Home | History | Annotate | Download | only in src
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 // Platform specific code for Linux goes here. For the POSIX comaptible parts
     29 // the implementation is in platform-posix.cc.
     30 
     31 #include <pthread.h>
     32 #include <semaphore.h>
     33 #include <signal.h>
     34 #include <sys/prctl.h>
     35 #include <sys/time.h>
     36 #include <sys/resource.h>
     37 #include <sys/syscall.h>
     38 #include <sys/types.h>
     39 #include <stdlib.h>
     40 
     41 // Ubuntu Dapper requires memory pages to be marked as
     42 // executable. Otherwise, OS raises an exception when executing code
     43 // in that page.
     44 #include <sys/types.h>  // mmap & munmap
     45 #include <sys/mman.h>   // mmap & munmap
     46 #include <sys/stat.h>   // open
     47 #include <fcntl.h>      // open
     48 #include <unistd.h>     // sysconf
     49 #ifdef __GLIBC__
     50 #include <execinfo.h>   // backtrace, backtrace_symbols
     51 #endif  // def __GLIBC__
     52 #include <strings.h>    // index
     53 #include <errno.h>
     54 #include <stdarg.h>
     55 
     56 #undef MAP_TYPE
     57 
     58 #include "v8.h"
     59 
     60 #include "platform-posix.h"
     61 #include "platform.h"
     62 #include "v8threads.h"
     63 #include "vm-state-inl.h"
     64 
     65 
     66 namespace v8 {
     67 namespace internal {
     68 
     69 // 0 is never a valid thread id on Linux since tids and pids share a
     70 // name space and pid 0 is reserved (see man 2 kill).
     71 static const pthread_t kNoThread = (pthread_t) 0;
     72 
     73 
     74 double ceiling(double x) {
     75   return ceil(x);
     76 }
     77 
     78 
     79 static Mutex* limit_mutex = NULL;
     80 
     81 
     82 void OS::SetUp() {
     83   // Seed the random number generator. We preserve microsecond resolution.
     84   uint64_t seed = Ticks() ^ (getpid() << 16);
     85   srandom(static_cast<unsigned int>(seed));
     86   limit_mutex = CreateMutex();
     87 
     88 #ifdef __arm__
     89   // When running on ARM hardware check that the EABI used by V8 and
     90   // by the C code is the same.
     91   bool hard_float = OS::ArmUsingHardFloat();
     92   if (hard_float) {
     93 #if !USE_EABI_HARDFLOAT
     94     PrintF("ERROR: Binary compiled with -mfloat-abi=hard but without "
     95            "-DUSE_EABI_HARDFLOAT\n");
     96     exit(1);
     97 #endif
     98   } else {
     99 #if USE_EABI_HARDFLOAT
    100     PrintF("ERROR: Binary not compiled with -mfloat-abi=hard but with "
    101            "-DUSE_EABI_HARDFLOAT\n");
    102     exit(1);
    103 #endif
    104   }
    105 #endif
    106 }
    107 
    108 
    109 void OS::PostSetUp() {
    110   // Math functions depend on CPU features therefore they are initialized after
    111   // CPU.
    112   MathSetup();
    113 }
    114 
    115 
    116 uint64_t OS::CpuFeaturesImpliedByPlatform() {
    117   return 0;  // Linux runs on anything.
    118 }
    119 
    120 
    121 #ifdef __arm__
    122 static bool CPUInfoContainsString(const char * search_string) {
    123   const char* file_name = "/proc/cpuinfo";
    124   // This is written as a straight shot one pass parser
    125   // and not using STL string and ifstream because,
    126   // on Linux, it's reading from a (non-mmap-able)
    127   // character special device.
    128   FILE* f = NULL;
    129   const char* what = search_string;
    130 
    131   if (NULL == (f = fopen(file_name, "r")))
    132     return false;
    133 
    134   int k;
    135   while (EOF != (k = fgetc(f))) {
    136     if (k == *what) {
    137       ++what;
    138       while ((*what != '\0') && (*what == fgetc(f))) {
    139         ++what;
    140       }
    141       if (*what == '\0') {
    142         fclose(f);
    143         return true;
    144       } else {
    145         what = search_string;
    146       }
    147     }
    148   }
    149   fclose(f);
    150 
    151   // Did not find string in the proc file.
    152   return false;
    153 }
    154 
    155 
    156 bool OS::ArmCpuHasFeature(CpuFeature feature) {
    157   const char* search_string = NULL;
    158   // Simple detection of VFP at runtime for Linux.
    159   // It is based on /proc/cpuinfo, which reveals hardware configuration
    160   // to user-space applications.  According to ARM (mid 2009), no similar
    161   // facility is universally available on the ARM architectures,
    162   // so it's up to individual OSes to provide such.
    163   switch (feature) {
    164     case VFP3:
    165       search_string = "vfpv3";
    166       break;
    167     case ARMv7:
    168       search_string = "ARMv7";
    169       break;
    170     default:
    171       UNREACHABLE();
    172   }
    173 
    174   if (CPUInfoContainsString(search_string)) {
    175     return true;
    176   }
    177 
    178   if (feature == VFP3) {
    179     // Some old kernels will report vfp not vfpv3. Here we make a last attempt
    180     // to detect vfpv3 by checking for vfp *and* neon, since neon is only
    181     // available on architectures with vfpv3.
    182     // Checking neon on its own is not enough as it is possible to have neon
    183     // without vfp.
    184     if (CPUInfoContainsString("vfp") && CPUInfoContainsString("neon")) {
    185       return true;
    186     }
    187   }
    188 
    189   return false;
    190 }
    191 
    192 
    193 bool OS::ArmUsingHardFloat() {
    194   // GCC versions 4.6 and above define __ARM_PCS or __ARM_PCS_VFP to specify
    195   // the Floating Point ABI used (PCS stands for Procedure Call Standard).
    196   // We use these as well as a couple of other defines to statically determine
    197   // what FP ABI used.
    198   // GCC versions 4.4 and below don't support hard-fp.
    199   // GCC versions 4.5 may support hard-fp without defining __ARM_PCS or
    200   // __ARM_PCS_VFP.
    201 
    202 #define GCC_VERSION (__GNUC__ * 10000                                          \
    203                      + __GNUC_MINOR__ * 100                                    \
    204                      + __GNUC_PATCHLEVEL__)
    205 #if GCC_VERSION >= 40600
    206 #if defined(__ARM_PCS_VFP)
    207   return true;
    208 #else
    209   return false;
    210 #endif
    211 
    212 #elif GCC_VERSION < 40500
    213   return false;
    214 
    215 #else
    216 #if defined(__ARM_PCS_VFP)
    217   return true;
    218 #elif defined(__ARM_PCS) || defined(__SOFTFP) || !defined(__VFP_FP__)
    219   return false;
    220 #else
    221 #error "Your version of GCC does not report the FP ABI compiled for."          \
    222        "Please report it on this issue"                                        \
    223        "http://code.google.com/p/v8/issues/detail?id=2140"
    224 
    225 #endif
    226 #endif
    227 #undef GCC_VERSION
    228 }
    229 
    230 #endif  // def __arm__
    231 
    232 
    233 #ifdef __mips__
    234 bool OS::MipsCpuHasFeature(CpuFeature feature) {
    235   const char* search_string = NULL;
    236   const char* file_name = "/proc/cpuinfo";
    237   // Simple detection of FPU at runtime for Linux.
    238   // It is based on /proc/cpuinfo, which reveals hardware configuration
    239   // to user-space applications.  According to MIPS (early 2010), no similar
    240   // facility is universally available on the MIPS architectures,
    241   // so it's up to individual OSes to provide such.
    242   //
    243   // This is written as a straight shot one pass parser
    244   // and not using STL string and ifstream because,
    245   // on Linux, it's reading from a (non-mmap-able)
    246   // character special device.
    247 
    248   switch (feature) {
    249     case FPU:
    250       search_string = "FPU";
    251       break;
    252     default:
    253       UNREACHABLE();
    254   }
    255 
    256   FILE* f = NULL;
    257   const char* what = search_string;
    258 
    259   if (NULL == (f = fopen(file_name, "r")))
    260     return false;
    261 
    262   int k;
    263   while (EOF != (k = fgetc(f))) {
    264     if (k == *what) {
    265       ++what;
    266       while ((*what != '\0') && (*what == fgetc(f))) {
    267         ++what;
    268       }
    269       if (*what == '\0') {
    270         fclose(f);
    271         return true;
    272       } else {
    273         what = search_string;
    274       }
    275     }
    276   }
    277   fclose(f);
    278 
    279   // Did not find string in the proc file.
    280   return false;
    281 }
    282 #endif  // def __mips__
    283 
    284 
    285 int OS::ActivationFrameAlignment() {
    286 #ifdef V8_TARGET_ARCH_ARM
    287   // On EABI ARM targets this is required for fp correctness in the
    288   // runtime system.
    289   return 8;
    290 #elif V8_TARGET_ARCH_MIPS
    291   return 8;
    292 #endif
    293   // With gcc 4.4 the tree vectorization optimizer can generate code
    294   // that requires 16 byte alignment such as movdqa on x86.
    295   return 16;
    296 }
    297 
    298 
    299 void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) {
    300 #if (defined(V8_TARGET_ARCH_ARM) && defined(__arm__)) || \
    301     (defined(V8_TARGET_ARCH_MIPS) && defined(__mips__))
    302   // Only use on ARM or MIPS hardware.
    303   MemoryBarrier();
    304 #else
    305   __asm__ __volatile__("" : : : "memory");
    306   // An x86 store acts as a release barrier.
    307 #endif
    308   *ptr = value;
    309 }
    310 
    311 
    312 const char* OS::LocalTimezone(double time) {
    313   if (isnan(time)) return "";
    314   time_t tv = static_cast<time_t>(floor(time/msPerSecond));
    315   struct tm* t = localtime(&tv);
    316   if (NULL == t) return "";
    317   return t->tm_zone;
    318 }
    319 
    320 
    321 double OS::LocalTimeOffset() {
    322   time_t tv = time(NULL);
    323   struct tm* t = localtime(&tv);
    324   // tm_gmtoff includes any daylight savings offset, so subtract it.
    325   return static_cast<double>(t->tm_gmtoff * msPerSecond -
    326                              (t->tm_isdst > 0 ? 3600 * msPerSecond : 0));
    327 }
    328 
    329 
    330 // We keep the lowest and highest addresses mapped as a quick way of
    331 // determining that pointers are outside the heap (used mostly in assertions
    332 // and verification).  The estimate is conservative, i.e., not all addresses in
    333 // 'allocated' space are actually allocated to our heap.  The range is
    334 // [lowest, highest), inclusive on the low and and exclusive on the high end.
    335 static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
    336 static void* highest_ever_allocated = reinterpret_cast<void*>(0);
    337 
    338 
    339 static void UpdateAllocatedSpaceLimits(void* address, int size) {
    340   ASSERT(limit_mutex != NULL);
    341   ScopedLock lock(limit_mutex);
    342 
    343   lowest_ever_allocated = Min(lowest_ever_allocated, address);
    344   highest_ever_allocated =
    345       Max(highest_ever_allocated,
    346           reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
    347 }
    348 
    349 
    350 bool OS::IsOutsideAllocatedSpace(void* address) {
    351   return address < lowest_ever_allocated || address >= highest_ever_allocated;
    352 }
    353 
    354 
    355 size_t OS::AllocateAlignment() {
    356   return sysconf(_SC_PAGESIZE);
    357 }
    358 
    359 
    360 void* OS::Allocate(const size_t requested,
    361                    size_t* allocated,
    362                    bool is_executable) {
    363   const size_t msize = RoundUp(requested, AllocateAlignment());
    364   int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
    365   void* addr = OS::GetRandomMmapAddr();
    366   void* mbase = mmap(addr, msize, prot, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
    367   if (mbase == MAP_FAILED) {
    368     LOG(i::Isolate::Current(),
    369         StringEvent("OS::Allocate", "mmap failed"));
    370     return NULL;
    371   }
    372   *allocated = msize;
    373   UpdateAllocatedSpaceLimits(mbase, msize);
    374   return mbase;
    375 }
    376 
    377 
    378 void OS::Free(void* address, const size_t size) {
    379   // TODO(1240712): munmap has a return value which is ignored here.
    380   int result = munmap(address, size);
    381   USE(result);
    382   ASSERT(result == 0);
    383 }
    384 
    385 
    386 void OS::Sleep(int milliseconds) {
    387   unsigned int ms = static_cast<unsigned int>(milliseconds);
    388   usleep(1000 * ms);
    389 }
    390 
    391 
    392 void OS::Abort() {
    393   // Redirect to std abort to signal abnormal program termination.
    394   if (FLAG_break_on_abort) {
    395     DebugBreak();
    396   }
    397   abort();
    398 }
    399 
    400 
    401 void OS::DebugBreak() {
    402 // TODO(lrn): Introduce processor define for runtime system (!= V8_ARCH_x,
    403 //  which is the architecture of generated code).
    404 #if (defined(__arm__) || defined(__thumb__))
    405 # if defined(CAN_USE_ARMV5_INSTRUCTIONS)
    406   asm("bkpt 0");
    407 # endif
    408 #elif defined(__mips__)
    409   asm("break");
    410 #else
    411   asm("int $3");
    412 #endif
    413 }
    414 
    415 
    416 class PosixMemoryMappedFile : public OS::MemoryMappedFile {
    417  public:
    418   PosixMemoryMappedFile(FILE* file, void* memory, int size)
    419     : file_(file), memory_(memory), size_(size) { }
    420   virtual ~PosixMemoryMappedFile();
    421   virtual void* memory() { return memory_; }
    422   virtual int size() { return size_; }
    423  private:
    424   FILE* file_;
    425   void* memory_;
    426   int size_;
    427 };
    428 
    429 
    430 OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
    431   FILE* file = fopen(name, "r+");
    432   if (file == NULL) return NULL;
    433 
    434   fseek(file, 0, SEEK_END);
    435   int size = ftell(file);
    436 
    437   void* memory =
    438       mmap(OS::GetRandomMmapAddr(),
    439            size,
    440            PROT_READ | PROT_WRITE,
    441            MAP_SHARED,
    442            fileno(file),
    443            0);
    444   return new PosixMemoryMappedFile(file, memory, size);
    445 }
    446 
    447 
    448 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
    449     void* initial) {
    450   FILE* file = fopen(name, "w+");
    451   if (file == NULL) return NULL;
    452   int result = fwrite(initial, size, 1, file);
    453   if (result < 1) {
    454     fclose(file);
    455     return NULL;
    456   }
    457   void* memory =
    458       mmap(OS::GetRandomMmapAddr(),
    459            size,
    460            PROT_READ | PROT_WRITE,
    461            MAP_SHARED,
    462            fileno(file),
    463            0);
    464   return new PosixMemoryMappedFile(file, memory, size);
    465 }
    466 
    467 
    468 PosixMemoryMappedFile::~PosixMemoryMappedFile() {
    469   if (memory_) OS::Free(memory_, size_);
    470   fclose(file_);
    471 }
    472 
    473 
    474 void OS::LogSharedLibraryAddresses() {
    475   // This function assumes that the layout of the file is as follows:
    476   // hex_start_addr-hex_end_addr rwxp <unused data> [binary_file_name]
    477   // If we encounter an unexpected situation we abort scanning further entries.
    478   FILE* fp = fopen("/proc/self/maps", "r");
    479   if (fp == NULL) return;
    480 
    481   // Allocate enough room to be able to store a full file name.
    482   const int kLibNameLen = FILENAME_MAX + 1;
    483   char* lib_name = reinterpret_cast<char*>(malloc(kLibNameLen));
    484 
    485   i::Isolate* isolate = ISOLATE;
    486   // This loop will terminate once the scanning hits an EOF.
    487   while (true) {
    488     uintptr_t start, end;
    489     char attr_r, attr_w, attr_x, attr_p;
    490     // Parse the addresses and permission bits at the beginning of the line.
    491     if (fscanf(fp, "%" V8PRIxPTR "-%" V8PRIxPTR, &start, &end) != 2) break;
    492     if (fscanf(fp, " %c%c%c%c", &attr_r, &attr_w, &attr_x, &attr_p) != 4) break;
    493 
    494     int c;
    495     if (attr_r == 'r' && attr_w != 'w' && attr_x == 'x') {
    496       // Found a read-only executable entry. Skip characters until we reach
    497       // the beginning of the filename or the end of the line.
    498       do {
    499         c = getc(fp);
    500       } while ((c != EOF) && (c != '\n') && (c != '/'));
    501       if (c == EOF) break;  // EOF: Was unexpected, just exit.
    502 
    503       // Process the filename if found.
    504       if (c == '/') {
    505         ungetc(c, fp);  // Push the '/' back into the stream to be read below.
    506 
    507         // Read to the end of the line. Exit if the read fails.
    508         if (fgets(lib_name, kLibNameLen, fp) == NULL) break;
    509 
    510         // Drop the newline character read by fgets. We do not need to check
    511         // for a zero-length string because we know that we at least read the
    512         // '/' character.
    513         lib_name[strlen(lib_name) - 1] = '\0';
    514       } else {
    515         // No library name found, just record the raw address range.
    516         snprintf(lib_name, kLibNameLen,
    517                  "%08" V8PRIxPTR "-%08" V8PRIxPTR, start, end);
    518       }
    519       LOG(isolate, SharedLibraryEvent(lib_name, start, end));
    520     } else {
    521       // Entry not describing executable data. Skip to end of line to set up
    522       // reading the next entry.
    523       do {
    524         c = getc(fp);
    525       } while ((c != EOF) && (c != '\n'));
    526       if (c == EOF) break;
    527     }
    528   }
    529   free(lib_name);
    530   fclose(fp);
    531 }
    532 
    533 
    534 static const char kGCFakeMmap[] = "/tmp/__v8_gc__";
    535 
    536 
    537 void OS::SignalCodeMovingGC() {
    538   // Support for ll_prof.py.
    539   //
    540   // The Linux profiler built into the kernel logs all mmap's with
    541   // PROT_EXEC so that analysis tools can properly attribute ticks. We
    542   // do a mmap with a name known by ll_prof.py and immediately munmap
    543   // it. This injects a GC marker into the stream of events generated
    544   // by the kernel and allows us to synchronize V8 code log and the
    545   // kernel log.
    546   int size = sysconf(_SC_PAGESIZE);
    547   FILE* f = fopen(kGCFakeMmap, "w+");
    548   void* addr = mmap(OS::GetRandomMmapAddr(),
    549                     size,
    550                     PROT_READ | PROT_EXEC,
    551                     MAP_PRIVATE,
    552                     fileno(f),
    553                     0);
    554   ASSERT(addr != MAP_FAILED);
    555   OS::Free(addr, size);
    556   fclose(f);
    557 }
    558 
    559 
    560 int OS::StackWalk(Vector<OS::StackFrame> frames) {
    561   // backtrace is a glibc extension.
    562 #ifdef __GLIBC__
    563   int frames_size = frames.length();
    564   ScopedVector<void*> addresses(frames_size);
    565 
    566   int frames_count = backtrace(addresses.start(), frames_size);
    567 
    568   char** symbols = backtrace_symbols(addresses.start(), frames_count);
    569   if (symbols == NULL) {
    570     return kStackWalkError;
    571   }
    572 
    573   for (int i = 0; i < frames_count; i++) {
    574     frames[i].address = addresses[i];
    575     // Format a text representation of the frame based on the information
    576     // available.
    577     SNPrintF(MutableCStrVector(frames[i].text, kStackWalkMaxTextLen),
    578              "%s",
    579              symbols[i]);
    580     // Make sure line termination is in place.
    581     frames[i].text[kStackWalkMaxTextLen - 1] = '\0';
    582   }
    583 
    584   free(symbols);
    585 
    586   return frames_count;
    587 #else  // ndef __GLIBC__
    588   return 0;
    589 #endif  // ndef __GLIBC__
    590 }
    591 
    592 
    593 // Constants used for mmap.
    594 static const int kMmapFd = -1;
    595 static const int kMmapFdOffset = 0;
    596 
    597 VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
    598 
    599 VirtualMemory::VirtualMemory(size_t size) {
    600   address_ = ReserveRegion(size);
    601   size_ = size;
    602 }
    603 
    604 
    605 VirtualMemory::VirtualMemory(size_t size, size_t alignment)
    606     : address_(NULL), size_(0) {
    607   ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
    608   size_t request_size = RoundUp(size + alignment,
    609                                 static_cast<intptr_t>(OS::AllocateAlignment()));
    610   void* reservation = mmap(OS::GetRandomMmapAddr(),
    611                            request_size,
    612                            PROT_NONE,
    613                            MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
    614                            kMmapFd,
    615                            kMmapFdOffset);
    616   if (reservation == MAP_FAILED) return;
    617 
    618   Address base = static_cast<Address>(reservation);
    619   Address aligned_base = RoundUp(base, alignment);
    620   ASSERT_LE(base, aligned_base);
    621 
    622   // Unmap extra memory reserved before and after the desired block.
    623   if (aligned_base != base) {
    624     size_t prefix_size = static_cast<size_t>(aligned_base - base);
    625     OS::Free(base, prefix_size);
    626     request_size -= prefix_size;
    627   }
    628 
    629   size_t aligned_size = RoundUp(size, OS::AllocateAlignment());
    630   ASSERT_LE(aligned_size, request_size);
    631 
    632   if (aligned_size != request_size) {
    633     size_t suffix_size = request_size - aligned_size;
    634     OS::Free(aligned_base + aligned_size, suffix_size);
    635     request_size -= suffix_size;
    636   }
    637 
    638   ASSERT(aligned_size == request_size);
    639 
    640   address_ = static_cast<void*>(aligned_base);
    641   size_ = aligned_size;
    642 }
    643 
    644 
    645 VirtualMemory::~VirtualMemory() {
    646   if (IsReserved()) {
    647     bool result = ReleaseRegion(address(), size());
    648     ASSERT(result);
    649     USE(result);
    650   }
    651 }
    652 
    653 
    654 bool VirtualMemory::IsReserved() {
    655   return address_ != NULL;
    656 }
    657 
    658 
    659 void VirtualMemory::Reset() {
    660   address_ = NULL;
    661   size_ = 0;
    662 }
    663 
    664 
    665 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
    666   return CommitRegion(address, size, is_executable);
    667 }
    668 
    669 
    670 bool VirtualMemory::Uncommit(void* address, size_t size) {
    671   return UncommitRegion(address, size);
    672 }
    673 
    674 
    675 bool VirtualMemory::Guard(void* address) {
    676   OS::Guard(address, OS::CommitPageSize());
    677   return true;
    678 }
    679 
    680 
    681 void* VirtualMemory::ReserveRegion(size_t size) {
    682   void* result = mmap(OS::GetRandomMmapAddr(),
    683                       size,
    684                       PROT_NONE,
    685                       MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
    686                       kMmapFd,
    687                       kMmapFdOffset);
    688 
    689   if (result == MAP_FAILED) return NULL;
    690 
    691   return result;
    692 }
    693 
    694 
    695 bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
    696   int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
    697   if (MAP_FAILED == mmap(base,
    698                          size,
    699                          prot,
    700                          MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED,
    701                          kMmapFd,
    702                          kMmapFdOffset)) {
    703     return false;
    704   }
    705 
    706   UpdateAllocatedSpaceLimits(base, size);
    707   return true;
    708 }
    709 
    710 
    711 bool VirtualMemory::UncommitRegion(void* base, size_t size) {
    712   return mmap(base,
    713               size,
    714               PROT_NONE,
    715               MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE | MAP_FIXED,
    716               kMmapFd,
    717               kMmapFdOffset) != MAP_FAILED;
    718 }
    719 
    720 
    721 bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
    722   return munmap(base, size) == 0;
    723 }
    724 
    725 
    726 class Thread::PlatformData : public Malloced {
    727  public:
    728   PlatformData() : thread_(kNoThread) {}
    729 
    730   pthread_t thread_;  // Thread handle for pthread.
    731 };
    732 
    733 Thread::Thread(const Options& options)
    734     : data_(new PlatformData()),
    735       stack_size_(options.stack_size()) {
    736   set_name(options.name());
    737 }
    738 
    739 
    740 Thread::~Thread() {
    741   delete data_;
    742 }
    743 
    744 
    745 static void* ThreadEntry(void* arg) {
    746   Thread* thread = reinterpret_cast<Thread*>(arg);
    747   // This is also initialized by the first argument to pthread_create() but we
    748   // don't know which thread will run first (the original thread or the new
    749   // one) so we initialize it here too.
    750 #ifdef PR_SET_NAME
    751   prctl(PR_SET_NAME,
    752         reinterpret_cast<unsigned long>(thread->name()),  // NOLINT
    753         0, 0, 0);
    754 #endif
    755   thread->data()->thread_ = pthread_self();
    756   ASSERT(thread->data()->thread_ != kNoThread);
    757   thread->Run();
    758   return NULL;
    759 }
    760 
    761 
    762 void Thread::set_name(const char* name) {
    763   strncpy(name_, name, sizeof(name_));
    764   name_[sizeof(name_) - 1] = '\0';
    765 }
    766 
    767 
    768 void Thread::Start() {
    769   pthread_attr_t* attr_ptr = NULL;
    770   pthread_attr_t attr;
    771   if (stack_size_ > 0) {
    772     pthread_attr_init(&attr);
    773     pthread_attr_setstacksize(&attr, static_cast<size_t>(stack_size_));
    774     attr_ptr = &attr;
    775   }
    776   int result = pthread_create(&data_->thread_, attr_ptr, ThreadEntry, this);
    777   CHECK_EQ(0, result);
    778   ASSERT(data_->thread_ != kNoThread);
    779 }
    780 
    781 
    782 void Thread::Join() {
    783   pthread_join(data_->thread_, NULL);
    784 }
    785 
    786 
    787 Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
    788   pthread_key_t key;
    789   int result = pthread_key_create(&key, NULL);
    790   USE(result);
    791   ASSERT(result == 0);
    792   return static_cast<LocalStorageKey>(key);
    793 }
    794 
    795 
    796 void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
    797   pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
    798   int result = pthread_key_delete(pthread_key);
    799   USE(result);
    800   ASSERT(result == 0);
    801 }
    802 
    803 
    804 void* Thread::GetThreadLocal(LocalStorageKey key) {
    805   pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
    806   return pthread_getspecific(pthread_key);
    807 }
    808 
    809 
    810 void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
    811   pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
    812   pthread_setspecific(pthread_key, value);
    813 }
    814 
    815 
    816 void Thread::YieldCPU() {
    817   sched_yield();
    818 }
    819 
    820 
    821 class LinuxMutex : public Mutex {
    822  public:
    823   LinuxMutex() {
    824     pthread_mutexattr_t attrs;
    825     int result = pthread_mutexattr_init(&attrs);
    826     ASSERT(result == 0);
    827     result = pthread_mutexattr_settype(&attrs, PTHREAD_MUTEX_RECURSIVE);
    828     ASSERT(result == 0);
    829     result = pthread_mutex_init(&mutex_, &attrs);
    830     ASSERT(result == 0);
    831     USE(result);
    832   }
    833 
    834   virtual ~LinuxMutex() { pthread_mutex_destroy(&mutex_); }
    835 
    836   virtual int Lock() {
    837     int result = pthread_mutex_lock(&mutex_);
    838     return result;
    839   }
    840 
    841   virtual int Unlock() {
    842     int result = pthread_mutex_unlock(&mutex_);
    843     return result;
    844   }
    845 
    846   virtual bool TryLock() {
    847     int result = pthread_mutex_trylock(&mutex_);
    848     // Return false if the lock is busy and locking failed.
    849     if (result == EBUSY) {
    850       return false;
    851     }
    852     ASSERT(result == 0);  // Verify no other errors.
    853     return true;
    854   }
    855 
    856  private:
    857   pthread_mutex_t mutex_;   // Pthread mutex for POSIX platforms.
    858 };
    859 
    860 
    861 Mutex* OS::CreateMutex() {
    862   return new LinuxMutex();
    863 }
    864 
    865 
    866 class LinuxSemaphore : public Semaphore {
    867  public:
    868   explicit LinuxSemaphore(int count) {  sem_init(&sem_, 0, count); }
    869   virtual ~LinuxSemaphore() { sem_destroy(&sem_); }
    870 
    871   virtual void Wait();
    872   virtual bool Wait(int timeout);
    873   virtual void Signal() { sem_post(&sem_); }
    874  private:
    875   sem_t sem_;
    876 };
    877 
    878 
    879 void LinuxSemaphore::Wait() {
    880   while (true) {
    881     int result = sem_wait(&sem_);
    882     if (result == 0) return;  // Successfully got semaphore.
    883     CHECK(result == -1 && errno == EINTR);  // Signal caused spurious wakeup.
    884   }
    885 }
    886 
    887 
    888 #ifndef TIMEVAL_TO_TIMESPEC
    889 #define TIMEVAL_TO_TIMESPEC(tv, ts) do {                            \
    890     (ts)->tv_sec = (tv)->tv_sec;                                    \
    891     (ts)->tv_nsec = (tv)->tv_usec * 1000;                           \
    892 } while (false)
    893 #endif
    894 
    895 
    896 bool LinuxSemaphore::Wait(int timeout) {
    897   const long kOneSecondMicros = 1000000;  // NOLINT
    898 
    899   // Split timeout into second and nanosecond parts.
    900   struct timeval delta;
    901   delta.tv_usec = timeout % kOneSecondMicros;
    902   delta.tv_sec = timeout / kOneSecondMicros;
    903 
    904   struct timeval current_time;
    905   // Get the current time.
    906   if (gettimeofday(&current_time, NULL) == -1) {
    907     return false;
    908   }
    909 
    910   // Calculate time for end of timeout.
    911   struct timeval end_time;
    912   timeradd(&current_time, &delta, &end_time);
    913 
    914   struct timespec ts;
    915   TIMEVAL_TO_TIMESPEC(&end_time, &ts);
    916   // Wait for semaphore signalled or timeout.
    917   while (true) {
    918     int result = sem_timedwait(&sem_, &ts);
    919     if (result == 0) return true;  // Successfully got semaphore.
    920     if (result > 0) {
    921       // For glibc prior to 2.3.4 sem_timedwait returns the error instead of -1.
    922       errno = result;
    923       result = -1;
    924     }
    925     if (result == -1 && errno == ETIMEDOUT) return false;  // Timeout.
    926     CHECK(result == -1 && errno == EINTR);  // Signal caused spurious wakeup.
    927   }
    928 }
    929 
    930 
    931 Semaphore* OS::CreateSemaphore(int count) {
    932   return new LinuxSemaphore(count);
    933 }
    934 
    935 
    936 #if !defined(__GLIBC__) && (defined(__arm__) || defined(__thumb__))
    937 // Android runs a fairly new Linux kernel, so signal info is there,
    938 // but the C library doesn't have the structs defined.
    939 
    940 struct sigcontext {
    941   uint32_t trap_no;
    942   uint32_t error_code;
    943   uint32_t oldmask;
    944   uint32_t gregs[16];
    945   uint32_t arm_cpsr;
    946   uint32_t fault_address;
    947 };
    948 typedef uint32_t __sigset_t;
    949 typedef struct sigcontext mcontext_t;
    950 typedef struct ucontext {
    951   uint32_t uc_flags;
    952   struct ucontext* uc_link;
    953   stack_t uc_stack;
    954   mcontext_t uc_mcontext;
    955   __sigset_t uc_sigmask;
    956 } ucontext_t;
    957 enum ArmRegisters {R15 = 15, R13 = 13, R11 = 11};
    958 
    959 #elif !defined(__GLIBC__) && defined(__mips__)
    960 // MIPS version of sigcontext, for Android bionic.
    961 struct sigcontext {
    962   uint32_t regmask;
    963   uint32_t status;
    964   uint64_t pc;
    965   uint64_t gregs[32];
    966   uint64_t fpregs[32];
    967   uint32_t acx;
    968   uint32_t fpc_csr;
    969   uint32_t fpc_eir;
    970   uint32_t used_math;
    971   uint32_t dsp;
    972   uint64_t mdhi;
    973   uint64_t mdlo;
    974   uint32_t hi1;
    975   uint32_t lo1;
    976   uint32_t hi2;
    977   uint32_t lo2;
    978   uint32_t hi3;
    979   uint32_t lo3;
    980 };
    981 typedef uint32_t __sigset_t;
    982 typedef struct sigcontext mcontext_t;
    983 typedef struct ucontext {
    984   uint32_t uc_flags;
    985   struct ucontext* uc_link;
    986   stack_t uc_stack;
    987   mcontext_t uc_mcontext;
    988   __sigset_t uc_sigmask;
    989 } ucontext_t;
    990 
    991 #elif !defined(__GLIBC__) && defined(__i386__)
    992 // x86 version for Android.
    993 struct sigcontext {
    994   uint32_t gregs[19];
    995   void* fpregs;
    996   uint32_t oldmask;
    997   uint32_t cr2;
    998 };
    999 
   1000 typedef uint32_t __sigset_t;
   1001 typedef struct sigcontext mcontext_t;
   1002 typedef struct ucontext {
   1003   uint32_t uc_flags;
   1004   struct ucontext* uc_link;
   1005   stack_t uc_stack;
   1006   mcontext_t uc_mcontext;
   1007   __sigset_t uc_sigmask;
   1008 } ucontext_t;
   1009 enum { REG_EBP = 6, REG_ESP = 7, REG_EIP = 14 };
   1010 #endif
   1011 
   1012 
   1013 static int GetThreadID() {
   1014   // Glibc doesn't provide a wrapper for gettid(2).
   1015 #if defined(ANDROID)
   1016   return syscall(__NR_gettid);
   1017 #else
   1018   return syscall(SYS_gettid);
   1019 #endif
   1020 }
   1021 
   1022 
   1023 static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) {
   1024   USE(info);
   1025   if (signal != SIGPROF) return;
   1026   Isolate* isolate = Isolate::UncheckedCurrent();
   1027   if (isolate == NULL || !isolate->IsInitialized() || !isolate->IsInUse()) {
   1028     // We require a fully initialized and entered isolate.
   1029     return;
   1030   }
   1031   if (v8::Locker::IsActive() &&
   1032       !isolate->thread_manager()->IsLockedByCurrentThread()) {
   1033     return;
   1034   }
   1035 
   1036   Sampler* sampler = isolate->logger()->sampler();
   1037   if (sampler == NULL || !sampler->IsActive()) return;
   1038 
   1039   TickSample sample_obj;
   1040   TickSample* sample = CpuProfiler::TickSampleEvent(isolate);
   1041   if (sample == NULL) sample = &sample_obj;
   1042 
   1043   // Extracting the sample from the context is extremely machine dependent.
   1044   ucontext_t* ucontext = reinterpret_cast<ucontext_t*>(context);
   1045   mcontext_t& mcontext = ucontext->uc_mcontext;
   1046   sample->state = isolate->current_vm_state();
   1047 #if V8_HOST_ARCH_IA32
   1048   sample->pc = reinterpret_cast<Address>(mcontext.gregs[REG_EIP]);
   1049   sample->sp = reinterpret_cast<Address>(mcontext.gregs[REG_ESP]);
   1050   sample->fp = reinterpret_cast<Address>(mcontext.gregs[REG_EBP]);
   1051 #elif V8_HOST_ARCH_X64
   1052   sample->pc = reinterpret_cast<Address>(mcontext.gregs[REG_RIP]);
   1053   sample->sp = reinterpret_cast<Address>(mcontext.gregs[REG_RSP]);
   1054   sample->fp = reinterpret_cast<Address>(mcontext.gregs[REG_RBP]);
   1055 #elif V8_HOST_ARCH_ARM
   1056 // An undefined macro evaluates to 0, so this applies to Android's Bionic also.
   1057 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
   1058   sample->pc = reinterpret_cast<Address>(mcontext.gregs[R15]);
   1059   sample->sp = reinterpret_cast<Address>(mcontext.gregs[R13]);
   1060   sample->fp = reinterpret_cast<Address>(mcontext.gregs[R11]);
   1061 #else
   1062   sample->pc = reinterpret_cast<Address>(mcontext.arm_pc);
   1063   sample->sp = reinterpret_cast<Address>(mcontext.arm_sp);
   1064   sample->fp = reinterpret_cast<Address>(mcontext.arm_fp);
   1065 #endif  // (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
   1066 #elif V8_HOST_ARCH_MIPS
   1067   sample->pc = reinterpret_cast<Address>(mcontext.pc);
   1068   sample->sp = reinterpret_cast<Address>(mcontext.gregs[29]);
   1069   sample->fp = reinterpret_cast<Address>(mcontext.gregs[30]);
   1070 #endif  // V8_HOST_ARCH_*
   1071   sampler->SampleStack(sample);
   1072   sampler->Tick(sample);
   1073 }
   1074 
   1075 
   1076 class Sampler::PlatformData : public Malloced {
   1077  public:
   1078   PlatformData() : vm_tid_(GetThreadID()) {}
   1079 
   1080   int vm_tid() const { return vm_tid_; }
   1081 
   1082  private:
   1083   const int vm_tid_;
   1084 };
   1085 
   1086 
   1087 class SignalSender : public Thread {
   1088  public:
   1089   enum SleepInterval {
   1090     HALF_INTERVAL,
   1091     FULL_INTERVAL
   1092   };
   1093 
   1094   static const int kSignalSenderStackSize = 64 * KB;
   1095 
   1096   explicit SignalSender(int interval)
   1097       : Thread(Thread::Options("SignalSender", kSignalSenderStackSize)),
   1098         vm_tgid_(getpid()),
   1099         interval_(interval) {}
   1100 
   1101   static void InstallSignalHandler() {
   1102     struct sigaction sa;
   1103     sa.sa_sigaction = ProfilerSignalHandler;
   1104     sigemptyset(&sa.sa_mask);
   1105     sa.sa_flags = SA_RESTART | SA_SIGINFO;
   1106     signal_handler_installed_ =
   1107         (sigaction(SIGPROF, &sa, &old_signal_handler_) == 0);
   1108   }
   1109 
   1110   static void RestoreSignalHandler() {
   1111     if (signal_handler_installed_) {
   1112       sigaction(SIGPROF, &old_signal_handler_, 0);
   1113       signal_handler_installed_ = false;
   1114     }
   1115   }
   1116 
   1117   static void AddActiveSampler(Sampler* sampler) {
   1118     ScopedLock lock(mutex_.Pointer());
   1119     SamplerRegistry::AddActiveSampler(sampler);
   1120     if (instance_ == NULL) {
   1121       // Start a thread that will send SIGPROF signal to VM threads,
   1122       // when CPU profiling will be enabled.
   1123       instance_ = new SignalSender(sampler->interval());
   1124       instance_->Start();
   1125     } else {
   1126       ASSERT(instance_->interval_ == sampler->interval());
   1127     }
   1128   }
   1129 
   1130   static void RemoveActiveSampler(Sampler* sampler) {
   1131     ScopedLock lock(mutex_.Pointer());
   1132     SamplerRegistry::RemoveActiveSampler(sampler);
   1133     if (SamplerRegistry::GetState() == SamplerRegistry::HAS_NO_SAMPLERS) {
   1134       RuntimeProfiler::StopRuntimeProfilerThreadBeforeShutdown(instance_);
   1135       delete instance_;
   1136       instance_ = NULL;
   1137       RestoreSignalHandler();
   1138     }
   1139   }
   1140 
   1141   // Implement Thread::Run().
   1142   virtual void Run() {
   1143     SamplerRegistry::State state;
   1144     while ((state = SamplerRegistry::GetState()) !=
   1145            SamplerRegistry::HAS_NO_SAMPLERS) {
   1146       bool cpu_profiling_enabled =
   1147           (state == SamplerRegistry::HAS_CPU_PROFILING_SAMPLERS);
   1148       bool runtime_profiler_enabled = RuntimeProfiler::IsEnabled();
   1149       if (cpu_profiling_enabled && !signal_handler_installed_) {
   1150         InstallSignalHandler();
   1151       } else if (!cpu_profiling_enabled && signal_handler_installed_) {
   1152         RestoreSignalHandler();
   1153       }
   1154       // When CPU profiling is enabled both JavaScript and C++ code is
   1155       // profiled. We must not suspend.
   1156       if (!cpu_profiling_enabled) {
   1157         if (rate_limiter_.SuspendIfNecessary()) continue;
   1158       }
   1159       if (cpu_profiling_enabled && runtime_profiler_enabled) {
   1160         if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) {
   1161           return;
   1162         }
   1163         Sleep(HALF_INTERVAL);
   1164         if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) {
   1165           return;
   1166         }
   1167         Sleep(HALF_INTERVAL);
   1168       } else {
   1169         if (cpu_profiling_enabled) {
   1170           if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile,
   1171                                                       this)) {
   1172             return;
   1173           }
   1174         }
   1175         if (runtime_profiler_enabled) {
   1176           if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile,
   1177                                                       NULL)) {
   1178             return;
   1179           }
   1180         }
   1181         Sleep(FULL_INTERVAL);
   1182       }
   1183     }
   1184   }
   1185 
   1186   static void DoCpuProfile(Sampler* sampler, void* raw_sender) {
   1187     if (!sampler->IsProfiling()) return;
   1188     SignalSender* sender = reinterpret_cast<SignalSender*>(raw_sender);
   1189     sender->SendProfilingSignal(sampler->platform_data()->vm_tid());
   1190   }
   1191 
   1192   static void DoRuntimeProfile(Sampler* sampler, void* ignored) {
   1193     if (!sampler->isolate()->IsInitialized()) return;
   1194     sampler->isolate()->runtime_profiler()->NotifyTick();
   1195   }
   1196 
   1197   void SendProfilingSignal(int tid) {
   1198     if (!signal_handler_installed_) return;
   1199     // Glibc doesn't provide a wrapper for tgkill(2).
   1200 #if defined(ANDROID)
   1201     syscall(__NR_tgkill, vm_tgid_, tid, SIGPROF);
   1202 #else
   1203     syscall(SYS_tgkill, vm_tgid_, tid, SIGPROF);
   1204 #endif
   1205   }
   1206 
   1207   void Sleep(SleepInterval full_or_half) {
   1208     // Convert ms to us and subtract 100 us to compensate delays
   1209     // occuring during signal delivery.
   1210     useconds_t interval = interval_ * 1000 - 100;
   1211     if (full_or_half == HALF_INTERVAL) interval /= 2;
   1212 #if defined(ANDROID)
   1213     usleep(interval);
   1214 #else
   1215     int result = usleep(interval);
   1216 #ifdef DEBUG
   1217     if (result != 0 && errno != EINTR) {
   1218       fprintf(stderr,
   1219               "SignalSender usleep error; interval = %u, errno = %d\n",
   1220               interval,
   1221               errno);
   1222       ASSERT(result == 0 || errno == EINTR);
   1223     }
   1224 #endif  // DEBUG
   1225     USE(result);
   1226 #endif  // ANDROID
   1227   }
   1228 
   1229   const int vm_tgid_;
   1230   const int interval_;
   1231   RuntimeProfilerRateLimiter rate_limiter_;
   1232 
   1233   // Protects the process wide state below.
   1234   static LazyMutex mutex_;
   1235   static SignalSender* instance_;
   1236   static bool signal_handler_installed_;
   1237   static struct sigaction old_signal_handler_;
   1238 
   1239  private:
   1240   DISALLOW_COPY_AND_ASSIGN(SignalSender);
   1241 };
   1242 
   1243 
   1244 LazyMutex SignalSender::mutex_ = LAZY_MUTEX_INITIALIZER;
   1245 SignalSender* SignalSender::instance_ = NULL;
   1246 struct sigaction SignalSender::old_signal_handler_;
   1247 bool SignalSender::signal_handler_installed_ = false;
   1248 
   1249 
   1250 Sampler::Sampler(Isolate* isolate, int interval)
   1251     : isolate_(isolate),
   1252       interval_(interval),
   1253       profiling_(false),
   1254       active_(false),
   1255       samples_taken_(0) {
   1256   data_ = new PlatformData;
   1257 }
   1258 
   1259 
   1260 Sampler::~Sampler() {
   1261   ASSERT(!IsActive());
   1262   delete data_;
   1263 }
   1264 
   1265 
   1266 void Sampler::Start() {
   1267   ASSERT(!IsActive());
   1268   SetActive(true);
   1269   SignalSender::AddActiveSampler(this);
   1270 }
   1271 
   1272 
   1273 void Sampler::Stop() {
   1274   ASSERT(IsActive());
   1275   SignalSender::RemoveActiveSampler(this);
   1276   SetActive(false);
   1277 }
   1278 
   1279 
   1280 } }  // namespace v8::internal
   1281