Home | History | Annotate | Download | only in CodeGen
      1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements basic block placement transformations using the CFG
     11 // structure and branch probability estimates.
     12 //
     13 // The pass strives to preserve the structure of the CFG (that is, retain
     14 // a topological ordering of basic blocks) in the absence of a *strong* signal
     15 // to the contrary from probabilities. However, within the CFG structure, it
     16 // attempts to choose an ordering which favors placing more likely sequences of
     17 // blocks adjacent to each other.
     18 //
     19 // The algorithm works from the inner-most loop within a function outward, and
     20 // at each stage walks through the basic blocks, trying to coalesce them into
     21 // sequential chains where allowed by the CFG (or demanded by heavy
     22 // probabilities). Finally, it walks the blocks in topological order, and the
     23 // first time it reaches a chain of basic blocks, it schedules them in the
     24 // function in-order.
     25 //
     26 //===----------------------------------------------------------------------===//
     27 
     28 #define DEBUG_TYPE "block-placement2"
     29 #include "llvm/CodeGen/Passes.h"
     30 #include "llvm/ADT/DenseMap.h"
     31 #include "llvm/ADT/SmallPtrSet.h"
     32 #include "llvm/ADT/SmallVector.h"
     33 #include "llvm/ADT/Statistic.h"
     34 #include "llvm/CodeGen/MachineBasicBlock.h"
     35 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
     36 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
     37 #include "llvm/CodeGen/MachineFunction.h"
     38 #include "llvm/CodeGen/MachineFunctionPass.h"
     39 #include "llvm/CodeGen/MachineLoopInfo.h"
     40 #include "llvm/CodeGen/MachineModuleInfo.h"
     41 #include "llvm/Support/Allocator.h"
     42 #include "llvm/Support/Debug.h"
     43 #include "llvm/Target/TargetInstrInfo.h"
     44 #include "llvm/Target/TargetLowering.h"
     45 #include <algorithm>
     46 using namespace llvm;
     47 
     48 STATISTIC(NumCondBranches, "Number of conditional branches");
     49 STATISTIC(NumUncondBranches, "Number of uncondittional branches");
     50 STATISTIC(CondBranchTakenFreq,
     51           "Potential frequency of taking conditional branches");
     52 STATISTIC(UncondBranchTakenFreq,
     53           "Potential frequency of taking unconditional branches");
     54 
     55 namespace {
     56 class BlockChain;
     57 /// \brief Type for our function-wide basic block -> block chain mapping.
     58 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
     59 }
     60 
     61 namespace {
     62 /// \brief A chain of blocks which will be laid out contiguously.
     63 ///
     64 /// This is the datastructure representing a chain of consecutive blocks that
     65 /// are profitable to layout together in order to maximize fallthrough
     66 /// probabilities and code locality. We also can use a block chain to represent
     67 /// a sequence of basic blocks which have some external (correctness)
     68 /// requirement for sequential layout.
     69 ///
     70 /// Chains can be built around a single basic block and can be merged to grow
     71 /// them. They participate in a block-to-chain mapping, which is updated
     72 /// automatically as chains are merged together.
     73 class BlockChain {
     74   /// \brief The sequence of blocks belonging to this chain.
     75   ///
     76   /// This is the sequence of blocks for a particular chain. These will be laid
     77   /// out in-order within the function.
     78   SmallVector<MachineBasicBlock *, 4> Blocks;
     79 
     80   /// \brief A handle to the function-wide basic block to block chain mapping.
     81   ///
     82   /// This is retained in each block chain to simplify the computation of child
     83   /// block chains for SCC-formation and iteration. We store the edges to child
     84   /// basic blocks, and map them back to their associated chains using this
     85   /// structure.
     86   BlockToChainMapType &BlockToChain;
     87 
     88 public:
     89   /// \brief Construct a new BlockChain.
     90   ///
     91   /// This builds a new block chain representing a single basic block in the
     92   /// function. It also registers itself as the chain that block participates
     93   /// in with the BlockToChain mapping.
     94   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
     95     : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) {
     96     assert(BB && "Cannot create a chain with a null basic block");
     97     BlockToChain[BB] = this;
     98   }
     99 
    100   /// \brief Iterator over blocks within the chain.
    101   typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
    102 
    103   /// \brief Beginning of blocks within the chain.
    104   iterator begin() { return Blocks.begin(); }
    105 
    106   /// \brief End of blocks within the chain.
    107   iterator end() { return Blocks.end(); }
    108 
    109   /// \brief Merge a block chain into this one.
    110   ///
    111   /// This routine merges a block chain into this one. It takes care of forming
    112   /// a contiguous sequence of basic blocks, updating the edge list, and
    113   /// updating the block -> chain mapping. It does not free or tear down the
    114   /// old chain, but the old chain's block list is no longer valid.
    115   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
    116     assert(BB);
    117     assert(!Blocks.empty());
    118 
    119     // Fast path in case we don't have a chain already.
    120     if (!Chain) {
    121       assert(!BlockToChain[BB]);
    122       Blocks.push_back(BB);
    123       BlockToChain[BB] = this;
    124       return;
    125     }
    126 
    127     assert(BB == *Chain->begin());
    128     assert(Chain->begin() != Chain->end());
    129 
    130     // Update the incoming blocks to point to this chain, and add them to the
    131     // chain structure.
    132     for (BlockChain::iterator BI = Chain->begin(), BE = Chain->end();
    133          BI != BE; ++BI) {
    134       Blocks.push_back(*BI);
    135       assert(BlockToChain[*BI] == Chain && "Incoming blocks not in chain");
    136       BlockToChain[*BI] = this;
    137     }
    138   }
    139 
    140 #ifndef NDEBUG
    141   /// \brief Dump the blocks in this chain.
    142   void dump() LLVM_ATTRIBUTE_USED {
    143     for (iterator I = begin(), E = end(); I != E; ++I)
    144       (*I)->dump();
    145   }
    146 #endif // NDEBUG
    147 
    148   /// \brief Count of predecessors within the loop currently being processed.
    149   ///
    150   /// This count is updated at each loop we process to represent the number of
    151   /// in-loop predecessors of this chain.
    152   unsigned LoopPredecessors;
    153 };
    154 }
    155 
    156 namespace {
    157 class MachineBlockPlacement : public MachineFunctionPass {
    158   /// \brief A typedef for a block filter set.
    159   typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
    160 
    161   /// \brief A handle to the branch probability pass.
    162   const MachineBranchProbabilityInfo *MBPI;
    163 
    164   /// \brief A handle to the function-wide block frequency pass.
    165   const MachineBlockFrequencyInfo *MBFI;
    166 
    167   /// \brief A handle to the loop info.
    168   const MachineLoopInfo *MLI;
    169 
    170   /// \brief A handle to the target's instruction info.
    171   const TargetInstrInfo *TII;
    172 
    173   /// \brief A handle to the target's lowering info.
    174   const TargetLoweringBase *TLI;
    175 
    176   /// \brief Allocator and owner of BlockChain structures.
    177   ///
    178   /// We build BlockChains lazily while processing the loop structure of
    179   /// a function. To reduce malloc traffic, we allocate them using this
    180   /// slab-like allocator, and destroy them after the pass completes. An
    181   /// important guarantee is that this allocator produces stable pointers to
    182   /// the chains.
    183   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
    184 
    185   /// \brief Function wide BasicBlock to BlockChain mapping.
    186   ///
    187   /// This mapping allows efficiently moving from any given basic block to the
    188   /// BlockChain it participates in, if any. We use it to, among other things,
    189   /// allow implicitly defining edges between chains as the existing edges
    190   /// between basic blocks.
    191   DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
    192 
    193   void markChainSuccessors(BlockChain &Chain,
    194                            MachineBasicBlock *LoopHeaderBB,
    195                            SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
    196                            const BlockFilterSet *BlockFilter = 0);
    197   MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
    198                                          BlockChain &Chain,
    199                                          const BlockFilterSet *BlockFilter);
    200   MachineBasicBlock *selectBestCandidateBlock(
    201       BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
    202       const BlockFilterSet *BlockFilter);
    203   MachineBasicBlock *getFirstUnplacedBlock(
    204       MachineFunction &F,
    205       const BlockChain &PlacedChain,
    206       MachineFunction::iterator &PrevUnplacedBlockIt,
    207       const BlockFilterSet *BlockFilter);
    208   void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
    209                   SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
    210                   const BlockFilterSet *BlockFilter = 0);
    211   MachineBasicBlock *findBestLoopTop(MachineLoop &L,
    212                                      const BlockFilterSet &LoopBlockSet);
    213   MachineBasicBlock *findBestLoopExit(MachineFunction &F,
    214                                       MachineLoop &L,
    215                                       const BlockFilterSet &LoopBlockSet);
    216   void buildLoopChains(MachineFunction &F, MachineLoop &L);
    217   void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB,
    218                   const BlockFilterSet &LoopBlockSet);
    219   void buildCFGChains(MachineFunction &F);
    220 
    221 public:
    222   static char ID; // Pass identification, replacement for typeid
    223   MachineBlockPlacement() : MachineFunctionPass(ID) {
    224     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
    225   }
    226 
    227   bool runOnMachineFunction(MachineFunction &F);
    228 
    229   void getAnalysisUsage(AnalysisUsage &AU) const {
    230     AU.addRequired<MachineBranchProbabilityInfo>();
    231     AU.addRequired<MachineBlockFrequencyInfo>();
    232     AU.addRequired<MachineLoopInfo>();
    233     MachineFunctionPass::getAnalysisUsage(AU);
    234   }
    235 };
    236 }
    237 
    238 char MachineBlockPlacement::ID = 0;
    239 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
    240 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement2",
    241                       "Branch Probability Basic Block Placement", false, false)
    242 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
    243 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
    244 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
    245 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement2",
    246                     "Branch Probability Basic Block Placement", false, false)
    247 
    248 #ifndef NDEBUG
    249 /// \brief Helper to print the name of a MBB.
    250 ///
    251 /// Only used by debug logging.
    252 static std::string getBlockName(MachineBasicBlock *BB) {
    253   std::string Result;
    254   raw_string_ostream OS(Result);
    255   OS << "BB#" << BB->getNumber()
    256      << " (derived from LLVM BB '" << BB->getName() << "')";
    257   OS.flush();
    258   return Result;
    259 }
    260 
    261 /// \brief Helper to print the number of a MBB.
    262 ///
    263 /// Only used by debug logging.
    264 static std::string getBlockNum(MachineBasicBlock *BB) {
    265   std::string Result;
    266   raw_string_ostream OS(Result);
    267   OS << "BB#" << BB->getNumber();
    268   OS.flush();
    269   return Result;
    270 }
    271 #endif
    272 
    273 /// \brief Mark a chain's successors as having one fewer preds.
    274 ///
    275 /// When a chain is being merged into the "placed" chain, this routine will
    276 /// quickly walk the successors of each block in the chain and mark them as
    277 /// having one fewer active predecessor. It also adds any successors of this
    278 /// chain which reach the zero-predecessor state to the worklist passed in.
    279 void MachineBlockPlacement::markChainSuccessors(
    280     BlockChain &Chain,
    281     MachineBasicBlock *LoopHeaderBB,
    282     SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
    283     const BlockFilterSet *BlockFilter) {
    284   // Walk all the blocks in this chain, marking their successors as having
    285   // a predecessor placed.
    286   for (BlockChain::iterator CBI = Chain.begin(), CBE = Chain.end();
    287        CBI != CBE; ++CBI) {
    288     // Add any successors for which this is the only un-placed in-loop
    289     // predecessor to the worklist as a viable candidate for CFG-neutral
    290     // placement. No subsequent placement of this block will violate the CFG
    291     // shape, so we get to use heuristics to choose a favorable placement.
    292     for (MachineBasicBlock::succ_iterator SI = (*CBI)->succ_begin(),
    293                                           SE = (*CBI)->succ_end();
    294          SI != SE; ++SI) {
    295       if (BlockFilter && !BlockFilter->count(*SI))
    296         continue;
    297       BlockChain &SuccChain = *BlockToChain[*SI];
    298       // Disregard edges within a fixed chain, or edges to the loop header.
    299       if (&Chain == &SuccChain || *SI == LoopHeaderBB)
    300         continue;
    301 
    302       // This is a cross-chain edge that is within the loop, so decrement the
    303       // loop predecessor count of the destination chain.
    304       if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0)
    305         BlockWorkList.push_back(*SuccChain.begin());
    306     }
    307   }
    308 }
    309 
    310 /// \brief Select the best successor for a block.
    311 ///
    312 /// This looks across all successors of a particular block and attempts to
    313 /// select the "best" one to be the layout successor. It only considers direct
    314 /// successors which also pass the block filter. It will attempt to avoid
    315 /// breaking CFG structure, but cave and break such structures in the case of
    316 /// very hot successor edges.
    317 ///
    318 /// \returns The best successor block found, or null if none are viable.
    319 MachineBasicBlock *MachineBlockPlacement::selectBestSuccessor(
    320     MachineBasicBlock *BB, BlockChain &Chain,
    321     const BlockFilterSet *BlockFilter) {
    322   const BranchProbability HotProb(4, 5); // 80%
    323 
    324   MachineBasicBlock *BestSucc = 0;
    325   // FIXME: Due to the performance of the probability and weight routines in
    326   // the MBPI analysis, we manually compute probabilities using the edge
    327   // weights. This is suboptimal as it means that the somewhat subtle
    328   // definition of edge weight semantics is encoded here as well. We should
    329   // improve the MBPI interface to efficiently support query patterns such as
    330   // this.
    331   uint32_t BestWeight = 0;
    332   uint32_t WeightScale = 0;
    333   uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale);
    334   DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
    335   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
    336                                         SE = BB->succ_end();
    337        SI != SE; ++SI) {
    338     if (BlockFilter && !BlockFilter->count(*SI))
    339       continue;
    340     BlockChain &SuccChain = *BlockToChain[*SI];
    341     if (&SuccChain == &Chain) {
    342       DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> Already merged!\n");
    343       continue;
    344     }
    345     if (*SI != *SuccChain.begin()) {
    346       DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> Mid chain!\n");
    347       continue;
    348     }
    349 
    350     uint32_t SuccWeight = MBPI->getEdgeWeight(BB, *SI);
    351     BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
    352 
    353     // Only consider successors which are either "hot", or wouldn't violate
    354     // any CFG constraints.
    355     if (SuccChain.LoopPredecessors != 0) {
    356       if (SuccProb < HotProb) {
    357         DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> CFG conflict\n");
    358         continue;
    359       }
    360 
    361       // Make sure that a hot successor doesn't have a globally more important
    362       // predecessor.
    363       BlockFrequency CandidateEdgeFreq
    364         = MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl();
    365       bool BadCFGConflict = false;
    366       for (MachineBasicBlock::pred_iterator PI = (*SI)->pred_begin(),
    367                                             PE = (*SI)->pred_end();
    368            PI != PE; ++PI) {
    369         if (*PI == *SI || (BlockFilter && !BlockFilter->count(*PI)) ||
    370             BlockToChain[*PI] == &Chain)
    371           continue;
    372         BlockFrequency PredEdgeFreq
    373           = MBFI->getBlockFreq(*PI) * MBPI->getEdgeProbability(*PI, *SI);
    374         if (PredEdgeFreq >= CandidateEdgeFreq) {
    375           BadCFGConflict = true;
    376           break;
    377         }
    378       }
    379       if (BadCFGConflict) {
    380         DEBUG(dbgs() << "    " << getBlockName(*SI)
    381                                << " -> non-cold CFG conflict\n");
    382         continue;
    383       }
    384     }
    385 
    386     DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> " << SuccProb
    387                  << " (prob)"
    388                  << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "")
    389                  << "\n");
    390     if (BestSucc && BestWeight >= SuccWeight)
    391       continue;
    392     BestSucc = *SI;
    393     BestWeight = SuccWeight;
    394   }
    395   return BestSucc;
    396 }
    397 
    398 namespace {
    399 /// \brief Predicate struct to detect blocks already placed.
    400 class IsBlockPlaced {
    401   const BlockChain &PlacedChain;
    402   const BlockToChainMapType &BlockToChain;
    403 
    404 public:
    405   IsBlockPlaced(const BlockChain &PlacedChain,
    406                 const BlockToChainMapType &BlockToChain)
    407       : PlacedChain(PlacedChain), BlockToChain(BlockToChain) {}
    408 
    409   bool operator()(MachineBasicBlock *BB) const {
    410     return BlockToChain.lookup(BB) == &PlacedChain;
    411   }
    412 };
    413 }
    414 
    415 /// \brief Select the best block from a worklist.
    416 ///
    417 /// This looks through the provided worklist as a list of candidate basic
    418 /// blocks and select the most profitable one to place. The definition of
    419 /// profitable only really makes sense in the context of a loop. This returns
    420 /// the most frequently visited block in the worklist, which in the case of
    421 /// a loop, is the one most desirable to be physically close to the rest of the
    422 /// loop body in order to improve icache behavior.
    423 ///
    424 /// \returns The best block found, or null if none are viable.
    425 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
    426     BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
    427     const BlockFilterSet *BlockFilter) {
    428   // Once we need to walk the worklist looking for a candidate, cleanup the
    429   // worklist of already placed entries.
    430   // FIXME: If this shows up on profiles, it could be folded (at the cost of
    431   // some code complexity) into the loop below.
    432   WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
    433                                 IsBlockPlaced(Chain, BlockToChain)),
    434                  WorkList.end());
    435 
    436   MachineBasicBlock *BestBlock = 0;
    437   BlockFrequency BestFreq;
    438   for (SmallVectorImpl<MachineBasicBlock *>::iterator WBI = WorkList.begin(),
    439                                                       WBE = WorkList.end();
    440        WBI != WBE; ++WBI) {
    441     BlockChain &SuccChain = *BlockToChain[*WBI];
    442     if (&SuccChain == &Chain) {
    443       DEBUG(dbgs() << "    " << getBlockName(*WBI)
    444                    << " -> Already merged!\n");
    445       continue;
    446     }
    447     assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block");
    448 
    449     BlockFrequency CandidateFreq = MBFI->getBlockFreq(*WBI);
    450     DEBUG(dbgs() << "    " << getBlockName(*WBI) << " -> " << CandidateFreq
    451                  << " (freq)\n");
    452     if (BestBlock && BestFreq >= CandidateFreq)
    453       continue;
    454     BestBlock = *WBI;
    455     BestFreq = CandidateFreq;
    456   }
    457   return BestBlock;
    458 }
    459 
    460 /// \brief Retrieve the first unplaced basic block.
    461 ///
    462 /// This routine is called when we are unable to use the CFG to walk through
    463 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
    464 /// We walk through the function's blocks in order, starting from the
    465 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
    466 /// re-scanning the entire sequence on repeated calls to this routine.
    467 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
    468     MachineFunction &F, const BlockChain &PlacedChain,
    469     MachineFunction::iterator &PrevUnplacedBlockIt,
    470     const BlockFilterSet *BlockFilter) {
    471   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E;
    472        ++I) {
    473     if (BlockFilter && !BlockFilter->count(I))
    474       continue;
    475     if (BlockToChain[I] != &PlacedChain) {
    476       PrevUnplacedBlockIt = I;
    477       // Now select the head of the chain to which the unplaced block belongs
    478       // as the block to place. This will force the entire chain to be placed,
    479       // and satisfies the requirements of merging chains.
    480       return *BlockToChain[I]->begin();
    481     }
    482   }
    483   return 0;
    484 }
    485 
    486 void MachineBlockPlacement::buildChain(
    487     MachineBasicBlock *BB,
    488     BlockChain &Chain,
    489     SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
    490     const BlockFilterSet *BlockFilter) {
    491   assert(BB);
    492   assert(BlockToChain[BB] == &Chain);
    493   MachineFunction &F = *BB->getParent();
    494   MachineFunction::iterator PrevUnplacedBlockIt = F.begin();
    495 
    496   MachineBasicBlock *LoopHeaderBB = BB;
    497   markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter);
    498   BB = *llvm::prior(Chain.end());
    499   for (;;) {
    500     assert(BB);
    501     assert(BlockToChain[BB] == &Chain);
    502     assert(*llvm::prior(Chain.end()) == BB);
    503 
    504     // Look for the best viable successor if there is one to place immediately
    505     // after this block.
    506     MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
    507 
    508     // If an immediate successor isn't available, look for the best viable
    509     // block among those we've identified as not violating the loop's CFG at
    510     // this point. This won't be a fallthrough, but it will increase locality.
    511     if (!BestSucc)
    512       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter);
    513 
    514     if (!BestSucc) {
    515       BestSucc = getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt,
    516                                        BlockFilter);
    517       if (!BestSucc)
    518         break;
    519 
    520       DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
    521                       "layout successor until the CFG reduces\n");
    522     }
    523 
    524     // Place this block, updating the datastructures to reflect its placement.
    525     BlockChain &SuccChain = *BlockToChain[BestSucc];
    526     // Zero out LoopPredecessors for the successor we're about to merge in case
    527     // we selected a successor that didn't fit naturally into the CFG.
    528     SuccChain.LoopPredecessors = 0;
    529     DEBUG(dbgs() << "Merging from " << getBlockNum(BB)
    530                  << " to " << getBlockNum(BestSucc) << "\n");
    531     markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter);
    532     Chain.merge(BestSucc, &SuccChain);
    533     BB = *llvm::prior(Chain.end());
    534   }
    535 
    536   DEBUG(dbgs() << "Finished forming chain for header block "
    537                << getBlockNum(*Chain.begin()) << "\n");
    538 }
    539 
    540 /// \brief Find the best loop top block for layout.
    541 ///
    542 /// Look for a block which is strictly better than the loop header for laying
    543 /// out at the top of the loop. This looks for one and only one pattern:
    544 /// a latch block with no conditional exit. This block will cause a conditional
    545 /// jump around it or will be the bottom of the loop if we lay it out in place,
    546 /// but if it it doesn't end up at the bottom of the loop for any reason,
    547 /// rotation alone won't fix it. Because such a block will always result in an
    548 /// unconditional jump (for the backedge) rotating it in front of the loop
    549 /// header is always profitable.
    550 MachineBasicBlock *
    551 MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
    552                                        const BlockFilterSet &LoopBlockSet) {
    553   // Check that the header hasn't been fused with a preheader block due to
    554   // crazy branches. If it has, we need to start with the header at the top to
    555   // prevent pulling the preheader into the loop body.
    556   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
    557   if (!LoopBlockSet.count(*HeaderChain.begin()))
    558     return L.getHeader();
    559 
    560   DEBUG(dbgs() << "Finding best loop top for: "
    561                << getBlockName(L.getHeader()) << "\n");
    562 
    563   BlockFrequency BestPredFreq;
    564   MachineBasicBlock *BestPred = 0;
    565   for (MachineBasicBlock::pred_iterator PI = L.getHeader()->pred_begin(),
    566                                         PE = L.getHeader()->pred_end();
    567        PI != PE; ++PI) {
    568     MachineBasicBlock *Pred = *PI;
    569     if (!LoopBlockSet.count(Pred))
    570       continue;
    571     DEBUG(dbgs() << "    header pred: " << getBlockName(Pred) << ", "
    572                  << Pred->succ_size() << " successors, "
    573                  << MBFI->getBlockFreq(Pred) << " freq\n");
    574     if (Pred->succ_size() > 1)
    575       continue;
    576 
    577     BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
    578     if (!BestPred || PredFreq > BestPredFreq ||
    579         (!(PredFreq < BestPredFreq) &&
    580          Pred->isLayoutSuccessor(L.getHeader()))) {
    581       BestPred = Pred;
    582       BestPredFreq = PredFreq;
    583     }
    584   }
    585 
    586   // If no direct predecessor is fine, just use the loop header.
    587   if (!BestPred)
    588     return L.getHeader();
    589 
    590   // Walk backwards through any straight line of predecessors.
    591   while (BestPred->pred_size() == 1 &&
    592          (*BestPred->pred_begin())->succ_size() == 1 &&
    593          *BestPred->pred_begin() != L.getHeader())
    594     BestPred = *BestPred->pred_begin();
    595 
    596   DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
    597   return BestPred;
    598 }
    599 
    600 
    601 /// \brief Find the best loop exiting block for layout.
    602 ///
    603 /// This routine implements the logic to analyze the loop looking for the best
    604 /// block to layout at the top of the loop. Typically this is done to maximize
    605 /// fallthrough opportunities.
    606 MachineBasicBlock *
    607 MachineBlockPlacement::findBestLoopExit(MachineFunction &F,
    608                                         MachineLoop &L,
    609                                         const BlockFilterSet &LoopBlockSet) {
    610   // We don't want to layout the loop linearly in all cases. If the loop header
    611   // is just a normal basic block in the loop, we want to look for what block
    612   // within the loop is the best one to layout at the top. However, if the loop
    613   // header has be pre-merged into a chain due to predecessors not having
    614   // analyzable branches, *and* the predecessor it is merged with is *not* part
    615   // of the loop, rotating the header into the middle of the loop will create
    616   // a non-contiguous range of blocks which is Very Bad. So start with the
    617   // header and only rotate if safe.
    618   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
    619   if (!LoopBlockSet.count(*HeaderChain.begin()))
    620     return 0;
    621 
    622   BlockFrequency BestExitEdgeFreq;
    623   unsigned BestExitLoopDepth = 0;
    624   MachineBasicBlock *ExitingBB = 0;
    625   // If there are exits to outer loops, loop rotation can severely limit
    626   // fallthrough opportunites unless it selects such an exit. Keep a set of
    627   // blocks where rotating to exit with that block will reach an outer loop.
    628   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
    629 
    630   DEBUG(dbgs() << "Finding best loop exit for: "
    631                << getBlockName(L.getHeader()) << "\n");
    632   for (MachineLoop::block_iterator I = L.block_begin(),
    633                                    E = L.block_end();
    634        I != E; ++I) {
    635     BlockChain &Chain = *BlockToChain[*I];
    636     // Ensure that this block is at the end of a chain; otherwise it could be
    637     // mid-way through an inner loop or a successor of an analyzable branch.
    638     if (*I != *llvm::prior(Chain.end()))
    639       continue;
    640 
    641     // Now walk the successors. We need to establish whether this has a viable
    642     // exiting successor and whether it has a viable non-exiting successor.
    643     // We store the old exiting state and restore it if a viable looping
    644     // successor isn't found.
    645     MachineBasicBlock *OldExitingBB = ExitingBB;
    646     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
    647     bool HasLoopingSucc = false;
    648     // FIXME: Due to the performance of the probability and weight routines in
    649     // the MBPI analysis, we use the internal weights and manually compute the
    650     // probabilities to avoid quadratic behavior.
    651     uint32_t WeightScale = 0;
    652     uint32_t SumWeight = MBPI->getSumForBlock(*I, WeightScale);
    653     for (MachineBasicBlock::succ_iterator SI = (*I)->succ_begin(),
    654                                           SE = (*I)->succ_end();
    655          SI != SE; ++SI) {
    656       if ((*SI)->isLandingPad())
    657         continue;
    658       if (*SI == *I)
    659         continue;
    660       BlockChain &SuccChain = *BlockToChain[*SI];
    661       // Don't split chains, either this chain or the successor's chain.
    662       if (&Chain == &SuccChain) {
    663         DEBUG(dbgs() << "    exiting: " << getBlockName(*I) << " -> "
    664                      << getBlockName(*SI) << " (chain conflict)\n");
    665         continue;
    666       }
    667 
    668       uint32_t SuccWeight = MBPI->getEdgeWeight(*I, *SI);
    669       if (LoopBlockSet.count(*SI)) {
    670         DEBUG(dbgs() << "    looping: " << getBlockName(*I) << " -> "
    671                      << getBlockName(*SI) << " (" << SuccWeight << ")\n");
    672         HasLoopingSucc = true;
    673         continue;
    674       }
    675 
    676       unsigned SuccLoopDepth = 0;
    677       if (MachineLoop *ExitLoop = MLI->getLoopFor(*SI)) {
    678         SuccLoopDepth = ExitLoop->getLoopDepth();
    679         if (ExitLoop->contains(&L))
    680           BlocksExitingToOuterLoop.insert(*I);
    681       }
    682 
    683       BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
    684       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(*I) * SuccProb;
    685       DEBUG(dbgs() << "    exiting: " << getBlockName(*I) << " -> "
    686                    << getBlockName(*SI) << " [L:" << SuccLoopDepth
    687                    << "] (" << ExitEdgeFreq << ")\n");
    688       // Note that we slightly bias this toward an existing layout successor to
    689       // retain incoming order in the absence of better information.
    690       // FIXME: Should we bias this more strongly? It's pretty weak.
    691       if (!ExitingBB || BestExitLoopDepth < SuccLoopDepth ||
    692           ExitEdgeFreq > BestExitEdgeFreq ||
    693           ((*I)->isLayoutSuccessor(*SI) &&
    694            !(ExitEdgeFreq < BestExitEdgeFreq))) {
    695         BestExitEdgeFreq = ExitEdgeFreq;
    696         ExitingBB = *I;
    697       }
    698     }
    699 
    700     // Restore the old exiting state, no viable looping successor was found.
    701     if (!HasLoopingSucc) {
    702       ExitingBB = OldExitingBB;
    703       BestExitEdgeFreq = OldBestExitEdgeFreq;
    704       continue;
    705     }
    706   }
    707   // Without a candidate exiting block or with only a single block in the
    708   // loop, just use the loop header to layout the loop.
    709   if (!ExitingBB || L.getNumBlocks() == 1)
    710     return 0;
    711 
    712   // Also, if we have exit blocks which lead to outer loops but didn't select
    713   // one of them as the exiting block we are rotating toward, disable loop
    714   // rotation altogether.
    715   if (!BlocksExitingToOuterLoop.empty() &&
    716       !BlocksExitingToOuterLoop.count(ExitingBB))
    717     return 0;
    718 
    719   DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB) << "\n");
    720   return ExitingBB;
    721 }
    722 
    723 /// \brief Attempt to rotate an exiting block to the bottom of the loop.
    724 ///
    725 /// Once we have built a chain, try to rotate it to line up the hot exit block
    726 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
    727 /// branches. For example, if the loop has fallthrough into its header and out
    728 /// of its bottom already, don't rotate it.
    729 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
    730                                        MachineBasicBlock *ExitingBB,
    731                                        const BlockFilterSet &LoopBlockSet) {
    732   if (!ExitingBB)
    733     return;
    734 
    735   MachineBasicBlock *Top = *LoopChain.begin();
    736   bool ViableTopFallthrough = false;
    737   for (MachineBasicBlock::pred_iterator PI = Top->pred_begin(),
    738                                         PE = Top->pred_end();
    739        PI != PE; ++PI) {
    740     BlockChain *PredChain = BlockToChain[*PI];
    741     if (!LoopBlockSet.count(*PI) &&
    742         (!PredChain || *PI == *llvm::prior(PredChain->end()))) {
    743       ViableTopFallthrough = true;
    744       break;
    745     }
    746   }
    747 
    748   // If the header has viable fallthrough, check whether the current loop
    749   // bottom is a viable exiting block. If so, bail out as rotating will
    750   // introduce an unnecessary branch.
    751   if (ViableTopFallthrough) {
    752     MachineBasicBlock *Bottom = *llvm::prior(LoopChain.end());
    753     for (MachineBasicBlock::succ_iterator SI = Bottom->succ_begin(),
    754                                           SE = Bottom->succ_end();
    755          SI != SE; ++SI) {
    756       BlockChain *SuccChain = BlockToChain[*SI];
    757       if (!LoopBlockSet.count(*SI) &&
    758           (!SuccChain || *SI == *SuccChain->begin()))
    759         return;
    760     }
    761   }
    762 
    763   BlockChain::iterator ExitIt = std::find(LoopChain.begin(), LoopChain.end(),
    764                                           ExitingBB);
    765   if (ExitIt == LoopChain.end())
    766     return;
    767 
    768   std::rotate(LoopChain.begin(), llvm::next(ExitIt), LoopChain.end());
    769 }
    770 
    771 /// \brief Forms basic block chains from the natural loop structures.
    772 ///
    773 /// These chains are designed to preserve the existing *structure* of the code
    774 /// as much as possible. We can then stitch the chains together in a way which
    775 /// both preserves the topological structure and minimizes taken conditional
    776 /// branches.
    777 void MachineBlockPlacement::buildLoopChains(MachineFunction &F,
    778                                             MachineLoop &L) {
    779   // First recurse through any nested loops, building chains for those inner
    780   // loops.
    781   for (MachineLoop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI)
    782     buildLoopChains(F, **LI);
    783 
    784   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
    785   BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end());
    786 
    787   // First check to see if there is an obviously preferable top block for the
    788   // loop. This will default to the header, but may end up as one of the
    789   // predecessors to the header if there is one which will result in strictly
    790   // fewer branches in the loop body.
    791   MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
    792 
    793   // If we selected just the header for the loop top, look for a potentially
    794   // profitable exit block in the event that rotating the loop can eliminate
    795   // branches by placing an exit edge at the bottom.
    796   MachineBasicBlock *ExitingBB = 0;
    797   if (LoopTop == L.getHeader())
    798     ExitingBB = findBestLoopExit(F, L, LoopBlockSet);
    799 
    800   BlockChain &LoopChain = *BlockToChain[LoopTop];
    801 
    802   // FIXME: This is a really lame way of walking the chains in the loop: we
    803   // walk the blocks, and use a set to prevent visiting a particular chain
    804   // twice.
    805   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
    806   assert(LoopChain.LoopPredecessors == 0);
    807   UpdatedPreds.insert(&LoopChain);
    808   for (MachineLoop::block_iterator BI = L.block_begin(),
    809                                    BE = L.block_end();
    810        BI != BE; ++BI) {
    811     BlockChain &Chain = *BlockToChain[*BI];
    812     if (!UpdatedPreds.insert(&Chain))
    813       continue;
    814 
    815     assert(Chain.LoopPredecessors == 0);
    816     for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end();
    817          BCI != BCE; ++BCI) {
    818       assert(BlockToChain[*BCI] == &Chain);
    819       for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(),
    820                                             PE = (*BCI)->pred_end();
    821            PI != PE; ++PI) {
    822         if (BlockToChain[*PI] == &Chain || !LoopBlockSet.count(*PI))
    823           continue;
    824         ++Chain.LoopPredecessors;
    825       }
    826     }
    827 
    828     if (Chain.LoopPredecessors == 0)
    829       BlockWorkList.push_back(*Chain.begin());
    830   }
    831 
    832   buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet);
    833   rotateLoop(LoopChain, ExitingBB, LoopBlockSet);
    834 
    835   DEBUG({
    836     // Crash at the end so we get all of the debugging output first.
    837     bool BadLoop = false;
    838     if (LoopChain.LoopPredecessors) {
    839       BadLoop = true;
    840       dbgs() << "Loop chain contains a block without its preds placed!\n"
    841              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
    842              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
    843     }
    844     for (BlockChain::iterator BCI = LoopChain.begin(), BCE = LoopChain.end();
    845          BCI != BCE; ++BCI) {
    846       dbgs() << "          ... " << getBlockName(*BCI) << "\n";
    847       if (!LoopBlockSet.erase(*BCI)) {
    848         // We don't mark the loop as bad here because there are real situations
    849         // where this can occur. For example, with an unanalyzable fallthrough
    850         // from a loop block to a non-loop block or vice versa.
    851         dbgs() << "Loop chain contains a block not contained by the loop!\n"
    852                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
    853                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
    854                << "  Bad block:    " << getBlockName(*BCI) << "\n";
    855       }
    856     }
    857 
    858     if (!LoopBlockSet.empty()) {
    859       BadLoop = true;
    860       for (BlockFilterSet::iterator LBI = LoopBlockSet.begin(),
    861                                     LBE = LoopBlockSet.end();
    862            LBI != LBE; ++LBI)
    863         dbgs() << "Loop contains blocks never placed into a chain!\n"
    864                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
    865                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
    866                << "  Bad block:    " << getBlockName(*LBI) << "\n";
    867     }
    868     assert(!BadLoop && "Detected problems with the placement of this loop.");
    869   });
    870 }
    871 
    872 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
    873   // Ensure that every BB in the function has an associated chain to simplify
    874   // the assumptions of the remaining algorithm.
    875   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
    876   for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
    877     MachineBasicBlock *BB = FI;
    878     BlockChain *Chain
    879       = new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
    880     // Also, merge any blocks which we cannot reason about and must preserve
    881     // the exact fallthrough behavior for.
    882     for (;;) {
    883       Cond.clear();
    884       MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
    885       if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
    886         break;
    887 
    888       MachineFunction::iterator NextFI(llvm::next(FI));
    889       MachineBasicBlock *NextBB = NextFI;
    890       // Ensure that the layout successor is a viable block, as we know that
    891       // fallthrough is a possibility.
    892       assert(NextFI != FE && "Can't fallthrough past the last block.");
    893       DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
    894                    << getBlockName(BB) << " -> " << getBlockName(NextBB)
    895                    << "\n");
    896       Chain->merge(NextBB, 0);
    897       FI = NextFI;
    898       BB = NextBB;
    899     }
    900   }
    901 
    902   // Build any loop-based chains.
    903   for (MachineLoopInfo::iterator LI = MLI->begin(), LE = MLI->end(); LI != LE;
    904        ++LI)
    905     buildLoopChains(F, **LI);
    906 
    907   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
    908 
    909   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
    910   for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
    911     MachineBasicBlock *BB = &*FI;
    912     BlockChain &Chain = *BlockToChain[BB];
    913     if (!UpdatedPreds.insert(&Chain))
    914       continue;
    915 
    916     assert(Chain.LoopPredecessors == 0);
    917     for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end();
    918          BCI != BCE; ++BCI) {
    919       assert(BlockToChain[*BCI] == &Chain);
    920       for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(),
    921                                             PE = (*BCI)->pred_end();
    922            PI != PE; ++PI) {
    923         if (BlockToChain[*PI] == &Chain)
    924           continue;
    925         ++Chain.LoopPredecessors;
    926       }
    927     }
    928 
    929     if (Chain.LoopPredecessors == 0)
    930       BlockWorkList.push_back(*Chain.begin());
    931   }
    932 
    933   BlockChain &FunctionChain = *BlockToChain[&F.front()];
    934   buildChain(&F.front(), FunctionChain, BlockWorkList);
    935 
    936   typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
    937   DEBUG({
    938     // Crash at the end so we get all of the debugging output first.
    939     bool BadFunc = false;
    940     FunctionBlockSetType FunctionBlockSet;
    941     for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
    942       FunctionBlockSet.insert(FI);
    943 
    944     for (BlockChain::iterator BCI = FunctionChain.begin(),
    945                               BCE = FunctionChain.end();
    946          BCI != BCE; ++BCI)
    947       if (!FunctionBlockSet.erase(*BCI)) {
    948         BadFunc = true;
    949         dbgs() << "Function chain contains a block not in the function!\n"
    950                << "  Bad block:    " << getBlockName(*BCI) << "\n";
    951       }
    952 
    953     if (!FunctionBlockSet.empty()) {
    954       BadFunc = true;
    955       for (FunctionBlockSetType::iterator FBI = FunctionBlockSet.begin(),
    956                                           FBE = FunctionBlockSet.end();
    957            FBI != FBE; ++FBI)
    958         dbgs() << "Function contains blocks never placed into a chain!\n"
    959                << "  Bad block:    " << getBlockName(*FBI) << "\n";
    960     }
    961     assert(!BadFunc && "Detected problems with the block placement.");
    962   });
    963 
    964   // Splice the blocks into place.
    965   MachineFunction::iterator InsertPos = F.begin();
    966   for (BlockChain::iterator BI = FunctionChain.begin(),
    967                             BE = FunctionChain.end();
    968        BI != BE; ++BI) {
    969     DEBUG(dbgs() << (BI == FunctionChain.begin() ? "Placing chain "
    970                                                   : "          ... ")
    971           << getBlockName(*BI) << "\n");
    972     if (InsertPos != MachineFunction::iterator(*BI))
    973       F.splice(InsertPos, *BI);
    974     else
    975       ++InsertPos;
    976 
    977     // Update the terminator of the previous block.
    978     if (BI == FunctionChain.begin())
    979       continue;
    980     MachineBasicBlock *PrevBB = llvm::prior(MachineFunction::iterator(*BI));
    981 
    982     // FIXME: It would be awesome of updateTerminator would just return rather
    983     // than assert when the branch cannot be analyzed in order to remove this
    984     // boiler plate.
    985     Cond.clear();
    986     MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
    987     if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
    988       // If PrevBB has a two-way branch, try to re-order the branches
    989       // such that we branch to the successor with higher weight first.
    990       if (TBB && !Cond.empty() && FBB &&
    991           MBPI->getEdgeWeight(PrevBB, FBB) > MBPI->getEdgeWeight(PrevBB, TBB) &&
    992           !TII->ReverseBranchCondition(Cond)) {
    993         DEBUG(dbgs() << "Reverse order of the two branches: "
    994                      << getBlockName(PrevBB) << "\n");
    995         DEBUG(dbgs() << "    Edge weight: " << MBPI->getEdgeWeight(PrevBB, FBB)
    996                      << " vs " << MBPI->getEdgeWeight(PrevBB, TBB) << "\n");
    997         DebugLoc dl;  // FIXME: this is nowhere
    998         TII->RemoveBranch(*PrevBB);
    999         TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl);
   1000       }
   1001       PrevBB->updateTerminator();
   1002     }
   1003   }
   1004 
   1005   // Fixup the last block.
   1006   Cond.clear();
   1007   MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
   1008   if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond))
   1009     F.back().updateTerminator();
   1010 
   1011   // Walk through the backedges of the function now that we have fully laid out
   1012   // the basic blocks and align the destination of each backedge. We don't rely
   1013   // exclusively on the loop info here so that we can align backedges in
   1014   // unnatural CFGs and backedges that were introduced purely because of the
   1015   // loop rotations done during this layout pass.
   1016   if (F.getFunction()->getAttributes().
   1017         hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize))
   1018     return;
   1019   unsigned Align = TLI->getPrefLoopAlignment();
   1020   if (!Align)
   1021     return;  // Don't care about loop alignment.
   1022   if (FunctionChain.begin() == FunctionChain.end())
   1023     return;  // Empty chain.
   1024 
   1025   const BranchProbability ColdProb(1, 5); // 20%
   1026   BlockFrequency EntryFreq = MBFI->getBlockFreq(F.begin());
   1027   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
   1028   for (BlockChain::iterator BI = llvm::next(FunctionChain.begin()),
   1029                             BE = FunctionChain.end();
   1030        BI != BE; ++BI) {
   1031     // Don't align non-looping basic blocks. These are unlikely to execute
   1032     // enough times to matter in practice. Note that we'll still handle
   1033     // unnatural CFGs inside of a natural outer loop (the common case) and
   1034     // rotated loops.
   1035     MachineLoop *L = MLI->getLoopFor(*BI);
   1036     if (!L)
   1037       continue;
   1038 
   1039     // If the block is cold relative to the function entry don't waste space
   1040     // aligning it.
   1041     BlockFrequency Freq = MBFI->getBlockFreq(*BI);
   1042     if (Freq < WeightedEntryFreq)
   1043       continue;
   1044 
   1045     // If the block is cold relative to its loop header, don't align it
   1046     // regardless of what edges into the block exist.
   1047     MachineBasicBlock *LoopHeader = L->getHeader();
   1048     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
   1049     if (Freq < (LoopHeaderFreq * ColdProb))
   1050       continue;
   1051 
   1052     // Check for the existence of a non-layout predecessor which would benefit
   1053     // from aligning this block.
   1054     MachineBasicBlock *LayoutPred = *llvm::prior(BI);
   1055 
   1056     // Force alignment if all the predecessors are jumps. We already checked
   1057     // that the block isn't cold above.
   1058     if (!LayoutPred->isSuccessor(*BI)) {
   1059       (*BI)->setAlignment(Align);
   1060       continue;
   1061     }
   1062 
   1063     // Align this block if the layout predecessor's edge into this block is
   1064     // cold relative to the block. When this is true, othe predecessors make up
   1065     // all of the hot entries into the block and thus alignment is likely to be
   1066     // important.
   1067     BranchProbability LayoutProb = MBPI->getEdgeProbability(LayoutPred, *BI);
   1068     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
   1069     if (LayoutEdgeFreq <= (Freq * ColdProb))
   1070       (*BI)->setAlignment(Align);
   1071   }
   1072 }
   1073 
   1074 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) {
   1075   // Check for single-block functions and skip them.
   1076   if (llvm::next(F.begin()) == F.end())
   1077     return false;
   1078 
   1079   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
   1080   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
   1081   MLI = &getAnalysis<MachineLoopInfo>();
   1082   TII = F.getTarget().getInstrInfo();
   1083   TLI = F.getTarget().getTargetLowering();
   1084   assert(BlockToChain.empty());
   1085 
   1086   buildCFGChains(F);
   1087 
   1088   BlockToChain.clear();
   1089   ChainAllocator.DestroyAll();
   1090 
   1091   // We always return true as we have no way to track whether the final order
   1092   // differs from the original order.
   1093   return true;
   1094 }
   1095 
   1096 namespace {
   1097 /// \brief A pass to compute block placement statistics.
   1098 ///
   1099 /// A separate pass to compute interesting statistics for evaluating block
   1100 /// placement. This is separate from the actual placement pass so that they can
   1101 /// be computed in the absence of any placement transformations or when using
   1102 /// alternative placement strategies.
   1103 class MachineBlockPlacementStats : public MachineFunctionPass {
   1104   /// \brief A handle to the branch probability pass.
   1105   const MachineBranchProbabilityInfo *MBPI;
   1106 
   1107   /// \brief A handle to the function-wide block frequency pass.
   1108   const MachineBlockFrequencyInfo *MBFI;
   1109 
   1110 public:
   1111   static char ID; // Pass identification, replacement for typeid
   1112   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
   1113     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
   1114   }
   1115 
   1116   bool runOnMachineFunction(MachineFunction &F);
   1117 
   1118   void getAnalysisUsage(AnalysisUsage &AU) const {
   1119     AU.addRequired<MachineBranchProbabilityInfo>();
   1120     AU.addRequired<MachineBlockFrequencyInfo>();
   1121     AU.setPreservesAll();
   1122     MachineFunctionPass::getAnalysisUsage(AU);
   1123   }
   1124 };
   1125 }
   1126 
   1127 char MachineBlockPlacementStats::ID = 0;
   1128 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
   1129 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
   1130                       "Basic Block Placement Stats", false, false)
   1131 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
   1132 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
   1133 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
   1134                     "Basic Block Placement Stats", false, false)
   1135 
   1136 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
   1137   // Check for single-block functions and skip them.
   1138   if (llvm::next(F.begin()) == F.end())
   1139     return false;
   1140 
   1141   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
   1142   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
   1143 
   1144   for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) {
   1145     BlockFrequency BlockFreq = MBFI->getBlockFreq(I);
   1146     Statistic &NumBranches = (I->succ_size() > 1) ? NumCondBranches
   1147                                                   : NumUncondBranches;
   1148     Statistic &BranchTakenFreq = (I->succ_size() > 1) ? CondBranchTakenFreq
   1149                                                       : UncondBranchTakenFreq;
   1150     for (MachineBasicBlock::succ_iterator SI = I->succ_begin(),
   1151                                           SE = I->succ_end();
   1152          SI != SE; ++SI) {
   1153       // Skip if this successor is a fallthrough.
   1154       if (I->isLayoutSuccessor(*SI))
   1155         continue;
   1156 
   1157       BlockFrequency EdgeFreq = BlockFreq * MBPI->getEdgeProbability(I, *SI);
   1158       ++NumBranches;
   1159       BranchTakenFreq += EdgeFreq.getFrequency();
   1160     }
   1161   }
   1162 
   1163   return false;
   1164 }
   1165 
   1166