Home | History | Annotate | Download | only in Sema
      1 //===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements decl-related attribute processing.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "TargetAttributesSema.h"
     16 #include "clang/AST/ASTContext.h"
     17 #include "clang/AST/CXXInheritance.h"
     18 #include "clang/AST/DeclCXX.h"
     19 #include "clang/AST/DeclObjC.h"
     20 #include "clang/AST/DeclTemplate.h"
     21 #include "clang/AST/Expr.h"
     22 #include "clang/AST/Mangle.h"
     23 #include "clang/Basic/CharInfo.h"
     24 #include "clang/Basic/SourceManager.h"
     25 #include "clang/Basic/TargetInfo.h"
     26 #include "clang/Sema/DeclSpec.h"
     27 #include "clang/Sema/DelayedDiagnostic.h"
     28 #include "clang/Sema/Lookup.h"
     29 #include "clang/Sema/Scope.h"
     30 #include "llvm/ADT/StringExtras.h"
     31 using namespace clang;
     32 using namespace sema;
     33 
     34 /// These constants match the enumerated choices of
     35 /// warn_attribute_wrong_decl_type and err_attribute_wrong_decl_type.
     36 enum AttributeDeclKind {
     37   ExpectedFunction,
     38   ExpectedUnion,
     39   ExpectedVariableOrFunction,
     40   ExpectedFunctionOrMethod,
     41   ExpectedParameter,
     42   ExpectedFunctionMethodOrBlock,
     43   ExpectedFunctionMethodOrClass,
     44   ExpectedFunctionMethodOrParameter,
     45   ExpectedClass,
     46   ExpectedVariable,
     47   ExpectedMethod,
     48   ExpectedVariableFunctionOrLabel,
     49   ExpectedFieldOrGlobalVar,
     50   ExpectedStruct,
     51   ExpectedVariableFunctionOrTag,
     52   ExpectedTLSVar,
     53   ExpectedVariableOrField,
     54   ExpectedVariableFieldOrTag,
     55   ExpectedTypeOrNamespace
     56 };
     57 
     58 //===----------------------------------------------------------------------===//
     59 //  Helper functions
     60 //===----------------------------------------------------------------------===//
     61 
     62 static const FunctionType *getFunctionType(const Decl *D,
     63                                            bool blocksToo = true) {
     64   QualType Ty;
     65   if (const ValueDecl *decl = dyn_cast<ValueDecl>(D))
     66     Ty = decl->getType();
     67   else if (const FieldDecl *decl = dyn_cast<FieldDecl>(D))
     68     Ty = decl->getType();
     69   else if (const TypedefNameDecl* decl = dyn_cast<TypedefNameDecl>(D))
     70     Ty = decl->getUnderlyingType();
     71   else
     72     return 0;
     73 
     74   if (Ty->isFunctionPointerType())
     75     Ty = Ty->getAs<PointerType>()->getPointeeType();
     76   else if (blocksToo && Ty->isBlockPointerType())
     77     Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
     78 
     79   return Ty->getAs<FunctionType>();
     80 }
     81 
     82 // FIXME: We should provide an abstraction around a method or function
     83 // to provide the following bits of information.
     84 
     85 /// isFunction - Return true if the given decl has function
     86 /// type (function or function-typed variable).
     87 static bool isFunction(const Decl *D) {
     88   return getFunctionType(D, false) != NULL;
     89 }
     90 
     91 /// isFunctionOrMethod - Return true if the given decl has function
     92 /// type (function or function-typed variable) or an Objective-C
     93 /// method.
     94 static bool isFunctionOrMethod(const Decl *D) {
     95   return isFunction(D) || isa<ObjCMethodDecl>(D);
     96 }
     97 
     98 /// isFunctionOrMethodOrBlock - Return true if the given decl has function
     99 /// type (function or function-typed variable) or an Objective-C
    100 /// method or a block.
    101 static bool isFunctionOrMethodOrBlock(const Decl *D) {
    102   if (isFunctionOrMethod(D))
    103     return true;
    104   // check for block is more involved.
    105   if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
    106     QualType Ty = V->getType();
    107     return Ty->isBlockPointerType();
    108   }
    109   return isa<BlockDecl>(D);
    110 }
    111 
    112 /// Return true if the given decl has a declarator that should have
    113 /// been processed by Sema::GetTypeForDeclarator.
    114 static bool hasDeclarator(const Decl *D) {
    115   // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
    116   return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
    117          isa<ObjCPropertyDecl>(D);
    118 }
    119 
    120 /// hasFunctionProto - Return true if the given decl has a argument
    121 /// information. This decl should have already passed
    122 /// isFunctionOrMethod or isFunctionOrMethodOrBlock.
    123 static bool hasFunctionProto(const Decl *D) {
    124   if (const FunctionType *FnTy = getFunctionType(D))
    125     return isa<FunctionProtoType>(FnTy);
    126   else {
    127     assert(isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D));
    128     return true;
    129   }
    130 }
    131 
    132 /// getFunctionOrMethodNumArgs - Return number of function or method
    133 /// arguments. It is an error to call this on a K&R function (use
    134 /// hasFunctionProto first).
    135 static unsigned getFunctionOrMethodNumArgs(const Decl *D) {
    136   if (const FunctionType *FnTy = getFunctionType(D))
    137     return cast<FunctionProtoType>(FnTy)->getNumArgs();
    138   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
    139     return BD->getNumParams();
    140   return cast<ObjCMethodDecl>(D)->param_size();
    141 }
    142 
    143 static QualType getFunctionOrMethodArgType(const Decl *D, unsigned Idx) {
    144   if (const FunctionType *FnTy = getFunctionType(D))
    145     return cast<FunctionProtoType>(FnTy)->getArgType(Idx);
    146   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
    147     return BD->getParamDecl(Idx)->getType();
    148 
    149   return cast<ObjCMethodDecl>(D)->param_begin()[Idx]->getType();
    150 }
    151 
    152 static QualType getFunctionOrMethodResultType(const Decl *D) {
    153   if (const FunctionType *FnTy = getFunctionType(D))
    154     return cast<FunctionProtoType>(FnTy)->getResultType();
    155   return cast<ObjCMethodDecl>(D)->getResultType();
    156 }
    157 
    158 static bool isFunctionOrMethodVariadic(const Decl *D) {
    159   if (const FunctionType *FnTy = getFunctionType(D)) {
    160     const FunctionProtoType *proto = cast<FunctionProtoType>(FnTy);
    161     return proto->isVariadic();
    162   } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
    163     return BD->isVariadic();
    164   else {
    165     return cast<ObjCMethodDecl>(D)->isVariadic();
    166   }
    167 }
    168 
    169 static bool isInstanceMethod(const Decl *D) {
    170   if (const CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D))
    171     return MethodDecl->isInstance();
    172   return false;
    173 }
    174 
    175 static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
    176   const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>();
    177   if (!PT)
    178     return false;
    179 
    180   ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
    181   if (!Cls)
    182     return false;
    183 
    184   IdentifierInfo* ClsName = Cls->getIdentifier();
    185 
    186   // FIXME: Should we walk the chain of classes?
    187   return ClsName == &Ctx.Idents.get("NSString") ||
    188          ClsName == &Ctx.Idents.get("NSMutableString");
    189 }
    190 
    191 static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
    192   const PointerType *PT = T->getAs<PointerType>();
    193   if (!PT)
    194     return false;
    195 
    196   const RecordType *RT = PT->getPointeeType()->getAs<RecordType>();
    197   if (!RT)
    198     return false;
    199 
    200   const RecordDecl *RD = RT->getDecl();
    201   if (RD->getTagKind() != TTK_Struct)
    202     return false;
    203 
    204   return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
    205 }
    206 
    207 /// \brief Check if the attribute has exactly as many args as Num. May
    208 /// output an error.
    209 static bool checkAttributeNumArgs(Sema &S, const AttributeList &Attr,
    210                                   unsigned int Num) {
    211   if (Attr.getNumArgs() != Num) {
    212     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Num;
    213     return false;
    214   }
    215 
    216   return true;
    217 }
    218 
    219 
    220 /// \brief Check if the attribute has at least as many args as Num. May
    221 /// output an error.
    222 static bool checkAttributeAtLeastNumArgs(Sema &S, const AttributeList &Attr,
    223                                   unsigned int Num) {
    224   if (Attr.getNumArgs() < Num) {
    225     S.Diag(Attr.getLoc(), diag::err_attribute_too_few_arguments) << Num;
    226     return false;
    227   }
    228 
    229   return true;
    230 }
    231 
    232 /// \brief Check if IdxExpr is a valid argument index for a function or
    233 /// instance method D.  May output an error.
    234 ///
    235 /// \returns true if IdxExpr is a valid index.
    236 static bool checkFunctionOrMethodArgumentIndex(Sema &S, const Decl *D,
    237                                                StringRef AttrName,
    238                                                SourceLocation AttrLoc,
    239                                                unsigned AttrArgNum,
    240                                                const Expr *IdxExpr,
    241                                                uint64_t &Idx)
    242 {
    243   assert(isFunctionOrMethod(D) && hasFunctionProto(D));
    244 
    245   // In C++ the implicit 'this' function parameter also counts.
    246   // Parameters are counted from one.
    247   const bool HasImplicitThisParam = isInstanceMethod(D);
    248   const unsigned NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
    249   const unsigned FirstIdx = 1;
    250 
    251   llvm::APSInt IdxInt;
    252   if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
    253       !IdxExpr->isIntegerConstantExpr(IdxInt, S.Context)) {
    254     S.Diag(AttrLoc, diag::err_attribute_argument_n_not_int)
    255       << AttrName << AttrArgNum << IdxExpr->getSourceRange();
    256     return false;
    257   }
    258 
    259   Idx = IdxInt.getLimitedValue();
    260   if (Idx < FirstIdx || (!isFunctionOrMethodVariadic(D) && Idx > NumArgs)) {
    261     S.Diag(AttrLoc, diag::err_attribute_argument_out_of_bounds)
    262       << AttrName << AttrArgNum << IdxExpr->getSourceRange();
    263     return false;
    264   }
    265   Idx--; // Convert to zero-based.
    266   if (HasImplicitThisParam) {
    267     if (Idx == 0) {
    268       S.Diag(AttrLoc,
    269              diag::err_attribute_invalid_implicit_this_argument)
    270         << AttrName << IdxExpr->getSourceRange();
    271       return false;
    272     }
    273     --Idx;
    274   }
    275 
    276   return true;
    277 }
    278 
    279 ///
    280 /// \brief Check if passed in Decl is a field or potentially shared global var
    281 /// \return true if the Decl is a field or potentially shared global variable
    282 ///
    283 static bool mayBeSharedVariable(const Decl *D) {
    284   if (isa<FieldDecl>(D))
    285     return true;
    286   if (const VarDecl *vd = dyn_cast<VarDecl>(D))
    287     return (vd->hasGlobalStorage() && !(vd->isThreadSpecified()));
    288 
    289   return false;
    290 }
    291 
    292 /// \brief Check if the passed-in expression is of type int or bool.
    293 static bool isIntOrBool(Expr *Exp) {
    294   QualType QT = Exp->getType();
    295   return QT->isBooleanType() || QT->isIntegerType();
    296 }
    297 
    298 
    299 // Check to see if the type is a smart pointer of some kind.  We assume
    300 // it's a smart pointer if it defines both operator-> and operator*.
    301 static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) {
    302   DeclContextLookupConstResult Res1 = RT->getDecl()->lookup(
    303     S.Context.DeclarationNames.getCXXOperatorName(OO_Star));
    304   if (Res1.empty())
    305     return false;
    306 
    307   DeclContextLookupConstResult Res2 = RT->getDecl()->lookup(
    308     S.Context.DeclarationNames.getCXXOperatorName(OO_Arrow));
    309   if (Res2.empty())
    310     return false;
    311 
    312   return true;
    313 }
    314 
    315 /// \brief Check if passed in Decl is a pointer type.
    316 /// Note that this function may produce an error message.
    317 /// \return true if the Decl is a pointer type; false otherwise
    318 static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D,
    319                                        const AttributeList &Attr) {
    320   if (const ValueDecl *vd = dyn_cast<ValueDecl>(D)) {
    321     QualType QT = vd->getType();
    322     if (QT->isAnyPointerType())
    323       return true;
    324 
    325     if (const RecordType *RT = QT->getAs<RecordType>()) {
    326       // If it's an incomplete type, it could be a smart pointer; skip it.
    327       // (We don't want to force template instantiation if we can avoid it,
    328       // since that would alter the order in which templates are instantiated.)
    329       if (RT->isIncompleteType())
    330         return true;
    331 
    332       if (threadSafetyCheckIsSmartPointer(S, RT))
    333         return true;
    334     }
    335 
    336     S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_pointer)
    337       << Attr.getName()->getName() << QT;
    338   } else {
    339     S.Diag(Attr.getLoc(), diag::err_attribute_can_be_applied_only_to_value_decl)
    340       << Attr.getName();
    341   }
    342   return false;
    343 }
    344 
    345 /// \brief Checks that the passed in QualType either is of RecordType or points
    346 /// to RecordType. Returns the relevant RecordType, null if it does not exit.
    347 static const RecordType *getRecordType(QualType QT) {
    348   if (const RecordType *RT = QT->getAs<RecordType>())
    349     return RT;
    350 
    351   // Now check if we point to record type.
    352   if (const PointerType *PT = QT->getAs<PointerType>())
    353     return PT->getPointeeType()->getAs<RecordType>();
    354 
    355   return 0;
    356 }
    357 
    358 
    359 static bool checkBaseClassIsLockableCallback(const CXXBaseSpecifier *Specifier,
    360                                              CXXBasePath &Path, void *Unused) {
    361   const RecordType *RT = Specifier->getType()->getAs<RecordType>();
    362   if (RT->getDecl()->getAttr<LockableAttr>())
    363     return true;
    364   return false;
    365 }
    366 
    367 
    368 /// \brief Thread Safety Analysis: Checks that the passed in RecordType
    369 /// resolves to a lockable object.
    370 static void checkForLockableRecord(Sema &S, Decl *D, const AttributeList &Attr,
    371                                    QualType Ty) {
    372   const RecordType *RT = getRecordType(Ty);
    373 
    374   // Warn if could not get record type for this argument.
    375   if (!RT) {
    376     S.Diag(Attr.getLoc(), diag::warn_thread_attribute_argument_not_class)
    377       << Attr.getName() << Ty.getAsString();
    378     return;
    379   }
    380 
    381   // Don't check for lockable if the class hasn't been defined yet.
    382   if (RT->isIncompleteType())
    383     return;
    384 
    385   // Allow smart pointers to be used as lockable objects.
    386   // FIXME -- Check the type that the smart pointer points to.
    387   if (threadSafetyCheckIsSmartPointer(S, RT))
    388     return;
    389 
    390   // Check if the type is lockable.
    391   RecordDecl *RD = RT->getDecl();
    392   if (RD->getAttr<LockableAttr>())
    393     return;
    394 
    395   // Else check if any base classes are lockable.
    396   if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
    397     CXXBasePaths BPaths(false, false);
    398     if (CRD->lookupInBases(checkBaseClassIsLockableCallback, 0, BPaths))
    399       return;
    400   }
    401 
    402   S.Diag(Attr.getLoc(), diag::warn_thread_attribute_argument_not_lockable)
    403     << Attr.getName() << Ty.getAsString();
    404 }
    405 
    406 /// \brief Thread Safety Analysis: Checks that all attribute arguments, starting
    407 /// from Sidx, resolve to a lockable object.
    408 /// \param Sidx The attribute argument index to start checking with.
    409 /// \param ParamIdxOk Whether an argument can be indexing into a function
    410 /// parameter list.
    411 static void checkAttrArgsAreLockableObjs(Sema &S, Decl *D,
    412                                          const AttributeList &Attr,
    413                                          SmallVectorImpl<Expr*> &Args,
    414                                          int Sidx = 0,
    415                                          bool ParamIdxOk = false) {
    416   for(unsigned Idx = Sidx; Idx < Attr.getNumArgs(); ++Idx) {
    417     Expr *ArgExp = Attr.getArg(Idx);
    418 
    419     if (ArgExp->isTypeDependent()) {
    420       // FIXME -- need to check this again on template instantiation
    421       Args.push_back(ArgExp);
    422       continue;
    423     }
    424 
    425     if (StringLiteral *StrLit = dyn_cast<StringLiteral>(ArgExp)) {
    426       if (StrLit->getLength() == 0 ||
    427           StrLit->getString() == StringRef("*")) {
    428         // Pass empty strings to the analyzer without warnings.
    429         // Treat "*" as the universal lock.
    430         Args.push_back(ArgExp);
    431         continue;
    432       }
    433 
    434       // We allow constant strings to be used as a placeholder for expressions
    435       // that are not valid C++ syntax, but warn that they are ignored.
    436       S.Diag(Attr.getLoc(), diag::warn_thread_attribute_ignored) <<
    437         Attr.getName();
    438       Args.push_back(ArgExp);
    439       continue;
    440     }
    441 
    442     QualType ArgTy = ArgExp->getType();
    443 
    444     // A pointer to member expression of the form  &MyClass::mu is treated
    445     // specially -- we need to look at the type of the member.
    446     if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(ArgExp))
    447       if (UOp->getOpcode() == UO_AddrOf)
    448         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr()))
    449           if (DRE->getDecl()->isCXXInstanceMember())
    450             ArgTy = DRE->getDecl()->getType();
    451 
    452     // First see if we can just cast to record type, or point to record type.
    453     const RecordType *RT = getRecordType(ArgTy);
    454 
    455     // Now check if we index into a record type function param.
    456     if(!RT && ParamIdxOk) {
    457       FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
    458       IntegerLiteral *IL = dyn_cast<IntegerLiteral>(ArgExp);
    459       if(FD && IL) {
    460         unsigned int NumParams = FD->getNumParams();
    461         llvm::APInt ArgValue = IL->getValue();
    462         uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
    463         uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
    464         if(!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
    465           S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_range)
    466             << Attr.getName() << Idx + 1 << NumParams;
    467           continue;
    468         }
    469         ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
    470       }
    471     }
    472 
    473     checkForLockableRecord(S, D, Attr, ArgTy);
    474 
    475     Args.push_back(ArgExp);
    476   }
    477 }
    478 
    479 //===----------------------------------------------------------------------===//
    480 // Attribute Implementations
    481 //===----------------------------------------------------------------------===//
    482 
    483 // FIXME: All this manual attribute parsing code is gross. At the
    484 // least add some helper functions to check most argument patterns (#
    485 // and types of args).
    486 
    487 enum ThreadAttributeDeclKind {
    488   ThreadExpectedFieldOrGlobalVar,
    489   ThreadExpectedFunctionOrMethod,
    490   ThreadExpectedClassOrStruct
    491 };
    492 
    493 static bool checkGuardedVarAttrCommon(Sema &S, Decl *D,
    494                                       const AttributeList &Attr) {
    495   assert(!Attr.isInvalid());
    496 
    497   if (!checkAttributeNumArgs(S, Attr, 0))
    498     return false;
    499 
    500   // D must be either a member field or global (potentially shared) variable.
    501   if (!mayBeSharedVariable(D)) {
    502     S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
    503       << Attr.getName() << ThreadExpectedFieldOrGlobalVar;
    504     return false;
    505   }
    506 
    507   return true;
    508 }
    509 
    510 static void handleGuardedVarAttr(Sema &S, Decl *D, const AttributeList &Attr) {
    511   if (!checkGuardedVarAttrCommon(S, D, Attr))
    512     return;
    513 
    514   D->addAttr(::new (S.Context)
    515              GuardedVarAttr(Attr.getRange(), S.Context,
    516                             Attr.getAttributeSpellingListIndex()));
    517 }
    518 
    519 static void handlePtGuardedVarAttr(Sema &S, Decl *D,
    520                                    const AttributeList &Attr) {
    521   if (!checkGuardedVarAttrCommon(S, D, Attr))
    522     return;
    523 
    524   if (!threadSafetyCheckIsPointer(S, D, Attr))
    525     return;
    526 
    527   D->addAttr(::new (S.Context)
    528              PtGuardedVarAttr(Attr.getRange(), S.Context,
    529                               Attr.getAttributeSpellingListIndex()));
    530 }
    531 
    532 static bool checkGuardedByAttrCommon(Sema &S, Decl *D,
    533                                      const AttributeList &Attr,
    534                                      Expr* &Arg) {
    535   assert(!Attr.isInvalid());
    536 
    537   if (!checkAttributeNumArgs(S, Attr, 1))
    538     return false;
    539 
    540   // D must be either a member field or global (potentially shared) variable.
    541   if (!mayBeSharedVariable(D)) {
    542     S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
    543       << Attr.getName() << ThreadExpectedFieldOrGlobalVar;
    544     return false;
    545   }
    546 
    547   SmallVector<Expr*, 1> Args;
    548   // check that all arguments are lockable objects
    549   checkAttrArgsAreLockableObjs(S, D, Attr, Args);
    550   unsigned Size = Args.size();
    551   if (Size != 1)
    552     return false;
    553 
    554   Arg = Args[0];
    555 
    556   return true;
    557 }
    558 
    559 static void handleGuardedByAttr(Sema &S, Decl *D, const AttributeList &Attr) {
    560   Expr *Arg = 0;
    561   if (!checkGuardedByAttrCommon(S, D, Attr, Arg))
    562     return;
    563 
    564   D->addAttr(::new (S.Context) GuardedByAttr(Attr.getRange(), S.Context, Arg));
    565 }
    566 
    567 static void handlePtGuardedByAttr(Sema &S, Decl *D,
    568                                   const AttributeList &Attr) {
    569   Expr *Arg = 0;
    570   if (!checkGuardedByAttrCommon(S, D, Attr, Arg))
    571     return;
    572 
    573   if (!threadSafetyCheckIsPointer(S, D, Attr))
    574     return;
    575 
    576   D->addAttr(::new (S.Context) PtGuardedByAttr(Attr.getRange(),
    577                                                S.Context, Arg));
    578 }
    579 
    580 static bool checkLockableAttrCommon(Sema &S, Decl *D,
    581                                     const AttributeList &Attr) {
    582   assert(!Attr.isInvalid());
    583 
    584   if (!checkAttributeNumArgs(S, Attr, 0))
    585     return false;
    586 
    587   // FIXME: Lockable structs for C code.
    588   if (!isa<CXXRecordDecl>(D)) {
    589     S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
    590       << Attr.getName() << ThreadExpectedClassOrStruct;
    591     return false;
    592   }
    593 
    594   return true;
    595 }
    596 
    597 static void handleLockableAttr(Sema &S, Decl *D, const AttributeList &Attr) {
    598   if (!checkLockableAttrCommon(S, D, Attr))
    599     return;
    600 
    601   D->addAttr(::new (S.Context) LockableAttr(Attr.getRange(), S.Context));
    602 }
    603 
    604 static void handleScopedLockableAttr(Sema &S, Decl *D,
    605                              const AttributeList &Attr) {
    606   if (!checkLockableAttrCommon(S, D, Attr))
    607     return;
    608 
    609   D->addAttr(::new (S.Context)
    610              ScopedLockableAttr(Attr.getRange(), S.Context,
    611                                 Attr.getAttributeSpellingListIndex()));
    612 }
    613 
    614 static void handleNoThreadSafetyAnalysis(Sema &S, Decl *D,
    615                                          const AttributeList &Attr) {
    616   assert(!Attr.isInvalid());
    617 
    618   if (!checkAttributeNumArgs(S, Attr, 0))
    619     return;
    620 
    621   if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
    622     S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
    623       << Attr.getName() << ThreadExpectedFunctionOrMethod;
    624     return;
    625   }
    626 
    627   D->addAttr(::new (S.Context) NoThreadSafetyAnalysisAttr(Attr.getRange(),
    628                                                           S.Context));
    629 }
    630 
    631 static void handleNoSanitizeAddressAttr(Sema &S, Decl *D,
    632                                       const AttributeList &Attr) {
    633   assert(!Attr.isInvalid());
    634 
    635   if (!checkAttributeNumArgs(S, Attr, 0))
    636     return;
    637 
    638   if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
    639     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
    640       << Attr.getName() << ExpectedFunctionOrMethod;
    641     return;
    642   }
    643 
    644   D->addAttr(::new (S.Context)
    645              NoSanitizeAddressAttr(Attr.getRange(), S.Context,
    646                                    Attr.getAttributeSpellingListIndex()));
    647 }
    648 
    649 static void handleNoSanitizeMemory(Sema &S, Decl *D,
    650                                    const AttributeList &Attr) {
    651   assert(!Attr.isInvalid());
    652 
    653   if (!checkAttributeNumArgs(S, Attr, 0))
    654     return;
    655 
    656   if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
    657     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
    658       << Attr.getName() << ExpectedFunctionOrMethod;
    659     return;
    660   }
    661 
    662   D->addAttr(::new (S.Context) NoSanitizeMemoryAttr(Attr.getRange(),
    663                                                          S.Context));
    664 }
    665 
    666 static void handleNoSanitizeThread(Sema &S, Decl *D,
    667                                    const AttributeList &Attr) {
    668   assert(!Attr.isInvalid());
    669 
    670   if (!checkAttributeNumArgs(S, Attr, 0))
    671     return;
    672 
    673   if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
    674     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
    675       << Attr.getName() << ExpectedFunctionOrMethod;
    676     return;
    677   }
    678 
    679   D->addAttr(::new (S.Context) NoSanitizeThreadAttr(Attr.getRange(),
    680                                                     S.Context));
    681 }
    682 
    683 static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D,
    684                                         const AttributeList &Attr,
    685                                         SmallVector<Expr*, 1> &Args) {
    686   assert(!Attr.isInvalid());
    687 
    688   if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
    689     return false;
    690 
    691   // D must be either a member field or global (potentially shared) variable.
    692   ValueDecl *VD = dyn_cast<ValueDecl>(D);
    693   if (!VD || !mayBeSharedVariable(D)) {
    694     S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
    695       << Attr.getName() << ThreadExpectedFieldOrGlobalVar;
    696     return false;
    697   }
    698 
    699   // Check that this attribute only applies to lockable types.
    700   QualType QT = VD->getType();
    701   if (!QT->isDependentType()) {
    702     const RecordType *RT = getRecordType(QT);
    703     if (!RT || !RT->getDecl()->getAttr<LockableAttr>()) {
    704       S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_lockable)
    705         << Attr.getName();
    706       return false;
    707     }
    708   }
    709 
    710   // Check that all arguments are lockable objects.
    711   checkAttrArgsAreLockableObjs(S, D, Attr, Args);
    712   if (Args.size() == 0)
    713     return false;
    714 
    715   return true;
    716 }
    717 
    718 static void handleAcquiredAfterAttr(Sema &S, Decl *D,
    719                                     const AttributeList &Attr) {
    720   SmallVector<Expr*, 1> Args;
    721   if (!checkAcquireOrderAttrCommon(S, D, Attr, Args))
    722     return;
    723 
    724   Expr **StartArg = &Args[0];
    725   D->addAttr(::new (S.Context)
    726              AcquiredAfterAttr(Attr.getRange(), S.Context,
    727                                StartArg, Args.size(),
    728                                Attr.getAttributeSpellingListIndex()));
    729 }
    730 
    731 static void handleAcquiredBeforeAttr(Sema &S, Decl *D,
    732                                      const AttributeList &Attr) {
    733   SmallVector<Expr*, 1> Args;
    734   if (!checkAcquireOrderAttrCommon(S, D, Attr, Args))
    735     return;
    736 
    737   Expr **StartArg = &Args[0];
    738   D->addAttr(::new (S.Context)
    739              AcquiredBeforeAttr(Attr.getRange(), S.Context,
    740                                 StartArg, Args.size(),
    741                                 Attr.getAttributeSpellingListIndex()));
    742 }
    743 
    744 static bool checkLockFunAttrCommon(Sema &S, Decl *D,
    745                                    const AttributeList &Attr,
    746                                    SmallVector<Expr*, 1> &Args) {
    747   assert(!Attr.isInvalid());
    748 
    749   // zero or more arguments ok
    750 
    751   // check that the attribute is applied to a function
    752   if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
    753     S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
    754       << Attr.getName() << ThreadExpectedFunctionOrMethod;
    755     return false;
    756   }
    757 
    758   // check that all arguments are lockable objects
    759   checkAttrArgsAreLockableObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true);
    760 
    761   return true;
    762 }
    763 
    764 static void handleSharedLockFunctionAttr(Sema &S, Decl *D,
    765                                          const AttributeList &Attr) {
    766   SmallVector<Expr*, 1> Args;
    767   if (!checkLockFunAttrCommon(S, D, Attr, Args))
    768     return;
    769 
    770   unsigned Size = Args.size();
    771   Expr **StartArg = Size == 0 ? 0 : &Args[0];
    772   D->addAttr(::new (S.Context)
    773              SharedLockFunctionAttr(Attr.getRange(), S.Context, StartArg, Size,
    774                                     Attr.getAttributeSpellingListIndex()));
    775 }
    776 
    777 static void handleExclusiveLockFunctionAttr(Sema &S, Decl *D,
    778                                             const AttributeList &Attr) {
    779   SmallVector<Expr*, 1> Args;
    780   if (!checkLockFunAttrCommon(S, D, Attr, Args))
    781     return;
    782 
    783   unsigned Size = Args.size();
    784   Expr **StartArg = Size == 0 ? 0 : &Args[0];
    785   D->addAttr(::new (S.Context)
    786              ExclusiveLockFunctionAttr(Attr.getRange(), S.Context,
    787                                        StartArg, Size,
    788                                        Attr.getAttributeSpellingListIndex()));
    789 }
    790 
    791 static bool checkTryLockFunAttrCommon(Sema &S, Decl *D,
    792                                       const AttributeList &Attr,
    793                                       SmallVector<Expr*, 2> &Args) {
    794   assert(!Attr.isInvalid());
    795 
    796   if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
    797     return false;
    798 
    799   if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
    800     S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
    801       << Attr.getName() << ThreadExpectedFunctionOrMethod;
    802     return false;
    803   }
    804 
    805   if (!isIntOrBool(Attr.getArg(0))) {
    806     S.Diag(Attr.getLoc(), diag::err_attribute_first_argument_not_int_or_bool)
    807       << Attr.getName();
    808     return false;
    809   }
    810 
    811   // check that all arguments are lockable objects
    812   checkAttrArgsAreLockableObjs(S, D, Attr, Args, 1);
    813 
    814   return true;
    815 }
    816 
    817 static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D,
    818                                             const AttributeList &Attr) {
    819   SmallVector<Expr*, 2> Args;
    820   if (!checkTryLockFunAttrCommon(S, D, Attr, Args))
    821     return;
    822 
    823   unsigned Size = Args.size();
    824   Expr **StartArg = Size == 0 ? 0 : &Args[0];
    825   D->addAttr(::new (S.Context)
    826              SharedTrylockFunctionAttr(Attr.getRange(), S.Context,
    827                                        Attr.getArg(0), StartArg, Size,
    828                                        Attr.getAttributeSpellingListIndex()));
    829 }
    830 
    831 static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D,
    832                                                const AttributeList &Attr) {
    833   SmallVector<Expr*, 2> Args;
    834   if (!checkTryLockFunAttrCommon(S, D, Attr, Args))
    835     return;
    836 
    837   unsigned Size = Args.size();
    838   Expr **StartArg = Size == 0 ? 0 : &Args[0];
    839   D->addAttr(::new (S.Context)
    840              ExclusiveTrylockFunctionAttr(Attr.getRange(), S.Context,
    841                                           Attr.getArg(0), StartArg, Size,
    842                                           Attr.getAttributeSpellingListIndex()));
    843 }
    844 
    845 static bool checkLocksRequiredCommon(Sema &S, Decl *D,
    846                                      const AttributeList &Attr,
    847                                      SmallVector<Expr*, 1> &Args) {
    848   assert(!Attr.isInvalid());
    849 
    850   if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
    851     return false;
    852 
    853   if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
    854     S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
    855       << Attr.getName() << ThreadExpectedFunctionOrMethod;
    856     return false;
    857   }
    858 
    859   // check that all arguments are lockable objects
    860   checkAttrArgsAreLockableObjs(S, D, Attr, Args);
    861   if (Args.size() == 0)
    862     return false;
    863 
    864   return true;
    865 }
    866 
    867 static void handleExclusiveLocksRequiredAttr(Sema &S, Decl *D,
    868                                              const AttributeList &Attr) {
    869   SmallVector<Expr*, 1> Args;
    870   if (!checkLocksRequiredCommon(S, D, Attr, Args))
    871     return;
    872 
    873   Expr **StartArg = &Args[0];
    874   D->addAttr(::new (S.Context)
    875              ExclusiveLocksRequiredAttr(Attr.getRange(), S.Context,
    876                                         StartArg, Args.size(),
    877                                         Attr.getAttributeSpellingListIndex()));
    878 }
    879 
    880 static void handleSharedLocksRequiredAttr(Sema &S, Decl *D,
    881                                           const AttributeList &Attr) {
    882   SmallVector<Expr*, 1> Args;
    883   if (!checkLocksRequiredCommon(S, D, Attr, Args))
    884     return;
    885 
    886   Expr **StartArg = &Args[0];
    887   D->addAttr(::new (S.Context)
    888              SharedLocksRequiredAttr(Attr.getRange(), S.Context,
    889                                      StartArg, Args.size(),
    890                                      Attr.getAttributeSpellingListIndex()));
    891 }
    892 
    893 static void handleUnlockFunAttr(Sema &S, Decl *D,
    894                                 const AttributeList &Attr) {
    895   assert(!Attr.isInvalid());
    896 
    897   // zero or more arguments ok
    898 
    899   if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
    900     S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
    901       << Attr.getName() << ThreadExpectedFunctionOrMethod;
    902     return;
    903   }
    904 
    905   // check that all arguments are lockable objects
    906   SmallVector<Expr*, 1> Args;
    907   checkAttrArgsAreLockableObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true);
    908   unsigned Size = Args.size();
    909   Expr **StartArg = Size == 0 ? 0 : &Args[0];
    910 
    911   D->addAttr(::new (S.Context)
    912              UnlockFunctionAttr(Attr.getRange(), S.Context, StartArg, Size,
    913                                 Attr.getAttributeSpellingListIndex()));
    914 }
    915 
    916 static void handleLockReturnedAttr(Sema &S, Decl *D,
    917                                    const AttributeList &Attr) {
    918   assert(!Attr.isInvalid());
    919 
    920   if (!checkAttributeNumArgs(S, Attr, 1))
    921     return;
    922 
    923   if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
    924     S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
    925       << Attr.getName() << ThreadExpectedFunctionOrMethod;
    926     return;
    927   }
    928 
    929   // check that the argument is lockable object
    930   SmallVector<Expr*, 1> Args;
    931   checkAttrArgsAreLockableObjs(S, D, Attr, Args);
    932   unsigned Size = Args.size();
    933   if (Size == 0)
    934     return;
    935 
    936   D->addAttr(::new (S.Context)
    937              LockReturnedAttr(Attr.getRange(), S.Context, Args[0],
    938                               Attr.getAttributeSpellingListIndex()));
    939 }
    940 
    941 static void handleLocksExcludedAttr(Sema &S, Decl *D,
    942                                     const AttributeList &Attr) {
    943   assert(!Attr.isInvalid());
    944 
    945   if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
    946     return;
    947 
    948   if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
    949     S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
    950       << Attr.getName() << ThreadExpectedFunctionOrMethod;
    951     return;
    952   }
    953 
    954   // check that all arguments are lockable objects
    955   SmallVector<Expr*, 1> Args;
    956   checkAttrArgsAreLockableObjs(S, D, Attr, Args);
    957   unsigned Size = Args.size();
    958   if (Size == 0)
    959     return;
    960   Expr **StartArg = &Args[0];
    961 
    962   D->addAttr(::new (S.Context)
    963              LocksExcludedAttr(Attr.getRange(), S.Context, StartArg, Size,
    964                                Attr.getAttributeSpellingListIndex()));
    965 }
    966 
    967 
    968 static void handleExtVectorTypeAttr(Sema &S, Scope *scope, Decl *D,
    969                                     const AttributeList &Attr) {
    970   TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D);
    971   if (TD == 0) {
    972     // __attribute__((ext_vector_type(N))) can only be applied to typedefs
    973     // and type-ids.
    974     S.Diag(Attr.getLoc(), diag::err_typecheck_ext_vector_not_typedef);
    975     return;
    976   }
    977 
    978   // Remember this typedef decl, we will need it later for diagnostics.
    979   S.ExtVectorDecls.push_back(TD);
    980 }
    981 
    982 static void handlePackedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
    983   // check the attribute arguments.
    984   if (!checkAttributeNumArgs(S, Attr, 0))
    985     return;
    986 
    987   if (TagDecl *TD = dyn_cast<TagDecl>(D))
    988     TD->addAttr(::new (S.Context) PackedAttr(Attr.getRange(), S.Context));
    989   else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
    990     // If the alignment is less than or equal to 8 bits, the packed attribute
    991     // has no effect.
    992     if (!FD->getType()->isDependentType() &&
    993         !FD->getType()->isIncompleteType() &&
    994         S.Context.getTypeAlign(FD->getType()) <= 8)
    995       S.Diag(Attr.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
    996         << Attr.getName() << FD->getType();
    997     else
    998       FD->addAttr(::new (S.Context)
    999                   PackedAttr(Attr.getRange(), S.Context,
   1000                              Attr.getAttributeSpellingListIndex()));
   1001   } else
   1002     S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
   1003 }
   1004 
   1005 static void handleMsStructAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   1006   if (RecordDecl *RD = dyn_cast<RecordDecl>(D))
   1007     RD->addAttr(::new (S.Context)
   1008                 MsStructAttr(Attr.getRange(), S.Context,
   1009                              Attr.getAttributeSpellingListIndex()));
   1010   else
   1011     S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
   1012 }
   1013 
   1014 static void handleIBAction(Sema &S, Decl *D, const AttributeList &Attr) {
   1015   // check the attribute arguments.
   1016   if (!checkAttributeNumArgs(S, Attr, 0))
   1017     return;
   1018 
   1019   // The IBAction attributes only apply to instance methods.
   1020   if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
   1021     if (MD->isInstanceMethod()) {
   1022       D->addAttr(::new (S.Context)
   1023                  IBActionAttr(Attr.getRange(), S.Context,
   1024                               Attr.getAttributeSpellingListIndex()));
   1025       return;
   1026     }
   1027 
   1028   S.Diag(Attr.getLoc(), diag::warn_attribute_ibaction) << Attr.getName();
   1029 }
   1030 
   1031 static bool checkIBOutletCommon(Sema &S, Decl *D, const AttributeList &Attr) {
   1032   // The IBOutlet/IBOutletCollection attributes only apply to instance
   1033   // variables or properties of Objective-C classes.  The outlet must also
   1034   // have an object reference type.
   1035   if (const ObjCIvarDecl *VD = dyn_cast<ObjCIvarDecl>(D)) {
   1036     if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
   1037       S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type)
   1038         << Attr.getName() << VD->getType() << 0;
   1039       return false;
   1040     }
   1041   }
   1042   else if (const ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) {
   1043     if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
   1044       S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type)
   1045         << Attr.getName() << PD->getType() << 1;
   1046       return false;
   1047     }
   1048   }
   1049   else {
   1050     S.Diag(Attr.getLoc(), diag::warn_attribute_iboutlet) << Attr.getName();
   1051     return false;
   1052   }
   1053 
   1054   return true;
   1055 }
   1056 
   1057 static void handleIBOutlet(Sema &S, Decl *D, const AttributeList &Attr) {
   1058   // check the attribute arguments.
   1059   if (!checkAttributeNumArgs(S, Attr, 0))
   1060     return;
   1061 
   1062   if (!checkIBOutletCommon(S, D, Attr))
   1063     return;
   1064 
   1065   D->addAttr(::new (S.Context)
   1066              IBOutletAttr(Attr.getRange(), S.Context,
   1067                           Attr.getAttributeSpellingListIndex()));
   1068 }
   1069 
   1070 static void handleIBOutletCollection(Sema &S, Decl *D,
   1071                                      const AttributeList &Attr) {
   1072 
   1073   // The iboutletcollection attribute can have zero or one arguments.
   1074   if (Attr.getParameterName() && Attr.getNumArgs() > 0) {
   1075     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
   1076     return;
   1077   }
   1078 
   1079   if (!checkIBOutletCommon(S, D, Attr))
   1080     return;
   1081 
   1082   IdentifierInfo *II = Attr.getParameterName();
   1083   if (!II)
   1084     II = &S.Context.Idents.get("NSObject");
   1085 
   1086   ParsedType TypeRep = S.getTypeName(*II, Attr.getLoc(),
   1087                         S.getScopeForContext(D->getDeclContext()->getParent()));
   1088   if (!TypeRep) {
   1089     S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << II;
   1090     return;
   1091   }
   1092   QualType QT = TypeRep.get();
   1093   // Diagnose use of non-object type in iboutletcollection attribute.
   1094   // FIXME. Gnu attribute extension ignores use of builtin types in
   1095   // attributes. So, __attribute__((iboutletcollection(char))) will be
   1096   // treated as __attribute__((iboutletcollection())).
   1097   if (!QT->isObjCIdType() && !QT->isObjCObjectType()) {
   1098     S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << II;
   1099     return;
   1100   }
   1101   D->addAttr(::new (S.Context)
   1102              IBOutletCollectionAttr(Attr.getRange(),S.Context,
   1103                                     QT, Attr.getParameterLoc(),
   1104                                     Attr.getAttributeSpellingListIndex()));
   1105 }
   1106 
   1107 static void possibleTransparentUnionPointerType(QualType &T) {
   1108   if (const RecordType *UT = T->getAsUnionType())
   1109     if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
   1110       RecordDecl *UD = UT->getDecl();
   1111       for (RecordDecl::field_iterator it = UD->field_begin(),
   1112            itend = UD->field_end(); it != itend; ++it) {
   1113         QualType QT = it->getType();
   1114         if (QT->isAnyPointerType() || QT->isBlockPointerType()) {
   1115           T = QT;
   1116           return;
   1117         }
   1118       }
   1119     }
   1120 }
   1121 
   1122 static void handleAllocSizeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   1123   if (!isFunctionOrMethod(D)) {
   1124     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   1125     << "alloc_size" << ExpectedFunctionOrMethod;
   1126     return;
   1127   }
   1128 
   1129   if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
   1130     return;
   1131 
   1132   // In C++ the implicit 'this' function parameter also counts, and they are
   1133   // counted from one.
   1134   bool HasImplicitThisParam = isInstanceMethod(D);
   1135   unsigned NumArgs;
   1136   if (hasFunctionProto(D))
   1137     NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
   1138   else
   1139     NumArgs = 0;
   1140 
   1141   SmallVector<unsigned, 8> SizeArgs;
   1142 
   1143   for (AttributeList::arg_iterator I = Attr.arg_begin(),
   1144        E = Attr.arg_end(); I!=E; ++I) {
   1145     // The argument must be an integer constant expression.
   1146     Expr *Ex = *I;
   1147     llvm::APSInt ArgNum;
   1148     if (Ex->isTypeDependent() || Ex->isValueDependent() ||
   1149         !Ex->isIntegerConstantExpr(ArgNum, S.Context)) {
   1150       S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
   1151       << "alloc_size" << Ex->getSourceRange();
   1152       return;
   1153     }
   1154 
   1155     uint64_t x = ArgNum.getZExtValue();
   1156 
   1157     if (x < 1 || x > NumArgs) {
   1158       S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
   1159       << "alloc_size" << I.getArgNum() << Ex->getSourceRange();
   1160       return;
   1161     }
   1162 
   1163     --x;
   1164     if (HasImplicitThisParam) {
   1165       if (x == 0) {
   1166         S.Diag(Attr.getLoc(),
   1167                diag::err_attribute_invalid_implicit_this_argument)
   1168         << "alloc_size" << Ex->getSourceRange();
   1169         return;
   1170       }
   1171       --x;
   1172     }
   1173 
   1174     // check if the function argument is of an integer type
   1175     QualType T = getFunctionOrMethodArgType(D, x).getNonReferenceType();
   1176     if (!T->isIntegerType()) {
   1177       S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
   1178       << "alloc_size" << Ex->getSourceRange();
   1179       return;
   1180     }
   1181 
   1182     SizeArgs.push_back(x);
   1183   }
   1184 
   1185   // check if the function returns a pointer
   1186   if (!getFunctionType(D)->getResultType()->isAnyPointerType()) {
   1187     S.Diag(Attr.getLoc(), diag::warn_ns_attribute_wrong_return_type)
   1188     << "alloc_size" << 0 /*function*/<< 1 /*pointer*/ << D->getSourceRange();
   1189   }
   1190 
   1191   D->addAttr(::new (S.Context)
   1192              AllocSizeAttr(Attr.getRange(), S.Context,
   1193                            SizeArgs.data(), SizeArgs.size(),
   1194                            Attr.getAttributeSpellingListIndex()));
   1195 }
   1196 
   1197 static void handleNonNullAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   1198   // GCC ignores the nonnull attribute on K&R style function prototypes, so we
   1199   // ignore it as well
   1200   if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
   1201     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   1202       << Attr.getName() << ExpectedFunction;
   1203     return;
   1204   }
   1205 
   1206   // In C++ the implicit 'this' function parameter also counts, and they are
   1207   // counted from one.
   1208   bool HasImplicitThisParam = isInstanceMethod(D);
   1209   unsigned NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
   1210 
   1211   // The nonnull attribute only applies to pointers.
   1212   SmallVector<unsigned, 10> NonNullArgs;
   1213 
   1214   for (AttributeList::arg_iterator I = Attr.arg_begin(),
   1215                                    E = Attr.arg_end(); I != E; ++I) {
   1216     // The argument must be an integer constant expression.
   1217     Expr *Ex = *I;
   1218     llvm::APSInt ArgNum(32);
   1219     if (Ex->isTypeDependent() || Ex->isValueDependent() ||
   1220         !Ex->isIntegerConstantExpr(ArgNum, S.Context)) {
   1221       S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
   1222         << "nonnull" << Ex->getSourceRange();
   1223       return;
   1224     }
   1225 
   1226     unsigned x = (unsigned) ArgNum.getZExtValue();
   1227 
   1228     if (x < 1 || x > NumArgs) {
   1229       S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
   1230        << "nonnull" << I.getArgNum() << Ex->getSourceRange();
   1231       return;
   1232     }
   1233 
   1234     --x;
   1235     if (HasImplicitThisParam) {
   1236       if (x == 0) {
   1237         S.Diag(Attr.getLoc(),
   1238                diag::err_attribute_invalid_implicit_this_argument)
   1239           << "nonnull" << Ex->getSourceRange();
   1240         return;
   1241       }
   1242       --x;
   1243     }
   1244 
   1245     // Is the function argument a pointer type?
   1246     QualType T = getFunctionOrMethodArgType(D, x).getNonReferenceType();
   1247     possibleTransparentUnionPointerType(T);
   1248 
   1249     if (!T->isAnyPointerType() && !T->isBlockPointerType()) {
   1250       // FIXME: Should also highlight argument in decl.
   1251       S.Diag(Attr.getLoc(), diag::warn_nonnull_pointers_only)
   1252         << "nonnull" << Ex->getSourceRange();
   1253       continue;
   1254     }
   1255 
   1256     NonNullArgs.push_back(x);
   1257   }
   1258 
   1259   // If no arguments were specified to __attribute__((nonnull)) then all pointer
   1260   // arguments have a nonnull attribute.
   1261   if (NonNullArgs.empty()) {
   1262     for (unsigned i = 0, e = getFunctionOrMethodNumArgs(D); i != e; ++i) {
   1263       QualType T = getFunctionOrMethodArgType(D, i).getNonReferenceType();
   1264       possibleTransparentUnionPointerType(T);
   1265       if (T->isAnyPointerType() || T->isBlockPointerType())
   1266         NonNullArgs.push_back(i);
   1267     }
   1268 
   1269     // No pointer arguments?
   1270     if (NonNullArgs.empty()) {
   1271       // Warn the trivial case only if attribute is not coming from a
   1272       // macro instantiation.
   1273       if (Attr.getLoc().isFileID())
   1274         S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_no_pointers);
   1275       return;
   1276     }
   1277   }
   1278 
   1279   unsigned *start = &NonNullArgs[0];
   1280   unsigned size = NonNullArgs.size();
   1281   llvm::array_pod_sort(start, start + size);
   1282   D->addAttr(::new (S.Context)
   1283              NonNullAttr(Attr.getRange(), S.Context, start, size,
   1284                          Attr.getAttributeSpellingListIndex()));
   1285 }
   1286 
   1287 static void handleOwnershipAttr(Sema &S, Decl *D, const AttributeList &AL) {
   1288   // This attribute must be applied to a function declaration.
   1289   // The first argument to the attribute must be a string,
   1290   // the name of the resource, for example "malloc".
   1291   // The following arguments must be argument indexes, the arguments must be
   1292   // of integer type for Returns, otherwise of pointer type.
   1293   // The difference between Holds and Takes is that a pointer may still be used
   1294   // after being held.  free() should be __attribute((ownership_takes)), whereas
   1295   // a list append function may well be __attribute((ownership_holds)).
   1296 
   1297   if (!AL.getParameterName()) {
   1298     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_not_string)
   1299         << AL.getName()->getName() << 1;
   1300     return;
   1301   }
   1302   // Figure out our Kind, and check arguments while we're at it.
   1303   OwnershipAttr::OwnershipKind K;
   1304   switch (AL.getKind()) {
   1305   case AttributeList::AT_ownership_takes:
   1306     K = OwnershipAttr::Takes;
   1307     if (AL.getNumArgs() < 1) {
   1308       S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << 2;
   1309       return;
   1310     }
   1311     break;
   1312   case AttributeList::AT_ownership_holds:
   1313     K = OwnershipAttr::Holds;
   1314     if (AL.getNumArgs() < 1) {
   1315       S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << 2;
   1316       return;
   1317     }
   1318     break;
   1319   case AttributeList::AT_ownership_returns:
   1320     K = OwnershipAttr::Returns;
   1321     if (AL.getNumArgs() > 1) {
   1322       S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
   1323           << AL.getNumArgs() + 1;
   1324       return;
   1325     }
   1326     break;
   1327   default:
   1328     // This should never happen given how we are called.
   1329     llvm_unreachable("Unknown ownership attribute");
   1330   }
   1331 
   1332   if (!isFunction(D) || !hasFunctionProto(D)) {
   1333     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
   1334       << AL.getName() << ExpectedFunction;
   1335     return;
   1336   }
   1337 
   1338   // In C++ the implicit 'this' function parameter also counts, and they are
   1339   // counted from one.
   1340   bool HasImplicitThisParam = isInstanceMethod(D);
   1341   unsigned NumArgs  = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
   1342 
   1343   StringRef Module = AL.getParameterName()->getName();
   1344 
   1345   // Normalize the argument, __foo__ becomes foo.
   1346   if (Module.startswith("__") && Module.endswith("__"))
   1347     Module = Module.substr(2, Module.size() - 4);
   1348 
   1349   SmallVector<unsigned, 10> OwnershipArgs;
   1350 
   1351   for (AttributeList::arg_iterator I = AL.arg_begin(), E = AL.arg_end(); I != E;
   1352        ++I) {
   1353 
   1354     Expr *IdxExpr = *I;
   1355     llvm::APSInt ArgNum(32);
   1356     if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent()
   1357         || !IdxExpr->isIntegerConstantExpr(ArgNum, S.Context)) {
   1358       S.Diag(AL.getLoc(), diag::err_attribute_argument_not_int)
   1359           << AL.getName()->getName() << IdxExpr->getSourceRange();
   1360       continue;
   1361     }
   1362 
   1363     unsigned x = (unsigned) ArgNum.getZExtValue();
   1364 
   1365     if (x > NumArgs || x < 1) {
   1366       S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
   1367           << AL.getName()->getName() << x << IdxExpr->getSourceRange();
   1368       continue;
   1369     }
   1370     --x;
   1371     if (HasImplicitThisParam) {
   1372       if (x == 0) {
   1373         S.Diag(AL.getLoc(), diag::err_attribute_invalid_implicit_this_argument)
   1374           << "ownership" << IdxExpr->getSourceRange();
   1375         return;
   1376       }
   1377       --x;
   1378     }
   1379 
   1380     switch (K) {
   1381     case OwnershipAttr::Takes:
   1382     case OwnershipAttr::Holds: {
   1383       // Is the function argument a pointer type?
   1384       QualType T = getFunctionOrMethodArgType(D, x);
   1385       if (!T->isAnyPointerType() && !T->isBlockPointerType()) {
   1386         // FIXME: Should also highlight argument in decl.
   1387         S.Diag(AL.getLoc(), diag::err_ownership_type)
   1388             << ((K==OwnershipAttr::Takes)?"ownership_takes":"ownership_holds")
   1389             << "pointer"
   1390             << IdxExpr->getSourceRange();
   1391         continue;
   1392       }
   1393       break;
   1394     }
   1395     case OwnershipAttr::Returns: {
   1396       if (AL.getNumArgs() > 1) {
   1397           // Is the function argument an integer type?
   1398           Expr *IdxExpr = AL.getArg(0);
   1399           llvm::APSInt ArgNum(32);
   1400           if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent()
   1401               || !IdxExpr->isIntegerConstantExpr(ArgNum, S.Context)) {
   1402             S.Diag(AL.getLoc(), diag::err_ownership_type)
   1403                 << "ownership_returns" << "integer"
   1404                 << IdxExpr->getSourceRange();
   1405             return;
   1406           }
   1407       }
   1408       break;
   1409     }
   1410     } // switch
   1411 
   1412     // Check we don't have a conflict with another ownership attribute.
   1413     for (specific_attr_iterator<OwnershipAttr>
   1414           i = D->specific_attr_begin<OwnershipAttr>(),
   1415           e = D->specific_attr_end<OwnershipAttr>();
   1416         i != e; ++i) {
   1417       if ((*i)->getOwnKind() != K) {
   1418         for (const unsigned *I = (*i)->args_begin(), *E = (*i)->args_end();
   1419              I!=E; ++I) {
   1420           if (x == *I) {
   1421             S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
   1422                 << AL.getName()->getName() << "ownership_*";
   1423           }
   1424         }
   1425       }
   1426     }
   1427     OwnershipArgs.push_back(x);
   1428   }
   1429 
   1430   unsigned* start = OwnershipArgs.data();
   1431   unsigned size = OwnershipArgs.size();
   1432   llvm::array_pod_sort(start, start + size);
   1433 
   1434   if (K != OwnershipAttr::Returns && OwnershipArgs.empty()) {
   1435     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << 2;
   1436     return;
   1437   }
   1438 
   1439   D->addAttr(::new (S.Context)
   1440              OwnershipAttr(AL.getLoc(), S.Context, K, Module, start, size,
   1441                            AL.getAttributeSpellingListIndex()));
   1442 }
   1443 
   1444 static void handleWeakRefAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   1445   // Check the attribute arguments.
   1446   if (Attr.getNumArgs() > 1) {
   1447     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
   1448     return;
   1449   }
   1450 
   1451   if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D)) {
   1452     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
   1453       << Attr.getName() << ExpectedVariableOrFunction;
   1454     return;
   1455   }
   1456 
   1457   NamedDecl *nd = cast<NamedDecl>(D);
   1458 
   1459   // gcc rejects
   1460   // class c {
   1461   //   static int a __attribute__((weakref ("v2")));
   1462   //   static int b() __attribute__((weakref ("f3")));
   1463   // };
   1464   // and ignores the attributes of
   1465   // void f(void) {
   1466   //   static int a __attribute__((weakref ("v2")));
   1467   // }
   1468   // we reject them
   1469   const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
   1470   if (!Ctx->isFileContext()) {
   1471     S.Diag(Attr.getLoc(), diag::err_attribute_weakref_not_global_context) <<
   1472         nd->getNameAsString();
   1473     return;
   1474   }
   1475 
   1476   // The GCC manual says
   1477   //
   1478   // At present, a declaration to which `weakref' is attached can only
   1479   // be `static'.
   1480   //
   1481   // It also says
   1482   //
   1483   // Without a TARGET,
   1484   // given as an argument to `weakref' or to `alias', `weakref' is
   1485   // equivalent to `weak'.
   1486   //
   1487   // gcc 4.4.1 will accept
   1488   // int a7 __attribute__((weakref));
   1489   // as
   1490   // int a7 __attribute__((weak));
   1491   // This looks like a bug in gcc. We reject that for now. We should revisit
   1492   // it if this behaviour is actually used.
   1493 
   1494   // GCC rejects
   1495   // static ((alias ("y"), weakref)).
   1496   // Should we? How to check that weakref is before or after alias?
   1497 
   1498   if (Attr.getNumArgs() == 1) {
   1499     Expr *Arg = Attr.getArg(0);
   1500     Arg = Arg->IgnoreParenCasts();
   1501     StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
   1502 
   1503     if (!Str || !Str->isAscii()) {
   1504       S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
   1505           << "weakref" << 1;
   1506       return;
   1507     }
   1508     // GCC will accept anything as the argument of weakref. Should we
   1509     // check for an existing decl?
   1510     D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context,
   1511                                            Str->getString()));
   1512   }
   1513 
   1514   D->addAttr(::new (S.Context)
   1515              WeakRefAttr(Attr.getRange(), S.Context,
   1516                          Attr.getAttributeSpellingListIndex()));
   1517 }
   1518 
   1519 static void handleAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   1520   // check the attribute arguments.
   1521   if (Attr.getNumArgs() != 1) {
   1522     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
   1523     return;
   1524   }
   1525 
   1526   Expr *Arg = Attr.getArg(0);
   1527   Arg = Arg->IgnoreParenCasts();
   1528   StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
   1529 
   1530   if (!Str || !Str->isAscii()) {
   1531     S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
   1532       << "alias" << 1;
   1533     return;
   1534   }
   1535 
   1536   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
   1537     S.Diag(Attr.getLoc(), diag::err_alias_not_supported_on_darwin);
   1538     return;
   1539   }
   1540 
   1541   // FIXME: check if target symbol exists in current file
   1542 
   1543   D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context,
   1544                                          Str->getString(),
   1545                                          Attr.getAttributeSpellingListIndex()));
   1546 }
   1547 
   1548 static void handleMinSizeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   1549   // Check the attribute arguments.
   1550   if (!checkAttributeNumArgs(S, Attr, 0))
   1551     return;
   1552 
   1553   if (!isa<FunctionDecl>(D) && !isa<ObjCMethodDecl>(D)) {
   1554     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
   1555       << Attr.getName() << ExpectedFunctionOrMethod;
   1556     return;
   1557   }
   1558 
   1559   D->addAttr(::new (S.Context)
   1560              MinSizeAttr(Attr.getRange(), S.Context,
   1561                          Attr.getAttributeSpellingListIndex()));
   1562 }
   1563 
   1564 static void handleColdAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   1565   // Check the attribute arguments.
   1566   if (!checkAttributeNumArgs(S, Attr, 0))
   1567     return;
   1568 
   1569   if (!isa<FunctionDecl>(D)) {
   1570     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   1571       << Attr.getName() << ExpectedFunction;
   1572     return;
   1573   }
   1574 
   1575   if (D->hasAttr<HotAttr>()) {
   1576     S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
   1577       << Attr.getName() << "hot";
   1578     return;
   1579   }
   1580 
   1581   D->addAttr(::new (S.Context) ColdAttr(Attr.getRange(), S.Context,
   1582                                         Attr.getAttributeSpellingListIndex()));
   1583 }
   1584 
   1585 static void handleHotAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   1586   // Check the attribute arguments.
   1587   if (!checkAttributeNumArgs(S, Attr, 0))
   1588     return;
   1589 
   1590   if (!isa<FunctionDecl>(D)) {
   1591     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   1592       << Attr.getName() << ExpectedFunction;
   1593     return;
   1594   }
   1595 
   1596   if (D->hasAttr<ColdAttr>()) {
   1597     S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
   1598       << Attr.getName() << "cold";
   1599     return;
   1600   }
   1601 
   1602   D->addAttr(::new (S.Context) HotAttr(Attr.getRange(), S.Context,
   1603                                        Attr.getAttributeSpellingListIndex()));
   1604 }
   1605 
   1606 static void handleNakedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   1607   // Check the attribute arguments.
   1608   if (!checkAttributeNumArgs(S, Attr, 0))
   1609     return;
   1610 
   1611   if (!isa<FunctionDecl>(D)) {
   1612     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   1613       << Attr.getName() << ExpectedFunction;
   1614     return;
   1615   }
   1616 
   1617   D->addAttr(::new (S.Context)
   1618              NakedAttr(Attr.getRange(), S.Context,
   1619                        Attr.getAttributeSpellingListIndex()));
   1620 }
   1621 
   1622 static void handleAlwaysInlineAttr(Sema &S, Decl *D,
   1623                                    const AttributeList &Attr) {
   1624   // Check the attribute arguments.
   1625   if (Attr.hasParameterOrArguments()) {
   1626     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
   1627     return;
   1628   }
   1629 
   1630   if (!isa<FunctionDecl>(D)) {
   1631     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   1632       << Attr.getName() << ExpectedFunction;
   1633     return;
   1634   }
   1635 
   1636   D->addAttr(::new (S.Context)
   1637              AlwaysInlineAttr(Attr.getRange(), S.Context,
   1638                               Attr.getAttributeSpellingListIndex()));
   1639 }
   1640 
   1641 static void handleTLSModelAttr(Sema &S, Decl *D,
   1642                                const AttributeList &Attr) {
   1643   // Check the attribute arguments.
   1644   if (Attr.getNumArgs() != 1) {
   1645     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
   1646     return;
   1647   }
   1648 
   1649   Expr *Arg = Attr.getArg(0);
   1650   Arg = Arg->IgnoreParenCasts();
   1651   StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
   1652 
   1653   // Check that it is a string.
   1654   if (!Str) {
   1655     S.Diag(Attr.getLoc(), diag::err_attribute_not_string) << "tls_model";
   1656     return;
   1657   }
   1658 
   1659   if (!isa<VarDecl>(D) || !cast<VarDecl>(D)->isThreadSpecified()) {
   1660     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
   1661       << Attr.getName() << ExpectedTLSVar;
   1662     return;
   1663   }
   1664 
   1665   // Check that the value.
   1666   StringRef Model = Str->getString();
   1667   if (Model != "global-dynamic" && Model != "local-dynamic"
   1668       && Model != "initial-exec" && Model != "local-exec") {
   1669     S.Diag(Attr.getLoc(), diag::err_attr_tlsmodel_arg);
   1670     return;
   1671   }
   1672 
   1673   D->addAttr(::new (S.Context)
   1674              TLSModelAttr(Attr.getRange(), S.Context, Model,
   1675                           Attr.getAttributeSpellingListIndex()));
   1676 }
   1677 
   1678 static void handleMallocAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   1679   // Check the attribute arguments.
   1680   if (Attr.hasParameterOrArguments()) {
   1681     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
   1682     return;
   1683   }
   1684 
   1685   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   1686     QualType RetTy = FD->getResultType();
   1687     if (RetTy->isAnyPointerType() || RetTy->isBlockPointerType()) {
   1688       D->addAttr(::new (S.Context)
   1689                  MallocAttr(Attr.getRange(), S.Context,
   1690                             Attr.getAttributeSpellingListIndex()));
   1691       return;
   1692     }
   1693   }
   1694 
   1695   S.Diag(Attr.getLoc(), diag::warn_attribute_malloc_pointer_only);
   1696 }
   1697 
   1698 static void handleMayAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   1699   // check the attribute arguments.
   1700   if (!checkAttributeNumArgs(S, Attr, 0))
   1701     return;
   1702 
   1703   D->addAttr(::new (S.Context)
   1704              MayAliasAttr(Attr.getRange(), S.Context,
   1705                           Attr.getAttributeSpellingListIndex()));
   1706 }
   1707 
   1708 static void handleNoCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   1709   assert(!Attr.isInvalid());
   1710   if (isa<VarDecl>(D))
   1711     D->addAttr(::new (S.Context)
   1712                NoCommonAttr(Attr.getRange(), S.Context,
   1713                             Attr.getAttributeSpellingListIndex()));
   1714   else
   1715     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   1716       << Attr.getName() << ExpectedVariable;
   1717 }
   1718 
   1719 static void handleCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   1720   assert(!Attr.isInvalid());
   1721   if (isa<VarDecl>(D))
   1722     D->addAttr(::new (S.Context)
   1723                CommonAttr(Attr.getRange(), S.Context,
   1724                           Attr.getAttributeSpellingListIndex()));
   1725   else
   1726     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   1727       << Attr.getName() << ExpectedVariable;
   1728 }
   1729 
   1730 static void handleNoReturnAttr(Sema &S, Decl *D, const AttributeList &attr) {
   1731   if (hasDeclarator(D)) return;
   1732 
   1733   if (S.CheckNoReturnAttr(attr)) return;
   1734 
   1735   if (!isa<ObjCMethodDecl>(D)) {
   1736     S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   1737       << attr.getName() << ExpectedFunctionOrMethod;
   1738     return;
   1739   }
   1740 
   1741   D->addAttr(::new (S.Context)
   1742              NoReturnAttr(attr.getRange(), S.Context,
   1743                           attr.getAttributeSpellingListIndex()));
   1744 }
   1745 
   1746 bool Sema::CheckNoReturnAttr(const AttributeList &attr) {
   1747   if (attr.hasParameterOrArguments()) {
   1748     Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
   1749     attr.setInvalid();
   1750     return true;
   1751   }
   1752 
   1753   return false;
   1754 }
   1755 
   1756 static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D,
   1757                                        const AttributeList &Attr) {
   1758 
   1759   // The checking path for 'noreturn' and 'analyzer_noreturn' are different
   1760   // because 'analyzer_noreturn' does not impact the type.
   1761 
   1762   if(!checkAttributeNumArgs(S, Attr, 0))
   1763       return;
   1764 
   1765   if (!isFunctionOrMethod(D) && !isa<BlockDecl>(D)) {
   1766     ValueDecl *VD = dyn_cast<ValueDecl>(D);
   1767     if (VD == 0 || (!VD->getType()->isBlockPointerType()
   1768                     && !VD->getType()->isFunctionPointerType())) {
   1769       S.Diag(Attr.getLoc(),
   1770              Attr.isCXX11Attribute() ? diag::err_attribute_wrong_decl_type
   1771              : diag::warn_attribute_wrong_decl_type)
   1772         << Attr.getName() << ExpectedFunctionMethodOrBlock;
   1773       return;
   1774     }
   1775   }
   1776 
   1777   D->addAttr(::new (S.Context)
   1778              AnalyzerNoReturnAttr(Attr.getRange(), S.Context,
   1779                                   Attr.getAttributeSpellingListIndex()));
   1780 }
   1781 
   1782 static void handleCXX11NoReturnAttr(Sema &S, Decl *D,
   1783                                     const AttributeList &Attr) {
   1784   // C++11 [dcl.attr.noreturn]p1:
   1785   //   The attribute may be applied to the declarator-id in a function
   1786   //   declaration.
   1787   FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
   1788   if (!FD) {
   1789     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
   1790       << Attr.getName() << ExpectedFunctionOrMethod;
   1791     return;
   1792   }
   1793 
   1794   D->addAttr(::new (S.Context)
   1795              CXX11NoReturnAttr(Attr.getRange(), S.Context,
   1796                                Attr.getAttributeSpellingListIndex()));
   1797 }
   1798 
   1799 // PS3 PPU-specific.
   1800 static void handleVecReturnAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   1801 /*
   1802   Returning a Vector Class in Registers
   1803 
   1804   According to the PPU ABI specifications, a class with a single member of
   1805   vector type is returned in memory when used as the return value of a function.
   1806   This results in inefficient code when implementing vector classes. To return
   1807   the value in a single vector register, add the vecreturn attribute to the
   1808   class definition. This attribute is also applicable to struct types.
   1809 
   1810   Example:
   1811 
   1812   struct Vector
   1813   {
   1814     __vector float xyzw;
   1815   } __attribute__((vecreturn));
   1816 
   1817   Vector Add(Vector lhs, Vector rhs)
   1818   {
   1819     Vector result;
   1820     result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
   1821     return result; // This will be returned in a register
   1822   }
   1823 */
   1824   if (!isa<RecordDecl>(D)) {
   1825     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
   1826       << Attr.getName() << ExpectedClass;
   1827     return;
   1828   }
   1829 
   1830   if (D->getAttr<VecReturnAttr>()) {
   1831     S.Diag(Attr.getLoc(), diag::err_repeat_attribute) << "vecreturn";
   1832     return;
   1833   }
   1834 
   1835   RecordDecl *record = cast<RecordDecl>(D);
   1836   int count = 0;
   1837 
   1838   if (!isa<CXXRecordDecl>(record)) {
   1839     S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
   1840     return;
   1841   }
   1842 
   1843   if (!cast<CXXRecordDecl>(record)->isPOD()) {
   1844     S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
   1845     return;
   1846   }
   1847 
   1848   for (RecordDecl::field_iterator iter = record->field_begin();
   1849        iter != record->field_end(); iter++) {
   1850     if ((count == 1) || !iter->getType()->isVectorType()) {
   1851       S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
   1852       return;
   1853     }
   1854     count++;
   1855   }
   1856 
   1857   D->addAttr(::new (S.Context)
   1858              VecReturnAttr(Attr.getRange(), S.Context,
   1859                            Attr.getAttributeSpellingListIndex()));
   1860 }
   1861 
   1862 static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D,
   1863                                  const AttributeList &Attr) {
   1864   if (isa<ParmVarDecl>(D)) {
   1865     // [[carries_dependency]] can only be applied to a parameter if it is a
   1866     // parameter of a function declaration or lambda.
   1867     if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) {
   1868       S.Diag(Attr.getLoc(),
   1869              diag::err_carries_dependency_param_not_function_decl);
   1870       return;
   1871     }
   1872   } else if (!isa<FunctionDecl>(D)) {
   1873     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
   1874       << Attr.getName() << ExpectedFunctionMethodOrParameter;
   1875     return;
   1876   }
   1877 
   1878   D->addAttr(::new (S.Context) CarriesDependencyAttr(
   1879                                    Attr.getRange(), S.Context,
   1880                                    Attr.getAttributeSpellingListIndex()));
   1881 }
   1882 
   1883 static void handleUnusedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   1884   // check the attribute arguments.
   1885   if (Attr.hasParameterOrArguments()) {
   1886     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
   1887     return;
   1888   }
   1889 
   1890   if (!isa<VarDecl>(D) && !isa<ObjCIvarDecl>(D) && !isFunctionOrMethod(D) &&
   1891       !isa<TypeDecl>(D) && !isa<LabelDecl>(D) && !isa<FieldDecl>(D)) {
   1892     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   1893       << Attr.getName() << ExpectedVariableFunctionOrLabel;
   1894     return;
   1895   }
   1896 
   1897   D->addAttr(::new (S.Context)
   1898              UnusedAttr(Attr.getRange(), S.Context,
   1899                         Attr.getAttributeSpellingListIndex()));
   1900 }
   1901 
   1902 static void handleReturnsTwiceAttr(Sema &S, Decl *D,
   1903                                    const AttributeList &Attr) {
   1904   // check the attribute arguments.
   1905   if (Attr.hasParameterOrArguments()) {
   1906     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
   1907     return;
   1908   }
   1909 
   1910   if (!isa<FunctionDecl>(D)) {
   1911     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   1912       << Attr.getName() << ExpectedFunction;
   1913     return;
   1914   }
   1915 
   1916   D->addAttr(::new (S.Context)
   1917              ReturnsTwiceAttr(Attr.getRange(), S.Context,
   1918                               Attr.getAttributeSpellingListIndex()));
   1919 }
   1920 
   1921 static void handleUsedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   1922   // check the attribute arguments.
   1923   if (Attr.hasParameterOrArguments()) {
   1924     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
   1925     return;
   1926   }
   1927 
   1928   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   1929     if (VD->hasLocalStorage() || VD->hasExternalStorage()) {
   1930       S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "used";
   1931       return;
   1932     }
   1933   } else if (!isFunctionOrMethod(D)) {
   1934     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   1935       << Attr.getName() << ExpectedVariableOrFunction;
   1936     return;
   1937   }
   1938 
   1939   D->addAttr(::new (S.Context)
   1940              UsedAttr(Attr.getRange(), S.Context,
   1941                       Attr.getAttributeSpellingListIndex()));
   1942 }
   1943 
   1944 static void handleConstructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   1945   // check the attribute arguments.
   1946   if (Attr.getNumArgs() > 1) {
   1947     S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
   1948     return;
   1949   }
   1950 
   1951   int priority = 65535; // FIXME: Do not hardcode such constants.
   1952   if (Attr.getNumArgs() > 0) {
   1953     Expr *E = Attr.getArg(0);
   1954     llvm::APSInt Idx(32);
   1955     if (E->isTypeDependent() || E->isValueDependent() ||
   1956         !E->isIntegerConstantExpr(Idx, S.Context)) {
   1957       S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
   1958         << "constructor" << 1 << E->getSourceRange();
   1959       return;
   1960     }
   1961     priority = Idx.getZExtValue();
   1962   }
   1963 
   1964   if (!isa<FunctionDecl>(D)) {
   1965     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   1966       << Attr.getName() << ExpectedFunction;
   1967     return;
   1968   }
   1969 
   1970   D->addAttr(::new (S.Context)
   1971              ConstructorAttr(Attr.getRange(), S.Context, priority,
   1972                              Attr.getAttributeSpellingListIndex()));
   1973 }
   1974 
   1975 static void handleDestructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   1976   // check the attribute arguments.
   1977   if (Attr.getNumArgs() > 1) {
   1978     S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
   1979     return;
   1980   }
   1981 
   1982   int priority = 65535; // FIXME: Do not hardcode such constants.
   1983   if (Attr.getNumArgs() > 0) {
   1984     Expr *E = Attr.getArg(0);
   1985     llvm::APSInt Idx(32);
   1986     if (E->isTypeDependent() || E->isValueDependent() ||
   1987         !E->isIntegerConstantExpr(Idx, S.Context)) {
   1988       S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
   1989         << "destructor" << 1 << E->getSourceRange();
   1990       return;
   1991     }
   1992     priority = Idx.getZExtValue();
   1993   }
   1994 
   1995   if (!isa<FunctionDecl>(D)) {
   1996     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   1997       << Attr.getName() << ExpectedFunction;
   1998     return;
   1999   }
   2000 
   2001   D->addAttr(::new (S.Context)
   2002              DestructorAttr(Attr.getRange(), S.Context, priority,
   2003                             Attr.getAttributeSpellingListIndex()));
   2004 }
   2005 
   2006 template <typename AttrTy>
   2007 static void handleAttrWithMessage(Sema &S, Decl *D, const AttributeList &Attr,
   2008                                   const char *Name) {
   2009   unsigned NumArgs = Attr.getNumArgs();
   2010   if (NumArgs > 1) {
   2011     S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
   2012     return;
   2013   }
   2014 
   2015   // Handle the case where the attribute has a text message.
   2016   StringRef Str;
   2017   if (NumArgs == 1) {
   2018     StringLiteral *SE = dyn_cast<StringLiteral>(Attr.getArg(0));
   2019     if (!SE) {
   2020       S.Diag(Attr.getArg(0)->getLocStart(), diag::err_attribute_not_string)
   2021         << Name;
   2022       return;
   2023     }
   2024     Str = SE->getString();
   2025   }
   2026 
   2027   D->addAttr(::new (S.Context) AttrTy(Attr.getRange(), S.Context, Str,
   2028                                       Attr.getAttributeSpellingListIndex()));
   2029 }
   2030 
   2031 static void handleArcWeakrefUnavailableAttr(Sema &S, Decl *D,
   2032                                             const AttributeList &Attr) {
   2033   unsigned NumArgs = Attr.getNumArgs();
   2034   if (NumArgs > 0) {
   2035     S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 0;
   2036     return;
   2037   }
   2038 
   2039   D->addAttr(::new (S.Context)
   2040              ArcWeakrefUnavailableAttr(Attr.getRange(), S.Context,
   2041                                        Attr.getAttributeSpellingListIndex()));
   2042 }
   2043 
   2044 static void handleObjCRootClassAttr(Sema &S, Decl *D,
   2045                                     const AttributeList &Attr) {
   2046   if (!isa<ObjCInterfaceDecl>(D)) {
   2047     S.Diag(Attr.getLoc(), diag::err_attribute_requires_objc_interface);
   2048     return;
   2049   }
   2050 
   2051   unsigned NumArgs = Attr.getNumArgs();
   2052   if (NumArgs > 0) {
   2053     S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 0;
   2054     return;
   2055   }
   2056 
   2057   D->addAttr(::new (S.Context)
   2058              ObjCRootClassAttr(Attr.getRange(), S.Context,
   2059                                Attr.getAttributeSpellingListIndex()));
   2060 }
   2061 
   2062 static void handleObjCRequiresPropertyDefsAttr(Sema &S, Decl *D,
   2063                                                const AttributeList &Attr) {
   2064   if (!isa<ObjCInterfaceDecl>(D)) {
   2065     S.Diag(Attr.getLoc(), diag::err_suppress_autosynthesis);
   2066     return;
   2067   }
   2068 
   2069   unsigned NumArgs = Attr.getNumArgs();
   2070   if (NumArgs > 0) {
   2071     S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 0;
   2072     return;
   2073   }
   2074 
   2075   D->addAttr(::new (S.Context)
   2076              ObjCRequiresPropertyDefsAttr(Attr.getRange(), S.Context,
   2077                                           Attr.getAttributeSpellingListIndex()));
   2078 }
   2079 
   2080 static bool checkAvailabilityAttr(Sema &S, SourceRange Range,
   2081                                   IdentifierInfo *Platform,
   2082                                   VersionTuple Introduced,
   2083                                   VersionTuple Deprecated,
   2084                                   VersionTuple Obsoleted) {
   2085   StringRef PlatformName
   2086     = AvailabilityAttr::getPrettyPlatformName(Platform->getName());
   2087   if (PlatformName.empty())
   2088     PlatformName = Platform->getName();
   2089 
   2090   // Ensure that Introduced <= Deprecated <= Obsoleted (although not all
   2091   // of these steps are needed).
   2092   if (!Introduced.empty() && !Deprecated.empty() &&
   2093       !(Introduced <= Deprecated)) {
   2094     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
   2095       << 1 << PlatformName << Deprecated.getAsString()
   2096       << 0 << Introduced.getAsString();
   2097     return true;
   2098   }
   2099 
   2100   if (!Introduced.empty() && !Obsoleted.empty() &&
   2101       !(Introduced <= Obsoleted)) {
   2102     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
   2103       << 2 << PlatformName << Obsoleted.getAsString()
   2104       << 0 << Introduced.getAsString();
   2105     return true;
   2106   }
   2107 
   2108   if (!Deprecated.empty() && !Obsoleted.empty() &&
   2109       !(Deprecated <= Obsoleted)) {
   2110     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
   2111       << 2 << PlatformName << Obsoleted.getAsString()
   2112       << 1 << Deprecated.getAsString();
   2113     return true;
   2114   }
   2115 
   2116   return false;
   2117 }
   2118 
   2119 /// \brief Check whether the two versions match.
   2120 ///
   2121 /// If either version tuple is empty, then they are assumed to match. If
   2122 /// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y.
   2123 static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y,
   2124                           bool BeforeIsOkay) {
   2125   if (X.empty() || Y.empty())
   2126     return true;
   2127 
   2128   if (X == Y)
   2129     return true;
   2130 
   2131   if (BeforeIsOkay && X < Y)
   2132     return true;
   2133 
   2134   return false;
   2135 }
   2136 
   2137 AvailabilityAttr *Sema::mergeAvailabilityAttr(NamedDecl *D, SourceRange Range,
   2138                                               IdentifierInfo *Platform,
   2139                                               VersionTuple Introduced,
   2140                                               VersionTuple Deprecated,
   2141                                               VersionTuple Obsoleted,
   2142                                               bool IsUnavailable,
   2143                                               StringRef Message,
   2144                                               bool Override,
   2145                                               unsigned AttrSpellingListIndex) {
   2146   VersionTuple MergedIntroduced = Introduced;
   2147   VersionTuple MergedDeprecated = Deprecated;
   2148   VersionTuple MergedObsoleted = Obsoleted;
   2149   bool FoundAny = false;
   2150 
   2151   if (D->hasAttrs()) {
   2152     AttrVec &Attrs = D->getAttrs();
   2153     for (unsigned i = 0, e = Attrs.size(); i != e;) {
   2154       const AvailabilityAttr *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]);
   2155       if (!OldAA) {
   2156         ++i;
   2157         continue;
   2158       }
   2159 
   2160       IdentifierInfo *OldPlatform = OldAA->getPlatform();
   2161       if (OldPlatform != Platform) {
   2162         ++i;
   2163         continue;
   2164       }
   2165 
   2166       FoundAny = true;
   2167       VersionTuple OldIntroduced = OldAA->getIntroduced();
   2168       VersionTuple OldDeprecated = OldAA->getDeprecated();
   2169       VersionTuple OldObsoleted = OldAA->getObsoleted();
   2170       bool OldIsUnavailable = OldAA->getUnavailable();
   2171 
   2172       if (!versionsMatch(OldIntroduced, Introduced, Override) ||
   2173           !versionsMatch(Deprecated, OldDeprecated, Override) ||
   2174           !versionsMatch(Obsoleted, OldObsoleted, Override) ||
   2175           !(OldIsUnavailable == IsUnavailable ||
   2176             (Override && !OldIsUnavailable && IsUnavailable))) {
   2177         if (Override) {
   2178           int Which = -1;
   2179           VersionTuple FirstVersion;
   2180           VersionTuple SecondVersion;
   2181           if (!versionsMatch(OldIntroduced, Introduced, Override)) {
   2182             Which = 0;
   2183             FirstVersion = OldIntroduced;
   2184             SecondVersion = Introduced;
   2185           } else if (!versionsMatch(Deprecated, OldDeprecated, Override)) {
   2186             Which = 1;
   2187             FirstVersion = Deprecated;
   2188             SecondVersion = OldDeprecated;
   2189           } else if (!versionsMatch(Obsoleted, OldObsoleted, Override)) {
   2190             Which = 2;
   2191             FirstVersion = Obsoleted;
   2192             SecondVersion = OldObsoleted;
   2193           }
   2194 
   2195           if (Which == -1) {
   2196             Diag(OldAA->getLocation(),
   2197                  diag::warn_mismatched_availability_override_unavail)
   2198               << AvailabilityAttr::getPrettyPlatformName(Platform->getName());
   2199           } else {
   2200             Diag(OldAA->getLocation(),
   2201                  diag::warn_mismatched_availability_override)
   2202               << Which
   2203               << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
   2204               << FirstVersion.getAsString() << SecondVersion.getAsString();
   2205           }
   2206           Diag(Range.getBegin(), diag::note_overridden_method);
   2207         } else {
   2208           Diag(OldAA->getLocation(), diag::warn_mismatched_availability);
   2209           Diag(Range.getBegin(), diag::note_previous_attribute);
   2210         }
   2211 
   2212         Attrs.erase(Attrs.begin() + i);
   2213         --e;
   2214         continue;
   2215       }
   2216 
   2217       VersionTuple MergedIntroduced2 = MergedIntroduced;
   2218       VersionTuple MergedDeprecated2 = MergedDeprecated;
   2219       VersionTuple MergedObsoleted2 = MergedObsoleted;
   2220 
   2221       if (MergedIntroduced2.empty())
   2222         MergedIntroduced2 = OldIntroduced;
   2223       if (MergedDeprecated2.empty())
   2224         MergedDeprecated2 = OldDeprecated;
   2225       if (MergedObsoleted2.empty())
   2226         MergedObsoleted2 = OldObsoleted;
   2227 
   2228       if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform,
   2229                                 MergedIntroduced2, MergedDeprecated2,
   2230                                 MergedObsoleted2)) {
   2231         Attrs.erase(Attrs.begin() + i);
   2232         --e;
   2233         continue;
   2234       }
   2235 
   2236       MergedIntroduced = MergedIntroduced2;
   2237       MergedDeprecated = MergedDeprecated2;
   2238       MergedObsoleted = MergedObsoleted2;
   2239       ++i;
   2240     }
   2241   }
   2242 
   2243   if (FoundAny &&
   2244       MergedIntroduced == Introduced &&
   2245       MergedDeprecated == Deprecated &&
   2246       MergedObsoleted == Obsoleted)
   2247     return NULL;
   2248 
   2249   if (!checkAvailabilityAttr(*this, Range, Platform, MergedIntroduced,
   2250                              MergedDeprecated, MergedObsoleted)) {
   2251     return ::new (Context) AvailabilityAttr(Range, Context, Platform,
   2252                                             Introduced, Deprecated,
   2253                                             Obsoleted, IsUnavailable, Message,
   2254                                             AttrSpellingListIndex);
   2255   }
   2256   return NULL;
   2257 }
   2258 
   2259 static void handleAvailabilityAttr(Sema &S, Decl *D,
   2260                                    const AttributeList &Attr) {
   2261   IdentifierInfo *Platform = Attr.getParameterName();
   2262   SourceLocation PlatformLoc = Attr.getParameterLoc();
   2263   unsigned Index = Attr.getAttributeSpellingListIndex();
   2264 
   2265   if (AvailabilityAttr::getPrettyPlatformName(Platform->getName()).empty())
   2266     S.Diag(PlatformLoc, diag::warn_availability_unknown_platform)
   2267       << Platform;
   2268 
   2269   NamedDecl *ND = dyn_cast<NamedDecl>(D);
   2270   if (!ND) {
   2271     S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
   2272     return;
   2273   }
   2274 
   2275   AvailabilityChange Introduced = Attr.getAvailabilityIntroduced();
   2276   AvailabilityChange Deprecated = Attr.getAvailabilityDeprecated();
   2277   AvailabilityChange Obsoleted = Attr.getAvailabilityObsoleted();
   2278   bool IsUnavailable = Attr.getUnavailableLoc().isValid();
   2279   StringRef Str;
   2280   const StringLiteral *SE =
   2281     dyn_cast_or_null<const StringLiteral>(Attr.getMessageExpr());
   2282   if (SE)
   2283     Str = SE->getString();
   2284 
   2285   AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(ND, Attr.getRange(),
   2286                                                       Platform,
   2287                                                       Introduced.Version,
   2288                                                       Deprecated.Version,
   2289                                                       Obsoleted.Version,
   2290                                                       IsUnavailable, Str,
   2291                                                       /*Override=*/false,
   2292                                                       Index);
   2293   if (NewAttr)
   2294     D->addAttr(NewAttr);
   2295 }
   2296 
   2297 template <class T>
   2298 static T *mergeVisibilityAttr(Sema &S, Decl *D, SourceRange range,
   2299                               typename T::VisibilityType value,
   2300                               unsigned attrSpellingListIndex) {
   2301   T *existingAttr = D->getAttr<T>();
   2302   if (existingAttr) {
   2303     typename T::VisibilityType existingValue = existingAttr->getVisibility();
   2304     if (existingValue == value)
   2305       return NULL;
   2306     S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility);
   2307     S.Diag(range.getBegin(), diag::note_previous_attribute);
   2308     D->dropAttr<T>();
   2309   }
   2310   return ::new (S.Context) T(range, S.Context, value, attrSpellingListIndex);
   2311 }
   2312 
   2313 VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D, SourceRange Range,
   2314                                           VisibilityAttr::VisibilityType Vis,
   2315                                           unsigned AttrSpellingListIndex) {
   2316   return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, Range, Vis,
   2317                                                AttrSpellingListIndex);
   2318 }
   2319 
   2320 TypeVisibilityAttr *Sema::mergeTypeVisibilityAttr(Decl *D, SourceRange Range,
   2321                                       TypeVisibilityAttr::VisibilityType Vis,
   2322                                       unsigned AttrSpellingListIndex) {
   2323   return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, Range, Vis,
   2324                                                    AttrSpellingListIndex);
   2325 }
   2326 
   2327 static void handleVisibilityAttr(Sema &S, Decl *D, const AttributeList &Attr,
   2328                                  bool isTypeVisibility) {
   2329   // Visibility attributes don't mean anything on a typedef.
   2330   if (isa<TypedefNameDecl>(D)) {
   2331     S.Diag(Attr.getRange().getBegin(), diag::warn_attribute_ignored)
   2332       << Attr.getName();
   2333     return;
   2334   }
   2335 
   2336   // 'type_visibility' can only go on a type or namespace.
   2337   if (isTypeVisibility &&
   2338       !(isa<TagDecl>(D) ||
   2339         isa<ObjCInterfaceDecl>(D) ||
   2340         isa<NamespaceDecl>(D))) {
   2341     S.Diag(Attr.getRange().getBegin(), diag::err_attribute_wrong_decl_type)
   2342       << Attr.getName() << ExpectedTypeOrNamespace;
   2343     return;
   2344   }
   2345 
   2346   // check the attribute arguments.
   2347   if (!checkAttributeNumArgs(S, Attr, 1))
   2348     return;
   2349 
   2350   Expr *Arg = Attr.getArg(0);
   2351   Arg = Arg->IgnoreParenCasts();
   2352   StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
   2353 
   2354   if (!Str || !Str->isAscii()) {
   2355     S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
   2356       << (isTypeVisibility ? "type_visibility" : "visibility") << 1;
   2357     return;
   2358   }
   2359 
   2360   StringRef TypeStr = Str->getString();
   2361   VisibilityAttr::VisibilityType type;
   2362 
   2363   if (TypeStr == "default")
   2364     type = VisibilityAttr::Default;
   2365   else if (TypeStr == "hidden")
   2366     type = VisibilityAttr::Hidden;
   2367   else if (TypeStr == "internal")
   2368     type = VisibilityAttr::Hidden; // FIXME
   2369   else if (TypeStr == "protected") {
   2370     // Complain about attempts to use protected visibility on targets
   2371     // (like Darwin) that don't support it.
   2372     if (!S.Context.getTargetInfo().hasProtectedVisibility()) {
   2373       S.Diag(Attr.getLoc(), diag::warn_attribute_protected_visibility);
   2374       type = VisibilityAttr::Default;
   2375     } else {
   2376       type = VisibilityAttr::Protected;
   2377     }
   2378   } else {
   2379     S.Diag(Attr.getLoc(), diag::warn_attribute_unknown_visibility) << TypeStr;
   2380     return;
   2381   }
   2382 
   2383   unsigned Index = Attr.getAttributeSpellingListIndex();
   2384   clang::Attr *newAttr;
   2385   if (isTypeVisibility) {
   2386     newAttr = S.mergeTypeVisibilityAttr(D, Attr.getRange(),
   2387                                     (TypeVisibilityAttr::VisibilityType) type,
   2388                                         Index);
   2389   } else {
   2390     newAttr = S.mergeVisibilityAttr(D, Attr.getRange(), type, Index);
   2391   }
   2392   if (newAttr)
   2393     D->addAttr(newAttr);
   2394 }
   2395 
   2396 static void handleObjCMethodFamilyAttr(Sema &S, Decl *decl,
   2397                                        const AttributeList &Attr) {
   2398   ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(decl);
   2399   if (!method) {
   2400     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
   2401       << ExpectedMethod;
   2402     return;
   2403   }
   2404 
   2405   if (Attr.getNumArgs() != 0 || !Attr.getParameterName()) {
   2406     if (!Attr.getParameterName() && Attr.getNumArgs() == 1) {
   2407       S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
   2408         << "objc_method_family" << 1;
   2409     } else {
   2410       S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
   2411     }
   2412     Attr.setInvalid();
   2413     return;
   2414   }
   2415 
   2416   StringRef param = Attr.getParameterName()->getName();
   2417   ObjCMethodFamilyAttr::FamilyKind family;
   2418   if (param == "none")
   2419     family = ObjCMethodFamilyAttr::OMF_None;
   2420   else if (param == "alloc")
   2421     family = ObjCMethodFamilyAttr::OMF_alloc;
   2422   else if (param == "copy")
   2423     family = ObjCMethodFamilyAttr::OMF_copy;
   2424   else if (param == "init")
   2425     family = ObjCMethodFamilyAttr::OMF_init;
   2426   else if (param == "mutableCopy")
   2427     family = ObjCMethodFamilyAttr::OMF_mutableCopy;
   2428   else if (param == "new")
   2429     family = ObjCMethodFamilyAttr::OMF_new;
   2430   else {
   2431     // Just warn and ignore it.  This is future-proof against new
   2432     // families being used in system headers.
   2433     S.Diag(Attr.getParameterLoc(), diag::warn_unknown_method_family);
   2434     return;
   2435   }
   2436 
   2437   if (family == ObjCMethodFamilyAttr::OMF_init &&
   2438       !method->getResultType()->isObjCObjectPointerType()) {
   2439     S.Diag(method->getLocation(), diag::err_init_method_bad_return_type)
   2440       << method->getResultType();
   2441     // Ignore the attribute.
   2442     return;
   2443   }
   2444 
   2445   method->addAttr(new (S.Context) ObjCMethodFamilyAttr(Attr.getRange(),
   2446                                                        S.Context, family));
   2447 }
   2448 
   2449 static void handleObjCExceptionAttr(Sema &S, Decl *D,
   2450                                     const AttributeList &Attr) {
   2451   if (!checkAttributeNumArgs(S, Attr, 0))
   2452     return;
   2453 
   2454   ObjCInterfaceDecl *OCI = dyn_cast<ObjCInterfaceDecl>(D);
   2455   if (OCI == 0) {
   2456     S.Diag(Attr.getLoc(), diag::err_attribute_requires_objc_interface);
   2457     return;
   2458   }
   2459 
   2460   D->addAttr(::new (S.Context)
   2461              ObjCExceptionAttr(Attr.getRange(), S.Context,
   2462                                Attr.getAttributeSpellingListIndex()));
   2463 }
   2464 
   2465 static void handleObjCNSObject(Sema &S, Decl *D, const AttributeList &Attr) {
   2466   if (Attr.getNumArgs() != 0) {
   2467     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
   2468     return;
   2469   }
   2470   if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
   2471     QualType T = TD->getUnderlyingType();
   2472     if (!T->isCARCBridgableType()) {
   2473       S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
   2474       return;
   2475     }
   2476   }
   2477   else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) {
   2478     QualType T = PD->getType();
   2479     if (!T->isCARCBridgableType()) {
   2480       S.Diag(PD->getLocation(), diag::err_nsobject_attribute);
   2481       return;
   2482     }
   2483   }
   2484   else {
   2485     // It is okay to include this attribute on properties, e.g.:
   2486     //
   2487     //  @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject));
   2488     //
   2489     // In this case it follows tradition and suppresses an error in the above
   2490     // case.
   2491     S.Diag(D->getLocation(), diag::warn_nsobject_attribute);
   2492   }
   2493   D->addAttr(::new (S.Context)
   2494              ObjCNSObjectAttr(Attr.getRange(), S.Context,
   2495                               Attr.getAttributeSpellingListIndex()));
   2496 }
   2497 
   2498 static void
   2499 handleOverloadableAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   2500   if (Attr.getNumArgs() != 0) {
   2501     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
   2502     return;
   2503   }
   2504 
   2505   if (!isa<FunctionDecl>(D)) {
   2506     S.Diag(Attr.getLoc(), diag::err_attribute_overloadable_not_function);
   2507     return;
   2508   }
   2509 
   2510   D->addAttr(::new (S.Context)
   2511              OverloadableAttr(Attr.getRange(), S.Context,
   2512                               Attr.getAttributeSpellingListIndex()));
   2513 }
   2514 
   2515 static void handleBlocksAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   2516   if (!Attr.getParameterName()) {
   2517     S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
   2518       << "blocks" << 1;
   2519     return;
   2520   }
   2521 
   2522   if (Attr.getNumArgs() != 0) {
   2523     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
   2524     return;
   2525   }
   2526 
   2527   BlocksAttr::BlockType type;
   2528   if (Attr.getParameterName()->isStr("byref"))
   2529     type = BlocksAttr::ByRef;
   2530   else {
   2531     S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
   2532       << "blocks" << Attr.getParameterName();
   2533     return;
   2534   }
   2535 
   2536   D->addAttr(::new (S.Context)
   2537              BlocksAttr(Attr.getRange(), S.Context, type,
   2538                         Attr.getAttributeSpellingListIndex()));
   2539 }
   2540 
   2541 static void handleSentinelAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   2542   // check the attribute arguments.
   2543   if (Attr.getNumArgs() > 2) {
   2544     S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 2;
   2545     return;
   2546   }
   2547 
   2548   unsigned sentinel = 0;
   2549   if (Attr.getNumArgs() > 0) {
   2550     Expr *E = Attr.getArg(0);
   2551     llvm::APSInt Idx(32);
   2552     if (E->isTypeDependent() || E->isValueDependent() ||
   2553         !E->isIntegerConstantExpr(Idx, S.Context)) {
   2554       S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
   2555        << "sentinel" << 1 << E->getSourceRange();
   2556       return;
   2557     }
   2558 
   2559     if (Idx.isSigned() && Idx.isNegative()) {
   2560       S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_less_than_zero)
   2561         << E->getSourceRange();
   2562       return;
   2563     }
   2564 
   2565     sentinel = Idx.getZExtValue();
   2566   }
   2567 
   2568   unsigned nullPos = 0;
   2569   if (Attr.getNumArgs() > 1) {
   2570     Expr *E = Attr.getArg(1);
   2571     llvm::APSInt Idx(32);
   2572     if (E->isTypeDependent() || E->isValueDependent() ||
   2573         !E->isIntegerConstantExpr(Idx, S.Context)) {
   2574       S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
   2575         << "sentinel" << 2 << E->getSourceRange();
   2576       return;
   2577     }
   2578     nullPos = Idx.getZExtValue();
   2579 
   2580     if ((Idx.isSigned() && Idx.isNegative()) || nullPos > 1) {
   2581       // FIXME: This error message could be improved, it would be nice
   2582       // to say what the bounds actually are.
   2583       S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
   2584         << E->getSourceRange();
   2585       return;
   2586     }
   2587   }
   2588 
   2589   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   2590     const FunctionType *FT = FD->getType()->castAs<FunctionType>();
   2591     if (isa<FunctionNoProtoType>(FT)) {
   2592       S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_named_arguments);
   2593       return;
   2594     }
   2595 
   2596     if (!cast<FunctionProtoType>(FT)->isVariadic()) {
   2597       S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
   2598       return;
   2599     }
   2600   } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
   2601     if (!MD->isVariadic()) {
   2602       S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
   2603       return;
   2604     }
   2605   } else if (BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
   2606     if (!BD->isVariadic()) {
   2607       S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
   2608       return;
   2609     }
   2610   } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
   2611     QualType Ty = V->getType();
   2612     if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
   2613       const FunctionType *FT = Ty->isFunctionPointerType() ? getFunctionType(D)
   2614        : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
   2615       if (!cast<FunctionProtoType>(FT)->isVariadic()) {
   2616         int m = Ty->isFunctionPointerType() ? 0 : 1;
   2617         S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
   2618         return;
   2619       }
   2620     } else {
   2621       S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   2622         << Attr.getName() << ExpectedFunctionMethodOrBlock;
   2623       return;
   2624     }
   2625   } else {
   2626     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   2627       << Attr.getName() << ExpectedFunctionMethodOrBlock;
   2628     return;
   2629   }
   2630   D->addAttr(::new (S.Context)
   2631              SentinelAttr(Attr.getRange(), S.Context, sentinel, nullPos,
   2632                           Attr.getAttributeSpellingListIndex()));
   2633 }
   2634 
   2635 static void handleWarnUnusedResult(Sema &S, Decl *D, const AttributeList &Attr) {
   2636   // check the attribute arguments.
   2637   if (!checkAttributeNumArgs(S, Attr, 0))
   2638     return;
   2639 
   2640   if (!isFunction(D) && !isa<ObjCMethodDecl>(D) && !isa<CXXRecordDecl>(D)) {
   2641     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   2642       << Attr.getName() << ExpectedFunctionMethodOrClass;
   2643     return;
   2644   }
   2645 
   2646   if (isFunction(D) && getFunctionType(D)->getResultType()->isVoidType()) {
   2647     S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
   2648       << Attr.getName() << 0;
   2649     return;
   2650   }
   2651   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
   2652     if (MD->getResultType()->isVoidType()) {
   2653       S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
   2654       << Attr.getName() << 1;
   2655       return;
   2656     }
   2657 
   2658   D->addAttr(::new (S.Context)
   2659              WarnUnusedResultAttr(Attr.getRange(), S.Context,
   2660                                   Attr.getAttributeSpellingListIndex()));
   2661 }
   2662 
   2663 static void handleWeakAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   2664   // check the attribute arguments.
   2665   if (Attr.hasParameterOrArguments()) {
   2666     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
   2667     return;
   2668   }
   2669 
   2670   if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D)) {
   2671     if (isa<CXXRecordDecl>(D)) {
   2672       D->addAttr(::new (S.Context) WeakAttr(Attr.getRange(), S.Context));
   2673       return;
   2674     }
   2675     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   2676       << Attr.getName() << ExpectedVariableOrFunction;
   2677     return;
   2678   }
   2679 
   2680   NamedDecl *nd = cast<NamedDecl>(D);
   2681 
   2682   nd->addAttr(::new (S.Context)
   2683               WeakAttr(Attr.getRange(), S.Context,
   2684                        Attr.getAttributeSpellingListIndex()));
   2685 }
   2686 
   2687 static void handleWeakImportAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   2688   // check the attribute arguments.
   2689   if (!checkAttributeNumArgs(S, Attr, 0))
   2690     return;
   2691 
   2692 
   2693   // weak_import only applies to variable & function declarations.
   2694   bool isDef = false;
   2695   if (!D->canBeWeakImported(isDef)) {
   2696     if (isDef)
   2697       S.Diag(Attr.getLoc(),
   2698              diag::warn_attribute_weak_import_invalid_on_definition)
   2699         << "weak_import" << 2 /*variable and function*/;
   2700     else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
   2701              (S.Context.getTargetInfo().getTriple().isOSDarwin() &&
   2702               (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) {
   2703       // Nothing to warn about here.
   2704     } else
   2705       S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   2706         << Attr.getName() << ExpectedVariableOrFunction;
   2707 
   2708     return;
   2709   }
   2710 
   2711   D->addAttr(::new (S.Context)
   2712              WeakImportAttr(Attr.getRange(), S.Context,
   2713                             Attr.getAttributeSpellingListIndex()));
   2714 }
   2715 
   2716 // Handles reqd_work_group_size and work_group_size_hint.
   2717 static void handleWorkGroupSize(Sema &S, Decl *D,
   2718                                 const AttributeList &Attr) {
   2719   assert(Attr.getKind() == AttributeList::AT_ReqdWorkGroupSize
   2720       || Attr.getKind() == AttributeList::AT_WorkGroupSizeHint);
   2721 
   2722   // Attribute has 3 arguments.
   2723   if (!checkAttributeNumArgs(S, Attr, 3)) return;
   2724 
   2725   unsigned WGSize[3];
   2726   for (unsigned i = 0; i < 3; ++i) {
   2727     Expr *E = Attr.getArg(i);
   2728     llvm::APSInt ArgNum(32);
   2729     if (E->isTypeDependent() || E->isValueDependent() ||
   2730         !E->isIntegerConstantExpr(ArgNum, S.Context)) {
   2731       S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
   2732         << Attr.getName()->getName() << E->getSourceRange();
   2733       return;
   2734     }
   2735     WGSize[i] = (unsigned) ArgNum.getZExtValue();
   2736   }
   2737 
   2738   if (Attr.getKind() == AttributeList::AT_ReqdWorkGroupSize
   2739     && D->hasAttr<ReqdWorkGroupSizeAttr>()) {
   2740       ReqdWorkGroupSizeAttr *A = D->getAttr<ReqdWorkGroupSizeAttr>();
   2741       if (!(A->getXDim() == WGSize[0] &&
   2742             A->getYDim() == WGSize[1] &&
   2743             A->getZDim() == WGSize[2])) {
   2744         S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) <<
   2745           Attr.getName();
   2746       }
   2747   }
   2748 
   2749   if (Attr.getKind() == AttributeList::AT_WorkGroupSizeHint
   2750     && D->hasAttr<WorkGroupSizeHintAttr>()) {
   2751       WorkGroupSizeHintAttr *A = D->getAttr<WorkGroupSizeHintAttr>();
   2752       if (!(A->getXDim() == WGSize[0] &&
   2753             A->getYDim() == WGSize[1] &&
   2754             A->getZDim() == WGSize[2])) {
   2755         S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) <<
   2756           Attr.getName();
   2757       }
   2758   }
   2759 
   2760   if (Attr.getKind() == AttributeList::AT_ReqdWorkGroupSize)
   2761     D->addAttr(::new (S.Context)
   2762                  ReqdWorkGroupSizeAttr(Attr.getRange(), S.Context,
   2763                                        WGSize[0], WGSize[1], WGSize[2],
   2764                                        Attr.getAttributeSpellingListIndex()));
   2765   else
   2766     D->addAttr(::new (S.Context)
   2767                  WorkGroupSizeHintAttr(Attr.getRange(), S.Context,
   2768                                        WGSize[0], WGSize[1], WGSize[2],
   2769                                        Attr.getAttributeSpellingListIndex()));
   2770 }
   2771 
   2772 static void handleVecTypeHint(Sema &S, Decl *D, const AttributeList &Attr) {
   2773   assert(Attr.getKind() == AttributeList::AT_VecTypeHint);
   2774 
   2775   // Attribute has 1 argument.
   2776   if (!checkAttributeNumArgs(S, Attr, 1))
   2777     return;
   2778 
   2779   QualType ParmType = S.GetTypeFromParser(Attr.getTypeArg());
   2780 
   2781   if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() &&
   2782       (ParmType->isBooleanType() ||
   2783        !ParmType->isIntegralType(S.getASTContext()))) {
   2784     S.Diag(Attr.getLoc(), diag::err_attribute_argument_vec_type_hint)
   2785         << ParmType;
   2786     return;
   2787   }
   2788 
   2789   if (Attr.getKind() == AttributeList::AT_VecTypeHint &&
   2790       D->hasAttr<VecTypeHintAttr>()) {
   2791     VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>();
   2792     if (A->getTypeHint() != ParmType) {
   2793       S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) << Attr.getName();
   2794       return;
   2795     }
   2796   }
   2797 
   2798   D->addAttr(::new (S.Context) VecTypeHintAttr(Attr.getLoc(), S.Context,
   2799                                                ParmType, Attr.getLoc()));
   2800 }
   2801 
   2802 static void handleEndianAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   2803   if (!dyn_cast<VarDecl>(D))
   2804     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << "endian"
   2805                                                                 << 9;
   2806   StringRef EndianType = Attr.getParameterName()->getName();
   2807   if (EndianType != "host" && EndianType != "device")
   2808     S.Diag(Attr.getLoc(), diag::warn_attribute_unknown_endian) << EndianType;
   2809 }
   2810 
   2811 SectionAttr *Sema::mergeSectionAttr(Decl *D, SourceRange Range,
   2812                                     StringRef Name,
   2813                                     unsigned AttrSpellingListIndex) {
   2814   if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) {
   2815     if (ExistingAttr->getName() == Name)
   2816       return NULL;
   2817     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section);
   2818     Diag(Range.getBegin(), diag::note_previous_attribute);
   2819     return NULL;
   2820   }
   2821   return ::new (Context) SectionAttr(Range, Context, Name,
   2822                                      AttrSpellingListIndex);
   2823 }
   2824 
   2825 static void handleSectionAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   2826   // Attribute has no arguments.
   2827   if (!checkAttributeNumArgs(S, Attr, 1))
   2828     return;
   2829 
   2830   // Make sure that there is a string literal as the sections's single
   2831   // argument.
   2832   Expr *ArgExpr = Attr.getArg(0);
   2833   StringLiteral *SE = dyn_cast<StringLiteral>(ArgExpr);
   2834   if (!SE) {
   2835     S.Diag(ArgExpr->getLocStart(), diag::err_attribute_not_string) << "section";
   2836     return;
   2837   }
   2838 
   2839   // If the target wants to validate the section specifier, make it happen.
   2840   std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(SE->getString());
   2841   if (!Error.empty()) {
   2842     S.Diag(SE->getLocStart(), diag::err_attribute_section_invalid_for_target)
   2843     << Error;
   2844     return;
   2845   }
   2846 
   2847   // This attribute cannot be applied to local variables.
   2848   if (isa<VarDecl>(D) && cast<VarDecl>(D)->hasLocalStorage()) {
   2849     S.Diag(SE->getLocStart(), diag::err_attribute_section_local_variable);
   2850     return;
   2851   }
   2852 
   2853   unsigned Index = Attr.getAttributeSpellingListIndex();
   2854   SectionAttr *NewAttr = S.mergeSectionAttr(D, Attr.getRange(),
   2855                                             SE->getString(), Index);
   2856   if (NewAttr)
   2857     D->addAttr(NewAttr);
   2858 }
   2859 
   2860 
   2861 static void handleNothrowAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   2862   // check the attribute arguments.
   2863   if (Attr.hasParameterOrArguments()) {
   2864     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
   2865     return;
   2866   }
   2867 
   2868   if (NoThrowAttr *Existing = D->getAttr<NoThrowAttr>()) {
   2869     if (Existing->getLocation().isInvalid())
   2870       Existing->setRange(Attr.getRange());
   2871   } else {
   2872     D->addAttr(::new (S.Context)
   2873                NoThrowAttr(Attr.getRange(), S.Context,
   2874                            Attr.getAttributeSpellingListIndex()));
   2875   }
   2876 }
   2877 
   2878 static void handleConstAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   2879   // check the attribute arguments.
   2880   if (Attr.hasParameterOrArguments()) {
   2881     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
   2882     return;
   2883   }
   2884 
   2885   if (ConstAttr *Existing = D->getAttr<ConstAttr>()) {
   2886    if (Existing->getLocation().isInvalid())
   2887      Existing->setRange(Attr.getRange());
   2888   } else {
   2889     D->addAttr(::new (S.Context)
   2890                ConstAttr(Attr.getRange(), S.Context,
   2891                          Attr.getAttributeSpellingListIndex() ));
   2892   }
   2893 }
   2894 
   2895 static void handlePureAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   2896   // check the attribute arguments.
   2897   if (!checkAttributeNumArgs(S, Attr, 0))
   2898     return;
   2899 
   2900   D->addAttr(::new (S.Context)
   2901              PureAttr(Attr.getRange(), S.Context,
   2902                       Attr.getAttributeSpellingListIndex()));
   2903 }
   2904 
   2905 static void handleCleanupAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   2906   if (!Attr.getParameterName()) {
   2907     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
   2908     return;
   2909   }
   2910 
   2911   if (Attr.getNumArgs() != 0) {
   2912     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
   2913     return;
   2914   }
   2915 
   2916   VarDecl *VD = dyn_cast<VarDecl>(D);
   2917 
   2918   if (!VD || !VD->hasLocalStorage()) {
   2919     S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "cleanup";
   2920     return;
   2921   }
   2922 
   2923   // Look up the function
   2924   // FIXME: Lookup probably isn't looking in the right place
   2925   NamedDecl *CleanupDecl
   2926     = S.LookupSingleName(S.TUScope, Attr.getParameterName(),
   2927                          Attr.getParameterLoc(), Sema::LookupOrdinaryName);
   2928   if (!CleanupDecl) {
   2929     S.Diag(Attr.getParameterLoc(), diag::err_attribute_cleanup_arg_not_found) <<
   2930       Attr.getParameterName();
   2931     return;
   2932   }
   2933 
   2934   FunctionDecl *FD = dyn_cast<FunctionDecl>(CleanupDecl);
   2935   if (!FD) {
   2936     S.Diag(Attr.getParameterLoc(),
   2937            diag::err_attribute_cleanup_arg_not_function)
   2938       << Attr.getParameterName();
   2939     return;
   2940   }
   2941 
   2942   if (FD->getNumParams() != 1) {
   2943     S.Diag(Attr.getParameterLoc(),
   2944            diag::err_attribute_cleanup_func_must_take_one_arg)
   2945       << Attr.getParameterName();
   2946     return;
   2947   }
   2948 
   2949   // We're currently more strict than GCC about what function types we accept.
   2950   // If this ever proves to be a problem it should be easy to fix.
   2951   QualType Ty = S.Context.getPointerType(VD->getType());
   2952   QualType ParamTy = FD->getParamDecl(0)->getType();
   2953   if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(),
   2954                                    ParamTy, Ty) != Sema::Compatible) {
   2955     S.Diag(Attr.getParameterLoc(),
   2956            diag::err_attribute_cleanup_func_arg_incompatible_type) <<
   2957       Attr.getParameterName() << ParamTy << Ty;
   2958     return;
   2959   }
   2960 
   2961   D->addAttr(::new (S.Context)
   2962              CleanupAttr(Attr.getRange(), S.Context, FD,
   2963                          Attr.getAttributeSpellingListIndex()));
   2964   S.MarkFunctionReferenced(Attr.getParameterLoc(), FD);
   2965   S.DiagnoseUseOfDecl(FD, Attr.getParameterLoc());
   2966 }
   2967 
   2968 /// Handle __attribute__((format_arg((idx)))) attribute based on
   2969 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
   2970 static void handleFormatArgAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   2971   if (!checkAttributeNumArgs(S, Attr, 1))
   2972     return;
   2973 
   2974   if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
   2975     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   2976       << Attr.getName() << ExpectedFunction;
   2977     return;
   2978   }
   2979 
   2980   // In C++ the implicit 'this' function parameter also counts, and they are
   2981   // counted from one.
   2982   bool HasImplicitThisParam = isInstanceMethod(D);
   2983   unsigned NumArgs  = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
   2984   unsigned FirstIdx = 1;
   2985 
   2986   // checks for the 2nd argument
   2987   Expr *IdxExpr = Attr.getArg(0);
   2988   llvm::APSInt Idx(32);
   2989   if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
   2990       !IdxExpr->isIntegerConstantExpr(Idx, S.Context)) {
   2991     S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
   2992     << "format" << 2 << IdxExpr->getSourceRange();
   2993     return;
   2994   }
   2995 
   2996   if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
   2997     S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
   2998     << "format" << 2 << IdxExpr->getSourceRange();
   2999     return;
   3000   }
   3001 
   3002   unsigned ArgIdx = Idx.getZExtValue() - 1;
   3003 
   3004   if (HasImplicitThisParam) {
   3005     if (ArgIdx == 0) {
   3006       S.Diag(Attr.getLoc(), diag::err_attribute_invalid_implicit_this_argument)
   3007         << "format_arg" << IdxExpr->getSourceRange();
   3008       return;
   3009     }
   3010     ArgIdx--;
   3011   }
   3012 
   3013   // make sure the format string is really a string
   3014   QualType Ty = getFunctionOrMethodArgType(D, ArgIdx);
   3015 
   3016   bool not_nsstring_type = !isNSStringType(Ty, S.Context);
   3017   if (not_nsstring_type &&
   3018       !isCFStringType(Ty, S.Context) &&
   3019       (!Ty->isPointerType() ||
   3020        !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
   3021     // FIXME: Should highlight the actual expression that has the wrong type.
   3022     S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
   3023     << (not_nsstring_type ? "a string type" : "an NSString")
   3024        << IdxExpr->getSourceRange();
   3025     return;
   3026   }
   3027   Ty = getFunctionOrMethodResultType(D);
   3028   if (!isNSStringType(Ty, S.Context) &&
   3029       !isCFStringType(Ty, S.Context) &&
   3030       (!Ty->isPointerType() ||
   3031        !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
   3032     // FIXME: Should highlight the actual expression that has the wrong type.
   3033     S.Diag(Attr.getLoc(), diag::err_format_attribute_result_not)
   3034     << (not_nsstring_type ? "string type" : "NSString")
   3035        << IdxExpr->getSourceRange();
   3036     return;
   3037   }
   3038 
   3039   D->addAttr(::new (S.Context)
   3040              FormatArgAttr(Attr.getRange(), S.Context, Idx.getZExtValue(),
   3041                            Attr.getAttributeSpellingListIndex()));
   3042 }
   3043 
   3044 enum FormatAttrKind {
   3045   CFStringFormat,
   3046   NSStringFormat,
   3047   StrftimeFormat,
   3048   SupportedFormat,
   3049   IgnoredFormat,
   3050   InvalidFormat
   3051 };
   3052 
   3053 /// getFormatAttrKind - Map from format attribute names to supported format
   3054 /// types.
   3055 static FormatAttrKind getFormatAttrKind(StringRef Format) {
   3056   return llvm::StringSwitch<FormatAttrKind>(Format)
   3057     // Check for formats that get handled specially.
   3058     .Case("NSString", NSStringFormat)
   3059     .Case("CFString", CFStringFormat)
   3060     .Case("strftime", StrftimeFormat)
   3061 
   3062     // Otherwise, check for supported formats.
   3063     .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat)
   3064     .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat)
   3065     .Case("kprintf", SupportedFormat) // OpenBSD.
   3066 
   3067     .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat)
   3068     .Default(InvalidFormat);
   3069 }
   3070 
   3071 /// Handle __attribute__((init_priority(priority))) attributes based on
   3072 /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
   3073 static void handleInitPriorityAttr(Sema &S, Decl *D,
   3074                                    const AttributeList &Attr) {
   3075   if (!S.getLangOpts().CPlusPlus) {
   3076     S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
   3077     return;
   3078   }
   3079 
   3080   if (!isa<VarDecl>(D) || S.getCurFunctionOrMethodDecl()) {
   3081     S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
   3082     Attr.setInvalid();
   3083     return;
   3084   }
   3085   QualType T = dyn_cast<VarDecl>(D)->getType();
   3086   if (S.Context.getAsArrayType(T))
   3087     T = S.Context.getBaseElementType(T);
   3088   if (!T->getAs<RecordType>()) {
   3089     S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
   3090     Attr.setInvalid();
   3091     return;
   3092   }
   3093 
   3094   if (Attr.getNumArgs() != 1) {
   3095     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
   3096     Attr.setInvalid();
   3097     return;
   3098   }
   3099   Expr *priorityExpr = Attr.getArg(0);
   3100 
   3101   llvm::APSInt priority(32);
   3102   if (priorityExpr->isTypeDependent() || priorityExpr->isValueDependent() ||
   3103       !priorityExpr->isIntegerConstantExpr(priority, S.Context)) {
   3104     S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
   3105     << "init_priority" << priorityExpr->getSourceRange();
   3106     Attr.setInvalid();
   3107     return;
   3108   }
   3109   unsigned prioritynum = priority.getZExtValue();
   3110   if (prioritynum < 101 || prioritynum > 65535) {
   3111     S.Diag(Attr.getLoc(), diag::err_attribute_argument_outof_range)
   3112     <<  priorityExpr->getSourceRange();
   3113     Attr.setInvalid();
   3114     return;
   3115   }
   3116   D->addAttr(::new (S.Context)
   3117              InitPriorityAttr(Attr.getRange(), S.Context, prioritynum,
   3118                               Attr.getAttributeSpellingListIndex()));
   3119 }
   3120 
   3121 FormatAttr *Sema::mergeFormatAttr(Decl *D, SourceRange Range, StringRef Format,
   3122                                   int FormatIdx, int FirstArg,
   3123                                   unsigned AttrSpellingListIndex) {
   3124   // Check whether we already have an equivalent format attribute.
   3125   for (specific_attr_iterator<FormatAttr>
   3126          i = D->specific_attr_begin<FormatAttr>(),
   3127          e = D->specific_attr_end<FormatAttr>();
   3128        i != e ; ++i) {
   3129     FormatAttr *f = *i;
   3130     if (f->getType() == Format &&
   3131         f->getFormatIdx() == FormatIdx &&
   3132         f->getFirstArg() == FirstArg) {
   3133       // If we don't have a valid location for this attribute, adopt the
   3134       // location.
   3135       if (f->getLocation().isInvalid())
   3136         f->setRange(Range);
   3137       return NULL;
   3138     }
   3139   }
   3140 
   3141   return ::new (Context) FormatAttr(Range, Context, Format, FormatIdx, FirstArg,
   3142                                     AttrSpellingListIndex);
   3143 }
   3144 
   3145 /// Handle __attribute__((format(type,idx,firstarg))) attributes based on
   3146 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
   3147 static void handleFormatAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   3148 
   3149   if (!Attr.getParameterName()) {
   3150     S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
   3151       << "format" << 1;
   3152     return;
   3153   }
   3154 
   3155   if (Attr.getNumArgs() != 2) {
   3156     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 3;
   3157     return;
   3158   }
   3159 
   3160   if (!isFunctionOrMethodOrBlock(D) || !hasFunctionProto(D)) {
   3161     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   3162       << Attr.getName() << ExpectedFunction;
   3163     return;
   3164   }
   3165 
   3166   // In C++ the implicit 'this' function parameter also counts, and they are
   3167   // counted from one.
   3168   bool HasImplicitThisParam = isInstanceMethod(D);
   3169   unsigned NumArgs  = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
   3170   unsigned FirstIdx = 1;
   3171 
   3172   StringRef Format = Attr.getParameterName()->getName();
   3173 
   3174   // Normalize the argument, __foo__ becomes foo.
   3175   if (Format.startswith("__") && Format.endswith("__"))
   3176     Format = Format.substr(2, Format.size() - 4);
   3177 
   3178   // Check for supported formats.
   3179   FormatAttrKind Kind = getFormatAttrKind(Format);
   3180 
   3181   if (Kind == IgnoredFormat)
   3182     return;
   3183 
   3184   if (Kind == InvalidFormat) {
   3185     S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
   3186       << "format" << Attr.getParameterName()->getName();
   3187     return;
   3188   }
   3189 
   3190   // checks for the 2nd argument
   3191   Expr *IdxExpr = Attr.getArg(0);
   3192   llvm::APSInt Idx(32);
   3193   if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
   3194       !IdxExpr->isIntegerConstantExpr(Idx, S.Context)) {
   3195     S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
   3196       << "format" << 2 << IdxExpr->getSourceRange();
   3197     return;
   3198   }
   3199 
   3200   if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
   3201     S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
   3202       << "format" << 2 << IdxExpr->getSourceRange();
   3203     return;
   3204   }
   3205 
   3206   // FIXME: Do we need to bounds check?
   3207   unsigned ArgIdx = Idx.getZExtValue() - 1;
   3208 
   3209   if (HasImplicitThisParam) {
   3210     if (ArgIdx == 0) {
   3211       S.Diag(Attr.getLoc(),
   3212              diag::err_format_attribute_implicit_this_format_string)
   3213         << IdxExpr->getSourceRange();
   3214       return;
   3215     }
   3216     ArgIdx--;
   3217   }
   3218 
   3219   // make sure the format string is really a string
   3220   QualType Ty = getFunctionOrMethodArgType(D, ArgIdx);
   3221 
   3222   if (Kind == CFStringFormat) {
   3223     if (!isCFStringType(Ty, S.Context)) {
   3224       S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
   3225         << "a CFString" << IdxExpr->getSourceRange();
   3226       return;
   3227     }
   3228   } else if (Kind == NSStringFormat) {
   3229     // FIXME: do we need to check if the type is NSString*?  What are the
   3230     // semantics?
   3231     if (!isNSStringType(Ty, S.Context)) {
   3232       // FIXME: Should highlight the actual expression that has the wrong type.
   3233       S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
   3234         << "an NSString" << IdxExpr->getSourceRange();
   3235       return;
   3236     }
   3237   } else if (!Ty->isPointerType() ||
   3238              !Ty->getAs<PointerType>()->getPointeeType()->isCharType()) {
   3239     // FIXME: Should highlight the actual expression that has the wrong type.
   3240     S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
   3241       << "a string type" << IdxExpr->getSourceRange();
   3242     return;
   3243   }
   3244 
   3245   // check the 3rd argument
   3246   Expr *FirstArgExpr = Attr.getArg(1);
   3247   llvm::APSInt FirstArg(32);
   3248   if (FirstArgExpr->isTypeDependent() || FirstArgExpr->isValueDependent() ||
   3249       !FirstArgExpr->isIntegerConstantExpr(FirstArg, S.Context)) {
   3250     S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
   3251       << "format" << 3 << FirstArgExpr->getSourceRange();
   3252     return;
   3253   }
   3254 
   3255   // check if the function is variadic if the 3rd argument non-zero
   3256   if (FirstArg != 0) {
   3257     if (isFunctionOrMethodVariadic(D)) {
   3258       ++NumArgs; // +1 for ...
   3259     } else {
   3260       S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic);
   3261       return;
   3262     }
   3263   }
   3264 
   3265   // strftime requires FirstArg to be 0 because it doesn't read from any
   3266   // variable the input is just the current time + the format string.
   3267   if (Kind == StrftimeFormat) {
   3268     if (FirstArg != 0) {
   3269       S.Diag(Attr.getLoc(), diag::err_format_strftime_third_parameter)
   3270         << FirstArgExpr->getSourceRange();
   3271       return;
   3272     }
   3273   // if 0 it disables parameter checking (to use with e.g. va_list)
   3274   } else if (FirstArg != 0 && FirstArg != NumArgs) {
   3275     S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
   3276       << "format" << 3 << FirstArgExpr->getSourceRange();
   3277     return;
   3278   }
   3279 
   3280   FormatAttr *NewAttr = S.mergeFormatAttr(D, Attr.getRange(), Format,
   3281                                           Idx.getZExtValue(),
   3282                                           FirstArg.getZExtValue(),
   3283                                           Attr.getAttributeSpellingListIndex());
   3284   if (NewAttr)
   3285     D->addAttr(NewAttr);
   3286 }
   3287 
   3288 static void handleTransparentUnionAttr(Sema &S, Decl *D,
   3289                                        const AttributeList &Attr) {
   3290   // check the attribute arguments.
   3291   if (!checkAttributeNumArgs(S, Attr, 0))
   3292     return;
   3293 
   3294 
   3295   // Try to find the underlying union declaration.
   3296   RecordDecl *RD = 0;
   3297   TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D);
   3298   if (TD && TD->getUnderlyingType()->isUnionType())
   3299     RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
   3300   else
   3301     RD = dyn_cast<RecordDecl>(D);
   3302 
   3303   if (!RD || !RD->isUnion()) {
   3304     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   3305       << Attr.getName() << ExpectedUnion;
   3306     return;
   3307   }
   3308 
   3309   if (!RD->isCompleteDefinition()) {
   3310     S.Diag(Attr.getLoc(),
   3311         diag::warn_transparent_union_attribute_not_definition);
   3312     return;
   3313   }
   3314 
   3315   RecordDecl::field_iterator Field = RD->field_begin(),
   3316                           FieldEnd = RD->field_end();
   3317   if (Field == FieldEnd) {
   3318     S.Diag(Attr.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
   3319     return;
   3320   }
   3321 
   3322   FieldDecl *FirstField = *Field;
   3323   QualType FirstType = FirstField->getType();
   3324   if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
   3325     S.Diag(FirstField->getLocation(),
   3326            diag::warn_transparent_union_attribute_floating)
   3327       << FirstType->isVectorType() << FirstType;
   3328     return;
   3329   }
   3330 
   3331   uint64_t FirstSize = S.Context.getTypeSize(FirstType);
   3332   uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
   3333   for (; Field != FieldEnd; ++Field) {
   3334     QualType FieldType = Field->getType();
   3335     if (S.Context.getTypeSize(FieldType) != FirstSize ||
   3336         S.Context.getTypeAlign(FieldType) != FirstAlign) {
   3337       // Warn if we drop the attribute.
   3338       bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
   3339       unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType)
   3340                                  : S.Context.getTypeAlign(FieldType);
   3341       S.Diag(Field->getLocation(),
   3342           diag::warn_transparent_union_attribute_field_size_align)
   3343         << isSize << Field->getDeclName() << FieldBits;
   3344       unsigned FirstBits = isSize? FirstSize : FirstAlign;
   3345       S.Diag(FirstField->getLocation(),
   3346              diag::note_transparent_union_first_field_size_align)
   3347         << isSize << FirstBits;
   3348       return;
   3349     }
   3350   }
   3351 
   3352   RD->addAttr(::new (S.Context)
   3353               TransparentUnionAttr(Attr.getRange(), S.Context,
   3354                                    Attr.getAttributeSpellingListIndex()));
   3355 }
   3356 
   3357 static void handleAnnotateAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   3358   // check the attribute arguments.
   3359   if (!checkAttributeNumArgs(S, Attr, 1))
   3360     return;
   3361 
   3362   Expr *ArgExpr = Attr.getArg(0);
   3363   StringLiteral *SE = dyn_cast<StringLiteral>(ArgExpr);
   3364 
   3365   // Make sure that there is a string literal as the annotation's single
   3366   // argument.
   3367   if (!SE) {
   3368     S.Diag(ArgExpr->getLocStart(), diag::err_attribute_not_string) <<"annotate";
   3369     return;
   3370   }
   3371 
   3372   // Don't duplicate annotations that are already set.
   3373   for (specific_attr_iterator<AnnotateAttr>
   3374        i = D->specific_attr_begin<AnnotateAttr>(),
   3375        e = D->specific_attr_end<AnnotateAttr>(); i != e; ++i) {
   3376       if ((*i)->getAnnotation() == SE->getString())
   3377           return;
   3378   }
   3379 
   3380   D->addAttr(::new (S.Context)
   3381              AnnotateAttr(Attr.getRange(), S.Context, SE->getString(),
   3382                           Attr.getAttributeSpellingListIndex()));
   3383 }
   3384 
   3385 static void handleAlignedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   3386   // check the attribute arguments.
   3387   if (Attr.getNumArgs() > 1) {
   3388     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
   3389     return;
   3390   }
   3391 
   3392   if (Attr.getNumArgs() == 0) {
   3393     D->addAttr(::new (S.Context) AlignedAttr(Attr.getRange(), S.Context,
   3394                true, 0, Attr.getAttributeSpellingListIndex()));
   3395     return;
   3396   }
   3397 
   3398   Expr *E = Attr.getArg(0);
   3399   if (Attr.isPackExpansion() && !E->containsUnexpandedParameterPack()) {
   3400     S.Diag(Attr.getEllipsisLoc(),
   3401            diag::err_pack_expansion_without_parameter_packs);
   3402     return;
   3403   }
   3404 
   3405   if (!Attr.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E))
   3406     return;
   3407 
   3408   S.AddAlignedAttr(Attr.getRange(), D, E, Attr.getAttributeSpellingListIndex(),
   3409                    Attr.isPackExpansion());
   3410 }
   3411 
   3412 void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E,
   3413                           unsigned SpellingListIndex, bool IsPackExpansion) {
   3414   AlignedAttr TmpAttr(AttrRange, Context, true, E, SpellingListIndex);
   3415   SourceLocation AttrLoc = AttrRange.getBegin();
   3416 
   3417   // C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
   3418   if (TmpAttr.isAlignas()) {
   3419     // C++11 [dcl.align]p1:
   3420     //   An alignment-specifier may be applied to a variable or to a class
   3421     //   data member, but it shall not be applied to a bit-field, a function
   3422     //   parameter, the formal parameter of a catch clause, or a variable
   3423     //   declared with the register storage class specifier. An
   3424     //   alignment-specifier may also be applied to the declaration of a class
   3425     //   or enumeration type.
   3426     // C11 6.7.5/2:
   3427     //   An alignment attribute shall not be specified in a declaration of
   3428     //   a typedef, or a bit-field, or a function, or a parameter, or an
   3429     //   object declared with the register storage-class specifier.
   3430     int DiagKind = -1;
   3431     if (isa<ParmVarDecl>(D)) {
   3432       DiagKind = 0;
   3433     } else if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
   3434       if (VD->getStorageClass() == SC_Register)
   3435         DiagKind = 1;
   3436       if (VD->isExceptionVariable())
   3437         DiagKind = 2;
   3438     } else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
   3439       if (FD->isBitField())
   3440         DiagKind = 3;
   3441     } else if (!isa<TagDecl>(D)) {
   3442       Diag(AttrLoc, diag::err_attribute_wrong_decl_type)
   3443         << (TmpAttr.isC11() ? "'_Alignas'" : "'alignas'")
   3444         << (TmpAttr.isC11() ? ExpectedVariableOrField
   3445                             : ExpectedVariableFieldOrTag);
   3446       return;
   3447     }
   3448     if (DiagKind != -1) {
   3449       Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type)
   3450         << TmpAttr.isC11() << DiagKind;
   3451       return;
   3452     }
   3453   }
   3454 
   3455   if (E->isTypeDependent() || E->isValueDependent()) {
   3456     // Save dependent expressions in the AST to be instantiated.
   3457     AlignedAttr *AA = ::new (Context) AlignedAttr(TmpAttr);
   3458     AA->setPackExpansion(IsPackExpansion);
   3459     D->addAttr(AA);
   3460     return;
   3461   }
   3462 
   3463   // FIXME: Cache the number on the Attr object?
   3464   llvm::APSInt Alignment(32);
   3465   ExprResult ICE
   3466     = VerifyIntegerConstantExpression(E, &Alignment,
   3467         diag::err_aligned_attribute_argument_not_int,
   3468         /*AllowFold*/ false);
   3469   if (ICE.isInvalid())
   3470     return;
   3471 
   3472   // C++11 [dcl.align]p2:
   3473   //   -- if the constant expression evaluates to zero, the alignment
   3474   //      specifier shall have no effect
   3475   // C11 6.7.5p6:
   3476   //   An alignment specification of zero has no effect.
   3477   if (!(TmpAttr.isAlignas() && !Alignment) &&
   3478       !llvm::isPowerOf2_64(Alignment.getZExtValue())) {
   3479     Diag(AttrLoc, diag::err_attribute_aligned_not_power_of_two)
   3480       << E->getSourceRange();
   3481     return;
   3482   }
   3483 
   3484   if (TmpAttr.isDeclspec()) {
   3485     // We've already verified it's a power of 2, now let's make sure it's
   3486     // 8192 or less.
   3487     if (Alignment.getZExtValue() > 8192) {
   3488       Diag(AttrLoc, diag::err_attribute_aligned_greater_than_8192)
   3489         << E->getSourceRange();
   3490       return;
   3491     }
   3492   }
   3493 
   3494   AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, true,
   3495                                                 ICE.take(), SpellingListIndex);
   3496   AA->setPackExpansion(IsPackExpansion);
   3497   D->addAttr(AA);
   3498 }
   3499 
   3500 void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, TypeSourceInfo *TS,
   3501                           unsigned SpellingListIndex, bool IsPackExpansion) {
   3502   // FIXME: Cache the number on the Attr object if non-dependent?
   3503   // FIXME: Perform checking of type validity
   3504   AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, false, TS,
   3505                                                 SpellingListIndex);
   3506   AA->setPackExpansion(IsPackExpansion);
   3507   D->addAttr(AA);
   3508 }
   3509 
   3510 void Sema::CheckAlignasUnderalignment(Decl *D) {
   3511   assert(D->hasAttrs() && "no attributes on decl");
   3512 
   3513   QualType Ty;
   3514   if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
   3515     Ty = VD->getType();
   3516   else
   3517     Ty = Context.getTagDeclType(cast<TagDecl>(D));
   3518   if (Ty->isDependentType() || Ty->isIncompleteType())
   3519     return;
   3520 
   3521   // C++11 [dcl.align]p5, C11 6.7.5/4:
   3522   //   The combined effect of all alignment attributes in a declaration shall
   3523   //   not specify an alignment that is less strict than the alignment that
   3524   //   would otherwise be required for the entity being declared.
   3525   AlignedAttr *AlignasAttr = 0;
   3526   unsigned Align = 0;
   3527   for (specific_attr_iterator<AlignedAttr>
   3528          I = D->specific_attr_begin<AlignedAttr>(),
   3529          E = D->specific_attr_end<AlignedAttr>(); I != E; ++I) {
   3530     if (I->isAlignmentDependent())
   3531       return;
   3532     if (I->isAlignas())
   3533       AlignasAttr = *I;
   3534     Align = std::max(Align, I->getAlignment(Context));
   3535   }
   3536 
   3537   if (AlignasAttr && Align) {
   3538     CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align);
   3539     CharUnits NaturalAlign = Context.getTypeAlignInChars(Ty);
   3540     if (NaturalAlign > RequestedAlign)
   3541       Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned)
   3542         << Ty << (unsigned)NaturalAlign.getQuantity();
   3543   }
   3544 }
   3545 
   3546 /// handleModeAttr - This attribute modifies the width of a decl with primitive
   3547 /// type.
   3548 ///
   3549 /// Despite what would be logical, the mode attribute is a decl attribute, not a
   3550 /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
   3551 /// HImode, not an intermediate pointer.
   3552 static void handleModeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   3553   // This attribute isn't documented, but glibc uses it.  It changes
   3554   // the width of an int or unsigned int to the specified size.
   3555 
   3556   // Check that there aren't any arguments
   3557   if (!checkAttributeNumArgs(S, Attr, 0))
   3558     return;
   3559 
   3560 
   3561   IdentifierInfo *Name = Attr.getParameterName();
   3562   if (!Name) {
   3563     S.Diag(Attr.getLoc(), diag::err_attribute_missing_parameter_name);
   3564     return;
   3565   }
   3566 
   3567   StringRef Str = Attr.getParameterName()->getName();
   3568 
   3569   // Normalize the attribute name, __foo__ becomes foo.
   3570   if (Str.startswith("__") && Str.endswith("__"))
   3571     Str = Str.substr(2, Str.size() - 4);
   3572 
   3573   unsigned DestWidth = 0;
   3574   bool IntegerMode = true;
   3575   bool ComplexMode = false;
   3576   switch (Str.size()) {
   3577   case 2:
   3578     switch (Str[0]) {
   3579     case 'Q': DestWidth = 8; break;
   3580     case 'H': DestWidth = 16; break;
   3581     case 'S': DestWidth = 32; break;
   3582     case 'D': DestWidth = 64; break;
   3583     case 'X': DestWidth = 96; break;
   3584     case 'T': DestWidth = 128; break;
   3585     }
   3586     if (Str[1] == 'F') {
   3587       IntegerMode = false;
   3588     } else if (Str[1] == 'C') {
   3589       IntegerMode = false;
   3590       ComplexMode = true;
   3591     } else if (Str[1] != 'I') {
   3592       DestWidth = 0;
   3593     }
   3594     break;
   3595   case 4:
   3596     // FIXME: glibc uses 'word' to define register_t; this is narrower than a
   3597     // pointer on PIC16 and other embedded platforms.
   3598     if (Str == "word")
   3599       DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
   3600     else if (Str == "byte")
   3601       DestWidth = S.Context.getTargetInfo().getCharWidth();
   3602     break;
   3603   case 7:
   3604     if (Str == "pointer")
   3605       DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
   3606     break;
   3607   case 11:
   3608     if (Str == "unwind_word")
   3609       DestWidth = S.Context.getTargetInfo().getUnwindWordWidth();
   3610     break;
   3611   }
   3612 
   3613   QualType OldTy;
   3614   if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
   3615     OldTy = TD->getUnderlyingType();
   3616   else if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
   3617     OldTy = VD->getType();
   3618   else {
   3619     S.Diag(D->getLocation(), diag::err_attr_wrong_decl)
   3620       << "mode" << Attr.getRange();
   3621     return;
   3622   }
   3623 
   3624   if (!OldTy->getAs<BuiltinType>() && !OldTy->isComplexType())
   3625     S.Diag(Attr.getLoc(), diag::err_mode_not_primitive);
   3626   else if (IntegerMode) {
   3627     if (!OldTy->isIntegralOrEnumerationType())
   3628       S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
   3629   } else if (ComplexMode) {
   3630     if (!OldTy->isComplexType())
   3631       S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
   3632   } else {
   3633     if (!OldTy->isFloatingType())
   3634       S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
   3635   }
   3636 
   3637   // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
   3638   // and friends, at least with glibc.
   3639   // FIXME: Make sure 32/64-bit integers don't get defined to types of the wrong
   3640   // width on unusual platforms.
   3641   // FIXME: Make sure floating-point mappings are accurate
   3642   // FIXME: Support XF and TF types
   3643   QualType NewTy;
   3644   switch (DestWidth) {
   3645   case 0:
   3646     S.Diag(Attr.getLoc(), diag::err_unknown_machine_mode) << Name;
   3647     return;
   3648   default:
   3649     S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
   3650     return;
   3651   case 8:
   3652     if (!IntegerMode) {
   3653       S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
   3654       return;
   3655     }
   3656     if (OldTy->isSignedIntegerType())
   3657       NewTy = S.Context.SignedCharTy;
   3658     else
   3659       NewTy = S.Context.UnsignedCharTy;
   3660     break;
   3661   case 16:
   3662     if (!IntegerMode) {
   3663       S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
   3664       return;
   3665     }
   3666     if (OldTy->isSignedIntegerType())
   3667       NewTy = S.Context.ShortTy;
   3668     else
   3669       NewTy = S.Context.UnsignedShortTy;
   3670     break;
   3671   case 32:
   3672     if (!IntegerMode)
   3673       NewTy = S.Context.FloatTy;
   3674     else if (OldTy->isSignedIntegerType())
   3675       NewTy = S.Context.IntTy;
   3676     else
   3677       NewTy = S.Context.UnsignedIntTy;
   3678     break;
   3679   case 64:
   3680     if (!IntegerMode)
   3681       NewTy = S.Context.DoubleTy;
   3682     else if (OldTy->isSignedIntegerType())
   3683       if (S.Context.getTargetInfo().getLongWidth() == 64)
   3684         NewTy = S.Context.LongTy;
   3685       else
   3686         NewTy = S.Context.LongLongTy;
   3687     else
   3688       if (S.Context.getTargetInfo().getLongWidth() == 64)
   3689         NewTy = S.Context.UnsignedLongTy;
   3690       else
   3691         NewTy = S.Context.UnsignedLongLongTy;
   3692     break;
   3693   case 96:
   3694     NewTy = S.Context.LongDoubleTy;
   3695     break;
   3696   case 128:
   3697     if (!IntegerMode) {
   3698       S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
   3699       return;
   3700     }
   3701     if (OldTy->isSignedIntegerType())
   3702       NewTy = S.Context.Int128Ty;
   3703     else
   3704       NewTy = S.Context.UnsignedInt128Ty;
   3705     break;
   3706   }
   3707 
   3708   if (ComplexMode) {
   3709     NewTy = S.Context.getComplexType(NewTy);
   3710   }
   3711 
   3712   // Install the new type.
   3713   if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
   3714     // FIXME: preserve existing source info.
   3715     TD->setTypeSourceInfo(S.Context.getTrivialTypeSourceInfo(NewTy));
   3716   } else
   3717     cast<ValueDecl>(D)->setType(NewTy);
   3718 }
   3719 
   3720 static void handleNoDebugAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   3721   // check the attribute arguments.
   3722   if (!checkAttributeNumArgs(S, Attr, 0))
   3723     return;
   3724 
   3725   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   3726     if (!VD->hasGlobalStorage())
   3727       S.Diag(Attr.getLoc(),
   3728              diag::warn_attribute_requires_functions_or_static_globals)
   3729         << Attr.getName();
   3730   } else if (!isFunctionOrMethod(D)) {
   3731     S.Diag(Attr.getLoc(),
   3732            diag::warn_attribute_requires_functions_or_static_globals)
   3733       << Attr.getName();
   3734     return;
   3735   }
   3736 
   3737   D->addAttr(::new (S.Context)
   3738              NoDebugAttr(Attr.getRange(), S.Context,
   3739                          Attr.getAttributeSpellingListIndex()));
   3740 }
   3741 
   3742 static void handleNoInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   3743   // check the attribute arguments.
   3744   if (!checkAttributeNumArgs(S, Attr, 0))
   3745     return;
   3746 
   3747 
   3748   if (!isa<FunctionDecl>(D)) {
   3749     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   3750       << Attr.getName() << ExpectedFunction;
   3751     return;
   3752   }
   3753 
   3754   D->addAttr(::new (S.Context)
   3755              NoInlineAttr(Attr.getRange(), S.Context,
   3756              Attr.getAttributeSpellingListIndex()));
   3757 }
   3758 
   3759 static void handleNoInstrumentFunctionAttr(Sema &S, Decl *D,
   3760                                            const AttributeList &Attr) {
   3761   // check the attribute arguments.
   3762   if (!checkAttributeNumArgs(S, Attr, 0))
   3763     return;
   3764 
   3765 
   3766   if (!isa<FunctionDecl>(D)) {
   3767     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   3768       << Attr.getName() << ExpectedFunction;
   3769     return;
   3770   }
   3771 
   3772   D->addAttr(::new (S.Context)
   3773              NoInstrumentFunctionAttr(Attr.getRange(), S.Context,
   3774                                       Attr.getAttributeSpellingListIndex()));
   3775 }
   3776 
   3777 static void handleKernelAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   3778   if (S.LangOpts.Renderscript) {
   3779     D->addAttr(::new (S.Context) KernelAttr(Attr.getRange(), S.Context));
   3780   } else {
   3781     S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "kernel";
   3782   }
   3783 }
   3784 
   3785 static void handleConstantAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   3786   if (S.LangOpts.CUDA) {
   3787     // check the attribute arguments.
   3788     if (Attr.hasParameterOrArguments()) {
   3789       S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
   3790       return;
   3791     }
   3792 
   3793     if (!isa<VarDecl>(D)) {
   3794       S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   3795         << Attr.getName() << ExpectedVariable;
   3796       return;
   3797     }
   3798 
   3799     D->addAttr(::new (S.Context)
   3800                CUDAConstantAttr(Attr.getRange(), S.Context,
   3801                                 Attr.getAttributeSpellingListIndex()));
   3802   } else {
   3803     S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "constant";
   3804   }
   3805 }
   3806 
   3807 static void handleDeviceAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   3808   if (S.LangOpts.CUDA) {
   3809     // check the attribute arguments.
   3810     if (Attr.getNumArgs() != 0) {
   3811       S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
   3812       return;
   3813     }
   3814 
   3815     if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D)) {
   3816       S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   3817         << Attr.getName() << ExpectedVariableOrFunction;
   3818       return;
   3819     }
   3820 
   3821     D->addAttr(::new (S.Context)
   3822                CUDADeviceAttr(Attr.getRange(), S.Context,
   3823                               Attr.getAttributeSpellingListIndex()));
   3824   } else {
   3825     S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "device";
   3826   }
   3827 }
   3828 
   3829 static void handleGlobalAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   3830   if (S.LangOpts.CUDA) {
   3831     // check the attribute arguments.
   3832     if (!checkAttributeNumArgs(S, Attr, 0))
   3833       return;
   3834 
   3835     if (!isa<FunctionDecl>(D)) {
   3836       S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   3837         << Attr.getName() << ExpectedFunction;
   3838       return;
   3839     }
   3840 
   3841     FunctionDecl *FD = cast<FunctionDecl>(D);
   3842     if (!FD->getResultType()->isVoidType()) {
   3843       TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc().IgnoreParens();
   3844       if (FunctionTypeLoc FTL = TL.getAs<FunctionTypeLoc>()) {
   3845         S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
   3846           << FD->getType()
   3847           << FixItHint::CreateReplacement(FTL.getResultLoc().getSourceRange(),
   3848                                           "void");
   3849       } else {
   3850         S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
   3851           << FD->getType();
   3852       }
   3853       return;
   3854     }
   3855 
   3856     D->addAttr(::new (S.Context)
   3857                CUDAGlobalAttr(Attr.getRange(), S.Context,
   3858                               Attr.getAttributeSpellingListIndex()));
   3859   } else {
   3860     S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "global";
   3861   }
   3862 }
   3863 
   3864 static void handleHostAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   3865   if (S.LangOpts.CUDA) {
   3866     // check the attribute arguments.
   3867     if (!checkAttributeNumArgs(S, Attr, 0))
   3868       return;
   3869 
   3870 
   3871     if (!isa<FunctionDecl>(D)) {
   3872       S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   3873         << Attr.getName() << ExpectedFunction;
   3874       return;
   3875     }
   3876 
   3877     D->addAttr(::new (S.Context)
   3878                CUDAHostAttr(Attr.getRange(), S.Context,
   3879                             Attr.getAttributeSpellingListIndex()));
   3880   } else {
   3881     S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "host";
   3882   }
   3883 }
   3884 
   3885 static void handleSharedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   3886   if (S.LangOpts.CUDA) {
   3887     // check the attribute arguments.
   3888     if (!checkAttributeNumArgs(S, Attr, 0))
   3889       return;
   3890 
   3891     if (!isa<VarDecl>(D)) {
   3892       S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   3893         << Attr.getName() << ExpectedVariable;
   3894       return;
   3895     }
   3896 
   3897     D->addAttr(::new (S.Context)
   3898                CUDASharedAttr(Attr.getRange(), S.Context,
   3899                               Attr.getAttributeSpellingListIndex()));
   3900   } else {
   3901     S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "shared";
   3902   }
   3903 }
   3904 
   3905 static void handleGNUInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   3906   // check the attribute arguments.
   3907   if (!checkAttributeNumArgs(S, Attr, 0))
   3908     return;
   3909 
   3910   FunctionDecl *Fn = dyn_cast<FunctionDecl>(D);
   3911   if (Fn == 0) {
   3912     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   3913       << Attr.getName() << ExpectedFunction;
   3914     return;
   3915   }
   3916 
   3917   if (!Fn->isInlineSpecified()) {
   3918     S.Diag(Attr.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
   3919     return;
   3920   }
   3921 
   3922   D->addAttr(::new (S.Context)
   3923              GNUInlineAttr(Attr.getRange(), S.Context,
   3924                            Attr.getAttributeSpellingListIndex()));
   3925 }
   3926 
   3927 static void handleCallConvAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   3928   if (hasDeclarator(D)) return;
   3929 
   3930   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
   3931   // Diagnostic is emitted elsewhere: here we store the (valid) Attr
   3932   // in the Decl node for syntactic reasoning, e.g., pretty-printing.
   3933   CallingConv CC;
   3934   if (S.CheckCallingConvAttr(Attr, CC, FD))
   3935     return;
   3936 
   3937   if (!isa<ObjCMethodDecl>(D)) {
   3938     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   3939       << Attr.getName() << ExpectedFunctionOrMethod;
   3940     return;
   3941   }
   3942 
   3943   switch (Attr.getKind()) {
   3944   case AttributeList::AT_FastCall:
   3945     D->addAttr(::new (S.Context)
   3946                FastCallAttr(Attr.getRange(), S.Context,
   3947                             Attr.getAttributeSpellingListIndex()));
   3948     return;
   3949   case AttributeList::AT_StdCall:
   3950     D->addAttr(::new (S.Context)
   3951                StdCallAttr(Attr.getRange(), S.Context,
   3952                            Attr.getAttributeSpellingListIndex()));
   3953     return;
   3954   case AttributeList::AT_ThisCall:
   3955     D->addAttr(::new (S.Context)
   3956                ThisCallAttr(Attr.getRange(), S.Context,
   3957                             Attr.getAttributeSpellingListIndex()));
   3958     return;
   3959   case AttributeList::AT_CDecl:
   3960     D->addAttr(::new (S.Context)
   3961                CDeclAttr(Attr.getRange(), S.Context,
   3962                          Attr.getAttributeSpellingListIndex()));
   3963     return;
   3964   case AttributeList::AT_Pascal:
   3965     D->addAttr(::new (S.Context)
   3966                PascalAttr(Attr.getRange(), S.Context,
   3967                           Attr.getAttributeSpellingListIndex()));
   3968     return;
   3969   case AttributeList::AT_Pcs: {
   3970     PcsAttr::PCSType PCS;
   3971     switch (CC) {
   3972     case CC_AAPCS:
   3973       PCS = PcsAttr::AAPCS;
   3974       break;
   3975     case CC_AAPCS_VFP:
   3976       PCS = PcsAttr::AAPCS_VFP;
   3977       break;
   3978     default:
   3979       llvm_unreachable("unexpected calling convention in pcs attribute");
   3980     }
   3981 
   3982     D->addAttr(::new (S.Context)
   3983                PcsAttr(Attr.getRange(), S.Context, PCS,
   3984                        Attr.getAttributeSpellingListIndex()));
   3985     return;
   3986   }
   3987   case AttributeList::AT_PnaclCall:
   3988     D->addAttr(::new (S.Context)
   3989                PnaclCallAttr(Attr.getRange(), S.Context,
   3990                              Attr.getAttributeSpellingListIndex()));
   3991     return;
   3992   case AttributeList::AT_IntelOclBicc:
   3993     D->addAttr(::new (S.Context)
   3994                IntelOclBiccAttr(Attr.getRange(), S.Context,
   3995                                 Attr.getAttributeSpellingListIndex()));
   3996     return;
   3997 
   3998   default:
   3999     llvm_unreachable("unexpected attribute kind");
   4000   }
   4001 }
   4002 
   4003 static void handleOpenCLKernelAttr(Sema &S, Decl *D, const AttributeList &Attr){
   4004   assert(!Attr.isInvalid());
   4005   D->addAttr(::new (S.Context) OpenCLKernelAttr(Attr.getRange(), S.Context));
   4006 }
   4007 
   4008 bool Sema::CheckCallingConvAttr(const AttributeList &attr, CallingConv &CC,
   4009                                 const FunctionDecl *FD) {
   4010   if (attr.isInvalid())
   4011     return true;
   4012 
   4013   unsigned ReqArgs = attr.getKind() == AttributeList::AT_Pcs ? 1 : 0;
   4014   if (attr.getNumArgs() != ReqArgs || attr.getParameterName()) {
   4015     Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << ReqArgs;
   4016     attr.setInvalid();
   4017     return true;
   4018   }
   4019 
   4020   // TODO: diagnose uses of these conventions on the wrong target. Or, better
   4021   // move to TargetAttributesSema one day.
   4022   switch (attr.getKind()) {
   4023   case AttributeList::AT_CDecl: CC = CC_C; break;
   4024   case AttributeList::AT_FastCall: CC = CC_X86FastCall; break;
   4025   case AttributeList::AT_StdCall: CC = CC_X86StdCall; break;
   4026   case AttributeList::AT_ThisCall: CC = CC_X86ThisCall; break;
   4027   case AttributeList::AT_Pascal: CC = CC_X86Pascal; break;
   4028   case AttributeList::AT_Pcs: {
   4029     Expr *Arg = attr.getArg(0);
   4030     StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
   4031     if (!Str || !Str->isAscii()) {
   4032       Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
   4033         << "pcs" << 1;
   4034       attr.setInvalid();
   4035       return true;
   4036     }
   4037 
   4038     StringRef StrRef = Str->getString();
   4039     if (StrRef == "aapcs") {
   4040       CC = CC_AAPCS;
   4041       break;
   4042     } else if (StrRef == "aapcs-vfp") {
   4043       CC = CC_AAPCS_VFP;
   4044       break;
   4045     }
   4046 
   4047     attr.setInvalid();
   4048     Diag(attr.getLoc(), diag::err_invalid_pcs);
   4049     return true;
   4050   }
   4051   case AttributeList::AT_PnaclCall: CC = CC_PnaclCall; break;
   4052   case AttributeList::AT_IntelOclBicc: CC = CC_IntelOclBicc; break;
   4053   default: llvm_unreachable("unexpected attribute kind");
   4054   }
   4055 
   4056   const TargetInfo &TI = Context.getTargetInfo();
   4057   TargetInfo::CallingConvCheckResult A = TI.checkCallingConvention(CC);
   4058   if (A == TargetInfo::CCCR_Warning) {
   4059     Diag(attr.getLoc(), diag::warn_cconv_ignored) << attr.getName();
   4060 
   4061     TargetInfo::CallingConvMethodType MT = TargetInfo::CCMT_Unknown;
   4062     if (FD)
   4063       MT = FD->isCXXInstanceMember() ? TargetInfo::CCMT_Member :
   4064                                     TargetInfo::CCMT_NonMember;
   4065     CC = TI.getDefaultCallingConv(MT);
   4066   }
   4067 
   4068   return false;
   4069 }
   4070 
   4071 static void handleRegparmAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   4072   if (hasDeclarator(D)) return;
   4073 
   4074   unsigned numParams;
   4075   if (S.CheckRegparmAttr(Attr, numParams))
   4076     return;
   4077 
   4078   if (!isa<ObjCMethodDecl>(D)) {
   4079     S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   4080       << Attr.getName() << ExpectedFunctionOrMethod;
   4081     return;
   4082   }
   4083 
   4084   D->addAttr(::new (S.Context)
   4085              RegparmAttr(Attr.getRange(), S.Context, numParams,
   4086                          Attr.getAttributeSpellingListIndex()));
   4087 }
   4088 
   4089 /// Checks a regparm attribute, returning true if it is ill-formed and
   4090 /// otherwise setting numParams to the appropriate value.
   4091 bool Sema::CheckRegparmAttr(const AttributeList &Attr, unsigned &numParams) {
   4092   if (Attr.isInvalid())
   4093     return true;
   4094 
   4095   if (Attr.getNumArgs() != 1) {
   4096     Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
   4097     Attr.setInvalid();
   4098     return true;
   4099   }
   4100 
   4101   Expr *NumParamsExpr = Attr.getArg(0);
   4102   llvm::APSInt NumParams(32);
   4103   if (NumParamsExpr->isTypeDependent() || NumParamsExpr->isValueDependent() ||
   4104       !NumParamsExpr->isIntegerConstantExpr(NumParams, Context)) {
   4105     Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
   4106       << "regparm" << NumParamsExpr->getSourceRange();
   4107     Attr.setInvalid();
   4108     return true;
   4109   }
   4110 
   4111   if (Context.getTargetInfo().getRegParmMax() == 0) {
   4112     Diag(Attr.getLoc(), diag::err_attribute_regparm_wrong_platform)
   4113       << NumParamsExpr->getSourceRange();
   4114     Attr.setInvalid();
   4115     return true;
   4116   }
   4117 
   4118   numParams = NumParams.getZExtValue();
   4119   if (numParams > Context.getTargetInfo().getRegParmMax()) {
   4120     Diag(Attr.getLoc(), diag::err_attribute_regparm_invalid_number)
   4121       << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
   4122     Attr.setInvalid();
   4123     return true;
   4124   }
   4125 
   4126   return false;
   4127 }
   4128 
   4129 static void handleLaunchBoundsAttr(Sema &S, Decl *D, const AttributeList &Attr){
   4130   if (S.LangOpts.CUDA) {
   4131     // check the attribute arguments.
   4132     if (Attr.getNumArgs() != 1 && Attr.getNumArgs() != 2) {
   4133       // FIXME: 0 is not okay.
   4134       S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 2;
   4135       return;
   4136     }
   4137 
   4138     if (!isFunctionOrMethod(D)) {
   4139       S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
   4140         << Attr.getName() << ExpectedFunctionOrMethod;
   4141       return;
   4142     }
   4143 
   4144     Expr *MaxThreadsExpr = Attr.getArg(0);
   4145     llvm::APSInt MaxThreads(32);
   4146     if (MaxThreadsExpr->isTypeDependent() ||
   4147         MaxThreadsExpr->isValueDependent() ||
   4148         !MaxThreadsExpr->isIntegerConstantExpr(MaxThreads, S.Context)) {
   4149       S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
   4150         << "launch_bounds" << 1 << MaxThreadsExpr->getSourceRange();
   4151       return;
   4152     }
   4153 
   4154     llvm::APSInt MinBlocks(32);
   4155     if (Attr.getNumArgs() > 1) {
   4156       Expr *MinBlocksExpr = Attr.getArg(1);
   4157       if (MinBlocksExpr->isTypeDependent() ||
   4158           MinBlocksExpr->isValueDependent() ||
   4159           !MinBlocksExpr->isIntegerConstantExpr(MinBlocks, S.Context)) {
   4160         S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
   4161           << "launch_bounds" << 2 << MinBlocksExpr->getSourceRange();
   4162         return;
   4163       }
   4164     }
   4165 
   4166     D->addAttr(::new (S.Context)
   4167                CUDALaunchBoundsAttr(Attr.getRange(), S.Context,
   4168                                     MaxThreads.getZExtValue(),
   4169                                     MinBlocks.getZExtValue(),
   4170                                     Attr.getAttributeSpellingListIndex()));
   4171   } else {
   4172     S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "launch_bounds";
   4173   }
   4174 }
   4175 
   4176 static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D,
   4177                                           const AttributeList &Attr) {
   4178   StringRef AttrName = Attr.getName()->getName();
   4179   if (!Attr.getParameterName()) {
   4180     S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_identifier)
   4181       << Attr.getName() << /* arg num = */ 1;
   4182     return;
   4183   }
   4184 
   4185   if (Attr.getNumArgs() != 2) {
   4186     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
   4187       << /* required args = */ 3;
   4188     return;
   4189   }
   4190 
   4191   IdentifierInfo *ArgumentKind = Attr.getParameterName();
   4192 
   4193   if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
   4194     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
   4195       << Attr.getName() << ExpectedFunctionOrMethod;
   4196     return;
   4197   }
   4198 
   4199   uint64_t ArgumentIdx;
   4200   if (!checkFunctionOrMethodArgumentIndex(S, D, AttrName,
   4201                                           Attr.getLoc(), 2,
   4202                                           Attr.getArg(0), ArgumentIdx))
   4203     return;
   4204 
   4205   uint64_t TypeTagIdx;
   4206   if (!checkFunctionOrMethodArgumentIndex(S, D, AttrName,
   4207                                           Attr.getLoc(), 3,
   4208                                           Attr.getArg(1), TypeTagIdx))
   4209     return;
   4210 
   4211   bool IsPointer = (AttrName == "pointer_with_type_tag");
   4212   if (IsPointer) {
   4213     // Ensure that buffer has a pointer type.
   4214     QualType BufferTy = getFunctionOrMethodArgType(D, ArgumentIdx);
   4215     if (!BufferTy->isPointerType()) {
   4216       S.Diag(Attr.getLoc(), diag::err_attribute_pointers_only)
   4217         << AttrName;
   4218     }
   4219   }
   4220 
   4221   D->addAttr(::new (S.Context)
   4222              ArgumentWithTypeTagAttr(Attr.getRange(), S.Context, ArgumentKind,
   4223                                      ArgumentIdx, TypeTagIdx, IsPointer,
   4224                                      Attr.getAttributeSpellingListIndex()));
   4225 }
   4226 
   4227 static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D,
   4228                                          const AttributeList &Attr) {
   4229   IdentifierInfo *PointerKind = Attr.getParameterName();
   4230   if (!PointerKind) {
   4231     S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_identifier)
   4232       << "type_tag_for_datatype" << 1;
   4233     return;
   4234   }
   4235 
   4236   QualType MatchingCType = S.GetTypeFromParser(Attr.getMatchingCType(), NULL);
   4237 
   4238   D->addAttr(::new (S.Context)
   4239              TypeTagForDatatypeAttr(Attr.getRange(), S.Context, PointerKind,
   4240                                     MatchingCType,
   4241                                     Attr.getLayoutCompatible(),
   4242                                     Attr.getMustBeNull(),
   4243                                     Attr.getAttributeSpellingListIndex()));
   4244 }
   4245 
   4246 //===----------------------------------------------------------------------===//
   4247 // Checker-specific attribute handlers.
   4248 //===----------------------------------------------------------------------===//
   4249 
   4250 static bool isValidSubjectOfNSAttribute(Sema &S, QualType type) {
   4251   return type->isDependentType() ||
   4252          type->isObjCObjectPointerType() ||
   4253          S.Context.isObjCNSObjectType(type);
   4254 }
   4255 static bool isValidSubjectOfCFAttribute(Sema &S, QualType type) {
   4256   return type->isDependentType() ||
   4257          type->isPointerType() ||
   4258          isValidSubjectOfNSAttribute(S, type);
   4259 }
   4260 
   4261 static void handleNSConsumedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   4262   ParmVarDecl *param = dyn_cast<ParmVarDecl>(D);
   4263   if (!param) {
   4264     S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
   4265       << Attr.getRange() << Attr.getName() << ExpectedParameter;
   4266     return;
   4267   }
   4268 
   4269   bool typeOK, cf;
   4270   if (Attr.getKind() == AttributeList::AT_NSConsumed) {
   4271     typeOK = isValidSubjectOfNSAttribute(S, param->getType());
   4272     cf = false;
   4273   } else {
   4274     typeOK = isValidSubjectOfCFAttribute(S, param->getType());
   4275     cf = true;
   4276   }
   4277 
   4278   if (!typeOK) {
   4279     S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_parameter_type)
   4280       << Attr.getRange() << Attr.getName() << cf;
   4281     return;
   4282   }
   4283 
   4284   if (cf)
   4285     param->addAttr(::new (S.Context)
   4286                    CFConsumedAttr(Attr.getRange(), S.Context,
   4287                                   Attr.getAttributeSpellingListIndex()));
   4288   else
   4289     param->addAttr(::new (S.Context)
   4290                    NSConsumedAttr(Attr.getRange(), S.Context,
   4291                                   Attr.getAttributeSpellingListIndex()));
   4292 }
   4293 
   4294 static void handleNSConsumesSelfAttr(Sema &S, Decl *D,
   4295                                      const AttributeList &Attr) {
   4296   if (!isa<ObjCMethodDecl>(D)) {
   4297     S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
   4298       << Attr.getRange() << Attr.getName() << ExpectedMethod;
   4299     return;
   4300   }
   4301 
   4302   D->addAttr(::new (S.Context)
   4303              NSConsumesSelfAttr(Attr.getRange(), S.Context,
   4304                                 Attr.getAttributeSpellingListIndex()));
   4305 }
   4306 
   4307 static void handleNSReturnsRetainedAttr(Sema &S, Decl *D,
   4308                                         const AttributeList &Attr) {
   4309 
   4310   QualType returnType;
   4311 
   4312   if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
   4313     returnType = MD->getResultType();
   4314   else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) &&
   4315            (Attr.getKind() == AttributeList::AT_NSReturnsRetained))
   4316     return; // ignore: was handled as a type attribute
   4317   else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D))
   4318     returnType = PD->getType();
   4319   else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
   4320     returnType = FD->getResultType();
   4321   else {
   4322     S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
   4323         << Attr.getRange() << Attr.getName()
   4324         << ExpectedFunctionOrMethod;
   4325     return;
   4326   }
   4327 
   4328   bool typeOK;
   4329   bool cf;
   4330   switch (Attr.getKind()) {
   4331   default: llvm_unreachable("invalid ownership attribute");
   4332   case AttributeList::AT_NSReturnsAutoreleased:
   4333   case AttributeList::AT_NSReturnsRetained:
   4334   case AttributeList::AT_NSReturnsNotRetained:
   4335     typeOK = isValidSubjectOfNSAttribute(S, returnType);
   4336     cf = false;
   4337     break;
   4338 
   4339   case AttributeList::AT_CFReturnsRetained:
   4340   case AttributeList::AT_CFReturnsNotRetained:
   4341     typeOK = isValidSubjectOfCFAttribute(S, returnType);
   4342     cf = true;
   4343     break;
   4344   }
   4345 
   4346   if (!typeOK) {
   4347     S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
   4348       << Attr.getRange() << Attr.getName() << isa<ObjCMethodDecl>(D) << cf;
   4349     return;
   4350   }
   4351 
   4352   switch (Attr.getKind()) {
   4353     default:
   4354       llvm_unreachable("invalid ownership attribute");
   4355     case AttributeList::AT_NSReturnsAutoreleased:
   4356       D->addAttr(::new (S.Context)
   4357                  NSReturnsAutoreleasedAttr(Attr.getRange(), S.Context,
   4358                                            Attr.getAttributeSpellingListIndex()));
   4359       return;
   4360     case AttributeList::AT_CFReturnsNotRetained:
   4361       D->addAttr(::new (S.Context)
   4362                  CFReturnsNotRetainedAttr(Attr.getRange(), S.Context,
   4363                                           Attr.getAttributeSpellingListIndex()));
   4364       return;
   4365     case AttributeList::AT_NSReturnsNotRetained:
   4366       D->addAttr(::new (S.Context)
   4367                  NSReturnsNotRetainedAttr(Attr.getRange(), S.Context,
   4368                                           Attr.getAttributeSpellingListIndex()));
   4369       return;
   4370     case AttributeList::AT_CFReturnsRetained:
   4371       D->addAttr(::new (S.Context)
   4372                  CFReturnsRetainedAttr(Attr.getRange(), S.Context,
   4373                                        Attr.getAttributeSpellingListIndex()));
   4374       return;
   4375     case AttributeList::AT_NSReturnsRetained:
   4376       D->addAttr(::new (S.Context)
   4377                  NSReturnsRetainedAttr(Attr.getRange(), S.Context,
   4378                                        Attr.getAttributeSpellingListIndex()));
   4379       return;
   4380   };
   4381 }
   4382 
   4383 static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D,
   4384                                               const AttributeList &attr) {
   4385   SourceLocation loc = attr.getLoc();
   4386 
   4387   ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(D);
   4388 
   4389   if (!method) {
   4390     S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
   4391       << SourceRange(loc, loc) << attr.getName() << ExpectedMethod;
   4392     return;
   4393   }
   4394 
   4395   // Check that the method returns a normal pointer.
   4396   QualType resultType = method->getResultType();
   4397 
   4398   if (!resultType->isReferenceType() &&
   4399       (!resultType->isPointerType() || resultType->isObjCRetainableType())) {
   4400     S.Diag(method->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
   4401       << SourceRange(loc)
   4402       << attr.getName() << /*method*/ 1 << /*non-retainable pointer*/ 2;
   4403 
   4404     // Drop the attribute.
   4405     return;
   4406   }
   4407 
   4408   method->addAttr(::new (S.Context)
   4409                   ObjCReturnsInnerPointerAttr(attr.getRange(), S.Context,
   4410                                               attr.getAttributeSpellingListIndex()));
   4411 }
   4412 
   4413 static void handleObjCRequiresSuperAttr(Sema &S, Decl *D,
   4414                                         const AttributeList &attr) {
   4415   SourceLocation loc = attr.getLoc();
   4416   ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(D);
   4417 
   4418   if (!method) {
   4419    S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
   4420    << SourceRange(loc, loc) << attr.getName() << ExpectedMethod;
   4421     return;
   4422   }
   4423   DeclContext *DC = method->getDeclContext();
   4424   if (const ObjCProtocolDecl *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) {
   4425     S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol)
   4426     << attr.getName() << 0;
   4427     S.Diag(PDecl->getLocation(), diag::note_protocol_decl);
   4428     return;
   4429   }
   4430   if (method->getMethodFamily() == OMF_dealloc) {
   4431     S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol)
   4432     << attr.getName() << 1;
   4433     return;
   4434   }
   4435 
   4436   method->addAttr(::new (S.Context)
   4437                   ObjCRequiresSuperAttr(attr.getRange(), S.Context,
   4438                                         attr.getAttributeSpellingListIndex()));
   4439 }
   4440 
   4441 /// Handle cf_audited_transfer and cf_unknown_transfer.
   4442 static void handleCFTransferAttr(Sema &S, Decl *D, const AttributeList &A) {
   4443   if (!isa<FunctionDecl>(D)) {
   4444     S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
   4445       << A.getRange() << A.getName() << ExpectedFunction;
   4446     return;
   4447   }
   4448 
   4449   bool IsAudited = (A.getKind() == AttributeList::AT_CFAuditedTransfer);
   4450 
   4451   // Check whether there's a conflicting attribute already present.
   4452   Attr *Existing;
   4453   if (IsAudited) {
   4454     Existing = D->getAttr<CFUnknownTransferAttr>();
   4455   } else {
   4456     Existing = D->getAttr<CFAuditedTransferAttr>();
   4457   }
   4458   if (Existing) {
   4459     S.Diag(D->getLocStart(), diag::err_attributes_are_not_compatible)
   4460       << A.getName()
   4461       << (IsAudited ? "cf_unknown_transfer" : "cf_audited_transfer")
   4462       << A.getRange() << Existing->getRange();
   4463     return;
   4464   }
   4465 
   4466   // All clear;  add the attribute.
   4467   if (IsAudited) {
   4468     D->addAttr(::new (S.Context)
   4469                CFAuditedTransferAttr(A.getRange(), S.Context,
   4470                                      A.getAttributeSpellingListIndex()));
   4471   } else {
   4472     D->addAttr(::new (S.Context)
   4473                CFUnknownTransferAttr(A.getRange(), S.Context,
   4474                                      A.getAttributeSpellingListIndex()));
   4475   }
   4476 }
   4477 
   4478 static void handleNSBridgedAttr(Sema &S, Scope *Sc, Decl *D,
   4479                                 const AttributeList &Attr) {
   4480   RecordDecl *RD = dyn_cast<RecordDecl>(D);
   4481   if (!RD || RD->isUnion()) {
   4482     S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
   4483       << Attr.getRange() << Attr.getName() << ExpectedStruct;
   4484   }
   4485 
   4486   IdentifierInfo *ParmName = Attr.getParameterName();
   4487 
   4488   // In Objective-C, verify that the type names an Objective-C type.
   4489   // We don't want to check this outside of ObjC because people sometimes
   4490   // do crazy C declarations of Objective-C types.
   4491   if (ParmName && S.getLangOpts().ObjC1) {
   4492     // Check for an existing type with this name.
   4493     LookupResult R(S, DeclarationName(ParmName), Attr.getParameterLoc(),
   4494                    Sema::LookupOrdinaryName);
   4495     if (S.LookupName(R, Sc)) {
   4496       NamedDecl *Target = R.getFoundDecl();
   4497       if (Target && !isa<ObjCInterfaceDecl>(Target)) {
   4498         S.Diag(D->getLocStart(), diag::err_ns_bridged_not_interface);
   4499         S.Diag(Target->getLocStart(), diag::note_declared_at);
   4500       }
   4501     }
   4502   }
   4503 
   4504   D->addAttr(::new (S.Context)
   4505              NSBridgedAttr(Attr.getRange(), S.Context, ParmName,
   4506                            Attr.getAttributeSpellingListIndex()));
   4507 }
   4508 
   4509 static void handleObjCOwnershipAttr(Sema &S, Decl *D,
   4510                                     const AttributeList &Attr) {
   4511   if (hasDeclarator(D)) return;
   4512 
   4513   S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
   4514     << Attr.getRange() << Attr.getName() << ExpectedVariable;
   4515 }
   4516 
   4517 static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D,
   4518                                           const AttributeList &Attr) {
   4519   if (!isa<VarDecl>(D) && !isa<FieldDecl>(D)) {
   4520     S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
   4521       << Attr.getRange() << Attr.getName() << ExpectedVariable;
   4522     return;
   4523   }
   4524 
   4525   ValueDecl *vd = cast<ValueDecl>(D);
   4526   QualType type = vd->getType();
   4527 
   4528   if (!type->isDependentType() &&
   4529       !type->isObjCLifetimeType()) {
   4530     S.Diag(Attr.getLoc(), diag::err_objc_precise_lifetime_bad_type)
   4531       << type;
   4532     return;
   4533   }
   4534 
   4535   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
   4536 
   4537   // If we have no lifetime yet, check the lifetime we're presumably
   4538   // going to infer.
   4539   if (lifetime == Qualifiers::OCL_None && !type->isDependentType())
   4540     lifetime = type->getObjCARCImplicitLifetime();
   4541 
   4542   switch (lifetime) {
   4543   case Qualifiers::OCL_None:
   4544     assert(type->isDependentType() &&
   4545            "didn't infer lifetime for non-dependent type?");
   4546     break;
   4547 
   4548   case Qualifiers::OCL_Weak:   // meaningful
   4549   case Qualifiers::OCL_Strong: // meaningful
   4550     break;
   4551 
   4552   case Qualifiers::OCL_ExplicitNone:
   4553   case Qualifiers::OCL_Autoreleasing:
   4554     S.Diag(Attr.getLoc(), diag::warn_objc_precise_lifetime_meaningless)
   4555       << (lifetime == Qualifiers::OCL_Autoreleasing);
   4556     break;
   4557   }
   4558 
   4559   D->addAttr(::new (S.Context)
   4560              ObjCPreciseLifetimeAttr(Attr.getRange(), S.Context,
   4561                                      Attr.getAttributeSpellingListIndex()));
   4562 }
   4563 
   4564 //===----------------------------------------------------------------------===//
   4565 // Microsoft specific attribute handlers.
   4566 //===----------------------------------------------------------------------===//
   4567 
   4568 static void handleUuidAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   4569   if (S.LangOpts.MicrosoftExt || S.LangOpts.Borland) {
   4570     // check the attribute arguments.
   4571     if (!checkAttributeNumArgs(S, Attr, 1))
   4572       return;
   4573 
   4574     Expr *Arg = Attr.getArg(0);
   4575     StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
   4576     if (!Str || !Str->isAscii()) {
   4577       S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
   4578         << "uuid" << 1;
   4579       return;
   4580     }
   4581 
   4582     StringRef StrRef = Str->getString();
   4583 
   4584     bool IsCurly = StrRef.size() > 1 && StrRef.front() == '{' &&
   4585                    StrRef.back() == '}';
   4586 
   4587     // Validate GUID length.
   4588     if (IsCurly && StrRef.size() != 38) {
   4589       S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
   4590       return;
   4591     }
   4592     if (!IsCurly && StrRef.size() != 36) {
   4593       S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
   4594       return;
   4595     }
   4596 
   4597     // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
   4598     // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}"
   4599     StringRef::iterator I = StrRef.begin();
   4600     if (IsCurly) // Skip the optional '{'
   4601        ++I;
   4602 
   4603     for (int i = 0; i < 36; ++i) {
   4604       if (i == 8 || i == 13 || i == 18 || i == 23) {
   4605         if (*I != '-') {
   4606           S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
   4607           return;
   4608         }
   4609       } else if (!isHexDigit(*I)) {
   4610         S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
   4611         return;
   4612       }
   4613       I++;
   4614     }
   4615 
   4616     D->addAttr(::new (S.Context)
   4617                UuidAttr(Attr.getRange(), S.Context, Str->getString(),
   4618                         Attr.getAttributeSpellingListIndex()));
   4619   } else
   4620     S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "uuid";
   4621 }
   4622 
   4623 static void handleInheritanceAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   4624   if (!S.LangOpts.MicrosoftExt) {
   4625     S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
   4626     return;
   4627   }
   4628 
   4629   AttributeList::Kind Kind = Attr.getKind();
   4630   if (Kind == AttributeList::AT_SingleInheritance)
   4631     D->addAttr(
   4632         ::new (S.Context)
   4633                SingleInheritanceAttr(Attr.getRange(), S.Context,
   4634                                      Attr.getAttributeSpellingListIndex()));
   4635   else if (Kind == AttributeList::AT_MultipleInheritance)
   4636     D->addAttr(
   4637         ::new (S.Context)
   4638                MultipleInheritanceAttr(Attr.getRange(), S.Context,
   4639                                        Attr.getAttributeSpellingListIndex()));
   4640   else if (Kind == AttributeList::AT_VirtualInheritance)
   4641     D->addAttr(
   4642         ::new (S.Context)
   4643                VirtualInheritanceAttr(Attr.getRange(), S.Context,
   4644                                       Attr.getAttributeSpellingListIndex()));
   4645 }
   4646 
   4647 static void handlePortabilityAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   4648   if (S.LangOpts.MicrosoftExt) {
   4649     AttributeList::Kind Kind = Attr.getKind();
   4650     if (Kind == AttributeList::AT_Ptr32)
   4651       D->addAttr(
   4652           ::new (S.Context) Ptr32Attr(Attr.getRange(), S.Context,
   4653                                       Attr.getAttributeSpellingListIndex()));
   4654     else if (Kind == AttributeList::AT_Ptr64)
   4655       D->addAttr(
   4656           ::new (S.Context) Ptr64Attr(Attr.getRange(), S.Context,
   4657                                       Attr.getAttributeSpellingListIndex()));
   4658     else if (Kind == AttributeList::AT_Win64)
   4659       D->addAttr(
   4660           ::new (S.Context) Win64Attr(Attr.getRange(), S.Context,
   4661                                       Attr.getAttributeSpellingListIndex()));
   4662   } else
   4663     S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
   4664 }
   4665 
   4666 static void handleForceInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
   4667   if (S.LangOpts.MicrosoftExt)
   4668     D->addAttr(::new (S.Context)
   4669                ForceInlineAttr(Attr.getRange(), S.Context,
   4670                                Attr.getAttributeSpellingListIndex()));
   4671   else
   4672     S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
   4673 }
   4674 
   4675 //===----------------------------------------------------------------------===//
   4676 // Top Level Sema Entry Points
   4677 //===----------------------------------------------------------------------===//
   4678 
   4679 static void ProcessNonInheritableDeclAttr(Sema &S, Scope *scope, Decl *D,
   4680                                           const AttributeList &Attr) {
   4681   switch (Attr.getKind()) {
   4682   case AttributeList::AT_CUDADevice:  handleDeviceAttr      (S, D, Attr); break;
   4683   case AttributeList::AT_CUDAHost:    handleHostAttr        (S, D, Attr); break;
   4684   case AttributeList::AT_Overloadable:handleOverloadableAttr(S, D, Attr); break;
   4685   case AttributeList::AT_Kernel:      handleKernelAttr      (S, D, Attr); break;
   4686   default:
   4687     break;
   4688   }
   4689 }
   4690 
   4691 static void ProcessInheritableDeclAttr(Sema &S, Scope *scope, Decl *D,
   4692                                        const AttributeList &Attr) {
   4693   switch (Attr.getKind()) {
   4694   case AttributeList::AT_IBAction:    handleIBAction(S, D, Attr); break;
   4695   case AttributeList::AT_IBOutlet:    handleIBOutlet(S, D, Attr); break;
   4696   case AttributeList::AT_IBOutletCollection:
   4697     handleIBOutletCollection(S, D, Attr); break;
   4698   case AttributeList::AT_AddressSpace:
   4699   case AttributeList::AT_OpenCLImageAccess:
   4700   case AttributeList::AT_ObjCGC:
   4701   case AttributeList::AT_VectorSize:
   4702   case AttributeList::AT_NeonVectorType:
   4703   case AttributeList::AT_NeonPolyVectorType:
   4704     // Ignore these, these are type attributes, handled by
   4705     // ProcessTypeAttributes.
   4706     break;
   4707   case AttributeList::AT_CUDADevice:
   4708   case AttributeList::AT_CUDAHost:
   4709   case AttributeList::AT_Overloadable:
   4710   case AttributeList::AT_Kernel:
   4711     // Ignore, this is a non-inheritable attribute, handled
   4712     // by ProcessNonInheritableDeclAttr.
   4713     break;
   4714   case AttributeList::AT_Alias:       handleAliasAttr       (S, D, Attr); break;
   4715   case AttributeList::AT_Aligned:     handleAlignedAttr     (S, D, Attr); break;
   4716   case AttributeList::AT_AllocSize:   handleAllocSizeAttr   (S, D, Attr); break;
   4717   case AttributeList::AT_AlwaysInline:
   4718     handleAlwaysInlineAttr  (S, D, Attr); break;
   4719   case AttributeList::AT_AnalyzerNoReturn:
   4720     handleAnalyzerNoReturnAttr  (S, D, Attr); break;
   4721   case AttributeList::AT_TLSModel:    handleTLSModelAttr    (S, D, Attr); break;
   4722   case AttributeList::AT_Annotate:    handleAnnotateAttr    (S, D, Attr); break;
   4723   case AttributeList::AT_Availability:handleAvailabilityAttr(S, D, Attr); break;
   4724   case AttributeList::AT_CarriesDependency:
   4725     handleDependencyAttr(S, scope, D, Attr);
   4726     break;
   4727   case AttributeList::AT_Common:      handleCommonAttr      (S, D, Attr); break;
   4728   case AttributeList::AT_CUDAConstant:handleConstantAttr    (S, D, Attr); break;
   4729   case AttributeList::AT_Constructor: handleConstructorAttr (S, D, Attr); break;
   4730   case AttributeList::AT_CXX11NoReturn:
   4731     handleCXX11NoReturnAttr(S, D, Attr);
   4732     break;
   4733   case AttributeList::AT_Deprecated:
   4734     handleAttrWithMessage<DeprecatedAttr>(S, D, Attr, "deprecated");
   4735     break;
   4736   case AttributeList::AT_Destructor:  handleDestructorAttr  (S, D, Attr); break;
   4737   case AttributeList::AT_ExtVectorType:
   4738     handleExtVectorTypeAttr(S, scope, D, Attr);
   4739     break;
   4740   case AttributeList::AT_MinSize:
   4741     handleMinSizeAttr(S, D, Attr);
   4742     break;
   4743   case AttributeList::AT_Format:      handleFormatAttr      (S, D, Attr); break;
   4744   case AttributeList::AT_FormatArg:   handleFormatArgAttr   (S, D, Attr); break;
   4745   case AttributeList::AT_CUDAGlobal:  handleGlobalAttr      (S, D, Attr); break;
   4746   case AttributeList::AT_GNUInline:   handleGNUInlineAttr   (S, D, Attr); break;
   4747   case AttributeList::AT_CUDALaunchBounds:
   4748     handleLaunchBoundsAttr(S, D, Attr);
   4749     break;
   4750   case AttributeList::AT_Mode:        handleModeAttr        (S, D, Attr); break;
   4751   case AttributeList::AT_Malloc:      handleMallocAttr      (S, D, Attr); break;
   4752   case AttributeList::AT_MayAlias:    handleMayAliasAttr    (S, D, Attr); break;
   4753   case AttributeList::AT_NoCommon:    handleNoCommonAttr    (S, D, Attr); break;
   4754   case AttributeList::AT_NonNull:     handleNonNullAttr     (S, D, Attr); break;
   4755   case AttributeList::AT_ownership_returns:
   4756   case AttributeList::AT_ownership_takes:
   4757   case AttributeList::AT_ownership_holds:
   4758       handleOwnershipAttr     (S, D, Attr); break;
   4759   case AttributeList::AT_Cold:        handleColdAttr        (S, D, Attr); break;
   4760   case AttributeList::AT_Hot:         handleHotAttr         (S, D, Attr); break;
   4761   case AttributeList::AT_Naked:       handleNakedAttr       (S, D, Attr); break;
   4762   case AttributeList::AT_NoReturn:    handleNoReturnAttr    (S, D, Attr); break;
   4763   case AttributeList::AT_NoThrow:     handleNothrowAttr     (S, D, Attr); break;
   4764   case AttributeList::AT_CUDAShared:  handleSharedAttr      (S, D, Attr); break;
   4765   case AttributeList::AT_VecReturn:   handleVecReturnAttr   (S, D, Attr); break;
   4766 
   4767   case AttributeList::AT_ObjCOwnership:
   4768     handleObjCOwnershipAttr(S, D, Attr); break;
   4769   case AttributeList::AT_ObjCPreciseLifetime:
   4770     handleObjCPreciseLifetimeAttr(S, D, Attr); break;
   4771 
   4772   case AttributeList::AT_ObjCReturnsInnerPointer:
   4773     handleObjCReturnsInnerPointerAttr(S, D, Attr); break;
   4774 
   4775   case AttributeList::AT_ObjCRequiresSuper:
   4776       handleObjCRequiresSuperAttr(S, D, Attr); break;
   4777 
   4778   case AttributeList::AT_NSBridged:
   4779     handleNSBridgedAttr(S, scope, D, Attr); break;
   4780 
   4781   case AttributeList::AT_CFAuditedTransfer:
   4782   case AttributeList::AT_CFUnknownTransfer:
   4783     handleCFTransferAttr(S, D, Attr); break;
   4784 
   4785   // Checker-specific.
   4786   case AttributeList::AT_CFConsumed:
   4787   case AttributeList::AT_NSConsumed:  handleNSConsumedAttr  (S, D, Attr); break;
   4788   case AttributeList::AT_NSConsumesSelf:
   4789     handleNSConsumesSelfAttr(S, D, Attr); break;
   4790 
   4791   case AttributeList::AT_NSReturnsAutoreleased:
   4792   case AttributeList::AT_NSReturnsNotRetained:
   4793   case AttributeList::AT_CFReturnsNotRetained:
   4794   case AttributeList::AT_NSReturnsRetained:
   4795   case AttributeList::AT_CFReturnsRetained:
   4796     handleNSReturnsRetainedAttr(S, D, Attr); break;
   4797 
   4798   case AttributeList::AT_WorkGroupSizeHint:
   4799   case AttributeList::AT_ReqdWorkGroupSize:
   4800     handleWorkGroupSize(S, D, Attr); break;
   4801 
   4802   case AttributeList::AT_VecTypeHint:
   4803     handleVecTypeHint(S, D, Attr); break;
   4804 
   4805   case AttributeList::AT_Endian:
   4806     handleEndianAttr(S, D, Attr);
   4807     break;
   4808 
   4809   case AttributeList::AT_InitPriority:
   4810       handleInitPriorityAttr(S, D, Attr); break;
   4811 
   4812   case AttributeList::AT_Packed:      handlePackedAttr      (S, D, Attr); break;
   4813   case AttributeList::AT_Section:     handleSectionAttr     (S, D, Attr); break;
   4814   case AttributeList::AT_Unavailable:
   4815     handleAttrWithMessage<UnavailableAttr>(S, D, Attr, "unavailable");
   4816     break;
   4817   case AttributeList::AT_ArcWeakrefUnavailable:
   4818     handleArcWeakrefUnavailableAttr (S, D, Attr);
   4819     break;
   4820   case AttributeList::AT_ObjCRootClass:
   4821     handleObjCRootClassAttr(S, D, Attr);
   4822     break;
   4823   case AttributeList::AT_ObjCRequiresPropertyDefs:
   4824     handleObjCRequiresPropertyDefsAttr (S, D, Attr);
   4825     break;
   4826   case AttributeList::AT_Unused:      handleUnusedAttr      (S, D, Attr); break;
   4827   case AttributeList::AT_ReturnsTwice:
   4828     handleReturnsTwiceAttr(S, D, Attr);
   4829     break;
   4830   case AttributeList::AT_Used:        handleUsedAttr        (S, D, Attr); break;
   4831   case AttributeList::AT_Visibility:
   4832     handleVisibilityAttr(S, D, Attr, false);
   4833     break;
   4834   case AttributeList::AT_TypeVisibility:
   4835     handleVisibilityAttr(S, D, Attr, true);
   4836     break;
   4837   case AttributeList::AT_WarnUnusedResult: handleWarnUnusedResult(S, D, Attr);
   4838     break;
   4839   case AttributeList::AT_Weak:        handleWeakAttr        (S, D, Attr); break;
   4840   case AttributeList::AT_WeakRef:     handleWeakRefAttr     (S, D, Attr); break;
   4841   case AttributeList::AT_WeakImport:  handleWeakImportAttr  (S, D, Attr); break;
   4842   case AttributeList::AT_TransparentUnion:
   4843     handleTransparentUnionAttr(S, D, Attr);
   4844     break;
   4845   case AttributeList::AT_ObjCException:
   4846     handleObjCExceptionAttr(S, D, Attr);
   4847     break;
   4848   case AttributeList::AT_ObjCMethodFamily:
   4849     handleObjCMethodFamilyAttr(S, D, Attr);
   4850     break;
   4851   case AttributeList::AT_ObjCNSObject:handleObjCNSObject    (S, D, Attr); break;
   4852   case AttributeList::AT_Blocks:      handleBlocksAttr      (S, D, Attr); break;
   4853   case AttributeList::AT_Sentinel:    handleSentinelAttr    (S, D, Attr); break;
   4854   case AttributeList::AT_Const:       handleConstAttr       (S, D, Attr); break;
   4855   case AttributeList::AT_Pure:        handlePureAttr        (S, D, Attr); break;
   4856   case AttributeList::AT_Cleanup:     handleCleanupAttr     (S, D, Attr); break;
   4857   case AttributeList::AT_NoDebug:     handleNoDebugAttr     (S, D, Attr); break;
   4858   case AttributeList::AT_NoInline:    handleNoInlineAttr    (S, D, Attr); break;
   4859   case AttributeList::AT_Regparm:     handleRegparmAttr     (S, D, Attr); break;
   4860   case AttributeList::IgnoredAttribute:
   4861     // Just ignore
   4862     break;
   4863   case AttributeList::AT_NoInstrumentFunction:  // Interacts with -pg.
   4864     handleNoInstrumentFunctionAttr(S, D, Attr);
   4865     break;
   4866   case AttributeList::AT_StdCall:
   4867   case AttributeList::AT_CDecl:
   4868   case AttributeList::AT_FastCall:
   4869   case AttributeList::AT_ThisCall:
   4870   case AttributeList::AT_Pascal:
   4871   case AttributeList::AT_Pcs:
   4872   case AttributeList::AT_PnaclCall:
   4873   case AttributeList::AT_IntelOclBicc:
   4874     handleCallConvAttr(S, D, Attr);
   4875     break;
   4876   case AttributeList::AT_OpenCLKernel:
   4877     handleOpenCLKernelAttr(S, D, Attr);
   4878     break;
   4879 
   4880   // Microsoft attributes:
   4881   case AttributeList::AT_MsStruct:
   4882     handleMsStructAttr(S, D, Attr);
   4883     break;
   4884   case AttributeList::AT_Uuid:
   4885     handleUuidAttr(S, D, Attr);
   4886     break;
   4887   case AttributeList::AT_SingleInheritance:
   4888   case AttributeList::AT_MultipleInheritance:
   4889   case AttributeList::AT_VirtualInheritance:
   4890     handleInheritanceAttr(S, D, Attr);
   4891     break;
   4892   case AttributeList::AT_Win64:
   4893   case AttributeList::AT_Ptr32:
   4894   case AttributeList::AT_Ptr64:
   4895     handlePortabilityAttr(S, D, Attr);
   4896     break;
   4897   case AttributeList::AT_ForceInline:
   4898     handleForceInlineAttr(S, D, Attr);
   4899     break;
   4900 
   4901   // Thread safety attributes:
   4902   case AttributeList::AT_GuardedVar:
   4903     handleGuardedVarAttr(S, D, Attr);
   4904     break;
   4905   case AttributeList::AT_PtGuardedVar:
   4906     handlePtGuardedVarAttr(S, D, Attr);
   4907     break;
   4908   case AttributeList::AT_ScopedLockable:
   4909     handleScopedLockableAttr(S, D, Attr);
   4910     break;
   4911   case AttributeList::AT_NoSanitizeAddress:
   4912     handleNoSanitizeAddressAttr(S, D, Attr);
   4913     break;
   4914   case AttributeList::AT_NoThreadSafetyAnalysis:
   4915     handleNoThreadSafetyAnalysis(S, D, Attr);
   4916     break;
   4917   case AttributeList::AT_NoSanitizeThread:
   4918     handleNoSanitizeThread(S, D, Attr);
   4919     break;
   4920   case AttributeList::AT_NoSanitizeMemory:
   4921     handleNoSanitizeMemory(S, D, Attr);
   4922     break;
   4923   case AttributeList::AT_Lockable:
   4924     handleLockableAttr(S, D, Attr);
   4925     break;
   4926   case AttributeList::AT_GuardedBy:
   4927     handleGuardedByAttr(S, D, Attr);
   4928     break;
   4929   case AttributeList::AT_PtGuardedBy:
   4930     handlePtGuardedByAttr(S, D, Attr);
   4931     break;
   4932   case AttributeList::AT_ExclusiveLockFunction:
   4933     handleExclusiveLockFunctionAttr(S, D, Attr);
   4934     break;
   4935   case AttributeList::AT_ExclusiveLocksRequired:
   4936     handleExclusiveLocksRequiredAttr(S, D, Attr);
   4937     break;
   4938   case AttributeList::AT_ExclusiveTrylockFunction:
   4939     handleExclusiveTrylockFunctionAttr(S, D, Attr);
   4940     break;
   4941   case AttributeList::AT_LockReturned:
   4942     handleLockReturnedAttr(S, D, Attr);
   4943     break;
   4944   case AttributeList::AT_LocksExcluded:
   4945     handleLocksExcludedAttr(S, D, Attr);
   4946     break;
   4947   case AttributeList::AT_SharedLockFunction:
   4948     handleSharedLockFunctionAttr(S, D, Attr);
   4949     break;
   4950   case AttributeList::AT_SharedLocksRequired:
   4951     handleSharedLocksRequiredAttr(S, D, Attr);
   4952     break;
   4953   case AttributeList::AT_SharedTrylockFunction:
   4954     handleSharedTrylockFunctionAttr(S, D, Attr);
   4955     break;
   4956   case AttributeList::AT_UnlockFunction:
   4957     handleUnlockFunAttr(S, D, Attr);
   4958     break;
   4959   case AttributeList::AT_AcquiredBefore:
   4960     handleAcquiredBeforeAttr(S, D, Attr);
   4961     break;
   4962   case AttributeList::AT_AcquiredAfter:
   4963     handleAcquiredAfterAttr(S, D, Attr);
   4964     break;
   4965 
   4966   // Type safety attributes.
   4967   case AttributeList::AT_ArgumentWithTypeTag:
   4968     handleArgumentWithTypeTagAttr(S, D, Attr);
   4969     break;
   4970   case AttributeList::AT_TypeTagForDatatype:
   4971     handleTypeTagForDatatypeAttr(S, D, Attr);
   4972     break;
   4973 
   4974   default:
   4975     // Ask target about the attribute.
   4976     const TargetAttributesSema &TargetAttrs = S.getTargetAttributesSema();
   4977     if (!TargetAttrs.ProcessDeclAttribute(scope, D, Attr, S))
   4978       S.Diag(Attr.getLoc(), Attr.isDeclspecAttribute() ?
   4979              diag::warn_unhandled_ms_attribute_ignored :
   4980              diag::warn_unknown_attribute_ignored) << Attr.getName();
   4981     break;
   4982   }
   4983 }
   4984 
   4985 /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
   4986 /// the attribute applies to decls.  If the attribute is a type attribute, just
   4987 /// silently ignore it if a GNU attribute.
   4988 static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
   4989                                  const AttributeList &Attr,
   4990                                  bool NonInheritable, bool Inheritable,
   4991                                  bool IncludeCXX11Attributes) {
   4992   if (Attr.isInvalid())
   4993     return;
   4994 
   4995   // Ignore C++11 attributes on declarator chunks: they appertain to the type
   4996   // instead.
   4997   if (Attr.isCXX11Attribute() && !IncludeCXX11Attributes)
   4998     return;
   4999 
   5000   if (NonInheritable)
   5001     ProcessNonInheritableDeclAttr(S, scope, D, Attr);
   5002 
   5003   if (Inheritable)
   5004     ProcessInheritableDeclAttr(S, scope, D, Attr);
   5005 }
   5006 
   5007 /// ProcessDeclAttributeList - Apply all the decl attributes in the specified
   5008 /// attribute list to the specified decl, ignoring any type attributes.
   5009 void Sema::ProcessDeclAttributeList(Scope *S, Decl *D,
   5010                                     const AttributeList *AttrList,
   5011                                     bool NonInheritable, bool Inheritable,
   5012                                     bool IncludeCXX11Attributes) {
   5013   for (const AttributeList* l = AttrList; l; l = l->getNext())
   5014     ProcessDeclAttribute(*this, S, D, *l, NonInheritable, Inheritable,
   5015                          IncludeCXX11Attributes);
   5016 
   5017   // GCC accepts
   5018   // static int a9 __attribute__((weakref));
   5019   // but that looks really pointless. We reject it.
   5020   if (Inheritable && D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
   5021     Diag(AttrList->getLoc(), diag::err_attribute_weakref_without_alias) <<
   5022     cast<NamedDecl>(D)->getNameAsString();
   5023     D->dropAttr<WeakRefAttr>();
   5024     return;
   5025   }
   5026 }
   5027 
   5028 // Annotation attributes are the only attributes allowed after an access
   5029 // specifier.
   5030 bool Sema::ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl,
   5031                                           const AttributeList *AttrList) {
   5032   for (const AttributeList* l = AttrList; l; l = l->getNext()) {
   5033     if (l->getKind() == AttributeList::AT_Annotate) {
   5034       handleAnnotateAttr(*this, ASDecl, *l);
   5035     } else {
   5036       Diag(l->getLoc(), diag::err_only_annotate_after_access_spec);
   5037       return true;
   5038     }
   5039   }
   5040 
   5041   return false;
   5042 }
   5043 
   5044 /// checkUnusedDeclAttributes - Check a list of attributes to see if it
   5045 /// contains any decl attributes that we should warn about.
   5046 static void checkUnusedDeclAttributes(Sema &S, const AttributeList *A) {
   5047   for ( ; A; A = A->getNext()) {
   5048     // Only warn if the attribute is an unignored, non-type attribute.
   5049     if (A->isUsedAsTypeAttr() || A->isInvalid()) continue;
   5050     if (A->getKind() == AttributeList::IgnoredAttribute) continue;
   5051 
   5052     if (A->getKind() == AttributeList::UnknownAttribute) {
   5053       S.Diag(A->getLoc(), diag::warn_unknown_attribute_ignored)
   5054         << A->getName() << A->getRange();
   5055     } else {
   5056       S.Diag(A->getLoc(), diag::warn_attribute_not_on_decl)
   5057         << A->getName() << A->getRange();
   5058     }
   5059   }
   5060 }
   5061 
   5062 /// checkUnusedDeclAttributes - Given a declarator which is not being
   5063 /// used to build a declaration, complain about any decl attributes
   5064 /// which might be lying around on it.
   5065 void Sema::checkUnusedDeclAttributes(Declarator &D) {
   5066   ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes().getList());
   5067   ::checkUnusedDeclAttributes(*this, D.getAttributes());
   5068   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i)
   5069     ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs());
   5070 }
   5071 
   5072 /// DeclClonePragmaWeak - clone existing decl (maybe definition),
   5073 /// \#pragma weak needs a non-definition decl and source may not have one.
   5074 NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
   5075                                       SourceLocation Loc) {
   5076   assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
   5077   NamedDecl *NewD = 0;
   5078   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
   5079     FunctionDecl *NewFD;
   5080     // FIXME: Missing call to CheckFunctionDeclaration().
   5081     // FIXME: Mangling?
   5082     // FIXME: Is the qualifier info correct?
   5083     // FIXME: Is the DeclContext correct?
   5084     NewFD = FunctionDecl::Create(FD->getASTContext(), FD->getDeclContext(),
   5085                                  Loc, Loc, DeclarationName(II),
   5086                                  FD->getType(), FD->getTypeSourceInfo(),
   5087                                  SC_None, SC_None,
   5088                                  false/*isInlineSpecified*/,
   5089                                  FD->hasPrototype(),
   5090                                  false/*isConstexprSpecified*/);
   5091     NewD = NewFD;
   5092 
   5093     if (FD->getQualifier())
   5094       NewFD->setQualifierInfo(FD->getQualifierLoc());
   5095 
   5096     // Fake up parameter variables; they are declared as if this were
   5097     // a typedef.
   5098     QualType FDTy = FD->getType();
   5099     if (const FunctionProtoType *FT = FDTy->getAs<FunctionProtoType>()) {
   5100       SmallVector<ParmVarDecl*, 16> Params;
   5101       for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
   5102            AE = FT->arg_type_end(); AI != AE; ++AI) {
   5103         ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, *AI);
   5104         Param->setScopeInfo(0, Params.size());
   5105         Params.push_back(Param);
   5106       }
   5107       NewFD->setParams(Params);
   5108     }
   5109   } else if (VarDecl *VD = dyn_cast<VarDecl>(ND)) {
   5110     NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
   5111                            VD->getInnerLocStart(), VD->getLocation(), II,
   5112                            VD->getType(), VD->getTypeSourceInfo(),
   5113                            VD->getStorageClass(),
   5114                            VD->getStorageClassAsWritten());
   5115     if (VD->getQualifier()) {
   5116       VarDecl *NewVD = cast<VarDecl>(NewD);
   5117       NewVD->setQualifierInfo(VD->getQualifierLoc());
   5118     }
   5119   }
   5120   return NewD;
   5121 }
   5122 
   5123 /// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak
   5124 /// applied to it, possibly with an alias.
   5125 void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) {
   5126   if (W.getUsed()) return; // only do this once
   5127   W.setUsed(true);
   5128   if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
   5129     IdentifierInfo *NDId = ND->getIdentifier();
   5130     NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
   5131     NewD->addAttr(::new (Context) AliasAttr(W.getLocation(), Context,
   5132                                             NDId->getName()));
   5133     NewD->addAttr(::new (Context) WeakAttr(W.getLocation(), Context));
   5134     WeakTopLevelDecl.push_back(NewD);
   5135     // FIXME: "hideous" code from Sema::LazilyCreateBuiltin
   5136     // to insert Decl at TU scope, sorry.
   5137     DeclContext *SavedContext = CurContext;
   5138     CurContext = Context.getTranslationUnitDecl();
   5139     PushOnScopeChains(NewD, S);
   5140     CurContext = SavedContext;
   5141   } else { // just add weak to existing
   5142     ND->addAttr(::new (Context) WeakAttr(W.getLocation(), Context));
   5143   }
   5144 }
   5145 
   5146 void Sema::ProcessPragmaWeak(Scope *S, Decl *D) {
   5147   // It's valid to "forward-declare" #pragma weak, in which case we
   5148   // have to do this.
   5149   LoadExternalWeakUndeclaredIdentifiers();
   5150   if (!WeakUndeclaredIdentifiers.empty()) {
   5151     NamedDecl *ND = NULL;
   5152     if (VarDecl *VD = dyn_cast<VarDecl>(D))
   5153       if (VD->isExternC())
   5154         ND = VD;
   5155     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
   5156       if (FD->isExternC())
   5157         ND = FD;
   5158     if (ND) {
   5159       if (IdentifierInfo *Id = ND->getIdentifier()) {
   5160         llvm::DenseMap<IdentifierInfo*,WeakInfo>::iterator I
   5161           = WeakUndeclaredIdentifiers.find(Id);
   5162         if (I != WeakUndeclaredIdentifiers.end()) {
   5163           WeakInfo W = I->second;
   5164           DeclApplyPragmaWeak(S, ND, W);
   5165           WeakUndeclaredIdentifiers[Id] = W;
   5166         }
   5167       }
   5168     }
   5169   }
   5170 }
   5171 
   5172 /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
   5173 /// it, apply them to D.  This is a bit tricky because PD can have attributes
   5174 /// specified in many different places, and we need to find and apply them all.
   5175 void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD,
   5176                                  bool NonInheritable, bool Inheritable) {
   5177   // Apply decl attributes from the DeclSpec if present.
   5178   if (const AttributeList *Attrs = PD.getDeclSpec().getAttributes().getList())
   5179     ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable);
   5180 
   5181   // Walk the declarator structure, applying decl attributes that were in a type
   5182   // position to the decl itself.  This handles cases like:
   5183   //   int *__attr__(x)** D;
   5184   // when X is a decl attribute.
   5185   for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i)
   5186     if (const AttributeList *Attrs = PD.getTypeObject(i).getAttrs())
   5187       ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable,
   5188                                /*IncludeCXX11Attributes=*/false);
   5189 
   5190   // Finally, apply any attributes on the decl itself.
   5191   if (const AttributeList *Attrs = PD.getAttributes())
   5192     ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable);
   5193 }
   5194 
   5195 /// Is the given declaration allowed to use a forbidden type?
   5196 static bool isForbiddenTypeAllowed(Sema &S, Decl *decl) {
   5197   // Private ivars are always okay.  Unfortunately, people don't
   5198   // always properly make their ivars private, even in system headers.
   5199   // Plus we need to make fields okay, too.
   5200   // Function declarations in sys headers will be marked unavailable.
   5201   if (!isa<FieldDecl>(decl) && !isa<ObjCPropertyDecl>(decl) &&
   5202       !isa<FunctionDecl>(decl))
   5203     return false;
   5204 
   5205   // Require it to be declared in a system header.
   5206   return S.Context.getSourceManager().isInSystemHeader(decl->getLocation());
   5207 }
   5208 
   5209 /// Handle a delayed forbidden-type diagnostic.
   5210 static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &diag,
   5211                                        Decl *decl) {
   5212   if (decl && isForbiddenTypeAllowed(S, decl)) {
   5213     decl->addAttr(new (S.Context) UnavailableAttr(diag.Loc, S.Context,
   5214                         "this system declaration uses an unsupported type"));
   5215     return;
   5216   }
   5217   if (S.getLangOpts().ObjCAutoRefCount)
   5218     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(decl)) {
   5219       // FIXME: we may want to suppress diagnostics for all
   5220       // kind of forbidden type messages on unavailable functions.
   5221       if (FD->hasAttr<UnavailableAttr>() &&
   5222           diag.getForbiddenTypeDiagnostic() ==
   5223           diag::err_arc_array_param_no_ownership) {
   5224         diag.Triggered = true;
   5225         return;
   5226       }
   5227     }
   5228 
   5229   S.Diag(diag.Loc, diag.getForbiddenTypeDiagnostic())
   5230     << diag.getForbiddenTypeOperand() << diag.getForbiddenTypeArgument();
   5231   diag.Triggered = true;
   5232 }
   5233 
   5234 void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) {
   5235   assert(DelayedDiagnostics.getCurrentPool());
   5236   DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool();
   5237   DelayedDiagnostics.popWithoutEmitting(state);
   5238 
   5239   // When delaying diagnostics to run in the context of a parsed
   5240   // declaration, we only want to actually emit anything if parsing
   5241   // succeeds.
   5242   if (!decl) return;
   5243 
   5244   // We emit all the active diagnostics in this pool or any of its
   5245   // parents.  In general, we'll get one pool for the decl spec
   5246   // and a child pool for each declarator; in a decl group like:
   5247   //   deprecated_typedef foo, *bar, baz();
   5248   // only the declarator pops will be passed decls.  This is correct;
   5249   // we really do need to consider delayed diagnostics from the decl spec
   5250   // for each of the different declarations.
   5251   const DelayedDiagnosticPool *pool = &poppedPool;
   5252   do {
   5253     for (DelayedDiagnosticPool::pool_iterator
   5254            i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) {
   5255       // This const_cast is a bit lame.  Really, Triggered should be mutable.
   5256       DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i);
   5257       if (diag.Triggered)
   5258         continue;
   5259 
   5260       switch (diag.Kind) {
   5261       case DelayedDiagnostic::Deprecation:
   5262         // Don't bother giving deprecation diagnostics if the decl is invalid.
   5263         if (!decl->isInvalidDecl())
   5264           HandleDelayedDeprecationCheck(diag, decl);
   5265         break;
   5266 
   5267       case DelayedDiagnostic::Access:
   5268         HandleDelayedAccessCheck(diag, decl);
   5269         break;
   5270 
   5271       case DelayedDiagnostic::ForbiddenType:
   5272         handleDelayedForbiddenType(*this, diag, decl);
   5273         break;
   5274       }
   5275     }
   5276   } while ((pool = pool->getParent()));
   5277 }
   5278 
   5279 /// Given a set of delayed diagnostics, re-emit them as if they had
   5280 /// been delayed in the current context instead of in the given pool.
   5281 /// Essentially, this just moves them to the current pool.
   5282 void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) {
   5283   DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool();
   5284   assert(curPool && "re-emitting in undelayed context not supported");
   5285   curPool->steal(pool);
   5286 }
   5287 
   5288 static bool isDeclDeprecated(Decl *D) {
   5289   do {
   5290     if (D->isDeprecated())
   5291       return true;
   5292     // A category implicitly has the availability of the interface.
   5293     if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
   5294       return CatD->getClassInterface()->isDeprecated();
   5295   } while ((D = cast_or_null<Decl>(D->getDeclContext())));
   5296   return false;
   5297 }
   5298 
   5299 static void
   5300 DoEmitDeprecationWarning(Sema &S, const NamedDecl *D, StringRef Message,
   5301                          SourceLocation Loc,
   5302                          const ObjCInterfaceDecl *UnknownObjCClass,
   5303                          const ObjCPropertyDecl *ObjCPropery) {
   5304   DeclarationName Name = D->getDeclName();
   5305   if (!Message.empty()) {
   5306     S.Diag(Loc, diag::warn_deprecated_message) << Name << Message;
   5307     S.Diag(D->getLocation(),
   5308            isa<ObjCMethodDecl>(D) ? diag::note_method_declared_at
   5309                                   : diag::note_previous_decl) << Name;
   5310     if (ObjCPropery)
   5311       S.Diag(ObjCPropery->getLocation(), diag::note_property_attribute)
   5312         << ObjCPropery->getDeclName() << 0;
   5313   } else if (!UnknownObjCClass) {
   5314     S.Diag(Loc, diag::warn_deprecated) << D->getDeclName();
   5315     S.Diag(D->getLocation(),
   5316            isa<ObjCMethodDecl>(D) ? diag::note_method_declared_at
   5317                                   : diag::note_previous_decl) << Name;
   5318     if (ObjCPropery)
   5319       S.Diag(ObjCPropery->getLocation(), diag::note_property_attribute)
   5320         << ObjCPropery->getDeclName() << 0;
   5321   } else {
   5322     S.Diag(Loc, diag::warn_deprecated_fwdclass_message) << Name;
   5323     S.Diag(UnknownObjCClass->getLocation(), diag::note_forward_class);
   5324   }
   5325 }
   5326 
   5327 void Sema::HandleDelayedDeprecationCheck(DelayedDiagnostic &DD,
   5328                                          Decl *Ctx) {
   5329   if (isDeclDeprecated(Ctx))
   5330     return;
   5331 
   5332   DD.Triggered = true;
   5333   DoEmitDeprecationWarning(*this, DD.getDeprecationDecl(),
   5334                            DD.getDeprecationMessage(), DD.Loc,
   5335                            DD.getUnknownObjCClass(),
   5336                            DD.getObjCProperty());
   5337 }
   5338 
   5339 void Sema::EmitDeprecationWarning(NamedDecl *D, StringRef Message,
   5340                                   SourceLocation Loc,
   5341                                   const ObjCInterfaceDecl *UnknownObjCClass,
   5342                                   const ObjCPropertyDecl  *ObjCProperty) {
   5343   // Delay if we're currently parsing a declaration.
   5344   if (DelayedDiagnostics.shouldDelayDiagnostics()) {
   5345     DelayedDiagnostics.add(DelayedDiagnostic::makeDeprecation(Loc, D,
   5346                                                               UnknownObjCClass,
   5347                                                               ObjCProperty,
   5348                                                               Message));
   5349     return;
   5350   }
   5351 
   5352   // Otherwise, don't warn if our current context is deprecated.
   5353   if (isDeclDeprecated(cast<Decl>(getCurLexicalContext())))
   5354     return;
   5355   DoEmitDeprecationWarning(*this, D, Message, Loc, UnknownObjCClass, ObjCProperty);
   5356 }
   5357