Home | History | Annotate | Download | only in AST
      1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Implements C++ name mangling according to the Itanium C++ ABI,
     11 // which is used in GCC 3.2 and newer (and many compilers that are
     12 // ABI-compatible with GCC):
     13 //
     14 //   http://www.codesourcery.com/public/cxx-abi/abi.html
     15 //
     16 //===----------------------------------------------------------------------===//
     17 #include "clang/AST/Mangle.h"
     18 #include "clang/AST/ASTContext.h"
     19 #include "clang/AST/Attr.h"
     20 #include "clang/AST/Decl.h"
     21 #include "clang/AST/DeclCXX.h"
     22 #include "clang/AST/DeclObjC.h"
     23 #include "clang/AST/DeclTemplate.h"
     24 #include "clang/AST/ExprCXX.h"
     25 #include "clang/AST/ExprObjC.h"
     26 #include "clang/AST/TypeLoc.h"
     27 #include "clang/Basic/ABI.h"
     28 #include "clang/Basic/SourceManager.h"
     29 #include "clang/Basic/TargetInfo.h"
     30 #include "llvm/ADT/StringExtras.h"
     31 #include "llvm/Support/ErrorHandling.h"
     32 #include "llvm/Support/raw_ostream.h"
     33 
     34 #define MANGLE_CHECKER 0
     35 
     36 #if MANGLE_CHECKER
     37 #include <cxxabi.h>
     38 #endif
     39 
     40 using namespace clang;
     41 
     42 namespace {
     43 
     44 /// \brief Retrieve the declaration context that should be used when mangling
     45 /// the given declaration.
     46 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
     47   // The ABI assumes that lambda closure types that occur within
     48   // default arguments live in the context of the function. However, due to
     49   // the way in which Clang parses and creates function declarations, this is
     50   // not the case: the lambda closure type ends up living in the context
     51   // where the function itself resides, because the function declaration itself
     52   // had not yet been created. Fix the context here.
     53   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
     54     if (RD->isLambda())
     55       if (ParmVarDecl *ContextParam
     56             = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
     57         return ContextParam->getDeclContext();
     58   }
     59 
     60   return D->getDeclContext();
     61 }
     62 
     63 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
     64   return getEffectiveDeclContext(cast<Decl>(DC));
     65 }
     66 
     67 static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) {
     68   const DeclContext *DC = dyn_cast<DeclContext>(ND);
     69   if (!DC)
     70     DC = getEffectiveDeclContext(ND);
     71   while (!DC->isNamespace() && !DC->isTranslationUnit()) {
     72     const DeclContext *Parent = getEffectiveDeclContext(cast<Decl>(DC));
     73     if (isa<FunctionDecl>(Parent))
     74       return dyn_cast<CXXRecordDecl>(DC);
     75     DC = Parent;
     76   }
     77   return 0;
     78 }
     79 
     80 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
     81   if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
     82     return ftd->getTemplatedDecl();
     83 
     84   return fn;
     85 }
     86 
     87 static const NamedDecl *getStructor(const NamedDecl *decl) {
     88   const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
     89   return (fn ? getStructor(fn) : decl);
     90 }
     91 
     92 static const unsigned UnknownArity = ~0U;
     93 
     94 class ItaniumMangleContext : public MangleContext {
     95   llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
     96   unsigned Discriminator;
     97   llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
     98 
     99 public:
    100   explicit ItaniumMangleContext(ASTContext &Context,
    101                                 DiagnosticsEngine &Diags)
    102     : MangleContext(Context, Diags) { }
    103 
    104   uint64_t getAnonymousStructId(const TagDecl *TD) {
    105     std::pair<llvm::DenseMap<const TagDecl *,
    106       uint64_t>::iterator, bool> Result =
    107       AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
    108     return Result.first->second;
    109   }
    110 
    111   void startNewFunction() {
    112     MangleContext::startNewFunction();
    113     mangleInitDiscriminator();
    114   }
    115 
    116   /// @name Mangler Entry Points
    117   /// @{
    118 
    119   bool shouldMangleDeclName(const NamedDecl *D);
    120   void mangleName(const NamedDecl *D, raw_ostream &);
    121   void mangleThunk(const CXXMethodDecl *MD,
    122                    const ThunkInfo &Thunk,
    123                    raw_ostream &);
    124   void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
    125                           const ThisAdjustment &ThisAdjustment,
    126                           raw_ostream &);
    127   void mangleReferenceTemporary(const VarDecl *D,
    128                                 raw_ostream &);
    129   void mangleCXXVTable(const CXXRecordDecl *RD,
    130                        raw_ostream &);
    131   void mangleCXXVTT(const CXXRecordDecl *RD,
    132                     raw_ostream &);
    133   void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
    134                            const CXXRecordDecl *Type,
    135                            raw_ostream &);
    136   void mangleCXXRTTI(QualType T, raw_ostream &);
    137   void mangleCXXRTTIName(QualType T, raw_ostream &);
    138   void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
    139                      raw_ostream &);
    140   void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
    141                      raw_ostream &);
    142 
    143   void mangleItaniumGuardVariable(const VarDecl *D, raw_ostream &);
    144 
    145   void mangleInitDiscriminator() {
    146     Discriminator = 0;
    147   }
    148 
    149   bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
    150     // Lambda closure types with external linkage (indicated by a
    151     // non-zero lambda mangling number) have their own numbering scheme, so
    152     // they do not need a discriminator.
    153     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND))
    154       if (RD->isLambda() && RD->getLambdaManglingNumber() > 0)
    155         return false;
    156 
    157     unsigned &discriminator = Uniquifier[ND];
    158     if (!discriminator)
    159       discriminator = ++Discriminator;
    160     if (discriminator == 1)
    161       return false;
    162     disc = discriminator-2;
    163     return true;
    164   }
    165   /// @}
    166 };
    167 
    168 /// CXXNameMangler - Manage the mangling of a single name.
    169 class CXXNameMangler {
    170   ItaniumMangleContext &Context;
    171   raw_ostream &Out;
    172 
    173   /// The "structor" is the top-level declaration being mangled, if
    174   /// that's not a template specialization; otherwise it's the pattern
    175   /// for that specialization.
    176   const NamedDecl *Structor;
    177   unsigned StructorType;
    178 
    179   /// SeqID - The next subsitution sequence number.
    180   unsigned SeqID;
    181 
    182   class FunctionTypeDepthState {
    183     unsigned Bits;
    184 
    185     enum { InResultTypeMask = 1 };
    186 
    187   public:
    188     FunctionTypeDepthState() : Bits(0) {}
    189 
    190     /// The number of function types we're inside.
    191     unsigned getDepth() const {
    192       return Bits >> 1;
    193     }
    194 
    195     /// True if we're in the return type of the innermost function type.
    196     bool isInResultType() const {
    197       return Bits & InResultTypeMask;
    198     }
    199 
    200     FunctionTypeDepthState push() {
    201       FunctionTypeDepthState tmp = *this;
    202       Bits = (Bits & ~InResultTypeMask) + 2;
    203       return tmp;
    204     }
    205 
    206     void enterResultType() {
    207       Bits |= InResultTypeMask;
    208     }
    209 
    210     void leaveResultType() {
    211       Bits &= ~InResultTypeMask;
    212     }
    213 
    214     void pop(FunctionTypeDepthState saved) {
    215       assert(getDepth() == saved.getDepth() + 1);
    216       Bits = saved.Bits;
    217     }
    218 
    219   } FunctionTypeDepth;
    220 
    221   llvm::DenseMap<uintptr_t, unsigned> Substitutions;
    222 
    223   ASTContext &getASTContext() const { return Context.getASTContext(); }
    224 
    225 public:
    226   CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
    227                  const NamedDecl *D = 0)
    228     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
    229       SeqID(0) {
    230     // These can't be mangled without a ctor type or dtor type.
    231     assert(!D || (!isa<CXXDestructorDecl>(D) &&
    232                   !isa<CXXConstructorDecl>(D)));
    233   }
    234   CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
    235                  const CXXConstructorDecl *D, CXXCtorType Type)
    236     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
    237       SeqID(0) { }
    238   CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
    239                  const CXXDestructorDecl *D, CXXDtorType Type)
    240     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
    241       SeqID(0) { }
    242 
    243 #if MANGLE_CHECKER
    244   ~CXXNameMangler() {
    245     if (Out.str()[0] == '\01')
    246       return;
    247 
    248     int status = 0;
    249     char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
    250     assert(status == 0 && "Could not demangle mangled name!");
    251     free(result);
    252   }
    253 #endif
    254   raw_ostream &getStream() { return Out; }
    255 
    256   void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
    257   void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
    258   void mangleNumber(const llvm::APSInt &I);
    259   void mangleNumber(int64_t Number);
    260   void mangleFloat(const llvm::APFloat &F);
    261   void mangleFunctionEncoding(const FunctionDecl *FD);
    262   void mangleName(const NamedDecl *ND);
    263   void mangleType(QualType T);
    264   void mangleNameOrStandardSubstitution(const NamedDecl *ND);
    265 
    266 private:
    267   bool mangleSubstitution(const NamedDecl *ND);
    268   bool mangleSubstitution(QualType T);
    269   bool mangleSubstitution(TemplateName Template);
    270   bool mangleSubstitution(uintptr_t Ptr);
    271 
    272   void mangleExistingSubstitution(QualType type);
    273   void mangleExistingSubstitution(TemplateName name);
    274 
    275   bool mangleStandardSubstitution(const NamedDecl *ND);
    276 
    277   void addSubstitution(const NamedDecl *ND) {
    278     ND = cast<NamedDecl>(ND->getCanonicalDecl());
    279 
    280     addSubstitution(reinterpret_cast<uintptr_t>(ND));
    281   }
    282   void addSubstitution(QualType T);
    283   void addSubstitution(TemplateName Template);
    284   void addSubstitution(uintptr_t Ptr);
    285 
    286   void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
    287                               NamedDecl *firstQualifierLookup,
    288                               bool recursive = false);
    289   void mangleUnresolvedName(NestedNameSpecifier *qualifier,
    290                             NamedDecl *firstQualifierLookup,
    291                             DeclarationName name,
    292                             unsigned KnownArity = UnknownArity);
    293 
    294   void mangleName(const TemplateDecl *TD,
    295                   const TemplateArgument *TemplateArgs,
    296                   unsigned NumTemplateArgs);
    297   void mangleUnqualifiedName(const NamedDecl *ND) {
    298     mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
    299   }
    300   void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
    301                              unsigned KnownArity);
    302   void mangleUnscopedName(const NamedDecl *ND);
    303   void mangleUnscopedTemplateName(const TemplateDecl *ND);
    304   void mangleUnscopedTemplateName(TemplateName);
    305   void mangleSourceName(const IdentifierInfo *II);
    306   void mangleLocalName(const NamedDecl *ND);
    307   void mangleLambda(const CXXRecordDecl *Lambda);
    308   void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
    309                         bool NoFunction=false);
    310   void mangleNestedName(const TemplateDecl *TD,
    311                         const TemplateArgument *TemplateArgs,
    312                         unsigned NumTemplateArgs);
    313   void manglePrefix(NestedNameSpecifier *qualifier);
    314   void manglePrefix(const DeclContext *DC, bool NoFunction=false);
    315   void manglePrefix(QualType type);
    316   void mangleTemplatePrefix(const TemplateDecl *ND);
    317   void mangleTemplatePrefix(TemplateName Template);
    318   void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
    319   void mangleQualifiers(Qualifiers Quals);
    320   void mangleRefQualifier(RefQualifierKind RefQualifier);
    321 
    322   void mangleObjCMethodName(const ObjCMethodDecl *MD);
    323 
    324   // Declare manglers for every type class.
    325 #define ABSTRACT_TYPE(CLASS, PARENT)
    326 #define NON_CANONICAL_TYPE(CLASS, PARENT)
    327 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
    328 #include "clang/AST/TypeNodes.def"
    329 
    330   void mangleType(const TagType*);
    331   void mangleType(TemplateName);
    332   void mangleBareFunctionType(const FunctionType *T,
    333                               bool MangleReturnType);
    334   void mangleNeonVectorType(const VectorType *T);
    335 
    336   void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
    337   void mangleMemberExpr(const Expr *base, bool isArrow,
    338                         NestedNameSpecifier *qualifier,
    339                         NamedDecl *firstQualifierLookup,
    340                         DeclarationName name,
    341                         unsigned knownArity);
    342   void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
    343   void mangleCXXCtorType(CXXCtorType T);
    344   void mangleCXXDtorType(CXXDtorType T);
    345 
    346   void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
    347   void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
    348                           unsigned NumTemplateArgs);
    349   void mangleTemplateArgs(const TemplateArgumentList &AL);
    350   void mangleTemplateArg(TemplateArgument A);
    351 
    352   void mangleTemplateParameter(unsigned Index);
    353 
    354   void mangleFunctionParam(const ParmVarDecl *parm);
    355 };
    356 
    357 }
    358 
    359 bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
    360   // In C, functions with no attributes never need to be mangled. Fastpath them.
    361   if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs())
    362     return false;
    363 
    364   // Any decl can be declared with __asm("foo") on it, and this takes precedence
    365   // over all other naming in the .o file.
    366   if (D->hasAttr<AsmLabelAttr>())
    367     return true;
    368 
    369   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
    370   if (FD) {
    371     LanguageLinkage L = FD->getLanguageLinkage();
    372     // Overloadable functions need mangling.
    373     if (FD->hasAttr<OverloadableAttr>())
    374       return true;
    375 
    376     // "main" is not mangled.
    377     if (FD->isMain())
    378       return false;
    379 
    380     // C++ functions and those whose names are not a simple identifier need
    381     // mangling.
    382     if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
    383       return true;
    384 
    385     // C functions are not mangled.
    386     if (L == CLanguageLinkage)
    387       return false;
    388   }
    389 
    390   // Otherwise, no mangling is done outside C++ mode.
    391   if (!getASTContext().getLangOpts().CPlusPlus)
    392     return false;
    393 
    394   const VarDecl *VD = dyn_cast<VarDecl>(D);
    395   if (VD) {
    396     // C variables are not mangled.
    397     if (VD->isExternC())
    398       return false;
    399 
    400     // Variables at global scope with non-internal linkage are not mangled
    401     const DeclContext *DC = getEffectiveDeclContext(D);
    402     // Check for extern variable declared locally.
    403     if (DC->isFunctionOrMethod() && D->hasLinkage())
    404       while (!DC->isNamespace() && !DC->isTranslationUnit())
    405         DC = getEffectiveParentContext(DC);
    406     if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage)
    407       return false;
    408   }
    409 
    410   return true;
    411 }
    412 
    413 void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
    414   // Any decl can be declared with __asm("foo") on it, and this takes precedence
    415   // over all other naming in the .o file.
    416   if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
    417     // If we have an asm name, then we use it as the mangling.
    418 
    419     // Adding the prefix can cause problems when one file has a "foo" and
    420     // another has a "\01foo". That is known to happen on ELF with the
    421     // tricks normally used for producing aliases (PR9177). Fortunately the
    422     // llvm mangler on ELF is a nop, so we can just avoid adding the \01
    423     // marker.  We also avoid adding the marker if this is an alias for an
    424     // LLVM intrinsic.
    425     StringRef UserLabelPrefix =
    426       getASTContext().getTargetInfo().getUserLabelPrefix();
    427     if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm."))
    428       Out << '\01';  // LLVM IR Marker for __asm("foo")
    429 
    430     Out << ALA->getLabel();
    431     return;
    432   }
    433 
    434   // <mangled-name> ::= _Z <encoding>
    435   //            ::= <data name>
    436   //            ::= <special-name>
    437   Out << Prefix;
    438   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
    439     mangleFunctionEncoding(FD);
    440   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
    441     mangleName(VD);
    442   else
    443     mangleName(cast<FieldDecl>(D));
    444 }
    445 
    446 void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
    447   // <encoding> ::= <function name> <bare-function-type>
    448   mangleName(FD);
    449 
    450   // Don't mangle in the type if this isn't a decl we should typically mangle.
    451   if (!Context.shouldMangleDeclName(FD))
    452     return;
    453 
    454   // Whether the mangling of a function type includes the return type depends on
    455   // the context and the nature of the function. The rules for deciding whether
    456   // the return type is included are:
    457   //
    458   //   1. Template functions (names or types) have return types encoded, with
    459   //   the exceptions listed below.
    460   //   2. Function types not appearing as part of a function name mangling,
    461   //   e.g. parameters, pointer types, etc., have return type encoded, with the
    462   //   exceptions listed below.
    463   //   3. Non-template function names do not have return types encoded.
    464   //
    465   // The exceptions mentioned in (1) and (2) above, for which the return type is
    466   // never included, are
    467   //   1. Constructors.
    468   //   2. Destructors.
    469   //   3. Conversion operator functions, e.g. operator int.
    470   bool MangleReturnType = false;
    471   if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
    472     if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
    473           isa<CXXConversionDecl>(FD)))
    474       MangleReturnType = true;
    475 
    476     // Mangle the type of the primary template.
    477     FD = PrimaryTemplate->getTemplatedDecl();
    478   }
    479 
    480   mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
    481                          MangleReturnType);
    482 }
    483 
    484 static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
    485   while (isa<LinkageSpecDecl>(DC)) {
    486     DC = getEffectiveParentContext(DC);
    487   }
    488 
    489   return DC;
    490 }
    491 
    492 /// isStd - Return whether a given namespace is the 'std' namespace.
    493 static bool isStd(const NamespaceDecl *NS) {
    494   if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
    495                                 ->isTranslationUnit())
    496     return false;
    497 
    498   const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
    499   return II && II->isStr("std");
    500 }
    501 
    502 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
    503 // namespace.
    504 static bool isStdNamespace(const DeclContext *DC) {
    505   if (!DC->isNamespace())
    506     return false;
    507 
    508   return isStd(cast<NamespaceDecl>(DC));
    509 }
    510 
    511 static const TemplateDecl *
    512 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
    513   // Check if we have a function template.
    514   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
    515     if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
    516       TemplateArgs = FD->getTemplateSpecializationArgs();
    517       return TD;
    518     }
    519   }
    520 
    521   // Check if we have a class template.
    522   if (const ClassTemplateSpecializationDecl *Spec =
    523         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
    524     TemplateArgs = &Spec->getTemplateArgs();
    525     return Spec->getSpecializedTemplate();
    526   }
    527 
    528   return 0;
    529 }
    530 
    531 static bool isLambda(const NamedDecl *ND) {
    532   const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
    533   if (!Record)
    534     return false;
    535 
    536   return Record->isLambda();
    537 }
    538 
    539 void CXXNameMangler::mangleName(const NamedDecl *ND) {
    540   //  <name> ::= <nested-name>
    541   //         ::= <unscoped-name>
    542   //         ::= <unscoped-template-name> <template-args>
    543   //         ::= <local-name>
    544   //
    545   const DeclContext *DC = getEffectiveDeclContext(ND);
    546 
    547   // If this is an extern variable declared locally, the relevant DeclContext
    548   // is that of the containing namespace, or the translation unit.
    549   // FIXME: This is a hack; extern variables declared locally should have
    550   // a proper semantic declaration context!
    551   if (isa<FunctionDecl>(DC) && ND->hasLinkage() && !isLambda(ND))
    552     while (!DC->isNamespace() && !DC->isTranslationUnit())
    553       DC = getEffectiveParentContext(DC);
    554   else if (GetLocalClassDecl(ND)) {
    555     mangleLocalName(ND);
    556     return;
    557   }
    558 
    559   DC = IgnoreLinkageSpecDecls(DC);
    560 
    561   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
    562     // Check if we have a template.
    563     const TemplateArgumentList *TemplateArgs = 0;
    564     if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
    565       mangleUnscopedTemplateName(TD);
    566       mangleTemplateArgs(*TemplateArgs);
    567       return;
    568     }
    569 
    570     mangleUnscopedName(ND);
    571     return;
    572   }
    573 
    574   if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) {
    575     mangleLocalName(ND);
    576     return;
    577   }
    578 
    579   mangleNestedName(ND, DC);
    580 }
    581 void CXXNameMangler::mangleName(const TemplateDecl *TD,
    582                                 const TemplateArgument *TemplateArgs,
    583                                 unsigned NumTemplateArgs) {
    584   const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
    585 
    586   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
    587     mangleUnscopedTemplateName(TD);
    588     mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
    589   } else {
    590     mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
    591   }
    592 }
    593 
    594 void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
    595   //  <unscoped-name> ::= <unqualified-name>
    596   //                  ::= St <unqualified-name>   # ::std::
    597 
    598   if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
    599     Out << "St";
    600 
    601   mangleUnqualifiedName(ND);
    602 }
    603 
    604 void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
    605   //     <unscoped-template-name> ::= <unscoped-name>
    606   //                              ::= <substitution>
    607   if (mangleSubstitution(ND))
    608     return;
    609 
    610   // <template-template-param> ::= <template-param>
    611   if (const TemplateTemplateParmDecl *TTP
    612                                      = dyn_cast<TemplateTemplateParmDecl>(ND)) {
    613     mangleTemplateParameter(TTP->getIndex());
    614     return;
    615   }
    616 
    617   mangleUnscopedName(ND->getTemplatedDecl());
    618   addSubstitution(ND);
    619 }
    620 
    621 void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
    622   //     <unscoped-template-name> ::= <unscoped-name>
    623   //                              ::= <substitution>
    624   if (TemplateDecl *TD = Template.getAsTemplateDecl())
    625     return mangleUnscopedTemplateName(TD);
    626 
    627   if (mangleSubstitution(Template))
    628     return;
    629 
    630   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
    631   assert(Dependent && "Not a dependent template name?");
    632   if (const IdentifierInfo *Id = Dependent->getIdentifier())
    633     mangleSourceName(Id);
    634   else
    635     mangleOperatorName(Dependent->getOperator(), UnknownArity);
    636 
    637   addSubstitution(Template);
    638 }
    639 
    640 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
    641   // ABI:
    642   //   Floating-point literals are encoded using a fixed-length
    643   //   lowercase hexadecimal string corresponding to the internal
    644   //   representation (IEEE on Itanium), high-order bytes first,
    645   //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
    646   //   on Itanium.
    647   // The 'without leading zeroes' thing seems to be an editorial
    648   // mistake; see the discussion on cxx-abi-dev beginning on
    649   // 2012-01-16.
    650 
    651   // Our requirements here are just barely weird enough to justify
    652   // using a custom algorithm instead of post-processing APInt::toString().
    653 
    654   llvm::APInt valueBits = f.bitcastToAPInt();
    655   unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
    656   assert(numCharacters != 0);
    657 
    658   // Allocate a buffer of the right number of characters.
    659   SmallVector<char, 20> buffer;
    660   buffer.set_size(numCharacters);
    661 
    662   // Fill the buffer left-to-right.
    663   for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
    664     // The bit-index of the next hex digit.
    665     unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
    666 
    667     // Project out 4 bits starting at 'digitIndex'.
    668     llvm::integerPart hexDigit
    669       = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
    670     hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
    671     hexDigit &= 0xF;
    672 
    673     // Map that over to a lowercase hex digit.
    674     static const char charForHex[16] = {
    675       '0', '1', '2', '3', '4', '5', '6', '7',
    676       '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
    677     };
    678     buffer[stringIndex] = charForHex[hexDigit];
    679   }
    680 
    681   Out.write(buffer.data(), numCharacters);
    682 }
    683 
    684 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
    685   if (Value.isSigned() && Value.isNegative()) {
    686     Out << 'n';
    687     Value.abs().print(Out, /*signed*/ false);
    688   } else {
    689     Value.print(Out, /*signed*/ false);
    690   }
    691 }
    692 
    693 void CXXNameMangler::mangleNumber(int64_t Number) {
    694   //  <number> ::= [n] <non-negative decimal integer>
    695   if (Number < 0) {
    696     Out << 'n';
    697     Number = -Number;
    698   }
    699 
    700   Out << Number;
    701 }
    702 
    703 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
    704   //  <call-offset>  ::= h <nv-offset> _
    705   //                 ::= v <v-offset> _
    706   //  <nv-offset>    ::= <offset number>        # non-virtual base override
    707   //  <v-offset>     ::= <offset number> _ <virtual offset number>
    708   //                      # virtual base override, with vcall offset
    709   if (!Virtual) {
    710     Out << 'h';
    711     mangleNumber(NonVirtual);
    712     Out << '_';
    713     return;
    714   }
    715 
    716   Out << 'v';
    717   mangleNumber(NonVirtual);
    718   Out << '_';
    719   mangleNumber(Virtual);
    720   Out << '_';
    721 }
    722 
    723 void CXXNameMangler::manglePrefix(QualType type) {
    724   if (const TemplateSpecializationType *TST =
    725         type->getAs<TemplateSpecializationType>()) {
    726     if (!mangleSubstitution(QualType(TST, 0))) {
    727       mangleTemplatePrefix(TST->getTemplateName());
    728 
    729       // FIXME: GCC does not appear to mangle the template arguments when
    730       // the template in question is a dependent template name. Should we
    731       // emulate that badness?
    732       mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
    733       addSubstitution(QualType(TST, 0));
    734     }
    735   } else if (const DependentTemplateSpecializationType *DTST
    736                = type->getAs<DependentTemplateSpecializationType>()) {
    737     TemplateName Template
    738       = getASTContext().getDependentTemplateName(DTST->getQualifier(),
    739                                                  DTST->getIdentifier());
    740     mangleTemplatePrefix(Template);
    741 
    742     // FIXME: GCC does not appear to mangle the template arguments when
    743     // the template in question is a dependent template name. Should we
    744     // emulate that badness?
    745     mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
    746   } else {
    747     // We use the QualType mangle type variant here because it handles
    748     // substitutions.
    749     mangleType(type);
    750   }
    751 }
    752 
    753 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
    754 ///
    755 /// \param firstQualifierLookup - the entity found by unqualified lookup
    756 ///   for the first name in the qualifier, if this is for a member expression
    757 /// \param recursive - true if this is being called recursively,
    758 ///   i.e. if there is more prefix "to the right".
    759 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
    760                                             NamedDecl *firstQualifierLookup,
    761                                             bool recursive) {
    762 
    763   // x, ::x
    764   // <unresolved-name> ::= [gs] <base-unresolved-name>
    765 
    766   // T::x / decltype(p)::x
    767   // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
    768 
    769   // T::N::x /decltype(p)::N::x
    770   // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
    771   //                       <base-unresolved-name>
    772 
    773   // A::x, N::y, A<T>::z; "gs" means leading "::"
    774   // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
    775   //                       <base-unresolved-name>
    776 
    777   switch (qualifier->getKind()) {
    778   case NestedNameSpecifier::Global:
    779     Out << "gs";
    780 
    781     // We want an 'sr' unless this is the entire NNS.
    782     if (recursive)
    783       Out << "sr";
    784 
    785     // We never want an 'E' here.
    786     return;
    787 
    788   case NestedNameSpecifier::Namespace:
    789     if (qualifier->getPrefix())
    790       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
    791                              /*recursive*/ true);
    792     else
    793       Out << "sr";
    794     mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
    795     break;
    796   case NestedNameSpecifier::NamespaceAlias:
    797     if (qualifier->getPrefix())
    798       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
    799                              /*recursive*/ true);
    800     else
    801       Out << "sr";
    802     mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
    803     break;
    804 
    805   case NestedNameSpecifier::TypeSpec:
    806   case NestedNameSpecifier::TypeSpecWithTemplate: {
    807     const Type *type = qualifier->getAsType();
    808 
    809     // We only want to use an unresolved-type encoding if this is one of:
    810     //   - a decltype
    811     //   - a template type parameter
    812     //   - a template template parameter with arguments
    813     // In all of these cases, we should have no prefix.
    814     if (qualifier->getPrefix()) {
    815       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
    816                              /*recursive*/ true);
    817     } else {
    818       // Otherwise, all the cases want this.
    819       Out << "sr";
    820     }
    821 
    822     // Only certain other types are valid as prefixes;  enumerate them.
    823     switch (type->getTypeClass()) {
    824     case Type::Builtin:
    825     case Type::Complex:
    826     case Type::Pointer:
    827     case Type::BlockPointer:
    828     case Type::LValueReference:
    829     case Type::RValueReference:
    830     case Type::MemberPointer:
    831     case Type::ConstantArray:
    832     case Type::IncompleteArray:
    833     case Type::VariableArray:
    834     case Type::DependentSizedArray:
    835     case Type::DependentSizedExtVector:
    836     case Type::Vector:
    837     case Type::ExtVector:
    838     case Type::FunctionProto:
    839     case Type::FunctionNoProto:
    840     case Type::Enum:
    841     case Type::Paren:
    842     case Type::Elaborated:
    843     case Type::Attributed:
    844     case Type::Auto:
    845     case Type::PackExpansion:
    846     case Type::ObjCObject:
    847     case Type::ObjCInterface:
    848     case Type::ObjCObjectPointer:
    849     case Type::Atomic:
    850       llvm_unreachable("type is illegal as a nested name specifier");
    851 
    852     case Type::SubstTemplateTypeParmPack:
    853       // FIXME: not clear how to mangle this!
    854       // template <class T...> class A {
    855       //   template <class U...> void foo(decltype(T::foo(U())) x...);
    856       // };
    857       Out << "_SUBSTPACK_";
    858       break;
    859 
    860     // <unresolved-type> ::= <template-param>
    861     //                   ::= <decltype>
    862     //                   ::= <template-template-param> <template-args>
    863     // (this last is not official yet)
    864     case Type::TypeOfExpr:
    865     case Type::TypeOf:
    866     case Type::Decltype:
    867     case Type::TemplateTypeParm:
    868     case Type::UnaryTransform:
    869     case Type::SubstTemplateTypeParm:
    870     unresolvedType:
    871       assert(!qualifier->getPrefix());
    872 
    873       // We only get here recursively if we're followed by identifiers.
    874       if (recursive) Out << 'N';
    875 
    876       // This seems to do everything we want.  It's not really
    877       // sanctioned for a substituted template parameter, though.
    878       mangleType(QualType(type, 0));
    879 
    880       // We never want to print 'E' directly after an unresolved-type,
    881       // so we return directly.
    882       return;
    883 
    884     case Type::Typedef:
    885       mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
    886       break;
    887 
    888     case Type::UnresolvedUsing:
    889       mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
    890                          ->getIdentifier());
    891       break;
    892 
    893     case Type::Record:
    894       mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
    895       break;
    896 
    897     case Type::TemplateSpecialization: {
    898       const TemplateSpecializationType *tst
    899         = cast<TemplateSpecializationType>(type);
    900       TemplateName name = tst->getTemplateName();
    901       switch (name.getKind()) {
    902       case TemplateName::Template:
    903       case TemplateName::QualifiedTemplate: {
    904         TemplateDecl *temp = name.getAsTemplateDecl();
    905 
    906         // If the base is a template template parameter, this is an
    907         // unresolved type.
    908         assert(temp && "no template for template specialization type");
    909         if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
    910 
    911         mangleSourceName(temp->getIdentifier());
    912         break;
    913       }
    914 
    915       case TemplateName::OverloadedTemplate:
    916       case TemplateName::DependentTemplate:
    917         llvm_unreachable("invalid base for a template specialization type");
    918 
    919       case TemplateName::SubstTemplateTemplateParm: {
    920         SubstTemplateTemplateParmStorage *subst
    921           = name.getAsSubstTemplateTemplateParm();
    922         mangleExistingSubstitution(subst->getReplacement());
    923         break;
    924       }
    925 
    926       case TemplateName::SubstTemplateTemplateParmPack: {
    927         // FIXME: not clear how to mangle this!
    928         // template <template <class U> class T...> class A {
    929         //   template <class U...> void foo(decltype(T<U>::foo) x...);
    930         // };
    931         Out << "_SUBSTPACK_";
    932         break;
    933       }
    934       }
    935 
    936       mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
    937       break;
    938     }
    939 
    940     case Type::InjectedClassName:
    941       mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
    942                          ->getIdentifier());
    943       break;
    944 
    945     case Type::DependentName:
    946       mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
    947       break;
    948 
    949     case Type::DependentTemplateSpecialization: {
    950       const DependentTemplateSpecializationType *tst
    951         = cast<DependentTemplateSpecializationType>(type);
    952       mangleSourceName(tst->getIdentifier());
    953       mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
    954       break;
    955     }
    956     }
    957     break;
    958   }
    959 
    960   case NestedNameSpecifier::Identifier:
    961     // Member expressions can have these without prefixes.
    962     if (qualifier->getPrefix()) {
    963       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
    964                              /*recursive*/ true);
    965     } else if (firstQualifierLookup) {
    966 
    967       // Try to make a proper qualifier out of the lookup result, and
    968       // then just recurse on that.
    969       NestedNameSpecifier *newQualifier;
    970       if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
    971         QualType type = getASTContext().getTypeDeclType(typeDecl);
    972 
    973         // Pretend we had a different nested name specifier.
    974         newQualifier = NestedNameSpecifier::Create(getASTContext(),
    975                                                    /*prefix*/ 0,
    976                                                    /*template*/ false,
    977                                                    type.getTypePtr());
    978       } else if (NamespaceDecl *nspace =
    979                    dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
    980         newQualifier = NestedNameSpecifier::Create(getASTContext(),
    981                                                    /*prefix*/ 0,
    982                                                    nspace);
    983       } else if (NamespaceAliasDecl *alias =
    984                    dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
    985         newQualifier = NestedNameSpecifier::Create(getASTContext(),
    986                                                    /*prefix*/ 0,
    987                                                    alias);
    988       } else {
    989         // No sensible mangling to do here.
    990         newQualifier = 0;
    991       }
    992 
    993       if (newQualifier)
    994         return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);
    995 
    996     } else {
    997       Out << "sr";
    998     }
    999 
   1000     mangleSourceName(qualifier->getAsIdentifier());
   1001     break;
   1002   }
   1003 
   1004   // If this was the innermost part of the NNS, and we fell out to
   1005   // here, append an 'E'.
   1006   if (!recursive)
   1007     Out << 'E';
   1008 }
   1009 
   1010 /// Mangle an unresolved-name, which is generally used for names which
   1011 /// weren't resolved to specific entities.
   1012 void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
   1013                                           NamedDecl *firstQualifierLookup,
   1014                                           DeclarationName name,
   1015                                           unsigned knownArity) {
   1016   if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
   1017   mangleUnqualifiedName(0, name, knownArity);
   1018 }
   1019 
   1020 static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
   1021   assert(RD->isAnonymousStructOrUnion() &&
   1022          "Expected anonymous struct or union!");
   1023 
   1024   for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
   1025        I != E; ++I) {
   1026     if (I->getIdentifier())
   1027       return *I;
   1028 
   1029     if (const RecordType *RT = I->getType()->getAs<RecordType>())
   1030       if (const FieldDecl *NamedDataMember =
   1031           FindFirstNamedDataMember(RT->getDecl()))
   1032         return NamedDataMember;
   1033     }
   1034 
   1035   // We didn't find a named data member.
   1036   return 0;
   1037 }
   1038 
   1039 void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
   1040                                            DeclarationName Name,
   1041                                            unsigned KnownArity) {
   1042   //  <unqualified-name> ::= <operator-name>
   1043   //                     ::= <ctor-dtor-name>
   1044   //                     ::= <source-name>
   1045   switch (Name.getNameKind()) {
   1046   case DeclarationName::Identifier: {
   1047     if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
   1048       // We must avoid conflicts between internally- and externally-
   1049       // linked variable and function declaration names in the same TU:
   1050       //   void test() { extern void foo(); }
   1051       //   static void foo();
   1052       // This naming convention is the same as that followed by GCC,
   1053       // though it shouldn't actually matter.
   1054       if (ND && ND->getLinkage() == InternalLinkage &&
   1055           getEffectiveDeclContext(ND)->isFileContext())
   1056         Out << 'L';
   1057 
   1058       mangleSourceName(II);
   1059       break;
   1060     }
   1061 
   1062     // Otherwise, an anonymous entity.  We must have a declaration.
   1063     assert(ND && "mangling empty name without declaration");
   1064 
   1065     if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
   1066       if (NS->isAnonymousNamespace()) {
   1067         // This is how gcc mangles these names.
   1068         Out << "12_GLOBAL__N_1";
   1069         break;
   1070       }
   1071     }
   1072 
   1073     if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
   1074       // We must have an anonymous union or struct declaration.
   1075       const RecordDecl *RD =
   1076         cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
   1077 
   1078       // Itanium C++ ABI 5.1.2:
   1079       //
   1080       //   For the purposes of mangling, the name of an anonymous union is
   1081       //   considered to be the name of the first named data member found by a
   1082       //   pre-order, depth-first, declaration-order walk of the data members of
   1083       //   the anonymous union. If there is no such data member (i.e., if all of
   1084       //   the data members in the union are unnamed), then there is no way for
   1085       //   a program to refer to the anonymous union, and there is therefore no
   1086       //   need to mangle its name.
   1087       const FieldDecl *FD = FindFirstNamedDataMember(RD);
   1088 
   1089       // It's actually possible for various reasons for us to get here
   1090       // with an empty anonymous struct / union.  Fortunately, it
   1091       // doesn't really matter what name we generate.
   1092       if (!FD) break;
   1093       assert(FD->getIdentifier() && "Data member name isn't an identifier!");
   1094 
   1095       mangleSourceName(FD->getIdentifier());
   1096       break;
   1097     }
   1098 
   1099     // We must have an anonymous struct.
   1100     const TagDecl *TD = cast<TagDecl>(ND);
   1101     if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
   1102       assert(TD->getDeclContext() == D->getDeclContext() &&
   1103              "Typedef should not be in another decl context!");
   1104       assert(D->getDeclName().getAsIdentifierInfo() &&
   1105              "Typedef was not named!");
   1106       mangleSourceName(D->getDeclName().getAsIdentifierInfo());
   1107       break;
   1108     }
   1109 
   1110     // <unnamed-type-name> ::= <closure-type-name>
   1111     //
   1112     // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
   1113     // <lambda-sig> ::= <parameter-type>+   # Parameter types or 'v' for 'void'.
   1114     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
   1115       if (Record->isLambda() && Record->getLambdaManglingNumber()) {
   1116         mangleLambda(Record);
   1117         break;
   1118       }
   1119     }
   1120 
   1121     int UnnamedMangle = Context.getASTContext().getUnnamedTagManglingNumber(TD);
   1122     if (UnnamedMangle != -1) {
   1123       Out << "Ut";
   1124       if (UnnamedMangle != 0)
   1125         Out << llvm::utostr(UnnamedMangle - 1);
   1126       Out << '_';
   1127       break;
   1128     }
   1129 
   1130     // Get a unique id for the anonymous struct.
   1131     uint64_t AnonStructId = Context.getAnonymousStructId(TD);
   1132 
   1133     // Mangle it as a source name in the form
   1134     // [n] $_<id>
   1135     // where n is the length of the string.
   1136     SmallString<8> Str;
   1137     Str += "$_";
   1138     Str += llvm::utostr(AnonStructId);
   1139 
   1140     Out << Str.size();
   1141     Out << Str.str();
   1142     break;
   1143   }
   1144 
   1145   case DeclarationName::ObjCZeroArgSelector:
   1146   case DeclarationName::ObjCOneArgSelector:
   1147   case DeclarationName::ObjCMultiArgSelector:
   1148     llvm_unreachable("Can't mangle Objective-C selector names here!");
   1149 
   1150   case DeclarationName::CXXConstructorName:
   1151     if (ND == Structor)
   1152       // If the named decl is the C++ constructor we're mangling, use the type
   1153       // we were given.
   1154       mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
   1155     else
   1156       // Otherwise, use the complete constructor name. This is relevant if a
   1157       // class with a constructor is declared within a constructor.
   1158       mangleCXXCtorType(Ctor_Complete);
   1159     break;
   1160 
   1161   case DeclarationName::CXXDestructorName:
   1162     if (ND == Structor)
   1163       // If the named decl is the C++ destructor we're mangling, use the type we
   1164       // were given.
   1165       mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
   1166     else
   1167       // Otherwise, use the complete destructor name. This is relevant if a
   1168       // class with a destructor is declared within a destructor.
   1169       mangleCXXDtorType(Dtor_Complete);
   1170     break;
   1171 
   1172   case DeclarationName::CXXConversionFunctionName:
   1173     // <operator-name> ::= cv <type>    # (cast)
   1174     Out << "cv";
   1175     mangleType(Name.getCXXNameType());
   1176     break;
   1177 
   1178   case DeclarationName::CXXOperatorName: {
   1179     unsigned Arity;
   1180     if (ND) {
   1181       Arity = cast<FunctionDecl>(ND)->getNumParams();
   1182 
   1183       // If we have a C++ member function, we need to include the 'this' pointer.
   1184       // FIXME: This does not make sense for operators that are static, but their
   1185       // names stay the same regardless of the arity (operator new for instance).
   1186       if (isa<CXXMethodDecl>(ND))
   1187         Arity++;
   1188     } else
   1189       Arity = KnownArity;
   1190 
   1191     mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
   1192     break;
   1193   }
   1194 
   1195   case DeclarationName::CXXLiteralOperatorName:
   1196     // FIXME: This mangling is not yet official.
   1197     Out << "li";
   1198     mangleSourceName(Name.getCXXLiteralIdentifier());
   1199     break;
   1200 
   1201   case DeclarationName::CXXUsingDirective:
   1202     llvm_unreachable("Can't mangle a using directive name!");
   1203   }
   1204 }
   1205 
   1206 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
   1207   // <source-name> ::= <positive length number> <identifier>
   1208   // <number> ::= [n] <non-negative decimal integer>
   1209   // <identifier> ::= <unqualified source code identifier>
   1210   Out << II->getLength() << II->getName();
   1211 }
   1212 
   1213 void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
   1214                                       const DeclContext *DC,
   1215                                       bool NoFunction) {
   1216   // <nested-name>
   1217   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
   1218   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
   1219   //       <template-args> E
   1220 
   1221   Out << 'N';
   1222   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
   1223     mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
   1224     mangleRefQualifier(Method->getRefQualifier());
   1225   }
   1226 
   1227   // Check if we have a template.
   1228   const TemplateArgumentList *TemplateArgs = 0;
   1229   if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
   1230     mangleTemplatePrefix(TD);
   1231     mangleTemplateArgs(*TemplateArgs);
   1232   }
   1233   else {
   1234     manglePrefix(DC, NoFunction);
   1235     mangleUnqualifiedName(ND);
   1236   }
   1237 
   1238   Out << 'E';
   1239 }
   1240 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
   1241                                       const TemplateArgument *TemplateArgs,
   1242                                       unsigned NumTemplateArgs) {
   1243   // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
   1244 
   1245   Out << 'N';
   1246 
   1247   mangleTemplatePrefix(TD);
   1248   mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
   1249 
   1250   Out << 'E';
   1251 }
   1252 
   1253 void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
   1254   // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
   1255   //              := Z <function encoding> E s [<discriminator>]
   1256   // <local-name> := Z <function encoding> E d [ <parameter number> ]
   1257   //                 _ <entity name>
   1258   // <discriminator> := _ <non-negative number>
   1259   const DeclContext *DC = getEffectiveDeclContext(ND);
   1260   if (isa<ObjCMethodDecl>(DC) && isa<FunctionDecl>(ND)) {
   1261     // Don't add objc method name mangling to locally declared function
   1262     mangleUnqualifiedName(ND);
   1263     return;
   1264   }
   1265 
   1266   Out << 'Z';
   1267 
   1268   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) {
   1269    mangleObjCMethodName(MD);
   1270   } else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) {
   1271     mangleFunctionEncoding(cast<FunctionDecl>(getEffectiveDeclContext(RD)));
   1272     Out << 'E';
   1273 
   1274     // The parameter number is omitted for the last parameter, 0 for the
   1275     // second-to-last parameter, 1 for the third-to-last parameter, etc. The
   1276     // <entity name> will of course contain a <closure-type-name>: Its
   1277     // numbering will be local to the particular argument in which it appears
   1278     // -- other default arguments do not affect its encoding.
   1279     bool SkipDiscriminator = false;
   1280     if (RD->isLambda()) {
   1281       if (const ParmVarDecl *Parm
   1282                  = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) {
   1283         if (const FunctionDecl *Func
   1284               = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
   1285           Out << 'd';
   1286           unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
   1287           if (Num > 1)
   1288             mangleNumber(Num - 2);
   1289           Out << '_';
   1290           SkipDiscriminator = true;
   1291         }
   1292       }
   1293     }
   1294 
   1295     // Mangle the name relative to the closest enclosing function.
   1296     if (ND == RD) // equality ok because RD derived from ND above
   1297       mangleUnqualifiedName(ND);
   1298     else
   1299       mangleNestedName(ND, DC, true /*NoFunction*/);
   1300 
   1301     if (!SkipDiscriminator) {
   1302       unsigned disc;
   1303       if (Context.getNextDiscriminator(RD, disc)) {
   1304         if (disc < 10)
   1305           Out << '_' << disc;
   1306         else
   1307           Out << "__" << disc << '_';
   1308       }
   1309     }
   1310 
   1311     return;
   1312   }
   1313   else
   1314     mangleFunctionEncoding(cast<FunctionDecl>(DC));
   1315 
   1316   Out << 'E';
   1317   mangleUnqualifiedName(ND);
   1318 }
   1319 
   1320 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
   1321   // If the context of a closure type is an initializer for a class member
   1322   // (static or nonstatic), it is encoded in a qualified name with a final
   1323   // <prefix> of the form:
   1324   //
   1325   //   <data-member-prefix> := <member source-name> M
   1326   //
   1327   // Technically, the data-member-prefix is part of the <prefix>. However,
   1328   // since a closure type will always be mangled with a prefix, it's easier
   1329   // to emit that last part of the prefix here.
   1330   if (Decl *Context = Lambda->getLambdaContextDecl()) {
   1331     if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
   1332         Context->getDeclContext()->isRecord()) {
   1333       if (const IdentifierInfo *Name
   1334             = cast<NamedDecl>(Context)->getIdentifier()) {
   1335         mangleSourceName(Name);
   1336         Out << 'M';
   1337       }
   1338     }
   1339   }
   1340 
   1341   Out << "Ul";
   1342   const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
   1343                                    getAs<FunctionProtoType>();
   1344   mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
   1345   Out << "E";
   1346 
   1347   // The number is omitted for the first closure type with a given
   1348   // <lambda-sig> in a given context; it is n-2 for the nth closure type
   1349   // (in lexical order) with that same <lambda-sig> and context.
   1350   //
   1351   // The AST keeps track of the number for us.
   1352   unsigned Number = Lambda->getLambdaManglingNumber();
   1353   assert(Number > 0 && "Lambda should be mangled as an unnamed class");
   1354   if (Number > 1)
   1355     mangleNumber(Number - 2);
   1356   Out << '_';
   1357 }
   1358 
   1359 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
   1360   switch (qualifier->getKind()) {
   1361   case NestedNameSpecifier::Global:
   1362     // nothing
   1363     return;
   1364 
   1365   case NestedNameSpecifier::Namespace:
   1366     mangleName(qualifier->getAsNamespace());
   1367     return;
   1368 
   1369   case NestedNameSpecifier::NamespaceAlias:
   1370     mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
   1371     return;
   1372 
   1373   case NestedNameSpecifier::TypeSpec:
   1374   case NestedNameSpecifier::TypeSpecWithTemplate:
   1375     manglePrefix(QualType(qualifier->getAsType(), 0));
   1376     return;
   1377 
   1378   case NestedNameSpecifier::Identifier:
   1379     // Member expressions can have these without prefixes, but that
   1380     // should end up in mangleUnresolvedPrefix instead.
   1381     assert(qualifier->getPrefix());
   1382     manglePrefix(qualifier->getPrefix());
   1383 
   1384     mangleSourceName(qualifier->getAsIdentifier());
   1385     return;
   1386   }
   1387 
   1388   llvm_unreachable("unexpected nested name specifier");
   1389 }
   1390 
   1391 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
   1392   //  <prefix> ::= <prefix> <unqualified-name>
   1393   //           ::= <template-prefix> <template-args>
   1394   //           ::= <template-param>
   1395   //           ::= # empty
   1396   //           ::= <substitution>
   1397 
   1398   DC = IgnoreLinkageSpecDecls(DC);
   1399 
   1400   if (DC->isTranslationUnit())
   1401     return;
   1402 
   1403   if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) {
   1404     manglePrefix(getEffectiveParentContext(DC), NoFunction);
   1405     SmallString<64> Name;
   1406     llvm::raw_svector_ostream NameStream(Name);
   1407     Context.mangleBlock(Block, NameStream);
   1408     NameStream.flush();
   1409     Out << Name.size() << Name;
   1410     return;
   1411   }
   1412 
   1413   const NamedDecl *ND = cast<NamedDecl>(DC);
   1414   if (mangleSubstitution(ND))
   1415     return;
   1416 
   1417   // Check if we have a template.
   1418   const TemplateArgumentList *TemplateArgs = 0;
   1419   if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
   1420     mangleTemplatePrefix(TD);
   1421     mangleTemplateArgs(*TemplateArgs);
   1422   }
   1423   else if(NoFunction && (isa<FunctionDecl>(ND) || isa<ObjCMethodDecl>(ND)))
   1424     return;
   1425   else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(ND))
   1426     mangleObjCMethodName(Method);
   1427   else {
   1428     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
   1429     mangleUnqualifiedName(ND);
   1430   }
   1431 
   1432   addSubstitution(ND);
   1433 }
   1434 
   1435 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
   1436   // <template-prefix> ::= <prefix> <template unqualified-name>
   1437   //                   ::= <template-param>
   1438   //                   ::= <substitution>
   1439   if (TemplateDecl *TD = Template.getAsTemplateDecl())
   1440     return mangleTemplatePrefix(TD);
   1441 
   1442   if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
   1443     manglePrefix(Qualified->getQualifier());
   1444 
   1445   if (OverloadedTemplateStorage *Overloaded
   1446                                       = Template.getAsOverloadedTemplate()) {
   1447     mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
   1448                           UnknownArity);
   1449     return;
   1450   }
   1451 
   1452   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
   1453   assert(Dependent && "Unknown template name kind?");
   1454   manglePrefix(Dependent->getQualifier());
   1455   mangleUnscopedTemplateName(Template);
   1456 }
   1457 
   1458 void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {
   1459   // <template-prefix> ::= <prefix> <template unqualified-name>
   1460   //                   ::= <template-param>
   1461   //                   ::= <substitution>
   1462   // <template-template-param> ::= <template-param>
   1463   //                               <substitution>
   1464 
   1465   if (mangleSubstitution(ND))
   1466     return;
   1467 
   1468   // <template-template-param> ::= <template-param>
   1469   if (const TemplateTemplateParmDecl *TTP
   1470                                      = dyn_cast<TemplateTemplateParmDecl>(ND)) {
   1471     mangleTemplateParameter(TTP->getIndex());
   1472     return;
   1473   }
   1474 
   1475   manglePrefix(getEffectiveDeclContext(ND));
   1476   mangleUnqualifiedName(ND->getTemplatedDecl());
   1477   addSubstitution(ND);
   1478 }
   1479 
   1480 /// Mangles a template name under the production <type>.  Required for
   1481 /// template template arguments.
   1482 ///   <type> ::= <class-enum-type>
   1483 ///          ::= <template-param>
   1484 ///          ::= <substitution>
   1485 void CXXNameMangler::mangleType(TemplateName TN) {
   1486   if (mangleSubstitution(TN))
   1487     return;
   1488 
   1489   TemplateDecl *TD = 0;
   1490 
   1491   switch (TN.getKind()) {
   1492   case TemplateName::QualifiedTemplate:
   1493     TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
   1494     goto HaveDecl;
   1495 
   1496   case TemplateName::Template:
   1497     TD = TN.getAsTemplateDecl();
   1498     goto HaveDecl;
   1499 
   1500   HaveDecl:
   1501     if (isa<TemplateTemplateParmDecl>(TD))
   1502       mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
   1503     else
   1504       mangleName(TD);
   1505     break;
   1506 
   1507   case TemplateName::OverloadedTemplate:
   1508     llvm_unreachable("can't mangle an overloaded template name as a <type>");
   1509 
   1510   case TemplateName::DependentTemplate: {
   1511     const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
   1512     assert(Dependent->isIdentifier());
   1513 
   1514     // <class-enum-type> ::= <name>
   1515     // <name> ::= <nested-name>
   1516     mangleUnresolvedPrefix(Dependent->getQualifier(), 0);
   1517     mangleSourceName(Dependent->getIdentifier());
   1518     break;
   1519   }
   1520 
   1521   case TemplateName::SubstTemplateTemplateParm: {
   1522     // Substituted template parameters are mangled as the substituted
   1523     // template.  This will check for the substitution twice, which is
   1524     // fine, but we have to return early so that we don't try to *add*
   1525     // the substitution twice.
   1526     SubstTemplateTemplateParmStorage *subst
   1527       = TN.getAsSubstTemplateTemplateParm();
   1528     mangleType(subst->getReplacement());
   1529     return;
   1530   }
   1531 
   1532   case TemplateName::SubstTemplateTemplateParmPack: {
   1533     // FIXME: not clear how to mangle this!
   1534     // template <template <class> class T...> class A {
   1535     //   template <template <class> class U...> void foo(B<T,U> x...);
   1536     // };
   1537     Out << "_SUBSTPACK_";
   1538     break;
   1539   }
   1540   }
   1541 
   1542   addSubstitution(TN);
   1543 }
   1544 
   1545 void
   1546 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
   1547   switch (OO) {
   1548   // <operator-name> ::= nw     # new
   1549   case OO_New: Out << "nw"; break;
   1550   //              ::= na        # new[]
   1551   case OO_Array_New: Out << "na"; break;
   1552   //              ::= dl        # delete
   1553   case OO_Delete: Out << "dl"; break;
   1554   //              ::= da        # delete[]
   1555   case OO_Array_Delete: Out << "da"; break;
   1556   //              ::= ps        # + (unary)
   1557   //              ::= pl        # + (binary or unknown)
   1558   case OO_Plus:
   1559     Out << (Arity == 1? "ps" : "pl"); break;
   1560   //              ::= ng        # - (unary)
   1561   //              ::= mi        # - (binary or unknown)
   1562   case OO_Minus:
   1563     Out << (Arity == 1? "ng" : "mi"); break;
   1564   //              ::= ad        # & (unary)
   1565   //              ::= an        # & (binary or unknown)
   1566   case OO_Amp:
   1567     Out << (Arity == 1? "ad" : "an"); break;
   1568   //              ::= de        # * (unary)
   1569   //              ::= ml        # * (binary or unknown)
   1570   case OO_Star:
   1571     // Use binary when unknown.
   1572     Out << (Arity == 1? "de" : "ml"); break;
   1573   //              ::= co        # ~
   1574   case OO_Tilde: Out << "co"; break;
   1575   //              ::= dv        # /
   1576   case OO_Slash: Out << "dv"; break;
   1577   //              ::= rm        # %
   1578   case OO_Percent: Out << "rm"; break;
   1579   //              ::= or        # |
   1580   case OO_Pipe: Out << "or"; break;
   1581   //              ::= eo        # ^
   1582   case OO_Caret: Out << "eo"; break;
   1583   //              ::= aS        # =
   1584   case OO_Equal: Out << "aS"; break;
   1585   //              ::= pL        # +=
   1586   case OO_PlusEqual: Out << "pL"; break;
   1587   //              ::= mI        # -=
   1588   case OO_MinusEqual: Out << "mI"; break;
   1589   //              ::= mL        # *=
   1590   case OO_StarEqual: Out << "mL"; break;
   1591   //              ::= dV        # /=
   1592   case OO_SlashEqual: Out << "dV"; break;
   1593   //              ::= rM        # %=
   1594   case OO_PercentEqual: Out << "rM"; break;
   1595   //              ::= aN        # &=
   1596   case OO_AmpEqual: Out << "aN"; break;
   1597   //              ::= oR        # |=
   1598   case OO_PipeEqual: Out << "oR"; break;
   1599   //              ::= eO        # ^=
   1600   case OO_CaretEqual: Out << "eO"; break;
   1601   //              ::= ls        # <<
   1602   case OO_LessLess: Out << "ls"; break;
   1603   //              ::= rs        # >>
   1604   case OO_GreaterGreater: Out << "rs"; break;
   1605   //              ::= lS        # <<=
   1606   case OO_LessLessEqual: Out << "lS"; break;
   1607   //              ::= rS        # >>=
   1608   case OO_GreaterGreaterEqual: Out << "rS"; break;
   1609   //              ::= eq        # ==
   1610   case OO_EqualEqual: Out << "eq"; break;
   1611   //              ::= ne        # !=
   1612   case OO_ExclaimEqual: Out << "ne"; break;
   1613   //              ::= lt        # <
   1614   case OO_Less: Out << "lt"; break;
   1615   //              ::= gt        # >
   1616   case OO_Greater: Out << "gt"; break;
   1617   //              ::= le        # <=
   1618   case OO_LessEqual: Out << "le"; break;
   1619   //              ::= ge        # >=
   1620   case OO_GreaterEqual: Out << "ge"; break;
   1621   //              ::= nt        # !
   1622   case OO_Exclaim: Out << "nt"; break;
   1623   //              ::= aa        # &&
   1624   case OO_AmpAmp: Out << "aa"; break;
   1625   //              ::= oo        # ||
   1626   case OO_PipePipe: Out << "oo"; break;
   1627   //              ::= pp        # ++
   1628   case OO_PlusPlus: Out << "pp"; break;
   1629   //              ::= mm        # --
   1630   case OO_MinusMinus: Out << "mm"; break;
   1631   //              ::= cm        # ,
   1632   case OO_Comma: Out << "cm"; break;
   1633   //              ::= pm        # ->*
   1634   case OO_ArrowStar: Out << "pm"; break;
   1635   //              ::= pt        # ->
   1636   case OO_Arrow: Out << "pt"; break;
   1637   //              ::= cl        # ()
   1638   case OO_Call: Out << "cl"; break;
   1639   //              ::= ix        # []
   1640   case OO_Subscript: Out << "ix"; break;
   1641 
   1642   //              ::= qu        # ?
   1643   // The conditional operator can't be overloaded, but we still handle it when
   1644   // mangling expressions.
   1645   case OO_Conditional: Out << "qu"; break;
   1646 
   1647   case OO_None:
   1648   case NUM_OVERLOADED_OPERATORS:
   1649     llvm_unreachable("Not an overloaded operator");
   1650   }
   1651 }
   1652 
   1653 void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
   1654   // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
   1655   if (Quals.hasRestrict())
   1656     Out << 'r';
   1657   if (Quals.hasVolatile())
   1658     Out << 'V';
   1659   if (Quals.hasConst())
   1660     Out << 'K';
   1661 
   1662   if (Quals.hasAddressSpace()) {
   1663     // Extension:
   1664     //
   1665     //   <type> ::= U <address-space-number>
   1666     //
   1667     // where <address-space-number> is a source name consisting of 'AS'
   1668     // followed by the address space <number>.
   1669     SmallString<64> ASString;
   1670     ASString = "AS" + llvm::utostr_32(
   1671         Context.getASTContext().getTargetAddressSpace(Quals.getAddressSpace()));
   1672     Out << 'U' << ASString.size() << ASString;
   1673   }
   1674 
   1675   StringRef LifetimeName;
   1676   switch (Quals.getObjCLifetime()) {
   1677   // Objective-C ARC Extension:
   1678   //
   1679   //   <type> ::= U "__strong"
   1680   //   <type> ::= U "__weak"
   1681   //   <type> ::= U "__autoreleasing"
   1682   case Qualifiers::OCL_None:
   1683     break;
   1684 
   1685   case Qualifiers::OCL_Weak:
   1686     LifetimeName = "__weak";
   1687     break;
   1688 
   1689   case Qualifiers::OCL_Strong:
   1690     LifetimeName = "__strong";
   1691     break;
   1692 
   1693   case Qualifiers::OCL_Autoreleasing:
   1694     LifetimeName = "__autoreleasing";
   1695     break;
   1696 
   1697   case Qualifiers::OCL_ExplicitNone:
   1698     // The __unsafe_unretained qualifier is *not* mangled, so that
   1699     // __unsafe_unretained types in ARC produce the same manglings as the
   1700     // equivalent (but, naturally, unqualified) types in non-ARC, providing
   1701     // better ABI compatibility.
   1702     //
   1703     // It's safe to do this because unqualified 'id' won't show up
   1704     // in any type signatures that need to be mangled.
   1705     break;
   1706   }
   1707   if (!LifetimeName.empty())
   1708     Out << 'U' << LifetimeName.size() << LifetimeName;
   1709 }
   1710 
   1711 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
   1712   // <ref-qualifier> ::= R                # lvalue reference
   1713   //                 ::= O                # rvalue-reference
   1714   // Proposal to Itanium C++ ABI list on 1/26/11
   1715   switch (RefQualifier) {
   1716   case RQ_None:
   1717     break;
   1718 
   1719   case RQ_LValue:
   1720     Out << 'R';
   1721     break;
   1722 
   1723   case RQ_RValue:
   1724     Out << 'O';
   1725     break;
   1726   }
   1727 }
   1728 
   1729 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
   1730   Context.mangleObjCMethodName(MD, Out);
   1731 }
   1732 
   1733 void CXXNameMangler::mangleType(QualType T) {
   1734   // If our type is instantiation-dependent but not dependent, we mangle
   1735   // it as it was written in the source, removing any top-level sugar.
   1736   // Otherwise, use the canonical type.
   1737   //
   1738   // FIXME: This is an approximation of the instantiation-dependent name
   1739   // mangling rules, since we should really be using the type as written and
   1740   // augmented via semantic analysis (i.e., with implicit conversions and
   1741   // default template arguments) for any instantiation-dependent type.
   1742   // Unfortunately, that requires several changes to our AST:
   1743   //   - Instantiation-dependent TemplateSpecializationTypes will need to be
   1744   //     uniqued, so that we can handle substitutions properly
   1745   //   - Default template arguments will need to be represented in the
   1746   //     TemplateSpecializationType, since they need to be mangled even though
   1747   //     they aren't written.
   1748   //   - Conversions on non-type template arguments need to be expressed, since
   1749   //     they can affect the mangling of sizeof/alignof.
   1750   if (!T->isInstantiationDependentType() || T->isDependentType())
   1751     T = T.getCanonicalType();
   1752   else {
   1753     // Desugar any types that are purely sugar.
   1754     do {
   1755       // Don't desugar through template specialization types that aren't
   1756       // type aliases. We need to mangle the template arguments as written.
   1757       if (const TemplateSpecializationType *TST
   1758                                       = dyn_cast<TemplateSpecializationType>(T))
   1759         if (!TST->isTypeAlias())
   1760           break;
   1761 
   1762       QualType Desugared
   1763         = T.getSingleStepDesugaredType(Context.getASTContext());
   1764       if (Desugared == T)
   1765         break;
   1766 
   1767       T = Desugared;
   1768     } while (true);
   1769   }
   1770   SplitQualType split = T.split();
   1771   Qualifiers quals = split.Quals;
   1772   const Type *ty = split.Ty;
   1773 
   1774   bool isSubstitutable = quals || !isa<BuiltinType>(T);
   1775   if (isSubstitutable && mangleSubstitution(T))
   1776     return;
   1777 
   1778   // If we're mangling a qualified array type, push the qualifiers to
   1779   // the element type.
   1780   if (quals && isa<ArrayType>(T)) {
   1781     ty = Context.getASTContext().getAsArrayType(T);
   1782     quals = Qualifiers();
   1783 
   1784     // Note that we don't update T: we want to add the
   1785     // substitution at the original type.
   1786   }
   1787 
   1788   if (quals) {
   1789     mangleQualifiers(quals);
   1790     // Recurse:  even if the qualified type isn't yet substitutable,
   1791     // the unqualified type might be.
   1792     mangleType(QualType(ty, 0));
   1793   } else {
   1794     switch (ty->getTypeClass()) {
   1795 #define ABSTRACT_TYPE(CLASS, PARENT)
   1796 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
   1797     case Type::CLASS: \
   1798       llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
   1799       return;
   1800 #define TYPE(CLASS, PARENT) \
   1801     case Type::CLASS: \
   1802       mangleType(static_cast<const CLASS##Type*>(ty)); \
   1803       break;
   1804 #include "clang/AST/TypeNodes.def"
   1805     }
   1806   }
   1807 
   1808   // Add the substitution.
   1809   if (isSubstitutable)
   1810     addSubstitution(T);
   1811 }
   1812 
   1813 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
   1814   if (!mangleStandardSubstitution(ND))
   1815     mangleName(ND);
   1816 }
   1817 
   1818 void CXXNameMangler::mangleType(const BuiltinType *T) {
   1819   //  <type>         ::= <builtin-type>
   1820   //  <builtin-type> ::= v  # void
   1821   //                 ::= w  # wchar_t
   1822   //                 ::= b  # bool
   1823   //                 ::= c  # char
   1824   //                 ::= a  # signed char
   1825   //                 ::= h  # unsigned char
   1826   //                 ::= s  # short
   1827   //                 ::= t  # unsigned short
   1828   //                 ::= i  # int
   1829   //                 ::= j  # unsigned int
   1830   //                 ::= l  # long
   1831   //                 ::= m  # unsigned long
   1832   //                 ::= x  # long long, __int64
   1833   //                 ::= y  # unsigned long long, __int64
   1834   //                 ::= n  # __int128
   1835   // UNSUPPORTED:    ::= o  # unsigned __int128
   1836   //                 ::= f  # float
   1837   //                 ::= d  # double
   1838   //                 ::= e  # long double, __float80
   1839   // UNSUPPORTED:    ::= g  # __float128
   1840   // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
   1841   // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
   1842   // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
   1843   //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
   1844   //                 ::= Di # char32_t
   1845   //                 ::= Ds # char16_t
   1846   //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
   1847   //                 ::= u <source-name>    # vendor extended type
   1848   switch (T->getKind()) {
   1849   case BuiltinType::Void: Out << 'v'; break;
   1850   case BuiltinType::Bool: Out << 'b'; break;
   1851   case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
   1852   case BuiltinType::UChar: Out << 'h'; break;
   1853   case BuiltinType::UShort: Out << 't'; break;
   1854   case BuiltinType::UInt: Out << 'j'; break;
   1855   case BuiltinType::ULong: Out << 'm'; break;
   1856   case BuiltinType::ULongLong: Out << 'y'; break;
   1857   case BuiltinType::UInt128: Out << 'o'; break;
   1858   case BuiltinType::SChar: Out << 'a'; break;
   1859   case BuiltinType::WChar_S:
   1860   case BuiltinType::WChar_U: Out << 'w'; break;
   1861   case BuiltinType::Char16: Out << "Ds"; break;
   1862   case BuiltinType::Char32: Out << "Di"; break;
   1863   case BuiltinType::Short: Out << 's'; break;
   1864   case BuiltinType::Int: Out << 'i'; break;
   1865   case BuiltinType::Long: Out << 'l'; break;
   1866   case BuiltinType::LongLong: Out << 'x'; break;
   1867   case BuiltinType::Int128: Out << 'n'; break;
   1868   case BuiltinType::Half: Out << "Dh"; break;
   1869   case BuiltinType::Float: Out << 'f'; break;
   1870   case BuiltinType::Double: Out << 'd'; break;
   1871   case BuiltinType::LongDouble: Out << 'e'; break;
   1872   case BuiltinType::NullPtr: Out << "Dn"; break;
   1873 
   1874 #define BUILTIN_TYPE(Id, SingletonId)
   1875 #define PLACEHOLDER_TYPE(Id, SingletonId) \
   1876   case BuiltinType::Id:
   1877 #include "clang/AST/BuiltinTypes.def"
   1878   case BuiltinType::Dependent:
   1879     llvm_unreachable("mangling a placeholder type");
   1880   case BuiltinType::ObjCId: Out << "11objc_object"; break;
   1881   case BuiltinType::ObjCClass: Out << "10objc_class"; break;
   1882   case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
   1883   case BuiltinType::OCLImage1d: Out << "11ocl_image1d"; break;
   1884   case BuiltinType::OCLImage1dArray: Out << "16ocl_image1darray"; break;
   1885   case BuiltinType::OCLImage1dBuffer: Out << "17ocl_image1dbuffer"; break;
   1886   case BuiltinType::OCLImage2d: Out << "11ocl_image2d"; break;
   1887   case BuiltinType::OCLImage2dArray: Out << "16ocl_image2darray"; break;
   1888   case BuiltinType::OCLImage3d: Out << "11ocl_image3d"; break;
   1889   case BuiltinType::OCLSampler: Out << "11ocl_sampler"; break;
   1890   case BuiltinType::OCLEvent: Out << "9ocl_event"; break;
   1891   }
   1892 }
   1893 
   1894 // <type>          ::= <function-type>
   1895 // <function-type> ::= [<CV-qualifiers>] F [Y]
   1896 //                      <bare-function-type> [<ref-qualifier>] E
   1897 // (Proposal to cxx-abi-dev, 2012-05-11)
   1898 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
   1899   // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
   1900   // e.g. "const" in "int (A::*)() const".
   1901   mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
   1902 
   1903   Out << 'F';
   1904 
   1905   // FIXME: We don't have enough information in the AST to produce the 'Y'
   1906   // encoding for extern "C" function types.
   1907   mangleBareFunctionType(T, /*MangleReturnType=*/true);
   1908 
   1909   // Mangle the ref-qualifier, if present.
   1910   mangleRefQualifier(T->getRefQualifier());
   1911 
   1912   Out << 'E';
   1913 }
   1914 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
   1915   llvm_unreachable("Can't mangle K&R function prototypes");
   1916 }
   1917 void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
   1918                                             bool MangleReturnType) {
   1919   // We should never be mangling something without a prototype.
   1920   const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
   1921 
   1922   // Record that we're in a function type.  See mangleFunctionParam
   1923   // for details on what we're trying to achieve here.
   1924   FunctionTypeDepthState saved = FunctionTypeDepth.push();
   1925 
   1926   // <bare-function-type> ::= <signature type>+
   1927   if (MangleReturnType) {
   1928     FunctionTypeDepth.enterResultType();
   1929     mangleType(Proto->getResultType());
   1930     FunctionTypeDepth.leaveResultType();
   1931   }
   1932 
   1933   if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
   1934     //   <builtin-type> ::= v   # void
   1935     Out << 'v';
   1936 
   1937     FunctionTypeDepth.pop(saved);
   1938     return;
   1939   }
   1940 
   1941   for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
   1942                                          ArgEnd = Proto->arg_type_end();
   1943        Arg != ArgEnd; ++Arg)
   1944     mangleType(Context.getASTContext().getSignatureParameterType(*Arg));
   1945 
   1946   FunctionTypeDepth.pop(saved);
   1947 
   1948   // <builtin-type>      ::= z  # ellipsis
   1949   if (Proto->isVariadic())
   1950     Out << 'z';
   1951 }
   1952 
   1953 // <type>            ::= <class-enum-type>
   1954 // <class-enum-type> ::= <name>
   1955 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
   1956   mangleName(T->getDecl());
   1957 }
   1958 
   1959 // <type>            ::= <class-enum-type>
   1960 // <class-enum-type> ::= <name>
   1961 void CXXNameMangler::mangleType(const EnumType *T) {
   1962   mangleType(static_cast<const TagType*>(T));
   1963 }
   1964 void CXXNameMangler::mangleType(const RecordType *T) {
   1965   mangleType(static_cast<const TagType*>(T));
   1966 }
   1967 void CXXNameMangler::mangleType(const TagType *T) {
   1968   mangleName(T->getDecl());
   1969 }
   1970 
   1971 // <type>       ::= <array-type>
   1972 // <array-type> ::= A <positive dimension number> _ <element type>
   1973 //              ::= A [<dimension expression>] _ <element type>
   1974 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
   1975   Out << 'A' << T->getSize() << '_';
   1976   mangleType(T->getElementType());
   1977 }
   1978 void CXXNameMangler::mangleType(const VariableArrayType *T) {
   1979   Out << 'A';
   1980   // decayed vla types (size 0) will just be skipped.
   1981   if (T->getSizeExpr())
   1982     mangleExpression(T->getSizeExpr());
   1983   Out << '_';
   1984   mangleType(T->getElementType());
   1985 }
   1986 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
   1987   Out << 'A';
   1988   mangleExpression(T->getSizeExpr());
   1989   Out << '_';
   1990   mangleType(T->getElementType());
   1991 }
   1992 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
   1993   Out << "A_";
   1994   mangleType(T->getElementType());
   1995 }
   1996 
   1997 // <type>                   ::= <pointer-to-member-type>
   1998 // <pointer-to-member-type> ::= M <class type> <member type>
   1999 void CXXNameMangler::mangleType(const MemberPointerType *T) {
   2000   Out << 'M';
   2001   mangleType(QualType(T->getClass(), 0));
   2002   QualType PointeeType = T->getPointeeType();
   2003   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
   2004     mangleType(FPT);
   2005 
   2006     // Itanium C++ ABI 5.1.8:
   2007     //
   2008     //   The type of a non-static member function is considered to be different,
   2009     //   for the purposes of substitution, from the type of a namespace-scope or
   2010     //   static member function whose type appears similar. The types of two
   2011     //   non-static member functions are considered to be different, for the
   2012     //   purposes of substitution, if the functions are members of different
   2013     //   classes. In other words, for the purposes of substitution, the class of
   2014     //   which the function is a member is considered part of the type of
   2015     //   function.
   2016 
   2017     // Given that we already substitute member function pointers as a
   2018     // whole, the net effect of this rule is just to unconditionally
   2019     // suppress substitution on the function type in a member pointer.
   2020     // We increment the SeqID here to emulate adding an entry to the
   2021     // substitution table.
   2022     ++SeqID;
   2023   } else
   2024     mangleType(PointeeType);
   2025 }
   2026 
   2027 // <type>           ::= <template-param>
   2028 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
   2029   mangleTemplateParameter(T->getIndex());
   2030 }
   2031 
   2032 // <type>           ::= <template-param>
   2033 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
   2034   // FIXME: not clear how to mangle this!
   2035   // template <class T...> class A {
   2036   //   template <class U...> void foo(T(*)(U) x...);
   2037   // };
   2038   Out << "_SUBSTPACK_";
   2039 }
   2040 
   2041 // <type> ::= P <type>   # pointer-to
   2042 void CXXNameMangler::mangleType(const PointerType *T) {
   2043   Out << 'P';
   2044   mangleType(T->getPointeeType());
   2045 }
   2046 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
   2047   Out << 'P';
   2048   mangleType(T->getPointeeType());
   2049 }
   2050 
   2051 // <type> ::= R <type>   # reference-to
   2052 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
   2053   Out << 'R';
   2054   mangleType(T->getPointeeType());
   2055 }
   2056 
   2057 // <type> ::= O <type>   # rvalue reference-to (C++0x)
   2058 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
   2059   Out << 'O';
   2060   mangleType(T->getPointeeType());
   2061 }
   2062 
   2063 // <type> ::= C <type>   # complex pair (C 2000)
   2064 void CXXNameMangler::mangleType(const ComplexType *T) {
   2065   Out << 'C';
   2066   mangleType(T->getElementType());
   2067 }
   2068 
   2069 // ARM's ABI for Neon vector types specifies that they should be mangled as
   2070 // if they are structs (to match ARM's initial implementation).  The
   2071 // vector type must be one of the special types predefined by ARM.
   2072 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
   2073   QualType EltType = T->getElementType();
   2074   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
   2075   const char *EltName = 0;
   2076   if (T->getVectorKind() == VectorType::NeonPolyVector) {
   2077     switch (cast<BuiltinType>(EltType)->getKind()) {
   2078     case BuiltinType::SChar:     EltName = "poly8_t"; break;
   2079     case BuiltinType::Short:     EltName = "poly16_t"; break;
   2080     default: llvm_unreachable("unexpected Neon polynomial vector element type");
   2081     }
   2082   } else {
   2083     switch (cast<BuiltinType>(EltType)->getKind()) {
   2084     case BuiltinType::SChar:     EltName = "int8_t"; break;
   2085     case BuiltinType::UChar:     EltName = "uint8_t"; break;
   2086     case BuiltinType::Short:     EltName = "int16_t"; break;
   2087     case BuiltinType::UShort:    EltName = "uint16_t"; break;
   2088     case BuiltinType::Int:       EltName = "int32_t"; break;
   2089     case BuiltinType::UInt:      EltName = "uint32_t"; break;
   2090     case BuiltinType::LongLong:  EltName = "int64_t"; break;
   2091     case BuiltinType::ULongLong: EltName = "uint64_t"; break;
   2092     case BuiltinType::Float:     EltName = "float32_t"; break;
   2093     default: llvm_unreachable("unexpected Neon vector element type");
   2094     }
   2095   }
   2096   const char *BaseName = 0;
   2097   unsigned BitSize = (T->getNumElements() *
   2098                       getASTContext().getTypeSize(EltType));
   2099   if (BitSize == 64)
   2100     BaseName = "__simd64_";
   2101   else {
   2102     assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
   2103     BaseName = "__simd128_";
   2104   }
   2105   Out << strlen(BaseName) + strlen(EltName);
   2106   Out << BaseName << EltName;
   2107 }
   2108 
   2109 // GNU extension: vector types
   2110 // <type>                  ::= <vector-type>
   2111 // <vector-type>           ::= Dv <positive dimension number> _
   2112 //                                    <extended element type>
   2113 //                         ::= Dv [<dimension expression>] _ <element type>
   2114 // <extended element type> ::= <element type>
   2115 //                         ::= p # AltiVec vector pixel
   2116 //                         ::= b # Altivec vector bool
   2117 void CXXNameMangler::mangleType(const VectorType *T) {
   2118   if ((T->getVectorKind() == VectorType::NeonVector ||
   2119        T->getVectorKind() == VectorType::NeonPolyVector)) {
   2120     mangleNeonVectorType(T);
   2121     return;
   2122   }
   2123   Out << "Dv" << T->getNumElements() << '_';
   2124   if (T->getVectorKind() == VectorType::AltiVecPixel)
   2125     Out << 'p';
   2126   else if (T->getVectorKind() == VectorType::AltiVecBool)
   2127     Out << 'b';
   2128   else
   2129     mangleType(T->getElementType());
   2130 }
   2131 void CXXNameMangler::mangleType(const ExtVectorType *T) {
   2132   mangleType(static_cast<const VectorType*>(T));
   2133 }
   2134 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
   2135   Out << "Dv";
   2136   mangleExpression(T->getSizeExpr());
   2137   Out << '_';
   2138   mangleType(T->getElementType());
   2139 }
   2140 
   2141 void CXXNameMangler::mangleType(const PackExpansionType *T) {
   2142   // <type>  ::= Dp <type>          # pack expansion (C++0x)
   2143   Out << "Dp";
   2144   mangleType(T->getPattern());
   2145 }
   2146 
   2147 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
   2148   mangleSourceName(T->getDecl()->getIdentifier());
   2149 }
   2150 
   2151 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
   2152   // We don't allow overloading by different protocol qualification,
   2153   // so mangling them isn't necessary.
   2154   mangleType(T->getBaseType());
   2155 }
   2156 
   2157 void CXXNameMangler::mangleType(const BlockPointerType *T) {
   2158   Out << "U13block_pointer";
   2159   mangleType(T->getPointeeType());
   2160 }
   2161 
   2162 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
   2163   // Mangle injected class name types as if the user had written the
   2164   // specialization out fully.  It may not actually be possible to see
   2165   // this mangling, though.
   2166   mangleType(T->getInjectedSpecializationType());
   2167 }
   2168 
   2169 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
   2170   if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
   2171     mangleName(TD, T->getArgs(), T->getNumArgs());
   2172   } else {
   2173     if (mangleSubstitution(QualType(T, 0)))
   2174       return;
   2175 
   2176     mangleTemplatePrefix(T->getTemplateName());
   2177 
   2178     // FIXME: GCC does not appear to mangle the template arguments when
   2179     // the template in question is a dependent template name. Should we
   2180     // emulate that badness?
   2181     mangleTemplateArgs(T->getArgs(), T->getNumArgs());
   2182     addSubstitution(QualType(T, 0));
   2183   }
   2184 }
   2185 
   2186 void CXXNameMangler::mangleType(const DependentNameType *T) {
   2187   // Typename types are always nested
   2188   Out << 'N';
   2189   manglePrefix(T->getQualifier());
   2190   mangleSourceName(T->getIdentifier());
   2191   Out << 'E';
   2192 }
   2193 
   2194 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
   2195   // Dependently-scoped template types are nested if they have a prefix.
   2196   Out << 'N';
   2197 
   2198   // TODO: avoid making this TemplateName.
   2199   TemplateName Prefix =
   2200     getASTContext().getDependentTemplateName(T->getQualifier(),
   2201                                              T->getIdentifier());
   2202   mangleTemplatePrefix(Prefix);
   2203 
   2204   // FIXME: GCC does not appear to mangle the template arguments when
   2205   // the template in question is a dependent template name. Should we
   2206   // emulate that badness?
   2207   mangleTemplateArgs(T->getArgs(), T->getNumArgs());
   2208   Out << 'E';
   2209 }
   2210 
   2211 void CXXNameMangler::mangleType(const TypeOfType *T) {
   2212   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
   2213   // "extension with parameters" mangling.
   2214   Out << "u6typeof";
   2215 }
   2216 
   2217 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
   2218   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
   2219   // "extension with parameters" mangling.
   2220   Out << "u6typeof";
   2221 }
   2222 
   2223 void CXXNameMangler::mangleType(const DecltypeType *T) {
   2224   Expr *E = T->getUnderlyingExpr();
   2225 
   2226   // type ::= Dt <expression> E  # decltype of an id-expression
   2227   //                             #   or class member access
   2228   //      ::= DT <expression> E  # decltype of an expression
   2229 
   2230   // This purports to be an exhaustive list of id-expressions and
   2231   // class member accesses.  Note that we do not ignore parentheses;
   2232   // parentheses change the semantics of decltype for these
   2233   // expressions (and cause the mangler to use the other form).
   2234   if (isa<DeclRefExpr>(E) ||
   2235       isa<MemberExpr>(E) ||
   2236       isa<UnresolvedLookupExpr>(E) ||
   2237       isa<DependentScopeDeclRefExpr>(E) ||
   2238       isa<CXXDependentScopeMemberExpr>(E) ||
   2239       isa<UnresolvedMemberExpr>(E))
   2240     Out << "Dt";
   2241   else
   2242     Out << "DT";
   2243   mangleExpression(E);
   2244   Out << 'E';
   2245 }
   2246 
   2247 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
   2248   // If this is dependent, we need to record that. If not, we simply
   2249   // mangle it as the underlying type since they are equivalent.
   2250   if (T->isDependentType()) {
   2251     Out << 'U';
   2252 
   2253     switch (T->getUTTKind()) {
   2254       case UnaryTransformType::EnumUnderlyingType:
   2255         Out << "3eut";
   2256         break;
   2257     }
   2258   }
   2259 
   2260   mangleType(T->getUnderlyingType());
   2261 }
   2262 
   2263 void CXXNameMangler::mangleType(const AutoType *T) {
   2264   QualType D = T->getDeducedType();
   2265   // <builtin-type> ::= Da  # dependent auto
   2266   if (D.isNull())
   2267     Out << "Da";
   2268   else
   2269     mangleType(D);
   2270 }
   2271 
   2272 void CXXNameMangler::mangleType(const AtomicType *T) {
   2273   // <type> ::= U <source-name> <type>	# vendor extended type qualifier
   2274   // (Until there's a standardized mangling...)
   2275   Out << "U7_Atomic";
   2276   mangleType(T->getValueType());
   2277 }
   2278 
   2279 void CXXNameMangler::mangleIntegerLiteral(QualType T,
   2280                                           const llvm::APSInt &Value) {
   2281   //  <expr-primary> ::= L <type> <value number> E # integer literal
   2282   Out << 'L';
   2283 
   2284   mangleType(T);
   2285   if (T->isBooleanType()) {
   2286     // Boolean values are encoded as 0/1.
   2287     Out << (Value.getBoolValue() ? '1' : '0');
   2288   } else {
   2289     mangleNumber(Value);
   2290   }
   2291   Out << 'E';
   2292 
   2293 }
   2294 
   2295 /// Mangles a member expression.
   2296 void CXXNameMangler::mangleMemberExpr(const Expr *base,
   2297                                       bool isArrow,
   2298                                       NestedNameSpecifier *qualifier,
   2299                                       NamedDecl *firstQualifierLookup,
   2300                                       DeclarationName member,
   2301                                       unsigned arity) {
   2302   // <expression> ::= dt <expression> <unresolved-name>
   2303   //              ::= pt <expression> <unresolved-name>
   2304   if (base) {
   2305     if (base->isImplicitCXXThis()) {
   2306       // Note: GCC mangles member expressions to the implicit 'this' as
   2307       // *this., whereas we represent them as this->. The Itanium C++ ABI
   2308       // does not specify anything here, so we follow GCC.
   2309       Out << "dtdefpT";
   2310     } else {
   2311       Out << (isArrow ? "pt" : "dt");
   2312       mangleExpression(base);
   2313     }
   2314   }
   2315   mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
   2316 }
   2317 
   2318 /// Look at the callee of the given call expression and determine if
   2319 /// it's a parenthesized id-expression which would have triggered ADL
   2320 /// otherwise.
   2321 static bool isParenthesizedADLCallee(const CallExpr *call) {
   2322   const Expr *callee = call->getCallee();
   2323   const Expr *fn = callee->IgnoreParens();
   2324 
   2325   // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
   2326   // too, but for those to appear in the callee, it would have to be
   2327   // parenthesized.
   2328   if (callee == fn) return false;
   2329 
   2330   // Must be an unresolved lookup.
   2331   const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
   2332   if (!lookup) return false;
   2333 
   2334   assert(!lookup->requiresADL());
   2335 
   2336   // Must be an unqualified lookup.
   2337   if (lookup->getQualifier()) return false;
   2338 
   2339   // Must not have found a class member.  Note that if one is a class
   2340   // member, they're all class members.
   2341   if (lookup->getNumDecls() > 0 &&
   2342       (*lookup->decls_begin())->isCXXClassMember())
   2343     return false;
   2344 
   2345   // Otherwise, ADL would have been triggered.
   2346   return true;
   2347 }
   2348 
   2349 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
   2350   // <expression> ::= <unary operator-name> <expression>
   2351   //              ::= <binary operator-name> <expression> <expression>
   2352   //              ::= <trinary operator-name> <expression> <expression> <expression>
   2353   //              ::= cv <type> expression           # conversion with one argument
   2354   //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
   2355   //              ::= st <type>                      # sizeof (a type)
   2356   //              ::= at <type>                      # alignof (a type)
   2357   //              ::= <template-param>
   2358   //              ::= <function-param>
   2359   //              ::= sr <type> <unqualified-name>                   # dependent name
   2360   //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
   2361   //              ::= ds <expression> <expression>                   # expr.*expr
   2362   //              ::= sZ <template-param>                            # size of a parameter pack
   2363   //              ::= sZ <function-param>    # size of a function parameter pack
   2364   //              ::= <expr-primary>
   2365   // <expr-primary> ::= L <type> <value number> E    # integer literal
   2366   //                ::= L <type <value float> E      # floating literal
   2367   //                ::= L <mangled-name> E           # external name
   2368   //                ::= fpT                          # 'this' expression
   2369   QualType ImplicitlyConvertedToType;
   2370 
   2371 recurse:
   2372   switch (E->getStmtClass()) {
   2373   case Expr::NoStmtClass:
   2374 #define ABSTRACT_STMT(Type)
   2375 #define EXPR(Type, Base)
   2376 #define STMT(Type, Base) \
   2377   case Expr::Type##Class:
   2378 #include "clang/AST/StmtNodes.inc"
   2379     // fallthrough
   2380 
   2381   // These all can only appear in local or variable-initialization
   2382   // contexts and so should never appear in a mangling.
   2383   case Expr::AddrLabelExprClass:
   2384   case Expr::DesignatedInitExprClass:
   2385   case Expr::ImplicitValueInitExprClass:
   2386   case Expr::ParenListExprClass:
   2387   case Expr::LambdaExprClass:
   2388     llvm_unreachable("unexpected statement kind");
   2389 
   2390   // FIXME: invent manglings for all these.
   2391   case Expr::BlockExprClass:
   2392   case Expr::CXXPseudoDestructorExprClass:
   2393   case Expr::ChooseExprClass:
   2394   case Expr::CompoundLiteralExprClass:
   2395   case Expr::ExtVectorElementExprClass:
   2396   case Expr::GenericSelectionExprClass:
   2397   case Expr::ObjCEncodeExprClass:
   2398   case Expr::ObjCIsaExprClass:
   2399   case Expr::ObjCIvarRefExprClass:
   2400   case Expr::ObjCMessageExprClass:
   2401   case Expr::ObjCPropertyRefExprClass:
   2402   case Expr::ObjCProtocolExprClass:
   2403   case Expr::ObjCSelectorExprClass:
   2404   case Expr::ObjCStringLiteralClass:
   2405   case Expr::ObjCBoxedExprClass:
   2406   case Expr::ObjCArrayLiteralClass:
   2407   case Expr::ObjCDictionaryLiteralClass:
   2408   case Expr::ObjCSubscriptRefExprClass:
   2409   case Expr::ObjCIndirectCopyRestoreExprClass:
   2410   case Expr::OffsetOfExprClass:
   2411   case Expr::PredefinedExprClass:
   2412   case Expr::ShuffleVectorExprClass:
   2413   case Expr::StmtExprClass:
   2414   case Expr::UnaryTypeTraitExprClass:
   2415   case Expr::BinaryTypeTraitExprClass:
   2416   case Expr::TypeTraitExprClass:
   2417   case Expr::ArrayTypeTraitExprClass:
   2418   case Expr::ExpressionTraitExprClass:
   2419   case Expr::VAArgExprClass:
   2420   case Expr::CXXUuidofExprClass:
   2421   case Expr::CUDAKernelCallExprClass:
   2422   case Expr::AsTypeExprClass:
   2423   case Expr::PseudoObjectExprClass:
   2424   case Expr::AtomicExprClass:
   2425   {
   2426     // As bad as this diagnostic is, it's better than crashing.
   2427     DiagnosticsEngine &Diags = Context.getDiags();
   2428     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
   2429                                      "cannot yet mangle expression type %0");
   2430     Diags.Report(E->getExprLoc(), DiagID)
   2431       << E->getStmtClassName() << E->getSourceRange();
   2432     break;
   2433   }
   2434 
   2435   // Even gcc-4.5 doesn't mangle this.
   2436   case Expr::BinaryConditionalOperatorClass: {
   2437     DiagnosticsEngine &Diags = Context.getDiags();
   2438     unsigned DiagID =
   2439       Diags.getCustomDiagID(DiagnosticsEngine::Error,
   2440                 "?: operator with omitted middle operand cannot be mangled");
   2441     Diags.Report(E->getExprLoc(), DiagID)
   2442       << E->getStmtClassName() << E->getSourceRange();
   2443     break;
   2444   }
   2445 
   2446   // These are used for internal purposes and cannot be meaningfully mangled.
   2447   case Expr::OpaqueValueExprClass:
   2448     llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
   2449 
   2450   case Expr::InitListExprClass: {
   2451     // Proposal by Jason Merrill, 2012-01-03
   2452     Out << "il";
   2453     const InitListExpr *InitList = cast<InitListExpr>(E);
   2454     for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
   2455       mangleExpression(InitList->getInit(i));
   2456     Out << "E";
   2457     break;
   2458   }
   2459 
   2460   case Expr::CXXDefaultArgExprClass:
   2461     mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
   2462     break;
   2463 
   2464   case Expr::SubstNonTypeTemplateParmExprClass:
   2465     mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
   2466                      Arity);
   2467     break;
   2468 
   2469   case Expr::UserDefinedLiteralClass:
   2470     // We follow g++'s approach of mangling a UDL as a call to the literal
   2471     // operator.
   2472   case Expr::CXXMemberCallExprClass: // fallthrough
   2473   case Expr::CallExprClass: {
   2474     const CallExpr *CE = cast<CallExpr>(E);
   2475 
   2476     // <expression> ::= cp <simple-id> <expression>* E
   2477     // We use this mangling only when the call would use ADL except
   2478     // for being parenthesized.  Per discussion with David
   2479     // Vandervoorde, 2011.04.25.
   2480     if (isParenthesizedADLCallee(CE)) {
   2481       Out << "cp";
   2482       // The callee here is a parenthesized UnresolvedLookupExpr with
   2483       // no qualifier and should always get mangled as a <simple-id>
   2484       // anyway.
   2485 
   2486     // <expression> ::= cl <expression>* E
   2487     } else {
   2488       Out << "cl";
   2489     }
   2490 
   2491     mangleExpression(CE->getCallee(), CE->getNumArgs());
   2492     for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
   2493       mangleExpression(CE->getArg(I));
   2494     Out << 'E';
   2495     break;
   2496   }
   2497 
   2498   case Expr::CXXNewExprClass: {
   2499     const CXXNewExpr *New = cast<CXXNewExpr>(E);
   2500     if (New->isGlobalNew()) Out << "gs";
   2501     Out << (New->isArray() ? "na" : "nw");
   2502     for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
   2503            E = New->placement_arg_end(); I != E; ++I)
   2504       mangleExpression(*I);
   2505     Out << '_';
   2506     mangleType(New->getAllocatedType());
   2507     if (New->hasInitializer()) {
   2508       // Proposal by Jason Merrill, 2012-01-03
   2509       if (New->getInitializationStyle() == CXXNewExpr::ListInit)
   2510         Out << "il";
   2511       else
   2512         Out << "pi";
   2513       const Expr *Init = New->getInitializer();
   2514       if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
   2515         // Directly inline the initializers.
   2516         for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
   2517                                                   E = CCE->arg_end();
   2518              I != E; ++I)
   2519           mangleExpression(*I);
   2520       } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
   2521         for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
   2522           mangleExpression(PLE->getExpr(i));
   2523       } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
   2524                  isa<InitListExpr>(Init)) {
   2525         // Only take InitListExprs apart for list-initialization.
   2526         const InitListExpr *InitList = cast<InitListExpr>(Init);
   2527         for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
   2528           mangleExpression(InitList->getInit(i));
   2529       } else
   2530         mangleExpression(Init);
   2531     }
   2532     Out << 'E';
   2533     break;
   2534   }
   2535 
   2536   case Expr::MemberExprClass: {
   2537     const MemberExpr *ME = cast<MemberExpr>(E);
   2538     mangleMemberExpr(ME->getBase(), ME->isArrow(),
   2539                      ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),
   2540                      Arity);
   2541     break;
   2542   }
   2543 
   2544   case Expr::UnresolvedMemberExprClass: {
   2545     const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
   2546     mangleMemberExpr(ME->getBase(), ME->isArrow(),
   2547                      ME->getQualifier(), 0, ME->getMemberName(),
   2548                      Arity);
   2549     if (ME->hasExplicitTemplateArgs())
   2550       mangleTemplateArgs(ME->getExplicitTemplateArgs());
   2551     break;
   2552   }
   2553 
   2554   case Expr::CXXDependentScopeMemberExprClass: {
   2555     const CXXDependentScopeMemberExpr *ME
   2556       = cast<CXXDependentScopeMemberExpr>(E);
   2557     mangleMemberExpr(ME->getBase(), ME->isArrow(),
   2558                      ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
   2559                      ME->getMember(), Arity);
   2560     if (ME->hasExplicitTemplateArgs())
   2561       mangleTemplateArgs(ME->getExplicitTemplateArgs());
   2562     break;
   2563   }
   2564 
   2565   case Expr::UnresolvedLookupExprClass: {
   2566     const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
   2567     mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);
   2568 
   2569     // All the <unresolved-name> productions end in a
   2570     // base-unresolved-name, where <template-args> are just tacked
   2571     // onto the end.
   2572     if (ULE->hasExplicitTemplateArgs())
   2573       mangleTemplateArgs(ULE->getExplicitTemplateArgs());
   2574     break;
   2575   }
   2576 
   2577   case Expr::CXXUnresolvedConstructExprClass: {
   2578     const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
   2579     unsigned N = CE->arg_size();
   2580 
   2581     Out << "cv";
   2582     mangleType(CE->getType());
   2583     if (N != 1) Out << '_';
   2584     for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
   2585     if (N != 1) Out << 'E';
   2586     break;
   2587   }
   2588 
   2589   case Expr::CXXTemporaryObjectExprClass:
   2590   case Expr::CXXConstructExprClass: {
   2591     const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
   2592     unsigned N = CE->getNumArgs();
   2593 
   2594     // Proposal by Jason Merrill, 2012-01-03
   2595     if (CE->isListInitialization())
   2596       Out << "tl";
   2597     else
   2598       Out << "cv";
   2599     mangleType(CE->getType());
   2600     if (N != 1) Out << '_';
   2601     for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
   2602     if (N != 1) Out << 'E';
   2603     break;
   2604   }
   2605 
   2606   case Expr::CXXScalarValueInitExprClass:
   2607     Out <<"cv";
   2608     mangleType(E->getType());
   2609     Out <<"_E";
   2610     break;
   2611 
   2612   case Expr::CXXNoexceptExprClass:
   2613     Out << "nx";
   2614     mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
   2615     break;
   2616 
   2617   case Expr::UnaryExprOrTypeTraitExprClass: {
   2618     const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
   2619 
   2620     if (!SAE->isInstantiationDependent()) {
   2621       // Itanium C++ ABI:
   2622       //   If the operand of a sizeof or alignof operator is not
   2623       //   instantiation-dependent it is encoded as an integer literal
   2624       //   reflecting the result of the operator.
   2625       //
   2626       //   If the result of the operator is implicitly converted to a known
   2627       //   integer type, that type is used for the literal; otherwise, the type
   2628       //   of std::size_t or std::ptrdiff_t is used.
   2629       QualType T = (ImplicitlyConvertedToType.isNull() ||
   2630                     !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
   2631                                                     : ImplicitlyConvertedToType;
   2632       llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
   2633       mangleIntegerLiteral(T, V);
   2634       break;
   2635     }
   2636 
   2637     switch(SAE->getKind()) {
   2638     case UETT_SizeOf:
   2639       Out << 's';
   2640       break;
   2641     case UETT_AlignOf:
   2642       Out << 'a';
   2643       break;
   2644     case UETT_VecStep:
   2645       DiagnosticsEngine &Diags = Context.getDiags();
   2646       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
   2647                                      "cannot yet mangle vec_step expression");
   2648       Diags.Report(DiagID);
   2649       return;
   2650     }
   2651     if (SAE->isArgumentType()) {
   2652       Out << 't';
   2653       mangleType(SAE->getArgumentType());
   2654     } else {
   2655       Out << 'z';
   2656       mangleExpression(SAE->getArgumentExpr());
   2657     }
   2658     break;
   2659   }
   2660 
   2661   case Expr::CXXThrowExprClass: {
   2662     const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
   2663 
   2664     // Proposal from David Vandervoorde, 2010.06.30
   2665     if (TE->getSubExpr()) {
   2666       Out << "tw";
   2667       mangleExpression(TE->getSubExpr());
   2668     } else {
   2669       Out << "tr";
   2670     }
   2671     break;
   2672   }
   2673 
   2674   case Expr::CXXTypeidExprClass: {
   2675     const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
   2676 
   2677     // Proposal from David Vandervoorde, 2010.06.30
   2678     if (TIE->isTypeOperand()) {
   2679       Out << "ti";
   2680       mangleType(TIE->getTypeOperand());
   2681     } else {
   2682       Out << "te";
   2683       mangleExpression(TIE->getExprOperand());
   2684     }
   2685     break;
   2686   }
   2687 
   2688   case Expr::CXXDeleteExprClass: {
   2689     const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
   2690 
   2691     // Proposal from David Vandervoorde, 2010.06.30
   2692     if (DE->isGlobalDelete()) Out << "gs";
   2693     Out << (DE->isArrayForm() ? "da" : "dl");
   2694     mangleExpression(DE->getArgument());
   2695     break;
   2696   }
   2697 
   2698   case Expr::UnaryOperatorClass: {
   2699     const UnaryOperator *UO = cast<UnaryOperator>(E);
   2700     mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
   2701                        /*Arity=*/1);
   2702     mangleExpression(UO->getSubExpr());
   2703     break;
   2704   }
   2705 
   2706   case Expr::ArraySubscriptExprClass: {
   2707     const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
   2708 
   2709     // Array subscript is treated as a syntactically weird form of
   2710     // binary operator.
   2711     Out << "ix";
   2712     mangleExpression(AE->getLHS());
   2713     mangleExpression(AE->getRHS());
   2714     break;
   2715   }
   2716 
   2717   case Expr::CompoundAssignOperatorClass: // fallthrough
   2718   case Expr::BinaryOperatorClass: {
   2719     const BinaryOperator *BO = cast<BinaryOperator>(E);
   2720     if (BO->getOpcode() == BO_PtrMemD)
   2721       Out << "ds";
   2722     else
   2723       mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
   2724                          /*Arity=*/2);
   2725     mangleExpression(BO->getLHS());
   2726     mangleExpression(BO->getRHS());
   2727     break;
   2728   }
   2729 
   2730   case Expr::ConditionalOperatorClass: {
   2731     const ConditionalOperator *CO = cast<ConditionalOperator>(E);
   2732     mangleOperatorName(OO_Conditional, /*Arity=*/3);
   2733     mangleExpression(CO->getCond());
   2734     mangleExpression(CO->getLHS(), Arity);
   2735     mangleExpression(CO->getRHS(), Arity);
   2736     break;
   2737   }
   2738 
   2739   case Expr::ImplicitCastExprClass: {
   2740     ImplicitlyConvertedToType = E->getType();
   2741     E = cast<ImplicitCastExpr>(E)->getSubExpr();
   2742     goto recurse;
   2743   }
   2744 
   2745   case Expr::ObjCBridgedCastExprClass: {
   2746     // Mangle ownership casts as a vendor extended operator __bridge,
   2747     // __bridge_transfer, or __bridge_retain.
   2748     StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
   2749     Out << "v1U" << Kind.size() << Kind;
   2750   }
   2751   // Fall through to mangle the cast itself.
   2752 
   2753   case Expr::CStyleCastExprClass:
   2754   case Expr::CXXStaticCastExprClass:
   2755   case Expr::CXXDynamicCastExprClass:
   2756   case Expr::CXXReinterpretCastExprClass:
   2757   case Expr::CXXConstCastExprClass:
   2758   case Expr::CXXFunctionalCastExprClass: {
   2759     const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
   2760     Out << "cv";
   2761     mangleType(ECE->getType());
   2762     mangleExpression(ECE->getSubExpr());
   2763     break;
   2764   }
   2765 
   2766   case Expr::CXXOperatorCallExprClass: {
   2767     const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
   2768     unsigned NumArgs = CE->getNumArgs();
   2769     mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
   2770     // Mangle the arguments.
   2771     for (unsigned i = 0; i != NumArgs; ++i)
   2772       mangleExpression(CE->getArg(i));
   2773     break;
   2774   }
   2775 
   2776   case Expr::ParenExprClass:
   2777     mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
   2778     break;
   2779 
   2780   case Expr::DeclRefExprClass: {
   2781     const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
   2782 
   2783     switch (D->getKind()) {
   2784     default:
   2785       //  <expr-primary> ::= L <mangled-name> E # external name
   2786       Out << 'L';
   2787       mangle(D, "_Z");
   2788       Out << 'E';
   2789       break;
   2790 
   2791     case Decl::ParmVar:
   2792       mangleFunctionParam(cast<ParmVarDecl>(D));
   2793       break;
   2794 
   2795     case Decl::EnumConstant: {
   2796       const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
   2797       mangleIntegerLiteral(ED->getType(), ED->getInitVal());
   2798       break;
   2799     }
   2800 
   2801     case Decl::NonTypeTemplateParm: {
   2802       const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
   2803       mangleTemplateParameter(PD->getIndex());
   2804       break;
   2805     }
   2806 
   2807     }
   2808 
   2809     break;
   2810   }
   2811 
   2812   case Expr::SubstNonTypeTemplateParmPackExprClass:
   2813     // FIXME: not clear how to mangle this!
   2814     // template <unsigned N...> class A {
   2815     //   template <class U...> void foo(U (&x)[N]...);
   2816     // };
   2817     Out << "_SUBSTPACK_";
   2818     break;
   2819 
   2820   case Expr::FunctionParmPackExprClass: {
   2821     // FIXME: not clear how to mangle this!
   2822     const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
   2823     Out << "v110_SUBSTPACK";
   2824     mangleFunctionParam(FPPE->getParameterPack());
   2825     break;
   2826   }
   2827 
   2828   case Expr::DependentScopeDeclRefExprClass: {
   2829     const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
   2830     mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity);
   2831 
   2832     // All the <unresolved-name> productions end in a
   2833     // base-unresolved-name, where <template-args> are just tacked
   2834     // onto the end.
   2835     if (DRE->hasExplicitTemplateArgs())
   2836       mangleTemplateArgs(DRE->getExplicitTemplateArgs());
   2837     break;
   2838   }
   2839 
   2840   case Expr::CXXBindTemporaryExprClass:
   2841     mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
   2842     break;
   2843 
   2844   case Expr::ExprWithCleanupsClass:
   2845     mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
   2846     break;
   2847 
   2848   case Expr::FloatingLiteralClass: {
   2849     const FloatingLiteral *FL = cast<FloatingLiteral>(E);
   2850     Out << 'L';
   2851     mangleType(FL->getType());
   2852     mangleFloat(FL->getValue());
   2853     Out << 'E';
   2854     break;
   2855   }
   2856 
   2857   case Expr::CharacterLiteralClass:
   2858     Out << 'L';
   2859     mangleType(E->getType());
   2860     Out << cast<CharacterLiteral>(E)->getValue();
   2861     Out << 'E';
   2862     break;
   2863 
   2864   // FIXME. __objc_yes/__objc_no are mangled same as true/false
   2865   case Expr::ObjCBoolLiteralExprClass:
   2866     Out << "Lb";
   2867     Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
   2868     Out << 'E';
   2869     break;
   2870 
   2871   case Expr::CXXBoolLiteralExprClass:
   2872     Out << "Lb";
   2873     Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
   2874     Out << 'E';
   2875     break;
   2876 
   2877   case Expr::IntegerLiteralClass: {
   2878     llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
   2879     if (E->getType()->isSignedIntegerType())
   2880       Value.setIsSigned(true);
   2881     mangleIntegerLiteral(E->getType(), Value);
   2882     break;
   2883   }
   2884 
   2885   case Expr::ImaginaryLiteralClass: {
   2886     const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
   2887     // Mangle as if a complex literal.
   2888     // Proposal from David Vandevoorde, 2010.06.30.
   2889     Out << 'L';
   2890     mangleType(E->getType());
   2891     if (const FloatingLiteral *Imag =
   2892           dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
   2893       // Mangle a floating-point zero of the appropriate type.
   2894       mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
   2895       Out << '_';
   2896       mangleFloat(Imag->getValue());
   2897     } else {
   2898       Out << "0_";
   2899       llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
   2900       if (IE->getSubExpr()->getType()->isSignedIntegerType())
   2901         Value.setIsSigned(true);
   2902       mangleNumber(Value);
   2903     }
   2904     Out << 'E';
   2905     break;
   2906   }
   2907 
   2908   case Expr::StringLiteralClass: {
   2909     // Revised proposal from David Vandervoorde, 2010.07.15.
   2910     Out << 'L';
   2911     assert(isa<ConstantArrayType>(E->getType()));
   2912     mangleType(E->getType());
   2913     Out << 'E';
   2914     break;
   2915   }
   2916 
   2917   case Expr::GNUNullExprClass:
   2918     // FIXME: should this really be mangled the same as nullptr?
   2919     // fallthrough
   2920 
   2921   case Expr::CXXNullPtrLiteralExprClass: {
   2922     // Proposal from David Vandervoorde, 2010.06.30, as
   2923     // modified by ABI list discussion.
   2924     Out << "LDnE";
   2925     break;
   2926   }
   2927 
   2928   case Expr::PackExpansionExprClass:
   2929     Out << "sp";
   2930     mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
   2931     break;
   2932 
   2933   case Expr::SizeOfPackExprClass: {
   2934     Out << "sZ";
   2935     const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
   2936     if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
   2937       mangleTemplateParameter(TTP->getIndex());
   2938     else if (const NonTypeTemplateParmDecl *NTTP
   2939                 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
   2940       mangleTemplateParameter(NTTP->getIndex());
   2941     else if (const TemplateTemplateParmDecl *TempTP
   2942                                     = dyn_cast<TemplateTemplateParmDecl>(Pack))
   2943       mangleTemplateParameter(TempTP->getIndex());
   2944     else
   2945       mangleFunctionParam(cast<ParmVarDecl>(Pack));
   2946     break;
   2947   }
   2948 
   2949   case Expr::MaterializeTemporaryExprClass: {
   2950     mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
   2951     break;
   2952   }
   2953 
   2954   case Expr::CXXThisExprClass:
   2955     Out << "fpT";
   2956     break;
   2957   }
   2958 }
   2959 
   2960 /// Mangle an expression which refers to a parameter variable.
   2961 ///
   2962 /// <expression>     ::= <function-param>
   2963 /// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
   2964 /// <function-param> ::= fp <top-level CV-qualifiers>
   2965 ///                      <parameter-2 non-negative number> _ # L == 0, I > 0
   2966 /// <function-param> ::= fL <L-1 non-negative number>
   2967 ///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
   2968 /// <function-param> ::= fL <L-1 non-negative number>
   2969 ///                      p <top-level CV-qualifiers>
   2970 ///                      <I-1 non-negative number> _         # L > 0, I > 0
   2971 ///
   2972 /// L is the nesting depth of the parameter, defined as 1 if the
   2973 /// parameter comes from the innermost function prototype scope
   2974 /// enclosing the current context, 2 if from the next enclosing
   2975 /// function prototype scope, and so on, with one special case: if
   2976 /// we've processed the full parameter clause for the innermost
   2977 /// function type, then L is one less.  This definition conveniently
   2978 /// makes it irrelevant whether a function's result type was written
   2979 /// trailing or leading, but is otherwise overly complicated; the
   2980 /// numbering was first designed without considering references to
   2981 /// parameter in locations other than return types, and then the
   2982 /// mangling had to be generalized without changing the existing
   2983 /// manglings.
   2984 ///
   2985 /// I is the zero-based index of the parameter within its parameter
   2986 /// declaration clause.  Note that the original ABI document describes
   2987 /// this using 1-based ordinals.
   2988 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
   2989   unsigned parmDepth = parm->getFunctionScopeDepth();
   2990   unsigned parmIndex = parm->getFunctionScopeIndex();
   2991 
   2992   // Compute 'L'.
   2993   // parmDepth does not include the declaring function prototype.
   2994   // FunctionTypeDepth does account for that.
   2995   assert(parmDepth < FunctionTypeDepth.getDepth());
   2996   unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
   2997   if (FunctionTypeDepth.isInResultType())
   2998     nestingDepth--;
   2999 
   3000   if (nestingDepth == 0) {
   3001     Out << "fp";
   3002   } else {
   3003     Out << "fL" << (nestingDepth - 1) << 'p';
   3004   }
   3005 
   3006   // Top-level qualifiers.  We don't have to worry about arrays here,
   3007   // because parameters declared as arrays should already have been
   3008   // transformed to have pointer type. FIXME: apparently these don't
   3009   // get mangled if used as an rvalue of a known non-class type?
   3010   assert(!parm->getType()->isArrayType()
   3011          && "parameter's type is still an array type?");
   3012   mangleQualifiers(parm->getType().getQualifiers());
   3013 
   3014   // Parameter index.
   3015   if (parmIndex != 0) {
   3016     Out << (parmIndex - 1);
   3017   }
   3018   Out << '_';
   3019 }
   3020 
   3021 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
   3022   // <ctor-dtor-name> ::= C1  # complete object constructor
   3023   //                  ::= C2  # base object constructor
   3024   //                  ::= C3  # complete object allocating constructor
   3025   //
   3026   switch (T) {
   3027   case Ctor_Complete:
   3028     Out << "C1";
   3029     break;
   3030   case Ctor_Base:
   3031     Out << "C2";
   3032     break;
   3033   case Ctor_CompleteAllocating:
   3034     Out << "C3";
   3035     break;
   3036   }
   3037 }
   3038 
   3039 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
   3040   // <ctor-dtor-name> ::= D0  # deleting destructor
   3041   //                  ::= D1  # complete object destructor
   3042   //                  ::= D2  # base object destructor
   3043   //
   3044   switch (T) {
   3045   case Dtor_Deleting:
   3046     Out << "D0";
   3047     break;
   3048   case Dtor_Complete:
   3049     Out << "D1";
   3050     break;
   3051   case Dtor_Base:
   3052     Out << "D2";
   3053     break;
   3054   }
   3055 }
   3056 
   3057 void CXXNameMangler::mangleTemplateArgs(
   3058                           const ASTTemplateArgumentListInfo &TemplateArgs) {
   3059   // <template-args> ::= I <template-arg>+ E
   3060   Out << 'I';
   3061   for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
   3062     mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument());
   3063   Out << 'E';
   3064 }
   3065 
   3066 void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
   3067   // <template-args> ::= I <template-arg>+ E
   3068   Out << 'I';
   3069   for (unsigned i = 0, e = AL.size(); i != e; ++i)
   3070     mangleTemplateArg(AL[i]);
   3071   Out << 'E';
   3072 }
   3073 
   3074 void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
   3075                                         unsigned NumTemplateArgs) {
   3076   // <template-args> ::= I <template-arg>+ E
   3077   Out << 'I';
   3078   for (unsigned i = 0; i != NumTemplateArgs; ++i)
   3079     mangleTemplateArg(TemplateArgs[i]);
   3080   Out << 'E';
   3081 }
   3082 
   3083 void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
   3084   // <template-arg> ::= <type>              # type or template
   3085   //                ::= X <expression> E    # expression
   3086   //                ::= <expr-primary>      # simple expressions
   3087   //                ::= J <template-arg>* E # argument pack
   3088   //                ::= sp <expression>     # pack expansion of (C++0x)
   3089   if (!A.isInstantiationDependent() || A.isDependent())
   3090     A = Context.getASTContext().getCanonicalTemplateArgument(A);
   3091 
   3092   switch (A.getKind()) {
   3093   case TemplateArgument::Null:
   3094     llvm_unreachable("Cannot mangle NULL template argument");
   3095 
   3096   case TemplateArgument::Type:
   3097     mangleType(A.getAsType());
   3098     break;
   3099   case TemplateArgument::Template:
   3100     // This is mangled as <type>.
   3101     mangleType(A.getAsTemplate());
   3102     break;
   3103   case TemplateArgument::TemplateExpansion:
   3104     // <type>  ::= Dp <type>          # pack expansion (C++0x)
   3105     Out << "Dp";
   3106     mangleType(A.getAsTemplateOrTemplatePattern());
   3107     break;
   3108   case TemplateArgument::Expression: {
   3109     // It's possible to end up with a DeclRefExpr here in certain
   3110     // dependent cases, in which case we should mangle as a
   3111     // declaration.
   3112     const Expr *E = A.getAsExpr()->IgnoreParens();
   3113     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
   3114       const ValueDecl *D = DRE->getDecl();
   3115       if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
   3116         Out << "L";
   3117         mangle(D, "_Z");
   3118         Out << 'E';
   3119         break;
   3120       }
   3121     }
   3122 
   3123     Out << 'X';
   3124     mangleExpression(E);
   3125     Out << 'E';
   3126     break;
   3127   }
   3128   case TemplateArgument::Integral:
   3129     mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
   3130     break;
   3131   case TemplateArgument::Declaration: {
   3132     //  <expr-primary> ::= L <mangled-name> E # external name
   3133     // Clang produces AST's where pointer-to-member-function expressions
   3134     // and pointer-to-function expressions are represented as a declaration not
   3135     // an expression. We compensate for it here to produce the correct mangling.
   3136     ValueDecl *D = A.getAsDecl();
   3137     bool compensateMangling = !A.isDeclForReferenceParam();
   3138     if (compensateMangling) {
   3139       Out << 'X';
   3140       mangleOperatorName(OO_Amp, 1);
   3141     }
   3142 
   3143     Out << 'L';
   3144     // References to external entities use the mangled name; if the name would
   3145     // not normally be manged then mangle it as unqualified.
   3146     //
   3147     // FIXME: The ABI specifies that external names here should have _Z, but
   3148     // gcc leaves this off.
   3149     if (compensateMangling)
   3150       mangle(D, "_Z");
   3151     else
   3152       mangle(D, "Z");
   3153     Out << 'E';
   3154 
   3155     if (compensateMangling)
   3156       Out << 'E';
   3157 
   3158     break;
   3159   }
   3160   case TemplateArgument::NullPtr: {
   3161     //  <expr-primary> ::= L <type> 0 E
   3162     Out << 'L';
   3163     mangleType(A.getNullPtrType());
   3164     Out << "0E";
   3165     break;
   3166   }
   3167   case TemplateArgument::Pack: {
   3168     // Note: proposal by Mike Herrick on 12/20/10
   3169     Out << 'J';
   3170     for (TemplateArgument::pack_iterator PA = A.pack_begin(),
   3171                                       PAEnd = A.pack_end();
   3172          PA != PAEnd; ++PA)
   3173       mangleTemplateArg(*PA);
   3174     Out << 'E';
   3175   }
   3176   }
   3177 }
   3178 
   3179 void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
   3180   // <template-param> ::= T_    # first template parameter
   3181   //                  ::= T <parameter-2 non-negative number> _
   3182   if (Index == 0)
   3183     Out << "T_";
   3184   else
   3185     Out << 'T' << (Index - 1) << '_';
   3186 }
   3187 
   3188 void CXXNameMangler::mangleExistingSubstitution(QualType type) {
   3189   bool result = mangleSubstitution(type);
   3190   assert(result && "no existing substitution for type");
   3191   (void) result;
   3192 }
   3193 
   3194 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
   3195   bool result = mangleSubstitution(tname);
   3196   assert(result && "no existing substitution for template name");
   3197   (void) result;
   3198 }
   3199 
   3200 // <substitution> ::= S <seq-id> _
   3201 //                ::= S_
   3202 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
   3203   // Try one of the standard substitutions first.
   3204   if (mangleStandardSubstitution(ND))
   3205     return true;
   3206 
   3207   ND = cast<NamedDecl>(ND->getCanonicalDecl());
   3208   return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
   3209 }
   3210 
   3211 /// \brief Determine whether the given type has any qualifiers that are
   3212 /// relevant for substitutions.
   3213 static bool hasMangledSubstitutionQualifiers(QualType T) {
   3214   Qualifiers Qs = T.getQualifiers();
   3215   return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
   3216 }
   3217 
   3218 bool CXXNameMangler::mangleSubstitution(QualType T) {
   3219   if (!hasMangledSubstitutionQualifiers(T)) {
   3220     if (const RecordType *RT = T->getAs<RecordType>())
   3221       return mangleSubstitution(RT->getDecl());
   3222   }
   3223 
   3224   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
   3225 
   3226   return mangleSubstitution(TypePtr);
   3227 }
   3228 
   3229 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
   3230   if (TemplateDecl *TD = Template.getAsTemplateDecl())
   3231     return mangleSubstitution(TD);
   3232 
   3233   Template = Context.getASTContext().getCanonicalTemplateName(Template);
   3234   return mangleSubstitution(
   3235                       reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
   3236 }
   3237 
   3238 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
   3239   llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
   3240   if (I == Substitutions.end())
   3241     return false;
   3242 
   3243   unsigned SeqID = I->second;
   3244   if (SeqID == 0)
   3245     Out << "S_";
   3246   else {
   3247     SeqID--;
   3248 
   3249     // <seq-id> is encoded in base-36, using digits and upper case letters.
   3250     char Buffer[10];
   3251     char *BufferPtr = llvm::array_endof(Buffer);
   3252 
   3253     if (SeqID == 0) *--BufferPtr = '0';
   3254 
   3255     while (SeqID) {
   3256       assert(BufferPtr > Buffer && "Buffer overflow!");
   3257 
   3258       char c = static_cast<char>(SeqID % 36);
   3259 
   3260       *--BufferPtr =  (c < 10 ? '0' + c : 'A' + c - 10);
   3261       SeqID /= 36;
   3262     }
   3263 
   3264     Out << 'S'
   3265         << StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
   3266         << '_';
   3267   }
   3268 
   3269   return true;
   3270 }
   3271 
   3272 static bool isCharType(QualType T) {
   3273   if (T.isNull())
   3274     return false;
   3275 
   3276   return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
   3277     T->isSpecificBuiltinType(BuiltinType::Char_U);
   3278 }
   3279 
   3280 /// isCharSpecialization - Returns whether a given type is a template
   3281 /// specialization of a given name with a single argument of type char.
   3282 static bool isCharSpecialization(QualType T, const char *Name) {
   3283   if (T.isNull())
   3284     return false;
   3285 
   3286   const RecordType *RT = T->getAs<RecordType>();
   3287   if (!RT)
   3288     return false;
   3289 
   3290   const ClassTemplateSpecializationDecl *SD =
   3291     dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
   3292   if (!SD)
   3293     return false;
   3294 
   3295   if (!isStdNamespace(getEffectiveDeclContext(SD)))
   3296     return false;
   3297 
   3298   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
   3299   if (TemplateArgs.size() != 1)
   3300     return false;
   3301 
   3302   if (!isCharType(TemplateArgs[0].getAsType()))
   3303     return false;
   3304 
   3305   return SD->getIdentifier()->getName() == Name;
   3306 }
   3307 
   3308 template <std::size_t StrLen>
   3309 static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
   3310                                        const char (&Str)[StrLen]) {
   3311   if (!SD->getIdentifier()->isStr(Str))
   3312     return false;
   3313 
   3314   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
   3315   if (TemplateArgs.size() != 2)
   3316     return false;
   3317 
   3318   if (!isCharType(TemplateArgs[0].getAsType()))
   3319     return false;
   3320 
   3321   if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
   3322     return false;
   3323 
   3324   return true;
   3325 }
   3326 
   3327 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
   3328   // <substitution> ::= St # ::std::
   3329   if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
   3330     if (isStd(NS)) {
   3331       Out << "St";
   3332       return true;
   3333     }
   3334   }
   3335 
   3336   if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
   3337     if (!isStdNamespace(getEffectiveDeclContext(TD)))
   3338       return false;
   3339 
   3340     // <substitution> ::= Sa # ::std::allocator
   3341     if (TD->getIdentifier()->isStr("allocator")) {
   3342       Out << "Sa";
   3343       return true;
   3344     }
   3345 
   3346     // <<substitution> ::= Sb # ::std::basic_string
   3347     if (TD->getIdentifier()->isStr("basic_string")) {
   3348       Out << "Sb";
   3349       return true;
   3350     }
   3351   }
   3352 
   3353   if (const ClassTemplateSpecializationDecl *SD =
   3354         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
   3355     if (!isStdNamespace(getEffectiveDeclContext(SD)))
   3356       return false;
   3357 
   3358     //    <substitution> ::= Ss # ::std::basic_string<char,
   3359     //                            ::std::char_traits<char>,
   3360     //                            ::std::allocator<char> >
   3361     if (SD->getIdentifier()->isStr("basic_string")) {
   3362       const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
   3363 
   3364       if (TemplateArgs.size() != 3)
   3365         return false;
   3366 
   3367       if (!isCharType(TemplateArgs[0].getAsType()))
   3368         return false;
   3369 
   3370       if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
   3371         return false;
   3372 
   3373       if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
   3374         return false;
   3375 
   3376       Out << "Ss";
   3377       return true;
   3378     }
   3379 
   3380     //    <substitution> ::= Si # ::std::basic_istream<char,
   3381     //                            ::std::char_traits<char> >
   3382     if (isStreamCharSpecialization(SD, "basic_istream")) {
   3383       Out << "Si";
   3384       return true;
   3385     }
   3386 
   3387     //    <substitution> ::= So # ::std::basic_ostream<char,
   3388     //                            ::std::char_traits<char> >
   3389     if (isStreamCharSpecialization(SD, "basic_ostream")) {
   3390       Out << "So";
   3391       return true;
   3392     }
   3393 
   3394     //    <substitution> ::= Sd # ::std::basic_iostream<char,
   3395     //                            ::std::char_traits<char> >
   3396     if (isStreamCharSpecialization(SD, "basic_iostream")) {
   3397       Out << "Sd";
   3398       return true;
   3399     }
   3400   }
   3401   return false;
   3402 }
   3403 
   3404 void CXXNameMangler::addSubstitution(QualType T) {
   3405   if (!hasMangledSubstitutionQualifiers(T)) {
   3406     if (const RecordType *RT = T->getAs<RecordType>()) {
   3407       addSubstitution(RT->getDecl());
   3408       return;
   3409     }
   3410   }
   3411 
   3412   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
   3413   addSubstitution(TypePtr);
   3414 }
   3415 
   3416 void CXXNameMangler::addSubstitution(TemplateName Template) {
   3417   if (TemplateDecl *TD = Template.getAsTemplateDecl())
   3418     return addSubstitution(TD);
   3419 
   3420   Template = Context.getASTContext().getCanonicalTemplateName(Template);
   3421   addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
   3422 }
   3423 
   3424 void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
   3425   assert(!Substitutions.count(Ptr) && "Substitution already exists!");
   3426   Substitutions[Ptr] = SeqID++;
   3427 }
   3428 
   3429 //
   3430 
   3431 /// \brief Mangles the name of the declaration D and emits that name to the
   3432 /// given output stream.
   3433 ///
   3434 /// If the declaration D requires a mangled name, this routine will emit that
   3435 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged
   3436 /// and this routine will return false. In this case, the caller should just
   3437 /// emit the identifier of the declaration (\c D->getIdentifier()) as its
   3438 /// name.
   3439 void ItaniumMangleContext::mangleName(const NamedDecl *D,
   3440                                       raw_ostream &Out) {
   3441   assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
   3442           "Invalid mangleName() call, argument is not a variable or function!");
   3443   assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
   3444          "Invalid mangleName() call on 'structor decl!");
   3445 
   3446   PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
   3447                                  getASTContext().getSourceManager(),
   3448                                  "Mangling declaration");
   3449 
   3450   CXXNameMangler Mangler(*this, Out, D);
   3451   return Mangler.mangle(D);
   3452 }
   3453 
   3454 void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
   3455                                          CXXCtorType Type,
   3456                                          raw_ostream &Out) {
   3457   CXXNameMangler Mangler(*this, Out, D, Type);
   3458   Mangler.mangle(D);
   3459 }
   3460 
   3461 void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
   3462                                          CXXDtorType Type,
   3463                                          raw_ostream &Out) {
   3464   CXXNameMangler Mangler(*this, Out, D, Type);
   3465   Mangler.mangle(D);
   3466 }
   3467 
   3468 void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
   3469                                        const ThunkInfo &Thunk,
   3470                                        raw_ostream &Out) {
   3471   //  <special-name> ::= T <call-offset> <base encoding>
   3472   //                      # base is the nominal target function of thunk
   3473   //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
   3474   //                      # base is the nominal target function of thunk
   3475   //                      # first call-offset is 'this' adjustment
   3476   //                      # second call-offset is result adjustment
   3477 
   3478   assert(!isa<CXXDestructorDecl>(MD) &&
   3479          "Use mangleCXXDtor for destructor decls!");
   3480   CXXNameMangler Mangler(*this, Out);
   3481   Mangler.getStream() << "_ZT";
   3482   if (!Thunk.Return.isEmpty())
   3483     Mangler.getStream() << 'c';
   3484 
   3485   // Mangle the 'this' pointer adjustment.
   3486   Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
   3487 
   3488   // Mangle the return pointer adjustment if there is one.
   3489   if (!Thunk.Return.isEmpty())
   3490     Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
   3491                              Thunk.Return.VBaseOffsetOffset);
   3492 
   3493   Mangler.mangleFunctionEncoding(MD);
   3494 }
   3495 
   3496 void
   3497 ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
   3498                                          CXXDtorType Type,
   3499                                          const ThisAdjustment &ThisAdjustment,
   3500                                          raw_ostream &Out) {
   3501   //  <special-name> ::= T <call-offset> <base encoding>
   3502   //                      # base is the nominal target function of thunk
   3503   CXXNameMangler Mangler(*this, Out, DD, Type);
   3504   Mangler.getStream() << "_ZT";
   3505 
   3506   // Mangle the 'this' pointer adjustment.
   3507   Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
   3508                            ThisAdjustment.VCallOffsetOffset);
   3509 
   3510   Mangler.mangleFunctionEncoding(DD);
   3511 }
   3512 
   3513 /// mangleGuardVariable - Returns the mangled name for a guard variable
   3514 /// for the passed in VarDecl.
   3515 void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
   3516                                                       raw_ostream &Out) {
   3517   //  <special-name> ::= GV <object name>       # Guard variable for one-time
   3518   //                                            # initialization
   3519   CXXNameMangler Mangler(*this, Out);
   3520   Mangler.getStream() << "_ZGV";
   3521   Mangler.mangleName(D);
   3522 }
   3523 
   3524 void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
   3525                                                     raw_ostream &Out) {
   3526   // We match the GCC mangling here.
   3527   //  <special-name> ::= GR <object name>
   3528   CXXNameMangler Mangler(*this, Out);
   3529   Mangler.getStream() << "_ZGR";
   3530   Mangler.mangleName(D);
   3531 }
   3532 
   3533 void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
   3534                                            raw_ostream &Out) {
   3535   // <special-name> ::= TV <type>  # virtual table
   3536   CXXNameMangler Mangler(*this, Out);
   3537   Mangler.getStream() << "_ZTV";
   3538   Mangler.mangleNameOrStandardSubstitution(RD);
   3539 }
   3540 
   3541 void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
   3542                                         raw_ostream &Out) {
   3543   // <special-name> ::= TT <type>  # VTT structure
   3544   CXXNameMangler Mangler(*this, Out);
   3545   Mangler.getStream() << "_ZTT";
   3546   Mangler.mangleNameOrStandardSubstitution(RD);
   3547 }
   3548 
   3549 void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
   3550                                                int64_t Offset,
   3551                                                const CXXRecordDecl *Type,
   3552                                                raw_ostream &Out) {
   3553   // <special-name> ::= TC <type> <offset number> _ <base type>
   3554   CXXNameMangler Mangler(*this, Out);
   3555   Mangler.getStream() << "_ZTC";
   3556   Mangler.mangleNameOrStandardSubstitution(RD);
   3557   Mangler.getStream() << Offset;
   3558   Mangler.getStream() << '_';
   3559   Mangler.mangleNameOrStandardSubstitution(Type);
   3560 }
   3561 
   3562 void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
   3563                                          raw_ostream &Out) {
   3564   // <special-name> ::= TI <type>  # typeinfo structure
   3565   assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
   3566   CXXNameMangler Mangler(*this, Out);
   3567   Mangler.getStream() << "_ZTI";
   3568   Mangler.mangleType(Ty);
   3569 }
   3570 
   3571 void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
   3572                                              raw_ostream &Out) {
   3573   // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
   3574   CXXNameMangler Mangler(*this, Out);
   3575   Mangler.getStream() << "_ZTS";
   3576   Mangler.mangleType(Ty);
   3577 }
   3578 
   3579 MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
   3580                                                  DiagnosticsEngine &Diags) {
   3581   return new ItaniumMangleContext(Context, Diags);
   3582 }
   3583