Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code dealing with C++ code generation of classes
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CGBlocks.h"
     15 #include "CGDebugInfo.h"
     16 #include "CGRecordLayout.h"
     17 #include "CodeGenFunction.h"
     18 #include "CGCXXABI.h"
     19 #include "clang/AST/CXXInheritance.h"
     20 #include "clang/AST/EvaluatedExprVisitor.h"
     21 #include "clang/AST/RecordLayout.h"
     22 #include "clang/AST/StmtCXX.h"
     23 #include "clang/Basic/TargetBuiltins.h"
     24 #include "clang/Frontend/CodeGenOptions.h"
     25 
     26 using namespace clang;
     27 using namespace CodeGen;
     28 
     29 static CharUnits
     30 ComputeNonVirtualBaseClassOffset(ASTContext &Context,
     31                                  const CXXRecordDecl *DerivedClass,
     32                                  CastExpr::path_const_iterator Start,
     33                                  CastExpr::path_const_iterator End) {
     34   CharUnits Offset = CharUnits::Zero();
     35 
     36   const CXXRecordDecl *RD = DerivedClass;
     37 
     38   for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
     39     const CXXBaseSpecifier *Base = *I;
     40     assert(!Base->isVirtual() && "Should not see virtual bases here!");
     41 
     42     // Get the layout.
     43     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
     44 
     45     const CXXRecordDecl *BaseDecl =
     46       cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
     47 
     48     // Add the offset.
     49     Offset += Layout.getBaseClassOffset(BaseDecl);
     50 
     51     RD = BaseDecl;
     52   }
     53 
     54   return Offset;
     55 }
     56 
     57 llvm::Constant *
     58 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
     59                                    CastExpr::path_const_iterator PathBegin,
     60                                    CastExpr::path_const_iterator PathEnd) {
     61   assert(PathBegin != PathEnd && "Base path should not be empty!");
     62 
     63   CharUnits Offset =
     64     ComputeNonVirtualBaseClassOffset(getContext(), ClassDecl,
     65                                      PathBegin, PathEnd);
     66   if (Offset.isZero())
     67     return 0;
     68 
     69   llvm::Type *PtrDiffTy =
     70   Types.ConvertType(getContext().getPointerDiffType());
     71 
     72   return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
     73 }
     74 
     75 /// Gets the address of a direct base class within a complete object.
     76 /// This should only be used for (1) non-virtual bases or (2) virtual bases
     77 /// when the type is known to be complete (e.g. in complete destructors).
     78 ///
     79 /// The object pointed to by 'This' is assumed to be non-null.
     80 llvm::Value *
     81 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(llvm::Value *This,
     82                                                    const CXXRecordDecl *Derived,
     83                                                    const CXXRecordDecl *Base,
     84                                                    bool BaseIsVirtual) {
     85   // 'this' must be a pointer (in some address space) to Derived.
     86   assert(This->getType()->isPointerTy() &&
     87          cast<llvm::PointerType>(This->getType())->getElementType()
     88            == ConvertType(Derived));
     89 
     90   // Compute the offset of the virtual base.
     91   CharUnits Offset;
     92   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
     93   if (BaseIsVirtual)
     94     Offset = Layout.getVBaseClassOffset(Base);
     95   else
     96     Offset = Layout.getBaseClassOffset(Base);
     97 
     98   // Shift and cast down to the base type.
     99   // TODO: for complete types, this should be possible with a GEP.
    100   llvm::Value *V = This;
    101   if (Offset.isPositive()) {
    102     V = Builder.CreateBitCast(V, Int8PtrTy);
    103     V = Builder.CreateConstInBoundsGEP1_64(V, Offset.getQuantity());
    104   }
    105   V = Builder.CreateBitCast(V, ConvertType(Base)->getPointerTo());
    106 
    107   return V;
    108 }
    109 
    110 static llvm::Value *
    111 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, llvm::Value *ptr,
    112                                 CharUnits nonVirtualOffset,
    113                                 llvm::Value *virtualOffset) {
    114   // Assert that we have something to do.
    115   assert(!nonVirtualOffset.isZero() || virtualOffset != 0);
    116 
    117   // Compute the offset from the static and dynamic components.
    118   llvm::Value *baseOffset;
    119   if (!nonVirtualOffset.isZero()) {
    120     baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
    121                                         nonVirtualOffset.getQuantity());
    122     if (virtualOffset) {
    123       baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
    124     }
    125   } else {
    126     baseOffset = virtualOffset;
    127   }
    128 
    129   // Apply the base offset.
    130   ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
    131   ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
    132   return ptr;
    133 }
    134 
    135 llvm::Value *
    136 CodeGenFunction::GetAddressOfBaseClass(llvm::Value *Value,
    137                                        const CXXRecordDecl *Derived,
    138                                        CastExpr::path_const_iterator PathBegin,
    139                                        CastExpr::path_const_iterator PathEnd,
    140                                        bool NullCheckValue) {
    141   assert(PathBegin != PathEnd && "Base path should not be empty!");
    142 
    143   CastExpr::path_const_iterator Start = PathBegin;
    144   const CXXRecordDecl *VBase = 0;
    145 
    146   // Sema has done some convenient canonicalization here: if the
    147   // access path involved any virtual steps, the conversion path will
    148   // *start* with a step down to the correct virtual base subobject,
    149   // and hence will not require any further steps.
    150   if ((*Start)->isVirtual()) {
    151     VBase =
    152       cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
    153     ++Start;
    154   }
    155 
    156   // Compute the static offset of the ultimate destination within its
    157   // allocating subobject (the virtual base, if there is one, or else
    158   // the "complete" object that we see).
    159   CharUnits NonVirtualOffset =
    160     ComputeNonVirtualBaseClassOffset(getContext(), VBase ? VBase : Derived,
    161                                      Start, PathEnd);
    162 
    163   // If there's a virtual step, we can sometimes "devirtualize" it.
    164   // For now, that's limited to when the derived type is final.
    165   // TODO: "devirtualize" this for accesses to known-complete objects.
    166   if (VBase && Derived->hasAttr<FinalAttr>()) {
    167     const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
    168     CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
    169     NonVirtualOffset += vBaseOffset;
    170     VBase = 0; // we no longer have a virtual step
    171   }
    172 
    173   // Get the base pointer type.
    174   llvm::Type *BasePtrTy =
    175     ConvertType((PathEnd[-1])->getType())->getPointerTo();
    176 
    177   // If the static offset is zero and we don't have a virtual step,
    178   // just do a bitcast; null checks are unnecessary.
    179   if (NonVirtualOffset.isZero() && !VBase) {
    180     return Builder.CreateBitCast(Value, BasePtrTy);
    181   }
    182 
    183   llvm::BasicBlock *origBB = 0;
    184   llvm::BasicBlock *endBB = 0;
    185 
    186   // Skip over the offset (and the vtable load) if we're supposed to
    187   // null-check the pointer.
    188   if (NullCheckValue) {
    189     origBB = Builder.GetInsertBlock();
    190     llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
    191     endBB = createBasicBlock("cast.end");
    192 
    193     llvm::Value *isNull = Builder.CreateIsNull(Value);
    194     Builder.CreateCondBr(isNull, endBB, notNullBB);
    195     EmitBlock(notNullBB);
    196   }
    197 
    198   // Compute the virtual offset.
    199   llvm::Value *VirtualOffset = 0;
    200   if (VBase) {
    201     VirtualOffset = GetVirtualBaseClassOffset(Value, Derived, VBase);
    202   }
    203 
    204   // Apply both offsets.
    205   Value = ApplyNonVirtualAndVirtualOffset(*this, Value,
    206                                           NonVirtualOffset,
    207                                           VirtualOffset);
    208 
    209   // Cast to the destination type.
    210   Value = Builder.CreateBitCast(Value, BasePtrTy);
    211 
    212   // Build a phi if we needed a null check.
    213   if (NullCheckValue) {
    214     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
    215     Builder.CreateBr(endBB);
    216     EmitBlock(endBB);
    217 
    218     llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
    219     PHI->addIncoming(Value, notNullBB);
    220     PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
    221     Value = PHI;
    222   }
    223 
    224   return Value;
    225 }
    226 
    227 llvm::Value *
    228 CodeGenFunction::GetAddressOfDerivedClass(llvm::Value *Value,
    229                                           const CXXRecordDecl *Derived,
    230                                         CastExpr::path_const_iterator PathBegin,
    231                                           CastExpr::path_const_iterator PathEnd,
    232                                           bool NullCheckValue) {
    233   assert(PathBegin != PathEnd && "Base path should not be empty!");
    234 
    235   QualType DerivedTy =
    236     getContext().getCanonicalType(getContext().getTagDeclType(Derived));
    237   llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
    238 
    239   llvm::Value *NonVirtualOffset =
    240     CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
    241 
    242   if (!NonVirtualOffset) {
    243     // No offset, we can just cast back.
    244     return Builder.CreateBitCast(Value, DerivedPtrTy);
    245   }
    246 
    247   llvm::BasicBlock *CastNull = 0;
    248   llvm::BasicBlock *CastNotNull = 0;
    249   llvm::BasicBlock *CastEnd = 0;
    250 
    251   if (NullCheckValue) {
    252     CastNull = createBasicBlock("cast.null");
    253     CastNotNull = createBasicBlock("cast.notnull");
    254     CastEnd = createBasicBlock("cast.end");
    255 
    256     llvm::Value *IsNull = Builder.CreateIsNull(Value);
    257     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
    258     EmitBlock(CastNotNull);
    259   }
    260 
    261   // Apply the offset.
    262   Value = Builder.CreateBitCast(Value, Int8PtrTy);
    263   Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset),
    264                             "sub.ptr");
    265 
    266   // Just cast.
    267   Value = Builder.CreateBitCast(Value, DerivedPtrTy);
    268 
    269   if (NullCheckValue) {
    270     Builder.CreateBr(CastEnd);
    271     EmitBlock(CastNull);
    272     Builder.CreateBr(CastEnd);
    273     EmitBlock(CastEnd);
    274 
    275     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
    276     PHI->addIncoming(Value, CastNotNull);
    277     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()),
    278                      CastNull);
    279     Value = PHI;
    280   }
    281 
    282   return Value;
    283 }
    284 
    285 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
    286                                               bool ForVirtualBase,
    287                                               bool Delegating) {
    288   if (!CodeGenVTables::needsVTTParameter(GD)) {
    289     // This constructor/destructor does not need a VTT parameter.
    290     return 0;
    291   }
    292 
    293   const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent();
    294   const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
    295 
    296   llvm::Value *VTT;
    297 
    298   uint64_t SubVTTIndex;
    299 
    300   if (Delegating) {
    301     // If this is a delegating constructor call, just load the VTT.
    302     return LoadCXXVTT();
    303   } else if (RD == Base) {
    304     // If the record matches the base, this is the complete ctor/dtor
    305     // variant calling the base variant in a class with virtual bases.
    306     assert(!CodeGenVTables::needsVTTParameter(CurGD) &&
    307            "doing no-op VTT offset in base dtor/ctor?");
    308     assert(!ForVirtualBase && "Can't have same class as virtual base!");
    309     SubVTTIndex = 0;
    310   } else {
    311     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
    312     CharUnits BaseOffset = ForVirtualBase ?
    313       Layout.getVBaseClassOffset(Base) :
    314       Layout.getBaseClassOffset(Base);
    315 
    316     SubVTTIndex =
    317       CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
    318     assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
    319   }
    320 
    321   if (CodeGenVTables::needsVTTParameter(CurGD)) {
    322     // A VTT parameter was passed to the constructor, use it.
    323     VTT = LoadCXXVTT();
    324     VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
    325   } else {
    326     // We're the complete constructor, so get the VTT by name.
    327     VTT = CGM.getVTables().GetAddrOfVTT(RD);
    328     VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
    329   }
    330 
    331   return VTT;
    332 }
    333 
    334 namespace {
    335   /// Call the destructor for a direct base class.
    336   struct CallBaseDtor : EHScopeStack::Cleanup {
    337     const CXXRecordDecl *BaseClass;
    338     bool BaseIsVirtual;
    339     CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
    340       : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
    341 
    342     void Emit(CodeGenFunction &CGF, Flags flags) {
    343       const CXXRecordDecl *DerivedClass =
    344         cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
    345 
    346       const CXXDestructorDecl *D = BaseClass->getDestructor();
    347       llvm::Value *Addr =
    348         CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThis(),
    349                                                   DerivedClass, BaseClass,
    350                                                   BaseIsVirtual);
    351       CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
    352                                 /*Delegating=*/false, Addr);
    353     }
    354   };
    355 
    356   /// A visitor which checks whether an initializer uses 'this' in a
    357   /// way which requires the vtable to be properly set.
    358   struct DynamicThisUseChecker : EvaluatedExprVisitor<DynamicThisUseChecker> {
    359     typedef EvaluatedExprVisitor<DynamicThisUseChecker> super;
    360 
    361     bool UsesThis;
    362 
    363     DynamicThisUseChecker(ASTContext &C) : super(C), UsesThis(false) {}
    364 
    365     // Black-list all explicit and implicit references to 'this'.
    366     //
    367     // Do we need to worry about external references to 'this' derived
    368     // from arbitrary code?  If so, then anything which runs arbitrary
    369     // external code might potentially access the vtable.
    370     void VisitCXXThisExpr(CXXThisExpr *E) { UsesThis = true; }
    371   };
    372 }
    373 
    374 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
    375   DynamicThisUseChecker Checker(C);
    376   Checker.Visit(const_cast<Expr*>(Init));
    377   return Checker.UsesThis;
    378 }
    379 
    380 static void EmitBaseInitializer(CodeGenFunction &CGF,
    381                                 const CXXRecordDecl *ClassDecl,
    382                                 CXXCtorInitializer *BaseInit,
    383                                 CXXCtorType CtorType) {
    384   assert(BaseInit->isBaseInitializer() &&
    385          "Must have base initializer!");
    386 
    387   llvm::Value *ThisPtr = CGF.LoadCXXThis();
    388 
    389   const Type *BaseType = BaseInit->getBaseClass();
    390   CXXRecordDecl *BaseClassDecl =
    391     cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
    392 
    393   bool isBaseVirtual = BaseInit->isBaseVirtual();
    394 
    395   // The base constructor doesn't construct virtual bases.
    396   if (CtorType == Ctor_Base && isBaseVirtual)
    397     return;
    398 
    399   // If the initializer for the base (other than the constructor
    400   // itself) accesses 'this' in any way, we need to initialize the
    401   // vtables.
    402   if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
    403     CGF.InitializeVTablePointers(ClassDecl);
    404 
    405   // We can pretend to be a complete class because it only matters for
    406   // virtual bases, and we only do virtual bases for complete ctors.
    407   llvm::Value *V =
    408     CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
    409                                               BaseClassDecl,
    410                                               isBaseVirtual);
    411   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(BaseType);
    412   AggValueSlot AggSlot =
    413     AggValueSlot::forAddr(V, Alignment, Qualifiers(),
    414                           AggValueSlot::IsDestructed,
    415                           AggValueSlot::DoesNotNeedGCBarriers,
    416                           AggValueSlot::IsNotAliased);
    417 
    418   CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
    419 
    420   if (CGF.CGM.getLangOpts().Exceptions &&
    421       !BaseClassDecl->hasTrivialDestructor())
    422     CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
    423                                           isBaseVirtual);
    424 }
    425 
    426 static void EmitAggMemberInitializer(CodeGenFunction &CGF,
    427                                      LValue LHS,
    428                                      Expr *Init,
    429                                      llvm::Value *ArrayIndexVar,
    430                                      QualType T,
    431                                      ArrayRef<VarDecl *> ArrayIndexes,
    432                                      unsigned Index) {
    433   if (Index == ArrayIndexes.size()) {
    434     LValue LV = LHS;
    435     { // Scope for Cleanups.
    436       CodeGenFunction::RunCleanupsScope Cleanups(CGF);
    437 
    438       if (ArrayIndexVar) {
    439         // If we have an array index variable, load it and use it as an offset.
    440         // Then, increment the value.
    441         llvm::Value *Dest = LHS.getAddress();
    442         llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar);
    443         Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress");
    444         llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1);
    445         Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc");
    446         CGF.Builder.CreateStore(Next, ArrayIndexVar);
    447 
    448         // Update the LValue.
    449         LV.setAddress(Dest);
    450         CharUnits Align = CGF.getContext().getTypeAlignInChars(T);
    451         LV.setAlignment(std::min(Align, LV.getAlignment()));
    452       }
    453 
    454       switch (CGF.getEvaluationKind(T)) {
    455       case TEK_Scalar:
    456         CGF.EmitScalarInit(Init, /*decl*/ 0, LV, false);
    457         break;
    458       case TEK_Complex:
    459         CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true);
    460         break;
    461       case TEK_Aggregate: {
    462         AggValueSlot Slot =
    463           AggValueSlot::forLValue(LV,
    464                                   AggValueSlot::IsDestructed,
    465                                   AggValueSlot::DoesNotNeedGCBarriers,
    466                                   AggValueSlot::IsNotAliased);
    467 
    468         CGF.EmitAggExpr(Init, Slot);
    469         break;
    470       }
    471       }
    472     }
    473 
    474     // Now, outside of the initializer cleanup scope, destroy the backing array
    475     // for a std::initializer_list member.
    476     CGF.MaybeEmitStdInitializerListCleanup(LV.getAddress(), Init);
    477 
    478     return;
    479   }
    480 
    481   const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T);
    482   assert(Array && "Array initialization without the array type?");
    483   llvm::Value *IndexVar
    484     = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]);
    485   assert(IndexVar && "Array index variable not loaded");
    486 
    487   // Initialize this index variable to zero.
    488   llvm::Value* Zero
    489     = llvm::Constant::getNullValue(
    490                               CGF.ConvertType(CGF.getContext().getSizeType()));
    491   CGF.Builder.CreateStore(Zero, IndexVar);
    492 
    493   // Start the loop with a block that tests the condition.
    494   llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond");
    495   llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end");
    496 
    497   CGF.EmitBlock(CondBlock);
    498 
    499   llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body");
    500   // Generate: if (loop-index < number-of-elements) fall to the loop body,
    501   // otherwise, go to the block after the for-loop.
    502   uint64_t NumElements = Array->getSize().getZExtValue();
    503   llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar);
    504   llvm::Value *NumElementsPtr =
    505     llvm::ConstantInt::get(Counter->getType(), NumElements);
    506   llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr,
    507                                                   "isless");
    508 
    509   // If the condition is true, execute the body.
    510   CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor);
    511 
    512   CGF.EmitBlock(ForBody);
    513   llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc");
    514 
    515   {
    516     CodeGenFunction::RunCleanupsScope Cleanups(CGF);
    517 
    518     // Inside the loop body recurse to emit the inner loop or, eventually, the
    519     // constructor call.
    520     EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar,
    521                              Array->getElementType(), ArrayIndexes, Index + 1);
    522   }
    523 
    524   CGF.EmitBlock(ContinueBlock);
    525 
    526   // Emit the increment of the loop counter.
    527   llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1);
    528   Counter = CGF.Builder.CreateLoad(IndexVar);
    529   NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc");
    530   CGF.Builder.CreateStore(NextVal, IndexVar);
    531 
    532   // Finally, branch back up to the condition for the next iteration.
    533   CGF.EmitBranch(CondBlock);
    534 
    535   // Emit the fall-through block.
    536   CGF.EmitBlock(AfterFor, true);
    537 }
    538 
    539 static void EmitMemberInitializer(CodeGenFunction &CGF,
    540                                   const CXXRecordDecl *ClassDecl,
    541                                   CXXCtorInitializer *MemberInit,
    542                                   const CXXConstructorDecl *Constructor,
    543                                   FunctionArgList &Args) {
    544   assert(MemberInit->isAnyMemberInitializer() &&
    545          "Must have member initializer!");
    546   assert(MemberInit->getInit() && "Must have initializer!");
    547 
    548   // non-static data member initializers.
    549   FieldDecl *Field = MemberInit->getAnyMember();
    550   QualType FieldType = Field->getType();
    551 
    552   llvm::Value *ThisPtr = CGF.LoadCXXThis();
    553   QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
    554   LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
    555 
    556   if (MemberInit->isIndirectMemberInitializer()) {
    557     // If we are initializing an anonymous union field, drill down to
    558     // the field.
    559     IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
    560     IndirectFieldDecl::chain_iterator I = IndirectField->chain_begin(),
    561       IEnd = IndirectField->chain_end();
    562     for ( ; I != IEnd; ++I)
    563       LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(*I));
    564     FieldType = MemberInit->getIndirectMember()->getAnonField()->getType();
    565   } else {
    566     LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
    567   }
    568 
    569   // Special case: if we are in a copy or move constructor, and we are copying
    570   // an array of PODs or classes with trivial copy constructors, ignore the
    571   // AST and perform the copy we know is equivalent.
    572   // FIXME: This is hacky at best... if we had a bit more explicit information
    573   // in the AST, we could generalize it more easily.
    574   const ConstantArrayType *Array
    575     = CGF.getContext().getAsConstantArrayType(FieldType);
    576   if (Array && Constructor->isImplicitlyDefined() &&
    577       Constructor->isCopyOrMoveConstructor()) {
    578     QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
    579     CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
    580     if (BaseElementTy.isPODType(CGF.getContext()) ||
    581         (CE && CE->getConstructor()->isTrivial())) {
    582       // Find the source pointer. We know it's the last argument because
    583       // we know we're in an implicit copy constructor.
    584       unsigned SrcArgIndex = Args.size() - 1;
    585       llvm::Value *SrcPtr
    586         = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
    587       LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
    588       LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
    589 
    590       // Copy the aggregate.
    591       CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType,
    592                             LHS.isVolatileQualified());
    593       return;
    594     }
    595   }
    596 
    597   ArrayRef<VarDecl *> ArrayIndexes;
    598   if (MemberInit->getNumArrayIndices())
    599     ArrayIndexes = MemberInit->getArrayIndexes();
    600   CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes);
    601 }
    602 
    603 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field,
    604                                               LValue LHS, Expr *Init,
    605                                              ArrayRef<VarDecl *> ArrayIndexes) {
    606   QualType FieldType = Field->getType();
    607   switch (getEvaluationKind(FieldType)) {
    608   case TEK_Scalar:
    609     if (LHS.isSimple()) {
    610       EmitExprAsInit(Init, Field, LHS, false);
    611     } else {
    612       RValue RHS = RValue::get(EmitScalarExpr(Init));
    613       EmitStoreThroughLValue(RHS, LHS);
    614     }
    615     break;
    616   case TEK_Complex:
    617     EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
    618     break;
    619   case TEK_Aggregate: {
    620     llvm::Value *ArrayIndexVar = 0;
    621     if (ArrayIndexes.size()) {
    622       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
    623 
    624       // The LHS is a pointer to the first object we'll be constructing, as
    625       // a flat array.
    626       QualType BaseElementTy = getContext().getBaseElementType(FieldType);
    627       llvm::Type *BasePtr = ConvertType(BaseElementTy);
    628       BasePtr = llvm::PointerType::getUnqual(BasePtr);
    629       llvm::Value *BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(),
    630                                                        BasePtr);
    631       LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy);
    632 
    633       // Create an array index that will be used to walk over all of the
    634       // objects we're constructing.
    635       ArrayIndexVar = CreateTempAlloca(SizeTy, "object.index");
    636       llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy);
    637       Builder.CreateStore(Zero, ArrayIndexVar);
    638 
    639 
    640       // Emit the block variables for the array indices, if any.
    641       for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I)
    642         EmitAutoVarDecl(*ArrayIndexes[I]);
    643     }
    644 
    645     EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType,
    646                              ArrayIndexes, 0);
    647   }
    648   }
    649 
    650   // Ensure that we destroy this object if an exception is thrown
    651   // later in the constructor.
    652   QualType::DestructionKind dtorKind = FieldType.isDestructedType();
    653   if (needsEHCleanup(dtorKind))
    654     pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
    655 }
    656 
    657 /// Checks whether the given constructor is a valid subject for the
    658 /// complete-to-base constructor delegation optimization, i.e.
    659 /// emitting the complete constructor as a simple call to the base
    660 /// constructor.
    661 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) {
    662 
    663   // Currently we disable the optimization for classes with virtual
    664   // bases because (1) the addresses of parameter variables need to be
    665   // consistent across all initializers but (2) the delegate function
    666   // call necessarily creates a second copy of the parameter variable.
    667   //
    668   // The limiting example (purely theoretical AFAIK):
    669   //   struct A { A(int &c) { c++; } };
    670   //   struct B : virtual A {
    671   //     B(int count) : A(count) { printf("%d\n", count); }
    672   //   };
    673   // ...although even this example could in principle be emitted as a
    674   // delegation since the address of the parameter doesn't escape.
    675   if (Ctor->getParent()->getNumVBases()) {
    676     // TODO: white-list trivial vbase initializers.  This case wouldn't
    677     // be subject to the restrictions below.
    678 
    679     // TODO: white-list cases where:
    680     //  - there are no non-reference parameters to the constructor
    681     //  - the initializers don't access any non-reference parameters
    682     //  - the initializers don't take the address of non-reference
    683     //    parameters
    684     //  - etc.
    685     // If we ever add any of the above cases, remember that:
    686     //  - function-try-blocks will always blacklist this optimization
    687     //  - we need to perform the constructor prologue and cleanup in
    688     //    EmitConstructorBody.
    689 
    690     return false;
    691   }
    692 
    693   // We also disable the optimization for variadic functions because
    694   // it's impossible to "re-pass" varargs.
    695   if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
    696     return false;
    697 
    698   // FIXME: Decide if we can do a delegation of a delegating constructor.
    699   if (Ctor->isDelegatingConstructor())
    700     return false;
    701 
    702   return true;
    703 }
    704 
    705 /// EmitConstructorBody - Emits the body of the current constructor.
    706 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
    707   const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
    708   CXXCtorType CtorType = CurGD.getCtorType();
    709 
    710   // Before we go any further, try the complete->base constructor
    711   // delegation optimization.
    712   if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
    713       CGM.getContext().getTargetInfo().getCXXABI().hasConstructorVariants()) {
    714     if (CGDebugInfo *DI = getDebugInfo())
    715       DI->EmitLocation(Builder, Ctor->getLocEnd());
    716     EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args);
    717     return;
    718   }
    719 
    720   Stmt *Body = Ctor->getBody();
    721 
    722   // Enter the function-try-block before the constructor prologue if
    723   // applicable.
    724   bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
    725   if (IsTryBody)
    726     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
    727 
    728   EHScopeStack::stable_iterator CleanupDepth = EHStack.stable_begin();
    729 
    730   // TODO: in restricted cases, we can emit the vbase initializers of
    731   // a complete ctor and then delegate to the base ctor.
    732 
    733   // Emit the constructor prologue, i.e. the base and member
    734   // initializers.
    735   EmitCtorPrologue(Ctor, CtorType, Args);
    736 
    737   // Emit the body of the statement.
    738   if (IsTryBody)
    739     EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
    740   else if (Body)
    741     EmitStmt(Body);
    742 
    743   // Emit any cleanup blocks associated with the member or base
    744   // initializers, which includes (along the exceptional path) the
    745   // destructors for those members and bases that were fully
    746   // constructed.
    747   PopCleanupBlocks(CleanupDepth);
    748 
    749   if (IsTryBody)
    750     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
    751 }
    752 
    753 namespace {
    754   class FieldMemcpyizer {
    755   public:
    756     FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
    757                     const VarDecl *SrcRec)
    758       : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
    759         RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
    760         FirstField(0), LastField(0), FirstFieldOffset(0), LastFieldOffset(0),
    761         LastAddedFieldIndex(0) { }
    762 
    763     static bool isMemcpyableField(FieldDecl *F) {
    764       Qualifiers Qual = F->getType().getQualifiers();
    765       if (Qual.hasVolatile() || Qual.hasObjCLifetime())
    766         return false;
    767       return true;
    768     }
    769 
    770     void addMemcpyableField(FieldDecl *F) {
    771       if (FirstField == 0)
    772         addInitialField(F);
    773       else
    774         addNextField(F);
    775     }
    776 
    777     CharUnits getMemcpySize() const {
    778       unsigned LastFieldSize =
    779         LastField->isBitField() ?
    780           LastField->getBitWidthValue(CGF.getContext()) :
    781           CGF.getContext().getTypeSize(LastField->getType());
    782       uint64_t MemcpySizeBits =
    783         LastFieldOffset + LastFieldSize - FirstFieldOffset +
    784         CGF.getContext().getCharWidth() - 1;
    785       CharUnits MemcpySize =
    786         CGF.getContext().toCharUnitsFromBits(MemcpySizeBits);
    787       return MemcpySize;
    788     }
    789 
    790     void emitMemcpy() {
    791       // Give the subclass a chance to bail out if it feels the memcpy isn't
    792       // worth it (e.g. Hasn't aggregated enough data).
    793       if (FirstField == 0) {
    794         return;
    795       }
    796 
    797       CharUnits Alignment;
    798 
    799       if (FirstField->isBitField()) {
    800         const CGRecordLayout &RL =
    801           CGF.getTypes().getCGRecordLayout(FirstField->getParent());
    802         const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
    803         Alignment = CharUnits::fromQuantity(BFInfo.StorageAlignment);
    804       } else {
    805         Alignment = CGF.getContext().getDeclAlign(FirstField);
    806       }
    807 
    808       assert((CGF.getContext().toCharUnitsFromBits(FirstFieldOffset) %
    809               Alignment) == 0 && "Bad field alignment.");
    810 
    811       CharUnits MemcpySize = getMemcpySize();
    812       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
    813       llvm::Value *ThisPtr = CGF.LoadCXXThis();
    814       LValue DestLV = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
    815       LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
    816       llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
    817       LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
    818       LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
    819 
    820       emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddr() : Dest.getAddress(),
    821                    Src.isBitField() ? Src.getBitFieldAddr() : Src.getAddress(),
    822                    MemcpySize, Alignment);
    823       reset();
    824     }
    825 
    826     void reset() {
    827       FirstField = 0;
    828     }
    829 
    830   protected:
    831     CodeGenFunction &CGF;
    832     const CXXRecordDecl *ClassDecl;
    833 
    834   private:
    835 
    836     void emitMemcpyIR(llvm::Value *DestPtr, llvm::Value *SrcPtr,
    837                       CharUnits Size, CharUnits Alignment) {
    838       llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
    839       llvm::Type *DBP =
    840         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
    841       DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
    842 
    843       llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
    844       llvm::Type *SBP =
    845         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
    846       SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
    847 
    848       CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity(),
    849                                Alignment.getQuantity());
    850     }
    851 
    852     void addInitialField(FieldDecl *F) {
    853         FirstField = F;
    854         LastField = F;
    855         FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
    856         LastFieldOffset = FirstFieldOffset;
    857         LastAddedFieldIndex = F->getFieldIndex();
    858         return;
    859       }
    860 
    861     void addNextField(FieldDecl *F) {
    862       assert(F->getFieldIndex() == LastAddedFieldIndex + 1 &&
    863              "Cannot aggregate non-contiguous fields.");
    864       LastAddedFieldIndex = F->getFieldIndex();
    865 
    866       // The 'first' and 'last' fields are chosen by offset, rather than field
    867       // index. This allows the code to support bitfields, as well as regular
    868       // fields.
    869       uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
    870       if (FOffset < FirstFieldOffset) {
    871         FirstField = F;
    872         FirstFieldOffset = FOffset;
    873       } else if (FOffset > LastFieldOffset) {
    874         LastField = F;
    875         LastFieldOffset = FOffset;
    876       }
    877     }
    878 
    879     const VarDecl *SrcRec;
    880     const ASTRecordLayout &RecLayout;
    881     FieldDecl *FirstField;
    882     FieldDecl *LastField;
    883     uint64_t FirstFieldOffset, LastFieldOffset;
    884     unsigned LastAddedFieldIndex;
    885   };
    886 
    887   class ConstructorMemcpyizer : public FieldMemcpyizer {
    888   private:
    889 
    890     /// Get source argument for copy constructor. Returns null if not a copy
    891     /// constructor.
    892     static const VarDecl* getTrivialCopySource(const CXXConstructorDecl *CD,
    893                                                FunctionArgList &Args) {
    894       if (CD->isCopyOrMoveConstructor() && CD->isImplicitlyDefined())
    895         return Args[Args.size() - 1];
    896       return 0;
    897     }
    898 
    899     // Returns true if a CXXCtorInitializer represents a member initialization
    900     // that can be rolled into a memcpy.
    901     bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
    902       if (!MemcpyableCtor)
    903         return false;
    904       FieldDecl *Field = MemberInit->getMember();
    905       assert(Field != 0 && "No field for member init.");
    906       QualType FieldType = Field->getType();
    907       CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
    908 
    909       // Bail out on non-POD, not-trivially-constructable members.
    910       if (!(CE && CE->getConstructor()->isTrivial()) &&
    911           !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
    912             FieldType->isReferenceType()))
    913         return false;
    914 
    915       // Bail out on volatile fields.
    916       if (!isMemcpyableField(Field))
    917         return false;
    918 
    919       // Otherwise we're good.
    920       return true;
    921     }
    922 
    923   public:
    924     ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
    925                           FunctionArgList &Args)
    926       : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CD, Args)),
    927         ConstructorDecl(CD),
    928         MemcpyableCtor(CD->isImplicitlyDefined() &&
    929                        CD->isCopyOrMoveConstructor() &&
    930                        CGF.getLangOpts().getGC() == LangOptions::NonGC),
    931         Args(Args) { }
    932 
    933     void addMemberInitializer(CXXCtorInitializer *MemberInit) {
    934       if (isMemberInitMemcpyable(MemberInit)) {
    935         AggregatedInits.push_back(MemberInit);
    936         addMemcpyableField(MemberInit->getMember());
    937       } else {
    938         emitAggregatedInits();
    939         EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
    940                               ConstructorDecl, Args);
    941       }
    942     }
    943 
    944     void emitAggregatedInits() {
    945       if (AggregatedInits.size() <= 1) {
    946         // This memcpy is too small to be worthwhile. Fall back on default
    947         // codegen.
    948         for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
    949           EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
    950                                 AggregatedInits[i], ConstructorDecl, Args);
    951         }
    952         reset();
    953         return;
    954       }
    955 
    956       pushEHDestructors();
    957       emitMemcpy();
    958       AggregatedInits.clear();
    959     }
    960 
    961     void pushEHDestructors() {
    962       llvm::Value *ThisPtr = CGF.LoadCXXThis();
    963       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
    964       LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
    965 
    966       for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
    967         QualType FieldType = AggregatedInits[i]->getMember()->getType();
    968         QualType::DestructionKind dtorKind = FieldType.isDestructedType();
    969         if (CGF.needsEHCleanup(dtorKind))
    970           CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
    971       }
    972     }
    973 
    974     void finish() {
    975       emitAggregatedInits();
    976     }
    977 
    978   private:
    979     const CXXConstructorDecl *ConstructorDecl;
    980     bool MemcpyableCtor;
    981     FunctionArgList &Args;
    982     SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
    983   };
    984 
    985   class AssignmentMemcpyizer : public FieldMemcpyizer {
    986   private:
    987 
    988     // Returns the memcpyable field copied by the given statement, if one
    989     // exists. Otherwise r
    990     FieldDecl* getMemcpyableField(Stmt *S) {
    991       if (!AssignmentsMemcpyable)
    992         return 0;
    993       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
    994         // Recognise trivial assignments.
    995         if (BO->getOpcode() != BO_Assign)
    996           return 0;
    997         MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
    998         if (!ME)
    999           return 0;
   1000         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
   1001         if (!Field || !isMemcpyableField(Field))
   1002           return 0;
   1003         Stmt *RHS = BO->getRHS();
   1004         if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
   1005           RHS = EC->getSubExpr();
   1006         if (!RHS)
   1007           return 0;
   1008         MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS);
   1009         if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field)
   1010           return 0;
   1011         return Field;
   1012       } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
   1013         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
   1014         if (!(MD && (MD->isCopyAssignmentOperator() ||
   1015                        MD->isMoveAssignmentOperator()) &&
   1016               MD->isTrivial()))
   1017           return 0;
   1018         MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
   1019         if (!IOA)
   1020           return 0;
   1021         FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
   1022         if (!Field || !isMemcpyableField(Field))
   1023           return 0;
   1024         MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
   1025         if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
   1026           return 0;
   1027         return Field;
   1028       } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
   1029         FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
   1030         if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
   1031           return 0;
   1032         Expr *DstPtr = CE->getArg(0);
   1033         if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
   1034           DstPtr = DC->getSubExpr();
   1035         UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
   1036         if (!DUO || DUO->getOpcode() != UO_AddrOf)
   1037           return 0;
   1038         MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
   1039         if (!ME)
   1040           return 0;
   1041         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
   1042         if (!Field || !isMemcpyableField(Field))
   1043           return 0;
   1044         Expr *SrcPtr = CE->getArg(1);
   1045         if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
   1046           SrcPtr = SC->getSubExpr();
   1047         UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
   1048         if (!SUO || SUO->getOpcode() != UO_AddrOf)
   1049           return 0;
   1050         MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
   1051         if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
   1052           return 0;
   1053         return Field;
   1054       }
   1055 
   1056       return 0;
   1057     }
   1058 
   1059     bool AssignmentsMemcpyable;
   1060     SmallVector<Stmt*, 16> AggregatedStmts;
   1061 
   1062   public:
   1063 
   1064     AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
   1065                          FunctionArgList &Args)
   1066       : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
   1067         AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
   1068       assert(Args.size() == 2);
   1069     }
   1070 
   1071     void emitAssignment(Stmt *S) {
   1072       FieldDecl *F = getMemcpyableField(S);
   1073       if (F) {
   1074         addMemcpyableField(F);
   1075         AggregatedStmts.push_back(S);
   1076       } else {
   1077         emitAggregatedStmts();
   1078         CGF.EmitStmt(S);
   1079       }
   1080     }
   1081 
   1082     void emitAggregatedStmts() {
   1083       if (AggregatedStmts.size() <= 1) {
   1084         for (unsigned i = 0; i < AggregatedStmts.size(); ++i)
   1085           CGF.EmitStmt(AggregatedStmts[i]);
   1086         reset();
   1087       }
   1088 
   1089       emitMemcpy();
   1090       AggregatedStmts.clear();
   1091     }
   1092 
   1093     void finish() {
   1094       emitAggregatedStmts();
   1095     }
   1096   };
   1097 
   1098 }
   1099 
   1100 /// EmitCtorPrologue - This routine generates necessary code to initialize
   1101 /// base classes and non-static data members belonging to this constructor.
   1102 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
   1103                                        CXXCtorType CtorType,
   1104                                        FunctionArgList &Args) {
   1105   if (CD->isDelegatingConstructor())
   1106     return EmitDelegatingCXXConstructorCall(CD, Args);
   1107 
   1108   const CXXRecordDecl *ClassDecl = CD->getParent();
   1109 
   1110   CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
   1111                                           E = CD->init_end();
   1112 
   1113   llvm::BasicBlock *BaseCtorContinueBB = 0;
   1114   if (ClassDecl->getNumVBases() &&
   1115       !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
   1116     // The ABIs that don't have constructor variants need to put a branch
   1117     // before the virtual base initialization code.
   1118     BaseCtorContinueBB = CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this);
   1119     assert(BaseCtorContinueBB);
   1120   }
   1121 
   1122   // Virtual base initializers first.
   1123   for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
   1124     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
   1125   }
   1126 
   1127   if (BaseCtorContinueBB) {
   1128     // Complete object handler should continue to the remaining initializers.
   1129     Builder.CreateBr(BaseCtorContinueBB);
   1130     EmitBlock(BaseCtorContinueBB);
   1131   }
   1132 
   1133   // Then, non-virtual base initializers.
   1134   for (; B != E && (*B)->isBaseInitializer(); B++) {
   1135     assert(!(*B)->isBaseVirtual());
   1136     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
   1137   }
   1138 
   1139   InitializeVTablePointers(ClassDecl);
   1140 
   1141   // And finally, initialize class members.
   1142   ConstructorMemcpyizer CM(*this, CD, Args);
   1143   for (; B != E; B++) {
   1144     CXXCtorInitializer *Member = (*B);
   1145     assert(!Member->isBaseInitializer());
   1146     assert(Member->isAnyMemberInitializer() &&
   1147            "Delegating initializer on non-delegating constructor");
   1148     CM.addMemberInitializer(Member);
   1149   }
   1150   CM.finish();
   1151 }
   1152 
   1153 static bool
   1154 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
   1155 
   1156 static bool
   1157 HasTrivialDestructorBody(ASTContext &Context,
   1158                          const CXXRecordDecl *BaseClassDecl,
   1159                          const CXXRecordDecl *MostDerivedClassDecl)
   1160 {
   1161   // If the destructor is trivial we don't have to check anything else.
   1162   if (BaseClassDecl->hasTrivialDestructor())
   1163     return true;
   1164 
   1165   if (!BaseClassDecl->getDestructor()->hasTrivialBody())
   1166     return false;
   1167 
   1168   // Check fields.
   1169   for (CXXRecordDecl::field_iterator I = BaseClassDecl->field_begin(),
   1170        E = BaseClassDecl->field_end(); I != E; ++I) {
   1171     const FieldDecl *Field = *I;
   1172 
   1173     if (!FieldHasTrivialDestructorBody(Context, Field))
   1174       return false;
   1175   }
   1176 
   1177   // Check non-virtual bases.
   1178   for (CXXRecordDecl::base_class_const_iterator I =
   1179        BaseClassDecl->bases_begin(), E = BaseClassDecl->bases_end();
   1180        I != E; ++I) {
   1181     if (I->isVirtual())
   1182       continue;
   1183 
   1184     const CXXRecordDecl *NonVirtualBase =
   1185       cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
   1186     if (!HasTrivialDestructorBody(Context, NonVirtualBase,
   1187                                   MostDerivedClassDecl))
   1188       return false;
   1189   }
   1190 
   1191   if (BaseClassDecl == MostDerivedClassDecl) {
   1192     // Check virtual bases.
   1193     for (CXXRecordDecl::base_class_const_iterator I =
   1194          BaseClassDecl->vbases_begin(), E = BaseClassDecl->vbases_end();
   1195          I != E; ++I) {
   1196       const CXXRecordDecl *VirtualBase =
   1197         cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
   1198       if (!HasTrivialDestructorBody(Context, VirtualBase,
   1199                                     MostDerivedClassDecl))
   1200         return false;
   1201     }
   1202   }
   1203 
   1204   return true;
   1205 }
   1206 
   1207 static bool
   1208 FieldHasTrivialDestructorBody(ASTContext &Context,
   1209                               const FieldDecl *Field)
   1210 {
   1211   QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
   1212 
   1213   const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
   1214   if (!RT)
   1215     return true;
   1216 
   1217   CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
   1218   return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
   1219 }
   1220 
   1221 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
   1222 /// any vtable pointers before calling this destructor.
   1223 static bool CanSkipVTablePointerInitialization(ASTContext &Context,
   1224                                                const CXXDestructorDecl *Dtor) {
   1225   if (!Dtor->hasTrivialBody())
   1226     return false;
   1227 
   1228   // Check the fields.
   1229   const CXXRecordDecl *ClassDecl = Dtor->getParent();
   1230   for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
   1231        E = ClassDecl->field_end(); I != E; ++I) {
   1232     const FieldDecl *Field = *I;
   1233 
   1234     if (!FieldHasTrivialDestructorBody(Context, Field))
   1235       return false;
   1236   }
   1237 
   1238   return true;
   1239 }
   1240 
   1241 /// EmitDestructorBody - Emits the body of the current destructor.
   1242 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
   1243   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
   1244   CXXDtorType DtorType = CurGD.getDtorType();
   1245 
   1246   // The call to operator delete in a deleting destructor happens
   1247   // outside of the function-try-block, which means it's always
   1248   // possible to delegate the destructor body to the complete
   1249   // destructor.  Do so.
   1250   if (DtorType == Dtor_Deleting) {
   1251     EnterDtorCleanups(Dtor, Dtor_Deleting);
   1252     EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
   1253                           /*Delegating=*/false, LoadCXXThis());
   1254     PopCleanupBlock();
   1255     return;
   1256   }
   1257 
   1258   Stmt *Body = Dtor->getBody();
   1259 
   1260   // If the body is a function-try-block, enter the try before
   1261   // anything else.
   1262   bool isTryBody = (Body && isa<CXXTryStmt>(Body));
   1263   if (isTryBody)
   1264     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
   1265 
   1266   // Enter the epilogue cleanups.
   1267   RunCleanupsScope DtorEpilogue(*this);
   1268 
   1269   // If this is the complete variant, just invoke the base variant;
   1270   // the epilogue will destruct the virtual bases.  But we can't do
   1271   // this optimization if the body is a function-try-block, because
   1272   // we'd introduce *two* handler blocks.
   1273   switch (DtorType) {
   1274   case Dtor_Deleting: llvm_unreachable("already handled deleting case");
   1275 
   1276   case Dtor_Complete:
   1277     // Enter the cleanup scopes for virtual bases.
   1278     EnterDtorCleanups(Dtor, Dtor_Complete);
   1279 
   1280     if (!isTryBody &&
   1281         CGM.getContext().getTargetInfo().getCXXABI().hasDestructorVariants()) {
   1282       EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
   1283                             /*Delegating=*/false, LoadCXXThis());
   1284       break;
   1285     }
   1286     // Fallthrough: act like we're in the base variant.
   1287 
   1288   case Dtor_Base:
   1289     // Enter the cleanup scopes for fields and non-virtual bases.
   1290     EnterDtorCleanups(Dtor, Dtor_Base);
   1291 
   1292     // Initialize the vtable pointers before entering the body.
   1293     if (!CanSkipVTablePointerInitialization(getContext(), Dtor))
   1294         InitializeVTablePointers(Dtor->getParent());
   1295 
   1296     if (isTryBody)
   1297       EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
   1298     else if (Body)
   1299       EmitStmt(Body);
   1300     else {
   1301       assert(Dtor->isImplicit() && "bodyless dtor not implicit");
   1302       // nothing to do besides what's in the epilogue
   1303     }
   1304     // -fapple-kext must inline any call to this dtor into
   1305     // the caller's body.
   1306     if (getLangOpts().AppleKext)
   1307       CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
   1308     break;
   1309   }
   1310 
   1311   // Jump out through the epilogue cleanups.
   1312   DtorEpilogue.ForceCleanup();
   1313 
   1314   // Exit the try if applicable.
   1315   if (isTryBody)
   1316     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
   1317 }
   1318 
   1319 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
   1320   const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
   1321   const Stmt *RootS = AssignOp->getBody();
   1322   assert(isa<CompoundStmt>(RootS) &&
   1323          "Body of an implicit assignment operator should be compound stmt.");
   1324   const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
   1325 
   1326   LexicalScope Scope(*this, RootCS->getSourceRange());
   1327 
   1328   AssignmentMemcpyizer AM(*this, AssignOp, Args);
   1329   for (CompoundStmt::const_body_iterator I = RootCS->body_begin(),
   1330                                          E = RootCS->body_end();
   1331        I != E; ++I) {
   1332     AM.emitAssignment(*I);
   1333   }
   1334   AM.finish();
   1335 }
   1336 
   1337 namespace {
   1338   /// Call the operator delete associated with the current destructor.
   1339   struct CallDtorDelete : EHScopeStack::Cleanup {
   1340     CallDtorDelete() {}
   1341 
   1342     void Emit(CodeGenFunction &CGF, Flags flags) {
   1343       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
   1344       const CXXRecordDecl *ClassDecl = Dtor->getParent();
   1345       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
   1346                          CGF.getContext().getTagDeclType(ClassDecl));
   1347     }
   1348   };
   1349 
   1350   struct CallDtorDeleteConditional : EHScopeStack::Cleanup {
   1351     llvm::Value *ShouldDeleteCondition;
   1352   public:
   1353     CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
   1354       : ShouldDeleteCondition(ShouldDeleteCondition) {
   1355       assert(ShouldDeleteCondition != NULL);
   1356     }
   1357 
   1358     void Emit(CodeGenFunction &CGF, Flags flags) {
   1359       llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
   1360       llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
   1361       llvm::Value *ShouldCallDelete
   1362         = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
   1363       CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
   1364 
   1365       CGF.EmitBlock(callDeleteBB);
   1366       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
   1367       const CXXRecordDecl *ClassDecl = Dtor->getParent();
   1368       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
   1369                          CGF.getContext().getTagDeclType(ClassDecl));
   1370       CGF.Builder.CreateBr(continueBB);
   1371 
   1372       CGF.EmitBlock(continueBB);
   1373     }
   1374   };
   1375 
   1376   class DestroyField  : public EHScopeStack::Cleanup {
   1377     const FieldDecl *field;
   1378     CodeGenFunction::Destroyer *destroyer;
   1379     bool useEHCleanupForArray;
   1380 
   1381   public:
   1382     DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
   1383                  bool useEHCleanupForArray)
   1384       : field(field), destroyer(destroyer),
   1385         useEHCleanupForArray(useEHCleanupForArray) {}
   1386 
   1387     void Emit(CodeGenFunction &CGF, Flags flags) {
   1388       // Find the address of the field.
   1389       llvm::Value *thisValue = CGF.LoadCXXThis();
   1390       QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
   1391       LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
   1392       LValue LV = CGF.EmitLValueForField(ThisLV, field);
   1393       assert(LV.isSimple());
   1394 
   1395       CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
   1396                       flags.isForNormalCleanup() && useEHCleanupForArray);
   1397     }
   1398   };
   1399 }
   1400 
   1401 /// EmitDtorEpilogue - Emit all code that comes at the end of class's
   1402 /// destructor. This is to call destructors on members and base classes
   1403 /// in reverse order of their construction.
   1404 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
   1405                                         CXXDtorType DtorType) {
   1406   assert(!DD->isTrivial() &&
   1407          "Should not emit dtor epilogue for trivial dtor!");
   1408 
   1409   // The deleting-destructor phase just needs to call the appropriate
   1410   // operator delete that Sema picked up.
   1411   if (DtorType == Dtor_Deleting) {
   1412     assert(DD->getOperatorDelete() &&
   1413            "operator delete missing - EmitDtorEpilogue");
   1414     if (CXXStructorImplicitParamValue) {
   1415       // If there is an implicit param to the deleting dtor, it's a boolean
   1416       // telling whether we should call delete at the end of the dtor.
   1417       EHStack.pushCleanup<CallDtorDeleteConditional>(
   1418           NormalAndEHCleanup, CXXStructorImplicitParamValue);
   1419     } else {
   1420       EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
   1421     }
   1422     return;
   1423   }
   1424 
   1425   const CXXRecordDecl *ClassDecl = DD->getParent();
   1426 
   1427   // Unions have no bases and do not call field destructors.
   1428   if (ClassDecl->isUnion())
   1429     return;
   1430 
   1431   // The complete-destructor phase just destructs all the virtual bases.
   1432   if (DtorType == Dtor_Complete) {
   1433 
   1434     // We push them in the forward order so that they'll be popped in
   1435     // the reverse order.
   1436     for (CXXRecordDecl::base_class_const_iterator I =
   1437            ClassDecl->vbases_begin(), E = ClassDecl->vbases_end();
   1438               I != E; ++I) {
   1439       const CXXBaseSpecifier &Base = *I;
   1440       CXXRecordDecl *BaseClassDecl
   1441         = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
   1442 
   1443       // Ignore trivial destructors.
   1444       if (BaseClassDecl->hasTrivialDestructor())
   1445         continue;
   1446 
   1447       EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
   1448                                         BaseClassDecl,
   1449                                         /*BaseIsVirtual*/ true);
   1450     }
   1451 
   1452     return;
   1453   }
   1454 
   1455   assert(DtorType == Dtor_Base);
   1456 
   1457   // Destroy non-virtual bases.
   1458   for (CXXRecordDecl::base_class_const_iterator I =
   1459         ClassDecl->bases_begin(), E = ClassDecl->bases_end(); I != E; ++I) {
   1460     const CXXBaseSpecifier &Base = *I;
   1461 
   1462     // Ignore virtual bases.
   1463     if (Base.isVirtual())
   1464       continue;
   1465 
   1466     CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
   1467 
   1468     // Ignore trivial destructors.
   1469     if (BaseClassDecl->hasTrivialDestructor())
   1470       continue;
   1471 
   1472     EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
   1473                                       BaseClassDecl,
   1474                                       /*BaseIsVirtual*/ false);
   1475   }
   1476 
   1477   // Destroy direct fields.
   1478   SmallVector<const FieldDecl *, 16> FieldDecls;
   1479   for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
   1480        E = ClassDecl->field_end(); I != E; ++I) {
   1481     const FieldDecl *field = *I;
   1482     QualType type = field->getType();
   1483     QualType::DestructionKind dtorKind = type.isDestructedType();
   1484     if (!dtorKind) continue;
   1485 
   1486     // Anonymous union members do not have their destructors called.
   1487     const RecordType *RT = type->getAsUnionType();
   1488     if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
   1489 
   1490     CleanupKind cleanupKind = getCleanupKind(dtorKind);
   1491     EHStack.pushCleanup<DestroyField>(cleanupKind, field,
   1492                                       getDestroyer(dtorKind),
   1493                                       cleanupKind & EHCleanup);
   1494   }
   1495 }
   1496 
   1497 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
   1498 /// constructor for each of several members of an array.
   1499 ///
   1500 /// \param ctor the constructor to call for each element
   1501 /// \param arrayType the type of the array to initialize
   1502 /// \param arrayBegin an arrayType*
   1503 /// \param zeroInitialize true if each element should be
   1504 ///   zero-initialized before it is constructed
   1505 void
   1506 CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
   1507                                             const ConstantArrayType *arrayType,
   1508                                             llvm::Value *arrayBegin,
   1509                                           CallExpr::const_arg_iterator argBegin,
   1510                                             CallExpr::const_arg_iterator argEnd,
   1511                                             bool zeroInitialize) {
   1512   QualType elementType;
   1513   llvm::Value *numElements =
   1514     emitArrayLength(arrayType, elementType, arrayBegin);
   1515 
   1516   EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin,
   1517                              argBegin, argEnd, zeroInitialize);
   1518 }
   1519 
   1520 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
   1521 /// constructor for each of several members of an array.
   1522 ///
   1523 /// \param ctor the constructor to call for each element
   1524 /// \param numElements the number of elements in the array;
   1525 ///   may be zero
   1526 /// \param arrayBegin a T*, where T is the type constructed by ctor
   1527 /// \param zeroInitialize true if each element should be
   1528 ///   zero-initialized before it is constructed
   1529 void
   1530 CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
   1531                                             llvm::Value *numElements,
   1532                                             llvm::Value *arrayBegin,
   1533                                          CallExpr::const_arg_iterator argBegin,
   1534                                            CallExpr::const_arg_iterator argEnd,
   1535                                             bool zeroInitialize) {
   1536 
   1537   // It's legal for numElements to be zero.  This can happen both
   1538   // dynamically, because x can be zero in 'new A[x]', and statically,
   1539   // because of GCC extensions that permit zero-length arrays.  There
   1540   // are probably legitimate places where we could assume that this
   1541   // doesn't happen, but it's not clear that it's worth it.
   1542   llvm::BranchInst *zeroCheckBranch = 0;
   1543 
   1544   // Optimize for a constant count.
   1545   llvm::ConstantInt *constantCount
   1546     = dyn_cast<llvm::ConstantInt>(numElements);
   1547   if (constantCount) {
   1548     // Just skip out if the constant count is zero.
   1549     if (constantCount->isZero()) return;
   1550 
   1551   // Otherwise, emit the check.
   1552   } else {
   1553     llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
   1554     llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
   1555     zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
   1556     EmitBlock(loopBB);
   1557   }
   1558 
   1559   // Find the end of the array.
   1560   llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
   1561                                                     "arrayctor.end");
   1562 
   1563   // Enter the loop, setting up a phi for the current location to initialize.
   1564   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
   1565   llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
   1566   EmitBlock(loopBB);
   1567   llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
   1568                                          "arrayctor.cur");
   1569   cur->addIncoming(arrayBegin, entryBB);
   1570 
   1571   // Inside the loop body, emit the constructor call on the array element.
   1572 
   1573   QualType type = getContext().getTypeDeclType(ctor->getParent());
   1574 
   1575   // Zero initialize the storage, if requested.
   1576   if (zeroInitialize)
   1577     EmitNullInitialization(cur, type);
   1578 
   1579   // C++ [class.temporary]p4:
   1580   // There are two contexts in which temporaries are destroyed at a different
   1581   // point than the end of the full-expression. The first context is when a
   1582   // default constructor is called to initialize an element of an array.
   1583   // If the constructor has one or more default arguments, the destruction of
   1584   // every temporary created in a default argument expression is sequenced
   1585   // before the construction of the next array element, if any.
   1586 
   1587   {
   1588     RunCleanupsScope Scope(*this);
   1589 
   1590     // Evaluate the constructor and its arguments in a regular
   1591     // partial-destroy cleanup.
   1592     if (getLangOpts().Exceptions &&
   1593         !ctor->getParent()->hasTrivialDestructor()) {
   1594       Destroyer *destroyer = destroyCXXObject;
   1595       pushRegularPartialArrayCleanup(arrayBegin, cur, type, *destroyer);
   1596     }
   1597 
   1598     EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/ false,
   1599                            /*Delegating=*/false, cur, argBegin, argEnd);
   1600   }
   1601 
   1602   // Go to the next element.
   1603   llvm::Value *next =
   1604     Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
   1605                               "arrayctor.next");
   1606   cur->addIncoming(next, Builder.GetInsertBlock());
   1607 
   1608   // Check whether that's the end of the loop.
   1609   llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
   1610   llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
   1611   Builder.CreateCondBr(done, contBB, loopBB);
   1612 
   1613   // Patch the earlier check to skip over the loop.
   1614   if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
   1615 
   1616   EmitBlock(contBB);
   1617 }
   1618 
   1619 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
   1620                                        llvm::Value *addr,
   1621                                        QualType type) {
   1622   const RecordType *rtype = type->castAs<RecordType>();
   1623   const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
   1624   const CXXDestructorDecl *dtor = record->getDestructor();
   1625   assert(!dtor->isTrivial());
   1626   CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
   1627                             /*Delegating=*/false, addr);
   1628 }
   1629 
   1630 void
   1631 CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
   1632                                         CXXCtorType Type, bool ForVirtualBase,
   1633                                         bool Delegating,
   1634                                         llvm::Value *This,
   1635                                         CallExpr::const_arg_iterator ArgBeg,
   1636                                         CallExpr::const_arg_iterator ArgEnd) {
   1637 
   1638   CGDebugInfo *DI = getDebugInfo();
   1639   if (DI &&
   1640       CGM.getCodeGenOpts().getDebugInfo() == CodeGenOptions::LimitedDebugInfo) {
   1641     // If debug info for this class has not been emitted then this is the
   1642     // right time to do so.
   1643     const CXXRecordDecl *Parent = D->getParent();
   1644     DI->getOrCreateRecordType(CGM.getContext().getTypeDeclType(Parent),
   1645                               Parent->getLocation());
   1646   }
   1647 
   1648   // If this is a trivial constructor, just emit what's needed.
   1649   if (D->isTrivial()) {
   1650     if (ArgBeg == ArgEnd) {
   1651       // Trivial default constructor, no codegen required.
   1652       assert(D->isDefaultConstructor() &&
   1653              "trivial 0-arg ctor not a default ctor");
   1654       return;
   1655     }
   1656 
   1657     assert(ArgBeg + 1 == ArgEnd && "unexpected argcount for trivial ctor");
   1658     assert(D->isCopyOrMoveConstructor() &&
   1659            "trivial 1-arg ctor not a copy/move ctor");
   1660 
   1661     const Expr *E = (*ArgBeg);
   1662     QualType Ty = E->getType();
   1663     llvm::Value *Src = EmitLValue(E).getAddress();
   1664     EmitAggregateCopy(This, Src, Ty);
   1665     return;
   1666   }
   1667 
   1668   // Non-trivial constructors are handled in an ABI-specific manner.
   1669   CGM.getCXXABI().EmitConstructorCall(*this, D, Type, ForVirtualBase,
   1670                                       Delegating, This, ArgBeg, ArgEnd);
   1671 }
   1672 
   1673 void
   1674 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
   1675                                         llvm::Value *This, llvm::Value *Src,
   1676                                         CallExpr::const_arg_iterator ArgBeg,
   1677                                         CallExpr::const_arg_iterator ArgEnd) {
   1678   if (D->isTrivial()) {
   1679     assert(ArgBeg + 1 == ArgEnd && "unexpected argcount for trivial ctor");
   1680     assert(D->isCopyOrMoveConstructor() &&
   1681            "trivial 1-arg ctor not a copy/move ctor");
   1682     EmitAggregateCopy(This, Src, (*ArgBeg)->getType());
   1683     return;
   1684   }
   1685   llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(D,
   1686                                                     clang::Ctor_Complete);
   1687   assert(D->isInstance() &&
   1688          "Trying to emit a member call expr on a static method!");
   1689 
   1690   const FunctionProtoType *FPT = D->getType()->getAs<FunctionProtoType>();
   1691 
   1692   CallArgList Args;
   1693 
   1694   // Push the this ptr.
   1695   Args.add(RValue::get(This), D->getThisType(getContext()));
   1696 
   1697 
   1698   // Push the src ptr.
   1699   QualType QT = *(FPT->arg_type_begin());
   1700   llvm::Type *t = CGM.getTypes().ConvertType(QT);
   1701   Src = Builder.CreateBitCast(Src, t);
   1702   Args.add(RValue::get(Src), QT);
   1703 
   1704   // Skip over first argument (Src).
   1705   ++ArgBeg;
   1706   CallExpr::const_arg_iterator Arg = ArgBeg;
   1707   for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin()+1,
   1708        E = FPT->arg_type_end(); I != E; ++I, ++Arg) {
   1709     assert(Arg != ArgEnd && "Running over edge of argument list!");
   1710     EmitCallArg(Args, *Arg, *I);
   1711   }
   1712   // Either we've emitted all the call args, or we have a call to a
   1713   // variadic function.
   1714   assert((Arg == ArgEnd || FPT->isVariadic()) &&
   1715          "Extra arguments in non-variadic function!");
   1716   // If we still have any arguments, emit them using the type of the argument.
   1717   for (; Arg != ArgEnd; ++Arg) {
   1718     QualType ArgType = Arg->getType();
   1719     EmitCallArg(Args, *Arg, ArgType);
   1720   }
   1721 
   1722   EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, RequiredArgs::All),
   1723            Callee, ReturnValueSlot(), Args, D);
   1724 }
   1725 
   1726 void
   1727 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
   1728                                                 CXXCtorType CtorType,
   1729                                                 const FunctionArgList &Args) {
   1730   CallArgList DelegateArgs;
   1731 
   1732   FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
   1733   assert(I != E && "no parameters to constructor");
   1734 
   1735   // this
   1736   DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType());
   1737   ++I;
   1738 
   1739   // vtt
   1740   if (llvm::Value *VTT = GetVTTParameter(GlobalDecl(Ctor, CtorType),
   1741                                          /*ForVirtualBase=*/false,
   1742                                          /*Delegating=*/true)) {
   1743     QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy);
   1744     DelegateArgs.add(RValue::get(VTT), VoidPP);
   1745 
   1746     if (CodeGenVTables::needsVTTParameter(CurGD)) {
   1747       assert(I != E && "cannot skip vtt parameter, already done with args");
   1748       assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type");
   1749       ++I;
   1750     }
   1751   }
   1752 
   1753   // Explicit arguments.
   1754   for (; I != E; ++I) {
   1755     const VarDecl *param = *I;
   1756     EmitDelegateCallArg(DelegateArgs, param);
   1757   }
   1758 
   1759   EmitCall(CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor, CtorType),
   1760            CGM.GetAddrOfCXXConstructor(Ctor, CtorType),
   1761            ReturnValueSlot(), DelegateArgs, Ctor);
   1762 }
   1763 
   1764 namespace {
   1765   struct CallDelegatingCtorDtor : EHScopeStack::Cleanup {
   1766     const CXXDestructorDecl *Dtor;
   1767     llvm::Value *Addr;
   1768     CXXDtorType Type;
   1769 
   1770     CallDelegatingCtorDtor(const CXXDestructorDecl *D, llvm::Value *Addr,
   1771                            CXXDtorType Type)
   1772       : Dtor(D), Addr(Addr), Type(Type) {}
   1773 
   1774     void Emit(CodeGenFunction &CGF, Flags flags) {
   1775       CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
   1776                                 /*Delegating=*/true, Addr);
   1777     }
   1778   };
   1779 }
   1780 
   1781 void
   1782 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
   1783                                                   const FunctionArgList &Args) {
   1784   assert(Ctor->isDelegatingConstructor());
   1785 
   1786   llvm::Value *ThisPtr = LoadCXXThis();
   1787 
   1788   QualType Ty = getContext().getTagDeclType(Ctor->getParent());
   1789   CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
   1790   AggValueSlot AggSlot =
   1791     AggValueSlot::forAddr(ThisPtr, Alignment, Qualifiers(),
   1792                           AggValueSlot::IsDestructed,
   1793                           AggValueSlot::DoesNotNeedGCBarriers,
   1794                           AggValueSlot::IsNotAliased);
   1795 
   1796   EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
   1797 
   1798   const CXXRecordDecl *ClassDecl = Ctor->getParent();
   1799   if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
   1800     CXXDtorType Type =
   1801       CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
   1802 
   1803     EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
   1804                                                 ClassDecl->getDestructor(),
   1805                                                 ThisPtr, Type);
   1806   }
   1807 }
   1808 
   1809 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
   1810                                             CXXDtorType Type,
   1811                                             bool ForVirtualBase,
   1812                                             bool Delegating,
   1813                                             llvm::Value *This) {
   1814   llvm::Value *VTT = GetVTTParameter(GlobalDecl(DD, Type),
   1815                                      ForVirtualBase, Delegating);
   1816   llvm::Value *Callee = 0;
   1817   if (getLangOpts().AppleKext)
   1818     Callee = BuildAppleKextVirtualDestructorCall(DD, Type,
   1819                                                  DD->getParent());
   1820 
   1821   if (!Callee)
   1822     Callee = CGM.GetAddrOfCXXDestructor(DD, Type);
   1823 
   1824   // FIXME: Provide a source location here.
   1825   EmitCXXMemberCall(DD, SourceLocation(), Callee, ReturnValueSlot(), This,
   1826                     VTT, getContext().getPointerType(getContext().VoidPtrTy),
   1827                     0, 0);
   1828 }
   1829 
   1830 namespace {
   1831   struct CallLocalDtor : EHScopeStack::Cleanup {
   1832     const CXXDestructorDecl *Dtor;
   1833     llvm::Value *Addr;
   1834 
   1835     CallLocalDtor(const CXXDestructorDecl *D, llvm::Value *Addr)
   1836       : Dtor(D), Addr(Addr) {}
   1837 
   1838     void Emit(CodeGenFunction &CGF, Flags flags) {
   1839       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
   1840                                 /*ForVirtualBase=*/false,
   1841                                 /*Delegating=*/false, Addr);
   1842     }
   1843   };
   1844 }
   1845 
   1846 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
   1847                                             llvm::Value *Addr) {
   1848   EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
   1849 }
   1850 
   1851 void CodeGenFunction::PushDestructorCleanup(QualType T, llvm::Value *Addr) {
   1852   CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
   1853   if (!ClassDecl) return;
   1854   if (ClassDecl->hasTrivialDestructor()) return;
   1855 
   1856   const CXXDestructorDecl *D = ClassDecl->getDestructor();
   1857   assert(D && D->isUsed() && "destructor not marked as used!");
   1858   PushDestructorCleanup(D, Addr);
   1859 }
   1860 
   1861 llvm::Value *
   1862 CodeGenFunction::GetVirtualBaseClassOffset(llvm::Value *This,
   1863                                            const CXXRecordDecl *ClassDecl,
   1864                                            const CXXRecordDecl *BaseClassDecl) {
   1865   llvm::Value *VTablePtr = GetVTablePtr(This, Int8PtrTy);
   1866   CharUnits VBaseOffsetOffset =
   1867     CGM.getVTableContext().getVirtualBaseOffsetOffset(ClassDecl, BaseClassDecl);
   1868 
   1869   llvm::Value *VBaseOffsetPtr =
   1870     Builder.CreateConstGEP1_64(VTablePtr, VBaseOffsetOffset.getQuantity(),
   1871                                "vbase.offset.ptr");
   1872   llvm::Type *PtrDiffTy =
   1873     ConvertType(getContext().getPointerDiffType());
   1874 
   1875   VBaseOffsetPtr = Builder.CreateBitCast(VBaseOffsetPtr,
   1876                                          PtrDiffTy->getPointerTo());
   1877 
   1878   llvm::Value *VBaseOffset = Builder.CreateLoad(VBaseOffsetPtr, "vbase.offset");
   1879 
   1880   return VBaseOffset;
   1881 }
   1882 
   1883 void
   1884 CodeGenFunction::InitializeVTablePointer(BaseSubobject Base,
   1885                                          const CXXRecordDecl *NearestVBase,
   1886                                          CharUnits OffsetFromNearestVBase,
   1887                                          llvm::Constant *VTable,
   1888                                          const CXXRecordDecl *VTableClass) {
   1889   const CXXRecordDecl *RD = Base.getBase();
   1890 
   1891   // Compute the address point.
   1892   llvm::Value *VTableAddressPoint;
   1893 
   1894   // Check if we need to use a vtable from the VTT.
   1895   if (CodeGenVTables::needsVTTParameter(CurGD) &&
   1896       (RD->getNumVBases() || NearestVBase)) {
   1897     // Get the secondary vpointer index.
   1898     uint64_t VirtualPointerIndex =
   1899      CGM.getVTables().getSecondaryVirtualPointerIndex(VTableClass, Base);
   1900 
   1901     /// Load the VTT.
   1902     llvm::Value *VTT = LoadCXXVTT();
   1903     if (VirtualPointerIndex)
   1904       VTT = Builder.CreateConstInBoundsGEP1_64(VTT, VirtualPointerIndex);
   1905 
   1906     // And load the address point from the VTT.
   1907     VTableAddressPoint = Builder.CreateLoad(VTT);
   1908   } else {
   1909     uint64_t AddressPoint =
   1910       CGM.getVTableContext().getVTableLayout(VTableClass).getAddressPoint(Base);
   1911     VTableAddressPoint =
   1912       Builder.CreateConstInBoundsGEP2_64(VTable, 0, AddressPoint);
   1913   }
   1914 
   1915   // Compute where to store the address point.
   1916   llvm::Value *VirtualOffset = 0;
   1917   CharUnits NonVirtualOffset = CharUnits::Zero();
   1918 
   1919   if (CodeGenVTables::needsVTTParameter(CurGD) && NearestVBase) {
   1920     // We need to use the virtual base offset offset because the virtual base
   1921     // might have a different offset in the most derived class.
   1922     VirtualOffset = GetVirtualBaseClassOffset(LoadCXXThis(), VTableClass,
   1923                                               NearestVBase);
   1924     NonVirtualOffset = OffsetFromNearestVBase;
   1925   } else {
   1926     // We can just use the base offset in the complete class.
   1927     NonVirtualOffset = Base.getBaseOffset();
   1928   }
   1929 
   1930   // Apply the offsets.
   1931   llvm::Value *VTableField = LoadCXXThis();
   1932 
   1933   if (!NonVirtualOffset.isZero() || VirtualOffset)
   1934     VTableField = ApplyNonVirtualAndVirtualOffset(*this, VTableField,
   1935                                                   NonVirtualOffset,
   1936                                                   VirtualOffset);
   1937 
   1938   // Finally, store the address point.
   1939   llvm::Type *AddressPointPtrTy =
   1940     VTableAddressPoint->getType()->getPointerTo();
   1941   VTableField = Builder.CreateBitCast(VTableField, AddressPointPtrTy);
   1942   llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
   1943   CGM.DecorateInstruction(Store, CGM.getTBAAInfoForVTablePtr());
   1944 }
   1945 
   1946 void
   1947 CodeGenFunction::InitializeVTablePointers(BaseSubobject Base,
   1948                                           const CXXRecordDecl *NearestVBase,
   1949                                           CharUnits OffsetFromNearestVBase,
   1950                                           bool BaseIsNonVirtualPrimaryBase,
   1951                                           llvm::Constant *VTable,
   1952                                           const CXXRecordDecl *VTableClass,
   1953                                           VisitedVirtualBasesSetTy& VBases) {
   1954   // If this base is a non-virtual primary base the address point has already
   1955   // been set.
   1956   if (!BaseIsNonVirtualPrimaryBase) {
   1957     // Initialize the vtable pointer for this base.
   1958     InitializeVTablePointer(Base, NearestVBase, OffsetFromNearestVBase,
   1959                             VTable, VTableClass);
   1960   }
   1961 
   1962   const CXXRecordDecl *RD = Base.getBase();
   1963 
   1964   // Traverse bases.
   1965   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
   1966        E = RD->bases_end(); I != E; ++I) {
   1967     CXXRecordDecl *BaseDecl
   1968       = cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
   1969 
   1970     // Ignore classes without a vtable.
   1971     if (!BaseDecl->isDynamicClass())
   1972       continue;
   1973 
   1974     CharUnits BaseOffset;
   1975     CharUnits BaseOffsetFromNearestVBase;
   1976     bool BaseDeclIsNonVirtualPrimaryBase;
   1977 
   1978     if (I->isVirtual()) {
   1979       // Check if we've visited this virtual base before.
   1980       if (!VBases.insert(BaseDecl))
   1981         continue;
   1982 
   1983       const ASTRecordLayout &Layout =
   1984         getContext().getASTRecordLayout(VTableClass);
   1985 
   1986       BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
   1987       BaseOffsetFromNearestVBase = CharUnits::Zero();
   1988       BaseDeclIsNonVirtualPrimaryBase = false;
   1989     } else {
   1990       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
   1991 
   1992       BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
   1993       BaseOffsetFromNearestVBase =
   1994         OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
   1995       BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
   1996     }
   1997 
   1998     InitializeVTablePointers(BaseSubobject(BaseDecl, BaseOffset),
   1999                              I->isVirtual() ? BaseDecl : NearestVBase,
   2000                              BaseOffsetFromNearestVBase,
   2001                              BaseDeclIsNonVirtualPrimaryBase,
   2002                              VTable, VTableClass, VBases);
   2003   }
   2004 }
   2005 
   2006 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
   2007   // Ignore classes without a vtable.
   2008   if (!RD->isDynamicClass())
   2009     return;
   2010 
   2011   // Get the VTable.
   2012   llvm::Constant *VTable = CGM.getVTables().GetAddrOfVTable(RD);
   2013 
   2014   // Initialize the vtable pointers for this class and all of its bases.
   2015   VisitedVirtualBasesSetTy VBases;
   2016   InitializeVTablePointers(BaseSubobject(RD, CharUnits::Zero()),
   2017                            /*NearestVBase=*/0,
   2018                            /*OffsetFromNearestVBase=*/CharUnits::Zero(),
   2019                            /*BaseIsNonVirtualPrimaryBase=*/false,
   2020                            VTable, RD, VBases);
   2021 }
   2022 
   2023 llvm::Value *CodeGenFunction::GetVTablePtr(llvm::Value *This,
   2024                                            llvm::Type *Ty) {
   2025   llvm::Value *VTablePtrSrc = Builder.CreateBitCast(This, Ty->getPointerTo());
   2026   llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
   2027   CGM.DecorateInstruction(VTable, CGM.getTBAAInfoForVTablePtr());
   2028   return VTable;
   2029 }
   2030 
   2031 static const CXXRecordDecl *getMostDerivedClassDecl(const Expr *Base) {
   2032   const Expr *E = Base;
   2033 
   2034   while (true) {
   2035     E = E->IgnoreParens();
   2036     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
   2037       if (CE->getCastKind() == CK_DerivedToBase ||
   2038           CE->getCastKind() == CK_UncheckedDerivedToBase ||
   2039           CE->getCastKind() == CK_NoOp) {
   2040         E = CE->getSubExpr();
   2041         continue;
   2042       }
   2043     }
   2044 
   2045     break;
   2046   }
   2047 
   2048   QualType DerivedType = E->getType();
   2049   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
   2050     DerivedType = PTy->getPointeeType();
   2051 
   2052   return cast<CXXRecordDecl>(DerivedType->castAs<RecordType>()->getDecl());
   2053 }
   2054 
   2055 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
   2056 // quite what we want.
   2057 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
   2058   while (true) {
   2059     if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
   2060       E = PE->getSubExpr();
   2061       continue;
   2062     }
   2063 
   2064     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
   2065       if (CE->getCastKind() == CK_NoOp) {
   2066         E = CE->getSubExpr();
   2067         continue;
   2068       }
   2069     }
   2070     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
   2071       if (UO->getOpcode() == UO_Extension) {
   2072         E = UO->getSubExpr();
   2073         continue;
   2074       }
   2075     }
   2076     return E;
   2077   }
   2078 }
   2079 
   2080 /// canDevirtualizeMemberFunctionCall - Checks whether the given virtual member
   2081 /// function call on the given expr can be devirtualized.
   2082 static bool canDevirtualizeMemberFunctionCall(const Expr *Base,
   2083                                               const CXXMethodDecl *MD) {
   2084   // If the most derived class is marked final, we know that no subclass can
   2085   // override this member function and so we can devirtualize it. For example:
   2086   //
   2087   // struct A { virtual void f(); }
   2088   // struct B final : A { };
   2089   //
   2090   // void f(B *b) {
   2091   //   b->f();
   2092   // }
   2093   //
   2094   const CXXRecordDecl *MostDerivedClassDecl = getMostDerivedClassDecl(Base);
   2095   if (MostDerivedClassDecl->hasAttr<FinalAttr>())
   2096     return true;
   2097 
   2098   // If the member function is marked 'final', we know that it can't be
   2099   // overridden and can therefore devirtualize it.
   2100   if (MD->hasAttr<FinalAttr>())
   2101     return true;
   2102 
   2103   // Similarly, if the class itself is marked 'final' it can't be overridden
   2104   // and we can therefore devirtualize the member function call.
   2105   if (MD->getParent()->hasAttr<FinalAttr>())
   2106     return true;
   2107 
   2108   Base = skipNoOpCastsAndParens(Base);
   2109   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
   2110     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
   2111       // This is a record decl. We know the type and can devirtualize it.
   2112       return VD->getType()->isRecordType();
   2113     }
   2114 
   2115     return false;
   2116   }
   2117 
   2118   // We can always devirtualize calls on temporary object expressions.
   2119   if (isa<CXXConstructExpr>(Base))
   2120     return true;
   2121 
   2122   // And calls on bound temporaries.
   2123   if (isa<CXXBindTemporaryExpr>(Base))
   2124     return true;
   2125 
   2126   // Check if this is a call expr that returns a record type.
   2127   if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
   2128     return CE->getCallReturnType()->isRecordType();
   2129 
   2130   // We can't devirtualize the call.
   2131   return false;
   2132 }
   2133 
   2134 static bool UseVirtualCall(ASTContext &Context,
   2135                            const CXXOperatorCallExpr *CE,
   2136                            const CXXMethodDecl *MD) {
   2137   if (!MD->isVirtual())
   2138     return false;
   2139 
   2140   // When building with -fapple-kext, all calls must go through the vtable since
   2141   // the kernel linker can do runtime patching of vtables.
   2142   if (Context.getLangOpts().AppleKext)
   2143     return true;
   2144 
   2145   return !canDevirtualizeMemberFunctionCall(CE->getArg(0), MD);
   2146 }
   2147 
   2148 llvm::Value *
   2149 CodeGenFunction::EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
   2150                                              const CXXMethodDecl *MD,
   2151                                              llvm::Value *This) {
   2152   llvm::FunctionType *fnType =
   2153     CGM.getTypes().GetFunctionType(
   2154                              CGM.getTypes().arrangeCXXMethodDeclaration(MD));
   2155 
   2156   if (UseVirtualCall(getContext(), E, MD))
   2157     return BuildVirtualCall(MD, This, fnType);
   2158 
   2159   return CGM.GetAddrOfFunction(MD, fnType);
   2160 }
   2161 
   2162 void CodeGenFunction::EmitForwardingCallToLambda(const CXXRecordDecl *lambda,
   2163                                                  CallArgList &callArgs) {
   2164   // Lookup the call operator
   2165   DeclarationName operatorName
   2166     = getContext().DeclarationNames.getCXXOperatorName(OO_Call);
   2167   CXXMethodDecl *callOperator =
   2168     cast<CXXMethodDecl>(lambda->lookup(operatorName).front());
   2169 
   2170   // Get the address of the call operator.
   2171   const CGFunctionInfo &calleeFnInfo =
   2172     CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
   2173   llvm::Value *callee =
   2174     CGM.GetAddrOfFunction(GlobalDecl(callOperator),
   2175                           CGM.getTypes().GetFunctionType(calleeFnInfo));
   2176 
   2177   // Prepare the return slot.
   2178   const FunctionProtoType *FPT =
   2179     callOperator->getType()->castAs<FunctionProtoType>();
   2180   QualType resultType = FPT->getResultType();
   2181   ReturnValueSlot returnSlot;
   2182   if (!resultType->isVoidType() &&
   2183       calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
   2184       !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
   2185     returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
   2186 
   2187   // We don't need to separately arrange the call arguments because
   2188   // the call can't be variadic anyway --- it's impossible to forward
   2189   // variadic arguments.
   2190 
   2191   // Now emit our call.
   2192   RValue RV = EmitCall(calleeFnInfo, callee, returnSlot,
   2193                        callArgs, callOperator);
   2194 
   2195   // If necessary, copy the returned value into the slot.
   2196   if (!resultType->isVoidType() && returnSlot.isNull())
   2197     EmitReturnOfRValue(RV, resultType);
   2198   else
   2199     EmitBranchThroughCleanup(ReturnBlock);
   2200 }
   2201 
   2202 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
   2203   const BlockDecl *BD = BlockInfo->getBlockDecl();
   2204   const VarDecl *variable = BD->capture_begin()->getVariable();
   2205   const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
   2206 
   2207   // Start building arguments for forwarding call
   2208   CallArgList CallArgs;
   2209 
   2210   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
   2211   llvm::Value *ThisPtr = GetAddrOfBlockDecl(variable, false);
   2212   CallArgs.add(RValue::get(ThisPtr), ThisType);
   2213 
   2214   // Add the rest of the parameters.
   2215   for (BlockDecl::param_const_iterator I = BD->param_begin(),
   2216        E = BD->param_end(); I != E; ++I) {
   2217     ParmVarDecl *param = *I;
   2218     EmitDelegateCallArg(CallArgs, param);
   2219   }
   2220 
   2221   EmitForwardingCallToLambda(Lambda, CallArgs);
   2222 }
   2223 
   2224 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) {
   2225   if (cast<CXXMethodDecl>(CurFuncDecl)->isVariadic()) {
   2226     // FIXME: Making this work correctly is nasty because it requires either
   2227     // cloning the body of the call operator or making the call operator forward.
   2228     CGM.ErrorUnsupported(CurFuncDecl, "lambda conversion to variadic function");
   2229     return;
   2230   }
   2231 
   2232   EmitFunctionBody(Args);
   2233 }
   2234 
   2235 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
   2236   const CXXRecordDecl *Lambda = MD->getParent();
   2237 
   2238   // Start building arguments for forwarding call
   2239   CallArgList CallArgs;
   2240 
   2241   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
   2242   llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
   2243   CallArgs.add(RValue::get(ThisPtr), ThisType);
   2244 
   2245   // Add the rest of the parameters.
   2246   for (FunctionDecl::param_const_iterator I = MD->param_begin(),
   2247        E = MD->param_end(); I != E; ++I) {
   2248     ParmVarDecl *param = *I;
   2249     EmitDelegateCallArg(CallArgs, param);
   2250   }
   2251 
   2252   EmitForwardingCallToLambda(Lambda, CallArgs);
   2253 }
   2254 
   2255 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) {
   2256   if (MD->isVariadic()) {
   2257     // FIXME: Making this work correctly is nasty because it requires either
   2258     // cloning the body of the call operator or making the call operator forward.
   2259     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
   2260     return;
   2261   }
   2262 
   2263   EmitLambdaDelegatingInvokeBody(MD);
   2264 }
   2265