBits(), getDataSizeInBits()));
   1847   }
   1848 }
   1849 
   1850 void RecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
   1851                                              uint64_t TypeSize,
   1852                                              bool FieldPacked,
   1853                                              const FieldDecl *D) {
   1854   assert(Context.getLangOpts().CPlusPlus &&
   1855          "Can only have wide bit-fields in C++!");
   1856 
   1857   // Itanium C++ ABI 2.4:
   1858   //   If sizeof(T)*8 < n, let T' be the largest integral POD type with
   1859   //   sizeof(T')*8 <= n.
   1860 
   1861   QualType IntegralPODTypes[] = {
   1862     Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
   1863     Context.UnsignedLongTy, Context.UnsignedLongLongTy
   1864   };
   1865 
   1866   QualType Type;
   1867   for (unsigned I = 0, E = llvm::array_lengthof(IntegralPODTypes);
   1868        I != E; ++I) {
   1869     uint64_t Size = Context.getTypeSize(IntegralPODTypes[I]);
   1870 
   1871     if (Size > FieldSize)
   1872       break;
   1873 
   1874     Type = IntegralPODTypes[I];
   1875   }
   1876   assert(!Type.isNull() && "Did not find a type!");
   1877 
   1878   CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
   1879 
   1880   // We're not going to use any of the unfilled bits in the last byte.
   1881   UnfilledBitsInLastByte = 0;
   1882 
   1883   uint64_t FieldOffset;
   1884   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastByte;
   1885 
   1886   if (IsUnion) {
   1887     setDataSize(std::max(getDataSizeInBits(), FieldSize));
   1888     FieldOffset = 0;
   1889   } else {
   1890     // The bitfield is allocated starting at the next offset aligned
   1891     // appropriately for T', with length n bits.
   1892     FieldOffset = llvm::RoundUpToAlignment(getDataSizeInBits(),
   1893                                            Context.toBits(TypeAlign));
   1894 
   1895     uint64_t NewSizeInBits = FieldOffset + FieldSize;
   1896 
   1897     setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
   1898                                          Context.getTargetInfo().getCharAlign()));
   1899     UnfilledBitsInLastByte = getDataSizeInBits() - NewSizeInBits;
   1900   }
   1901 
   1902   // Place this field at the current location.
   1903   FieldOffsets.push_back(FieldOffset);
   1904 
   1905   CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
   1906                     Context.toBits(TypeAlign), FieldPacked, D);
   1907 
   1908   // Update the size.
   1909   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
   1910 
   1911   // Remember max struct/class alignment.
   1912   UpdateAlignment(TypeAlign);
   1913 }
   1914 
   1915 void RecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
   1916   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
   1917   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastByte;
   1918   uint64_t FieldOffset = IsUnion ? 0 : UnpaddedFieldOffset;
   1919   uint64_t FieldSize = D->getBitWidthValue(Context);
   1920 
   1921   std::pair<uint64_t, unsigned> FieldInfo = Context.getTypeInfo(D->getType());
   1922   uint64_t TypeSize = FieldInfo.first;
   1923   unsigned FieldAlign = FieldInfo.second;
   1924 
   1925   // This check is needed for 'long long' in -m32 mode.
   1926   if (IsMsStruct && (TypeSize > FieldAlign) &&
   1927       (Context.hasSameType(D->getType(),
   1928                            Context.UnsignedLongLongTy)
   1929        || Context.hasSameType(D->getType(), Context.LongLongTy)))
   1930     FieldAlign = TypeSize;
   1931 
   1932   if (ZeroLengthBitfield) {
   1933     std::pair<uint64_t, unsigned> FieldInfo;
   1934     unsigned ZeroLengthBitfieldAlignment;
   1935     if (IsMsStruct) {
   1936       // If a zero-length bitfield is inserted after a bitfield,
   1937       // and the alignment of the zero-length bitfield is
   1938       // greater than the member that follows it, `bar', `bar'
   1939       // will be aligned as the type of the zero-length bitfield.
   1940       if (ZeroLengthBitfield != D) {
   1941         FieldInfo = Context.getTypeInfo(ZeroLengthBitfield->getType());
   1942         ZeroLengthBitfieldAlignment = FieldInfo.second;
   1943         // Ignore alignment of subsequent zero-length bitfields.
   1944         if ((ZeroLengthBitfieldAlignment > FieldAlign) || (FieldSize == 0))
   1945           FieldAlign = ZeroLengthBitfieldAlignment;
   1946         if (FieldSize)
   1947           ZeroLengthBitfield = 0;
   1948       }
   1949     } else {
   1950       // The alignment of a zero-length bitfield affects the alignment
   1951       // of the next member.  The alignment is the max of the zero
   1952       // length bitfield's alignment and a target specific fixed value.
   1953       unsigned ZeroLengthBitfieldBoundary =
   1954         Context.getTargetInfo().getZeroLengthBitfieldBoundary();
   1955       if (ZeroLengthBitfieldBoundary > FieldAlign)
   1956         FieldAlign = ZeroLengthBitfieldBoundary;
   1957     }
   1958   }
   1959 
   1960   if (FieldSize > TypeSize) {
   1961     LayoutWideBitField(FieldSize, TypeSize, FieldPacked, D);
   1962     return;
   1963   }
   1964 
   1965   // The align if the field is not packed. This is to check if the attribute
   1966   // was unnecessary (-Wpacked).
   1967   unsigned UnpackedFieldAlign = FieldAlign;
   1968   uint64_t UnpackedFieldOffset = FieldOffset;
   1969   if (!Context.getTargetInfo().useBitFieldTypeAlignment() && !ZeroLengthBitfield)
   1970     UnpackedFieldAlign = 1;
   1971 
   1972   if (FieldPacked ||
   1973       (!Context.getTargetInfo().useBitFieldTypeAlignment() && !ZeroLengthBitfield))
   1974     FieldAlign = 1;
   1975   FieldAlign = std::max(FieldAlign, D->getMaxAlignment());
   1976   UnpackedFieldAlign = std::max(UnpackedFieldAlign, D->getMaxAlignment());
   1977 
   1978   // The maximum field alignment overrides the aligned attribute.
   1979   if (!MaxFieldAlignment.isZero() && FieldSize != 0) {
   1980     unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
   1981     FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
   1982     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
   1983   }
   1984 
   1985   // Check if we need to add padding to give the field the correct alignment.
   1986   if (FieldSize == 0 ||
   1987       (MaxFieldAlignment.isZero() &&
   1988        (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize))
   1989     FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);
   1990 
   1991   if (FieldSize == 0 ||
   1992       (MaxFieldAlignment.isZero() &&
   1993        (UnpackedFieldOffset & (UnpackedFieldAlign-1)) + FieldSize > TypeSize))
   1994     UnpackedFieldOffset = llvm::RoundUpToAlignment(UnpackedFieldOffset,
   1995                                                    UnpackedFieldAlign);
   1996 
   1997   // Padding members don't affect overall alignment, unless zero length bitfield
   1998   // alignment is enabled.
   1999   if (!D->getIdentifier() && !Context.getTargetInfo().useZeroLengthBitfieldAlignment())
   2000     FieldAlign = UnpackedFieldAlign = 1;
   2001 
   2002   if (!IsMsStruct)
   2003     ZeroLengthBitfield = 0;
   2004 
   2005   if (ExternalLayout)
   2006     FieldOffset = updateExternalFieldOffset(D, FieldOffset);
   2007 
   2008   // Place this field at the current location.
   2009   FieldOffsets.push_back(FieldOffset);
   2010 
   2011   if (!ExternalLayout)
   2012     CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
   2013                       UnpackedFieldAlign, FieldPacked, D);
   2014 
   2015   // Update DataSize to include the last byte containing (part of) the bitfield.
   2016   if (IsUnion) {
   2017     // FIXME: I think FieldSize should be TypeSize here.
   2018     setDataSize(std::max(getDataSizeInBits(), FieldSize));
   2019   } else {
   2020     uint64_t NewSizeInBits = FieldOffset + FieldSize;
   2021 
   2022     setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
   2023                                          Context.getTargetInfo().getCharAlign()));
   2024     UnfilledBitsInLastByte = getDataSizeInBits() - NewSizeInBits;
   2025   }
   2026 
   2027   // Update the size.
   2028   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
   2029 
   2030   // Remember max struct/class alignment.
   2031   UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
   2032                   Context.toCharUnitsFromBits(UnpackedFieldAlign));
   2033 }
   2034 
   2035 void RecordLayoutBuilder::LayoutField(const FieldDecl *D) {
   2036   if (D->isBitField()) {
   2037     LayoutBitField(D);
   2038     return;
   2039   }
   2040 
   2041   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastByte;
   2042 
   2043   // Reset the unfilled bits.
   2044   UnfilledBitsInLastByte = 0;
   2045 
   2046   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
   2047   CharUnits FieldOffset =
   2048     IsUnion ? CharUnits::Zero() : getDataSize();
   2049   CharUnits FieldSize;
   2050   CharUnits FieldAlign;
   2051 
   2052   if (D->getType()->isIncompleteArrayType()) {
   2053     // This is a flexible array member; we can't directly
   2054     // query getTypeInfo about these, so we figure it out here.
   2055     // Flexible array members don't have any size, but they
   2056     // have to be aligned appropriately for their element type.
   2057     FieldSize = CharUnits::Zero();
   2058     const ArrayType* ATy = Context.getAsArrayType(D->getType());
   2059     FieldAlign = Context.getTypeAlignInChars(ATy->getElementType());
   2060   } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
   2061     unsigned AS = RT->getPointeeType().getAddressSpace();
   2062     FieldSize =
   2063       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(AS));
   2064     FieldAlign =
   2065       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(AS));
   2066   } else {
   2067     std::pair<CharUnits, CharUnits> FieldInfo =
   2068       Context.getTypeInfoInChars(D->getType());
   2069     FieldSize = FieldInfo.first;
   2070     FieldAlign = FieldInfo.second;
   2071 
   2072     if (ZeroLengthBitfield) {
   2073       CharUnits ZeroLengthBitfieldBoundary =
   2074         Context.toCharUnitsFromBits(
   2075           Context.getTargetInfo().getZeroLengthBitfieldBoundary());
   2076       if (ZeroLengthBitfieldBoundary == CharUnits::Zero()) {
   2077         // If a zero-length bitfield is inserted after a bitfield,
   2078         // and the alignment of the zero-length bitfield is
   2079         // greater than the member that follows it, `bar', `bar'
   2080         // will be aligned as the type of the zero-length bitfield.
   2081         std::pair<CharUnits, CharUnits> FieldInfo =
   2082           Context.getTypeInfoInChars(ZeroLengthBitfield->getType());
   2083         CharUnits ZeroLengthBitfieldAlignment = FieldInfo.second;
   2084         if (ZeroLengthBitfieldAlignment > FieldAlign)
   2085           FieldAlign = ZeroLengthBitfieldAlignment;
   2086       } else if (ZeroLengthBitfieldBoundary > FieldAlign) {
   2087         // Align 'bar' based on a fixed alignment specified by the target.
   2088         assert(Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
   2089                "ZeroLengthBitfieldBoundary should only be used in conjunction"
   2090                " with useZeroLengthBitfieldAlignment.");
   2091         FieldAlign = ZeroLengthBitfieldBoundary;
   2092       }
   2093       ZeroLengthBitfield = 0;
   2094     }
   2095 
   2096     if (IsMsStruct) {
   2097       // If MS bitfield layout is required, figure out what type is being
   2098       // laid out and align the field to the width of that type.
   2099 
   2100       // Resolve all typedefs down to their base type and round up the field
   2101       // alignment if necessary.
   2102       QualType T = Context.getBaseElementType(D->getType());
   2103       if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
   2104         CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
   2105         if (TypeSize > FieldAlign)
   2106           FieldAlign = TypeSize;
   2107       }
   2108     }
   2109   }
   2110 
   2111   // The align if the field is not packed. This is to check if the attribute
   2112   // was unnecessary (-Wpacked).
   2113   CharUnits UnpackedFieldAlign = FieldAlign;
   2114   CharUnits UnpackedFieldOffset = FieldOffset;
   2115 
   2116   if (FieldPacked)
   2117     FieldAlign = CharUnits::One();
   2118   CharUnits MaxAlignmentInChars =
   2119     Context.toCharUnitsFromBits(D->getMaxAlignment());
   2120   FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
   2121   UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
   2122 
   2123   // The maximum field alignment overrides the aligned attribute.
   2124   if (!MaxFieldAlignment.isZero()) {
   2125     FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
   2126     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
   2127   }
   2128 
   2129   // Round up the current record size to the field's alignment boundary.
   2130   FieldOffset = FieldOffset.RoundUpToAlignment(FieldAlign);
   2131   UnpackedFieldOffset =
   2132     UnpackedFieldOffset.RoundUpToAlignment(UnpackedFieldAlign);
   2133 
   2134   if (ExternalLayout) {
   2135     FieldOffset = Context.toCharUnitsFromBits(
   2136                     updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
   2137 
   2138     if (!IsUnion && EmptySubobjects) {
   2139       // Record the fact that we're placing a field at this offset.
   2140       bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
   2141       (void)Allowed;
   2142       assert(Allowed && "Externally-placed field cannot be placed here");
   2143     }
   2144   } else {
   2145     if (!IsUnion && EmptySubobjects) {
   2146       // Check if we can place the field at this offset.
   2147       while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
   2148         // We couldn't place the field at the offset. Try again at a new offset.
   2149         FieldOffset += FieldAlign;
   2150       }
   2151     }
   2152   }
   2153 
   2154   // Place this field at the current location.
   2155   FieldOffsets.push_back(Context.toBits(FieldOffset));
   2156 
   2157   if (!ExternalLayout)
   2158     CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
   2159                       Context.toBits(UnpackedFieldOffset),
   2160                       Context.toBits(UnpackedFieldAlign), FieldPacked, D);
   2161 
   2162   // Reserve space for this field.
   2163   uint64_t FieldSizeInBits = Context.toBits(FieldSize);
   2164   if (IsUnion)
   2165     setDataSize(std::max(getDataSizeInBits(), FieldSizeInBits));
   2166   else
   2167     setDataSize(FieldOffset + FieldSize);
   2168 
   2169   // Update the size.
   2170   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
   2171 
   2172   // Remember max struct/class alignment.
   2173   UpdateAlignment(FieldAlign, UnpackedFieldAlign);
   2174 }
   2175 
   2176 void RecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
   2177   // In C++, records cannot be of size 0.
   2178   if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
   2179     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
   2180       // Compatibility with gcc requires a class (pod or non-pod)
   2181       // which is not empty but of size 0; such as having fields of
   2182       // array of zero-length, remains of Size 0
   2183       if (RD->isEmpty())
   2184         setSize(CharUnits::One());
   2185     }
   2186     else
   2187       setSize(CharUnits::One());
   2188   }
   2189 
   2190   // Finally, round the size of the record up to the alignment of the
   2191   // record itself.
   2192   uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastByte;
   2193   uint64_t UnpackedSizeInBits =
   2194   llvm::RoundUpToAlignment(getSizeInBits(),
   2195                            Context.toBits(UnpackedAlignment));
   2196   CharUnits UnpackedSize = Context.toCharUnitsFromBits(UnpackedSizeInBits);
   2197   uint64_t RoundedSize
   2198     = llvm::RoundUpToAlignment(getSizeInBits(), Context.toBits(Alignment));
   2199 
   2200   if (ExternalLayout) {
   2201     // If we're inferring alignment, and the external size is smaller than
   2202     // our size after we've rounded up to alignment, conservatively set the
   2203     // alignment to 1.
   2204     if (InferAlignment && ExternalSize < RoundedSize) {
   2205       Alignment = CharUnits::One();
   2206       InferAlignment = false;
   2207     }
   2208     setSize(ExternalSize);
   2209     return;
   2210   }
   2211 
   2212 
   2213   // MSVC doesn't round up to the alignment of the record with virtual bases.
   2214   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
   2215     if (isMicrosoftCXXABI() && RD->getNumVBases())
   2216       return;
   2217   }
   2218 
   2219   // Set the size to the final size.
   2220   setSize(RoundedSize);
   2221 
   2222   unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
   2223   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
   2224     // Warn if padding was introduced to the struct/class/union.
   2225     if (getSizeInBits() > UnpaddedSize) {
   2226       unsigned PadSize = getSizeInBits() - UnpaddedSize;
   2227       bool InBits = true;
   2228       if (PadSize % CharBitNum == 0) {
   2229         PadSize = PadSize / CharBitNum;
   2230         InBits = false;
   2231       }
   2232       Diag(RD->getLocation(), diag::warn_padded_struct_size)
   2233           << Context.getTypeDeclType(RD)
   2234           << PadSize
   2235           << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
   2236     }
   2237 
   2238     // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
   2239     // bother since there won't be alignment issues.
   2240     if (Packed && UnpackedAlignment > CharUnits::One() &&
   2241         getSize() == UnpackedSize)
   2242       Diag(D->getLocation(), diag::warn_unnecessary_packed)
   2243           << Context.getTypeDeclType(RD);
   2244   }
   2245 }
   2246 
   2247 void RecordLayoutBuilder::UpdateAlignment(CharUnits NewAlignment,
   2248                                           CharUnits UnpackedNewAlignment) {
   2249   // The alignment is not modified when using 'mac68k' alignment or when
   2250   // we have an externally-supplied layout that also provides overall alignment.
   2251   if (IsMac68kAlign || (ExternalLayout && !InferAlignment))
   2252     return;
   2253 
   2254   if (NewAlignment > Alignment) {
   2255     assert(llvm::isPowerOf2_32(NewAlignment.getQuantity() &&
   2256            "Alignment not a power of 2"));
   2257     Alignment = NewAlignment;
   2258   }
   2259 
   2260   if (UnpackedNewAlignment > UnpackedAlignment) {
   2261     assert(llvm::isPowerOf2_32(UnpackedNewAlignment.getQuantity() &&
   2262            "Alignment not a power of 2"));
   2263     UnpackedAlignment = UnpackedNewAlignment;
   2264   }
   2265 }
   2266 
   2267 uint64_t
   2268 RecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
   2269                                                uint64_t ComputedOffset) {
   2270   assert(ExternalFieldOffsets.find(Field) != ExternalFieldOffsets.end() &&
   2271          "Field does not have an external offset");
   2272 
   2273   uint64_t ExternalFieldOffset = ExternalFieldOffsets[Field];
   2274 
   2275   if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
   2276     // The externally-supplied field offset is before the field offset we
   2277     // computed. Assume that the structure is packed.
   2278     Alignment = CharUnits::One();
   2279     InferAlignment = false;
   2280   }
   2281 
   2282   // Use the externally-supplied field offset.
   2283   return ExternalFieldOffset;
   2284 }
   2285 
   2286 /// \brief Get diagnostic %select index for tag kind for
   2287 /// field padding diagnostic message.
   2288 /// WARNING: Indexes apply to particular diagnostics only!
   2289 ///
   2290 /// \returns diagnostic %select index.
   2291 static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
   2292   switch (Tag) {
   2293   case TTK_Struct: return 0;
   2294   case TTK_Interface: return 1;
   2295   case TTK_Class: return 2;
   2296   default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
   2297   }
   2298 }
   2299 
   2300 void RecordLayoutBuilder::CheckFieldPadding(uint64_t Offset,
   2301                                             uint64_t UnpaddedOffset,
   2302                                             uint64_t UnpackedOffset,
   2303                                             unsigned UnpackedAlign,
   2304                                             bool isPacked,
   2305                                             const FieldDecl *D) {
   2306   // We let objc ivars without warning, objc interfaces generally are not used
   2307   // for padding tricks.
   2308   if (isa<ObjCIvarDecl>(D))
   2309     return;
   2310 
   2311   // Don't warn about structs created without a SourceLocation.  This can
   2312   // be done by clients of the AST, such as codegen.
   2313   if (D->getLocation().isInvalid())
   2314     return;
   2315 
   2316   unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
   2317 
   2318   // Warn if padding was introduced to the struct/class.
   2319   if (!IsUnion && Offset > UnpaddedOffset) {
   2320     unsigned PadSize = Offset - UnpaddedOffset;
   2321     bool InBits = true;
   2322     if (PadSize % CharBitNum == 0) {
   2323       PadSize = PadSize / CharBitNum;
   2324       InBits = false;
   2325     }
   2326     if (D->getIdentifier())
   2327       Diag(D->getLocation(), diag::warn_padded_struct_field)
   2328           << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
   2329           << Context.getTypeDeclType(D->getParent())
   2330           << PadSize
   2331           << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1) // plural or not
   2332           << D->getIdentifier();
   2333     else
   2334       Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
   2335           << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
   2336           << Context.getTypeDeclType(D->getParent())
   2337           << PadSize
   2338           << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
   2339   }
   2340 
   2341   // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
   2342   // bother since there won't be alignment issues.
   2343   if (isPacked && UnpackedAlign > CharBitNum && Offset == UnpackedOffset)
   2344     Diag(D->getLocation(), diag::warn_unnecessary_packed)
   2345         << D->getIdentifier();
   2346 }
   2347 
   2348 static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
   2349                                                const CXXRecordDecl *RD) {
   2350   // If a class isn't polymorphic it doesn't have a key function.
   2351   if (!RD->isPolymorphic())
   2352     return 0;
   2353 
   2354   // A class that is not externally visible doesn't have a key function. (Or
   2355   // at least, there's no point to assigning a key function to such a class;
   2356   // this doesn't affect the ABI.)
   2357   if (RD->getLinkage() != ExternalLinkage)
   2358     return 0;
   2359 
   2360   // Template instantiations don't have key functions,see Itanium C++ ABI 5.2.6.
   2361   // Same behavior as GCC.
   2362   TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
   2363   if (TSK == TSK_ImplicitInstantiation ||
   2364       TSK == TSK_ExplicitInstantiationDefinition)
   2365     return 0;
   2366 
   2367   bool allowInlineFunctions =
   2368     Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
   2369 
   2370   for (CXXRecordDecl::method_iterator I = RD->method_begin(),
   2371          E = RD->method_end(); I != E; ++I) {
   2372     const CXXMethodDecl *MD = *I;
   2373 
   2374     if (!MD->isVirtual())
   2375       continue;
   2376 
   2377     if (MD->isPure())
   2378       continue;
   2379 
   2380     // Ignore implicit member functions, they are always marked as inline, but
   2381     // they don't have a body until they're defined.
   2382     if (MD->isImplicit())
   2383       continue;
   2384 
   2385     if (MD->isInlineSpecified())
   2386       continue;
   2387 
   2388     if (MD->hasInlineBody())
   2389       continue;
   2390 
   2391     // Ignore inline deleted or defaulted functions.
   2392     if (!MD->isUserProvided())
   2393       continue;
   2394 
   2395     // In certain ABIs, ignore functions with out-of-line inline definitions.
   2396     if (!allowInlineFunctions) {
   2397       const FunctionDecl *Def;
   2398       if (MD->hasBody(Def) && Def->isInlineSpecified())
   2399         continue;
   2400     }
   2401 
   2402     // We found it.
   2403     return MD;
   2404   }
   2405 
   2406   return 0;
   2407 }
   2408 
   2409 DiagnosticBuilder
   2410 RecordLayoutBuilder::Diag(SourceLocation Loc, unsigned DiagID) {
   2411   return Context.getDiagnostics().Report(Loc, DiagID);
   2412 }
   2413 
   2414 /// Does the target C++ ABI require us to skip over the tail-padding
   2415 /// of the given class (considering it as a base class) when allocating
   2416 /// objects?
   2417 static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
   2418   switch (ABI.getTailPaddingUseRules()) {
   2419   case TargetCXXABI::AlwaysUseTailPadding:
   2420     return false;
   2421 
   2422   case TargetCXXABI::UseTailPaddingUnlessPOD03:
   2423     // FIXME: To the extent that this is meant to cover the Itanium ABI
   2424     // rules, we should implement the restrictions about over-sized
   2425     // bitfields:
   2426     //
   2427     // http://mentorembedded.github.com/cxx-abi/abi.html#POD :
   2428     //   In general, a type is considered a POD for the purposes of
   2429     //   layout if it is a POD type (in the sense of ISO C++
   2430     //   [basic.types]). However, a POD-struct or POD-union (in the
   2431     //   sense of ISO C++ [class]) with a bitfield member whose
   2432     //   declared width is wider than the declared type of the
   2433     //   bitfield is not a POD for the purpose of layout.  Similarly,
   2434     //   an array type is not a POD for the purpose of layout if the
   2435     //   element type of the array is not a POD for the purpose of
   2436     //   layout.
   2437     //
   2438     //   Where references to the ISO C++ are made in this paragraph,
   2439     //   the Technical Corrigendum 1 version of the standard is
   2440     //   intended.
   2441     return RD->isPOD();
   2442 
   2443   case TargetCXXABI::UseTailPaddingUnlessPOD11:
   2444     // This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
   2445     // but with a lot of abstraction penalty stripped off.  This does
   2446     // assume that these properties are set correctly even in C++98
   2447     // mode; fortunately, that is true because we want to assign
   2448     // consistently semantics to the type-traits intrinsics (or at
   2449     // least as many of them as possible).
   2450     return RD->isTrivial() && RD->isStandardLayout();
   2451   }
   2452 
   2453   llvm_unreachable("bad tail-padding use kind");
   2454 }
   2455 
   2456 /// getASTRecordLayout - Get or compute information about the layout of the
   2457 /// specified record (struct/union/class), which indicates its size and field
   2458 /// position information.
   2459 const ASTRecordLayout &
   2460 ASTContext::getASTRecordLayout(const RecordDecl *D) const {
   2461   // These asserts test different things.  A record has a definition
   2462   // as soon as we begin to parse the definition.  That definition is
   2463   // not a complete definition (which is what isDefinition() tests)
   2464   // until we *finish* parsing the definition.
   2465 
   2466   if (D->hasExternalLexicalStorage() && !D->getDefinition())
   2467     getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
   2468 
   2469   D = D->getDefinition();
   2470   assert(D && "Cannot get layout of forward declarations!");
   2471   assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
   2472 
   2473   // Look up this layout, if already laid out, return what we have.
   2474   // Note that we can't save a reference to the entry because this function
   2475   // is recursive.
   2476   const ASTRecordLayout *Entry = ASTRecordLayouts[D];
   2477   if (Entry) return *Entry;
   2478 
   2479   const ASTRecordLayout *NewEntry;
   2480 
   2481   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
   2482     EmptySubobjectMap EmptySubobjects(*this, RD);
   2483     RecordLayoutBuilder Builder(*this, &EmptySubobjects);
   2484     Builder.Layout(RD);
   2485 
   2486     // MSVC gives the vb-table pointer an alignment equal to that of
   2487     // the non-virtual part of the structure.  That's an inherently
   2488     // multi-pass operation.  If our first pass doesn't give us
   2489     // adequate alignment, try again with the specified minimum
   2490     // alignment.  This is *much* more maintainable than computing the
   2491     // alignment in advance in a separately-coded pass; it's also
   2492     // significantly more efficient in the common case where the
   2493     // vb-table doesn't need extra padding.
   2494     if (Builder.VBPtrOffset != CharUnits::fromQuantity(-1) &&
   2495         (Builder.VBPtrOffset % Builder.NonVirtualAlignment) != 0) {
   2496       Builder.resetWithTargetAlignment(Builder.NonVirtualAlignment);
   2497       Builder.Layout(RD);
   2498     }
   2499 
   2500     // In certain situations, we are allowed to lay out objects in the
   2501     // tail-padding of base classes.  This is ABI-dependent.
   2502     // FIXME: this should be stored in the record layout.
   2503     bool skipTailPadding =
   2504       mustSkipTailPadding(getTargetInfo().getCXXABI(), cast<CXXRecordDecl>(D));
   2505 
   2506     // FIXME: This should be done in FinalizeLayout.
   2507     CharUnits DataSize =
   2508       skipTailPadding ? Builder.getSize() : Builder.getDataSize();
   2509     CharUnits NonVirtualSize =
   2510       skipTailPadding ? DataSize : Builder.NonVirtualSize;
   2511 
   2512     NewEntry =
   2513       new (*this) ASTRecordLayout(*this, Builder.getSize(),
   2514                                   Builder.Alignment,
   2515                                   Builder.HasOwnVFPtr,
   2516                                   Builder.VBPtrOffset,
   2517                                   DataSize,
   2518                                   Builder.FieldOffsets.data(),
   2519                                   Builder.FieldOffsets.size(),
   2520                                   NonVirtualSize,
   2521                                   Builder.NonVirtualAlignment,
   2522                                   EmptySubobjects.SizeOfLargestEmptySubobject,
   2523                                   Builder.PrimaryBase,
   2524                                   Builder.PrimaryBaseIsVirtual,
   2525                                   Builder.Bases, Builder.VBases);
   2526   } else {
   2527     RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/0);
   2528     Builder.Layout(D);
   2529 
   2530     NewEntry =
   2531       new (*this) ASTRecordLayout(*this, Builder.getSize(),
   2532                                   Builder.Alignment,
   2533                                   Builder.getSize(),
   2534                                   Builder.FieldOffsets.data(),
   2535                                   Builder.FieldOffsets.size());
   2536   }
   2537 
   2538   ASTRecordLayouts[D] = NewEntry;
   2539 
   2540   if (getLangOpts().DumpRecordLayouts) {
   2541     llvm::errs() << "\n*** Dumping AST Record Layout\n";
   2542     DumpRecordLayout(D, llvm::errs(), getLangOpts().DumpRecordLayoutsSimple);
   2543   }
   2544 
   2545   return *NewEntry;
   2546 }
   2547 
   2548 const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
   2549   assert(RD->getDefinition() && "Cannot get key function for forward decl!");
   2550   RD = cast<CXXRecordDecl>(RD->getDefinition());
   2551 
   2552   const CXXMethodDecl *&entry = KeyFunctions[RD];
   2553   if (!entry) {
   2554     entry = computeKeyFunction(*this, RD);
   2555   }
   2556 
   2557   return entry;
   2558 }
   2559 
   2560 void ASTContext::setNonKeyFunction(const CXXMethodDecl *method) {
   2561   assert(method == method->getFirstDeclaration() &&
   2562          "not working with method declaration from class definition");
   2563 
   2564   // Look up the cache entry.  Since we're working with the first
   2565   // declaration, its parent must be the class definition, which is
   2566   // the correct key for the KeyFunctions hash.
   2567   llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*>::iterator
   2568     i = KeyFunctions.find(method->getParent());
   2569 
   2570   // If it's not cached, there's nothing to do.
   2571   if (i == KeyFunctions.end()) return;
   2572 
   2573   // If it is cached, check whether it's the target method, and if so,
   2574   // remove it from the cache.
   2575   if (i->second == method) {
   2576     // FIXME: remember that we did this for module / chained PCH state?
   2577     KeyFunctions.erase(i);
   2578   }
   2579 }
   2580 
   2581 static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
   2582   const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
   2583   return Layout.getFieldOffset(FD->getFieldIndex());
   2584 }
   2585 
   2586 uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
   2587   uint64_t OffsetInBits;
   2588   if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
   2589     OffsetInBits = ::getFieldOffset(*this, FD);
   2590   } else {
   2591     const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
   2592 
   2593     OffsetInBits = 0;
   2594     for (IndirectFieldDecl::chain_iterator CI = IFD->chain_begin(),
   2595                                            CE = IFD->chain_end();
   2596          CI != CE; ++CI)
   2597       OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(*CI));
   2598   }
   2599 
   2600   return OffsetInBits;
   2601 }
   2602 
   2603 /// getObjCLayout - Get or compute information about the layout of the
   2604 /// given interface.
   2605 ///
   2606 /// \param Impl - If given, also include the layout of the interface's
   2607 /// implementation. This may differ by including synthesized ivars.
   2608 const ASTRecordLayout &
   2609 ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
   2610                           const ObjCImplementationDecl *Impl) const {
   2611   // Retrieve the definition
   2612   if (D->hasExternalLexicalStorage() && !D->getDefinition())
   2613     getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
   2614   D = D->getDefinition();
   2615   assert(D && D->isThisDeclarationADefinition() && "Invalid interface decl!");
   2616 
   2617   // Look up this layout, if already laid out, return what we have.
   2618   const ObjCContainerDecl *Key =
   2619     Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
   2620   if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
   2621     return *Entry;
   2622 
   2623   // Add in synthesized ivar count if laying out an implementation.
   2624   if (Impl) {
   2625     unsigned SynthCount = CountNonClassIvars(D);
   2626     // If there aren't any sythesized ivars then reuse the interface
   2627     // entry. Note we can't cache this because we simply free all
   2628     // entries later; however we shouldn't look up implementations
   2629     // frequently.
   2630     if (SynthCount == 0)
   2631       return getObjCLayout(D, 0);
   2632   }
   2633 
   2634   RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/0);
   2635   Builder.Layout(D);
   2636 
   2637   const ASTRecordLayout *NewEntry =
   2638     new (*this) ASTRecordLayout(*this, Builder.getSize(),
   2639                                 Builder.Alignment,
   2640                                 Builder.getDataSize(),
   2641                                 Builder.FieldOffsets.data(),
   2642                                 Builder.FieldOffsets.size());
   2643 
   2644   ObjCLayouts[Key] = NewEntry;
   2645 
   2646   return *NewEntry;
   2647 }
   2648 
   2649 static void PrintOffset(raw_ostream &OS,
   2650                         CharUnits Offset, unsigned IndentLevel) {
   2651   OS << llvm::format("%4" PRId64 " | ", (int64_t)Offset.getQuantity());
   2652   OS.indent(IndentLevel * 2);
   2653 }
   2654 
   2655 static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
   2656   OS << "     | ";
   2657   OS.indent(IndentLevel * 2);
   2658 }
   2659 
   2660 static void DumpCXXRecordLayout(raw_ostream &OS,
   2661                                 const CXXRecordDecl *RD, const ASTContext &C,
   2662                                 CharUnits Offset,
   2663                                 unsigned IndentLevel,
   2664                                 const char* Description,
   2665                                 bool IncludeVirtualBases) {
   2666   const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
   2667 
   2668   PrintOffset(OS, Offset, IndentLevel);
   2669   OS << C.getTypeDeclType(const_cast<CXXRecordDecl *>(RD)).getAsString();
   2670   if (Description)
   2671     OS << ' ' << Description;
   2672   if (RD->isEmpty())
   2673     OS << " (empty)";
   2674   OS << '\n';
   2675 
   2676   IndentLevel++;
   2677 
   2678   const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
   2679   bool HasVfptr = Layout.hasOwnVFPtr();
   2680   bool HasVbptr = Layout.getVBPtrOffset() != CharUnits::fromQuantity(-1);
   2681 
   2682   // Vtable pointer.
   2683   if (RD->isDynamicClass() && !PrimaryBase &&
   2684       !C.getTargetInfo().getCXXABI().isMicrosoft()) {
   2685     PrintOffset(OS, Offset, IndentLevel);
   2686     OS << '(' << *RD << " vtable pointer)\n";
   2687   }
   2688 
   2689   // Dump (non-virtual) bases
   2690   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
   2691          E = RD->bases_end(); I != E; ++I) {
   2692     assert(!I->getType()->isDependentType() &&
   2693            "Cannot layout class with dependent bases.");
   2694     if (I->isVirtual())
   2695       continue;
   2696 
   2697     const CXXRecordDecl *Base =
   2698       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
   2699 
   2700     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
   2701 
   2702     DumpCXXRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
   2703                         Base == PrimaryBase ? "(primary base)" : "(base)",
   2704                         /*IncludeVirtualBases=*/false);
   2705   }
   2706 
   2707   // vfptr and vbptr (for Microsoft C++ ABI)
   2708   if (HasVfptr) {
   2709     PrintOffset(OS, Offset, IndentLevel);
   2710     OS << '(' << *RD << " vftable pointer)\n";
   2711   }
   2712   if (HasVbptr) {
   2713     PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
   2714     OS << '(' << *RD << " vbtable pointer)\n";
   2715   }
   2716 
   2717   // Dump fields.
   2718   uint64_t FieldNo = 0;
   2719   for (CXXRecordDecl::field_iterator I = RD->field_begin(),
   2720          E = RD->field_end(); I != E; ++I, ++FieldNo) {
   2721     const FieldDecl &Field = **I;
   2722     CharUnits FieldOffset = Offset +
   2723       C.toCharUnitsFromBits(Layout.getFieldOffset(FieldNo));
   2724 
   2725     if (const RecordType *RT = Field.getType()->getAs<RecordType>()) {
   2726       if (const CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
   2727         DumpCXXRecordLayout(OS, D, C, FieldOffset, IndentLevel,
   2728                             Field.getName().data(),
   2729                             /*IncludeVirtualBases=*/true);
   2730         continue;
   2731       }
   2732     }
   2733 
   2734     PrintOffset(OS, FieldOffset, IndentLevel);
   2735     OS << Field.getType().getAsString() << ' ' << Field << '\n';
   2736   }
   2737 
   2738   if (!IncludeVirtualBases)
   2739     return;
   2740 
   2741   // Dump virtual bases.
   2742   const ASTRecordLayout::VBaseOffsetsMapTy &vtordisps =
   2743     Layout.getVBaseOffsetsMap();
   2744   for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
   2745          E = RD->vbases_end(); I != E; ++I) {
   2746     assert(I->isVirtual() && "Found non-virtual class!");
   2747     const CXXRecordDecl *VBase =
   2748       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
   2749 
   2750     CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
   2751 
   2752     if (vtordisps.find(VBase)->second.hasVtorDisp()) {
   2753       PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
   2754       OS << "(vtordisp for vbase " << *VBase << ")\n";
   2755     }
   2756 
   2757     DumpCXXRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
   2758                         VBase == PrimaryBase ?
   2759                         "(primary virtual base)" : "(virtual base)",
   2760                         /*IncludeVirtualBases=*/false);
   2761   }
   2762 
   2763   PrintIndentNoOffset(OS, IndentLevel - 1);
   2764   OS << "[sizeof=" << Layout.getSize().getQuantity();
   2765   OS << ", dsize=" << Layout.getDataSize().getQuantity();
   2766   OS << ", align=" << Layout.getAlignment().getQuantity() << '\n';
   2767 
   2768   PrintIndentNoOffset(OS, IndentLevel - 1);
   2769   OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
   2770   OS << ", nvalign=" << Layout.getNonVirtualAlign().getQuantity() << "]\n";
   2771   OS << '\n';
   2772 }
   2773 
   2774 void ASTContext::DumpRecordLayout(const RecordDecl *RD,
   2775                                   raw_ostream &OS,
   2776                                   bool Simple) const {
   2777   const ASTRecordLayout &Info = getASTRecordLayout(RD);
   2778 
   2779   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
   2780     if (!Simple)
   2781       return DumpCXXRecordLayout(OS, CXXRD, *this, CharUnits(), 0, 0,
   2782                                  /*IncludeVirtualBases=*/true);
   2783 
   2784   OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
   2785   if (!Simple) {
   2786     OS << "Record: ";
   2787     RD->dump();
   2788   }
   2789   OS << "\nLayout: ";
   2790   OS << "<ASTRecordLayout\n";
   2791   OS << "  Size:" << toBits(Info.getSize()) << "\n";
   2792   OS << "  DataSize:" << toBits(Info.getDataSize()) << "\n";
   2793   OS << "  Alignment:" << toBits(Info.getAlignment()) << "\n";
   2794   OS << "  FieldOffsets: [";
   2795   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
   2796     if (i) OS << ", ";
   2797     OS << Info.getFieldOffset(i);
   2798   }
   2799   OS << "]>\n";
   2800 }
   2801