Home | History | Annotate | Download | only in Utils
      1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Peephole optimize the CFG.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "simplifycfg"
     15 #include "llvm/Transforms/Utils/Local.h"
     16 #include "llvm/ADT/DenseMap.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/ADT/SetVector.h"
     19 #include "llvm/ADT/SmallPtrSet.h"
     20 #include "llvm/ADT/SmallVector.h"
     21 #include "llvm/ADT/Statistic.h"
     22 #include "llvm/Analysis/InstructionSimplify.h"
     23 #include "llvm/Analysis/TargetTransformInfo.h"
     24 #include "llvm/Analysis/ValueTracking.h"
     25 #include "llvm/IR/Constants.h"
     26 #include "llvm/IR/DataLayout.h"
     27 #include "llvm/IR/DerivedTypes.h"
     28 #include "llvm/IR/GlobalVariable.h"
     29 #include "llvm/IR/IRBuilder.h"
     30 #include "llvm/IR/Instructions.h"
     31 #include "llvm/IR/IntrinsicInst.h"
     32 #include "llvm/IR/LLVMContext.h"
     33 #include "llvm/IR/MDBuilder.h"
     34 #include "llvm/IR/Metadata.h"
     35 #include "llvm/IR/Module.h"
     36 #include "llvm/IR/Operator.h"
     37 #include "llvm/IR/Type.h"
     38 #include "llvm/Support/CFG.h"
     39 #include "llvm/Support/CommandLine.h"
     40 #include "llvm/Support/ConstantRange.h"
     41 #include "llvm/Support/Debug.h"
     42 #include "llvm/Support/NoFolder.h"
     43 #include "llvm/Support/raw_ostream.h"
     44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     45 #include <algorithm>
     46 #include <map>
     47 #include <set>
     48 using namespace llvm;
     49 
     50 static cl::opt<unsigned>
     51 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
     52    cl::desc("Control the amount of phi node folding to perform (default = 1)"));
     53 
     54 static cl::opt<bool>
     55 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
     56        cl::desc("Duplicate return instructions into unconditional branches"));
     57 
     58 static cl::opt<bool>
     59 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
     60        cl::desc("Sink common instructions down to the end block"));
     61 
     62 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
     63 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
     64 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block");
     65 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
     66 
     67 namespace {
     68   /// ValueEqualityComparisonCase - Represents a case of a switch.
     69   struct ValueEqualityComparisonCase {
     70     ConstantInt *Value;
     71     BasicBlock *Dest;
     72 
     73     ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
     74       : Value(Value), Dest(Dest) {}
     75 
     76     bool operator<(ValueEqualityComparisonCase RHS) const {
     77       // Comparing pointers is ok as we only rely on the order for uniquing.
     78       return Value < RHS.Value;
     79     }
     80 
     81     bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
     82   };
     83 
     84 class SimplifyCFGOpt {
     85   const TargetTransformInfo &TTI;
     86   const DataLayout *const TD;
     87 
     88   Value *isValueEqualityComparison(TerminatorInst *TI);
     89   BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
     90                                std::vector<ValueEqualityComparisonCase> &Cases);
     91   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
     92                                                      BasicBlock *Pred,
     93                                                      IRBuilder<> &Builder);
     94   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
     95                                            IRBuilder<> &Builder);
     96 
     97   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
     98   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
     99   bool SimplifyUnreachable(UnreachableInst *UI);
    100   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
    101   bool SimplifyIndirectBr(IndirectBrInst *IBI);
    102   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
    103   bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
    104 
    105 public:
    106   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout *TD)
    107       : TTI(TTI), TD(TD) {}
    108   bool run(BasicBlock *BB);
    109 };
    110 }
    111 
    112 /// SafeToMergeTerminators - Return true if it is safe to merge these two
    113 /// terminator instructions together.
    114 ///
    115 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
    116   if (SI1 == SI2) return false;  // Can't merge with self!
    117 
    118   // It is not safe to merge these two switch instructions if they have a common
    119   // successor, and if that successor has a PHI node, and if *that* PHI node has
    120   // conflicting incoming values from the two switch blocks.
    121   BasicBlock *SI1BB = SI1->getParent();
    122   BasicBlock *SI2BB = SI2->getParent();
    123   SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
    124 
    125   for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
    126     if (SI1Succs.count(*I))
    127       for (BasicBlock::iterator BBI = (*I)->begin();
    128            isa<PHINode>(BBI); ++BBI) {
    129         PHINode *PN = cast<PHINode>(BBI);
    130         if (PN->getIncomingValueForBlock(SI1BB) !=
    131             PN->getIncomingValueForBlock(SI2BB))
    132           return false;
    133       }
    134 
    135   return true;
    136 }
    137 
    138 /// isProfitableToFoldUnconditional - Return true if it is safe and profitable
    139 /// to merge these two terminator instructions together, where SI1 is an
    140 /// unconditional branch. PhiNodes will store all PHI nodes in common
    141 /// successors.
    142 ///
    143 static bool isProfitableToFoldUnconditional(BranchInst *SI1,
    144                                           BranchInst *SI2,
    145                                           Instruction *Cond,
    146                                           SmallVectorImpl<PHINode*> &PhiNodes) {
    147   if (SI1 == SI2) return false;  // Can't merge with self!
    148   assert(SI1->isUnconditional() && SI2->isConditional());
    149 
    150   // We fold the unconditional branch if we can easily update all PHI nodes in
    151   // common successors:
    152   // 1> We have a constant incoming value for the conditional branch;
    153   // 2> We have "Cond" as the incoming value for the unconditional branch;
    154   // 3> SI2->getCondition() and Cond have same operands.
    155   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
    156   if (!Ci2) return false;
    157   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
    158         Cond->getOperand(1) == Ci2->getOperand(1)) &&
    159       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
    160         Cond->getOperand(1) == Ci2->getOperand(0)))
    161     return false;
    162 
    163   BasicBlock *SI1BB = SI1->getParent();
    164   BasicBlock *SI2BB = SI2->getParent();
    165   SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
    166   for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
    167     if (SI1Succs.count(*I))
    168       for (BasicBlock::iterator BBI = (*I)->begin();
    169            isa<PHINode>(BBI); ++BBI) {
    170         PHINode *PN = cast<PHINode>(BBI);
    171         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
    172             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
    173           return false;
    174         PhiNodes.push_back(PN);
    175       }
    176   return true;
    177 }
    178 
    179 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
    180 /// now be entries in it from the 'NewPred' block.  The values that will be
    181 /// flowing into the PHI nodes will be the same as those coming in from
    182 /// ExistPred, an existing predecessor of Succ.
    183 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
    184                                   BasicBlock *ExistPred) {
    185   if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
    186 
    187   PHINode *PN;
    188   for (BasicBlock::iterator I = Succ->begin();
    189        (PN = dyn_cast<PHINode>(I)); ++I)
    190     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
    191 }
    192 
    193 
    194 /// GetIfCondition - Given a basic block (BB) with two predecessors (and at
    195 /// least one PHI node in it), check to see if the merge at this block is due
    196 /// to an "if condition".  If so, return the boolean condition that determines
    197 /// which entry into BB will be taken.  Also, return by references the block
    198 /// that will be entered from if the condition is true, and the block that will
    199 /// be entered if the condition is false.
    200 ///
    201 /// This does no checking to see if the true/false blocks have large or unsavory
    202 /// instructions in them.
    203 static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
    204                              BasicBlock *&IfFalse) {
    205   PHINode *SomePHI = cast<PHINode>(BB->begin());
    206   assert(SomePHI->getNumIncomingValues() == 2 &&
    207          "Function can only handle blocks with 2 predecessors!");
    208   BasicBlock *Pred1 = SomePHI->getIncomingBlock(0);
    209   BasicBlock *Pred2 = SomePHI->getIncomingBlock(1);
    210 
    211   // We can only handle branches.  Other control flow will be lowered to
    212   // branches if possible anyway.
    213   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
    214   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
    215   if (Pred1Br == 0 || Pred2Br == 0)
    216     return 0;
    217 
    218   // Eliminate code duplication by ensuring that Pred1Br is conditional if
    219   // either are.
    220   if (Pred2Br->isConditional()) {
    221     // If both branches are conditional, we don't have an "if statement".  In
    222     // reality, we could transform this case, but since the condition will be
    223     // required anyway, we stand no chance of eliminating it, so the xform is
    224     // probably not profitable.
    225     if (Pred1Br->isConditional())
    226       return 0;
    227 
    228     std::swap(Pred1, Pred2);
    229     std::swap(Pred1Br, Pred2Br);
    230   }
    231 
    232   if (Pred1Br->isConditional()) {
    233     // The only thing we have to watch out for here is to make sure that Pred2
    234     // doesn't have incoming edges from other blocks.  If it does, the condition
    235     // doesn't dominate BB.
    236     if (Pred2->getSinglePredecessor() == 0)
    237       return 0;
    238 
    239     // If we found a conditional branch predecessor, make sure that it branches
    240     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
    241     if (Pred1Br->getSuccessor(0) == BB &&
    242         Pred1Br->getSuccessor(1) == Pred2) {
    243       IfTrue = Pred1;
    244       IfFalse = Pred2;
    245     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
    246                Pred1Br->getSuccessor(1) == BB) {
    247       IfTrue = Pred2;
    248       IfFalse = Pred1;
    249     } else {
    250       // We know that one arm of the conditional goes to BB, so the other must
    251       // go somewhere unrelated, and this must not be an "if statement".
    252       return 0;
    253     }
    254 
    255     return Pred1Br->getCondition();
    256   }
    257 
    258   // Ok, if we got here, both predecessors end with an unconditional branch to
    259   // BB.  Don't panic!  If both blocks only have a single (identical)
    260   // predecessor, and THAT is a conditional branch, then we're all ok!
    261   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
    262   if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
    263     return 0;
    264 
    265   // Otherwise, if this is a conditional branch, then we can use it!
    266   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
    267   if (BI == 0) return 0;
    268 
    269   assert(BI->isConditional() && "Two successors but not conditional?");
    270   if (BI->getSuccessor(0) == Pred1) {
    271     IfTrue = Pred1;
    272     IfFalse = Pred2;
    273   } else {
    274     IfTrue = Pred2;
    275     IfFalse = Pred1;
    276   }
    277   return BI->getCondition();
    278 }
    279 
    280 /// ComputeSpeculuationCost - Compute an abstract "cost" of speculating the
    281 /// given instruction, which is assumed to be safe to speculate. 1 means
    282 /// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive.
    283 static unsigned ComputeSpeculationCost(const User *I) {
    284   assert(isSafeToSpeculativelyExecute(I) &&
    285          "Instruction is not safe to speculatively execute!");
    286   switch (Operator::getOpcode(I)) {
    287   default:
    288     // In doubt, be conservative.
    289     return UINT_MAX;
    290   case Instruction::GetElementPtr:
    291     // GEPs are cheap if all indices are constant.
    292     if (!cast<GEPOperator>(I)->hasAllConstantIndices())
    293       return UINT_MAX;
    294     return 1;
    295   case Instruction::Load:
    296   case Instruction::Add:
    297   case Instruction::Sub:
    298   case Instruction::And:
    299   case Instruction::Or:
    300   case Instruction::Xor:
    301   case Instruction::Shl:
    302   case Instruction::LShr:
    303   case Instruction::AShr:
    304   case Instruction::ICmp:
    305   case Instruction::Trunc:
    306   case Instruction::ZExt:
    307   case Instruction::SExt:
    308     return 1; // These are all cheap.
    309 
    310   case Instruction::Call:
    311   case Instruction::Select:
    312     return 2;
    313   }
    314 }
    315 
    316 /// DominatesMergePoint - If we have a merge point of an "if condition" as
    317 /// accepted above, return true if the specified value dominates the block.  We
    318 /// don't handle the true generality of domination here, just a special case
    319 /// which works well enough for us.
    320 ///
    321 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
    322 /// see if V (which must be an instruction) and its recursive operands
    323 /// that do not dominate BB have a combined cost lower than CostRemaining and
    324 /// are non-trapping.  If both are true, the instruction is inserted into the
    325 /// set and true is returned.
    326 ///
    327 /// The cost for most non-trapping instructions is defined as 1 except for
    328 /// Select whose cost is 2.
    329 ///
    330 /// After this function returns, CostRemaining is decreased by the cost of
    331 /// V plus its non-dominating operands.  If that cost is greater than
    332 /// CostRemaining, false is returned and CostRemaining is undefined.
    333 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
    334                                 SmallPtrSet<Instruction*, 4> *AggressiveInsts,
    335                                 unsigned &CostRemaining) {
    336   Instruction *I = dyn_cast<Instruction>(V);
    337   if (!I) {
    338     // Non-instructions all dominate instructions, but not all constantexprs
    339     // can be executed unconditionally.
    340     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
    341       if (C->canTrap())
    342         return false;
    343     return true;
    344   }
    345   BasicBlock *PBB = I->getParent();
    346 
    347   // We don't want to allow weird loops that might have the "if condition" in
    348   // the bottom of this block.
    349   if (PBB == BB) return false;
    350 
    351   // If this instruction is defined in a block that contains an unconditional
    352   // branch to BB, then it must be in the 'conditional' part of the "if
    353   // statement".  If not, it definitely dominates the region.
    354   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
    355   if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB)
    356     return true;
    357 
    358   // If we aren't allowing aggressive promotion anymore, then don't consider
    359   // instructions in the 'if region'.
    360   if (AggressiveInsts == 0) return false;
    361 
    362   // If we have seen this instruction before, don't count it again.
    363   if (AggressiveInsts->count(I)) return true;
    364 
    365   // Okay, it looks like the instruction IS in the "condition".  Check to
    366   // see if it's a cheap instruction to unconditionally compute, and if it
    367   // only uses stuff defined outside of the condition.  If so, hoist it out.
    368   if (!isSafeToSpeculativelyExecute(I))
    369     return false;
    370 
    371   unsigned Cost = ComputeSpeculationCost(I);
    372 
    373   if (Cost > CostRemaining)
    374     return false;
    375 
    376   CostRemaining -= Cost;
    377 
    378   // Okay, we can only really hoist these out if their operands do
    379   // not take us over the cost threshold.
    380   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
    381     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining))
    382       return false;
    383   // Okay, it's safe to do this!  Remember this instruction.
    384   AggressiveInsts->insert(I);
    385   return true;
    386 }
    387 
    388 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
    389 /// and PointerNullValue. Return NULL if value is not a constant int.
    390 static ConstantInt *GetConstantInt(Value *V, const DataLayout *TD) {
    391   // Normal constant int.
    392   ConstantInt *CI = dyn_cast<ConstantInt>(V);
    393   if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
    394     return CI;
    395 
    396   // This is some kind of pointer constant. Turn it into a pointer-sized
    397   // ConstantInt if possible.
    398   IntegerType *PtrTy = cast<IntegerType>(TD->getIntPtrType(V->getType()));
    399 
    400   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
    401   if (isa<ConstantPointerNull>(V))
    402     return ConstantInt::get(PtrTy, 0);
    403 
    404   // IntToPtr const int.
    405   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    406     if (CE->getOpcode() == Instruction::IntToPtr)
    407       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
    408         // The constant is very likely to have the right type already.
    409         if (CI->getType() == PtrTy)
    410           return CI;
    411         else
    412           return cast<ConstantInt>
    413             (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
    414       }
    415   return 0;
    416 }
    417 
    418 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
    419 /// collection of icmp eq/ne instructions that compare a value against a
    420 /// constant, return the value being compared, and stick the constant into the
    421 /// Values vector.
    422 static Value *
    423 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
    424                        const DataLayout *TD, bool isEQ, unsigned &UsedICmps) {
    425   Instruction *I = dyn_cast<Instruction>(V);
    426   if (I == 0) return 0;
    427 
    428   // If this is an icmp against a constant, handle this as one of the cases.
    429   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
    430     if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
    431       if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
    432         UsedICmps++;
    433         Vals.push_back(C);
    434         return I->getOperand(0);
    435       }
    436 
    437       // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
    438       // the set.
    439       ConstantRange Span =
    440         ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
    441 
    442       // If this is an and/!= check then we want to optimize "x ugt 2" into
    443       // x != 0 && x != 1.
    444       if (!isEQ)
    445         Span = Span.inverse();
    446 
    447       // If there are a ton of values, we don't want to make a ginormous switch.
    448       if (Span.getSetSize().ugt(8) || Span.isEmptySet())
    449         return 0;
    450 
    451       for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
    452         Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
    453       UsedICmps++;
    454       return I->getOperand(0);
    455     }
    456     return 0;
    457   }
    458 
    459   // Otherwise, we can only handle an | or &, depending on isEQ.
    460   if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
    461     return 0;
    462 
    463   unsigned NumValsBeforeLHS = Vals.size();
    464   unsigned UsedICmpsBeforeLHS = UsedICmps;
    465   if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
    466                                           isEQ, UsedICmps)) {
    467     unsigned NumVals = Vals.size();
    468     unsigned UsedICmpsBeforeRHS = UsedICmps;
    469     if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
    470                                             isEQ, UsedICmps)) {
    471       if (LHS == RHS)
    472         return LHS;
    473       Vals.resize(NumVals);
    474       UsedICmps = UsedICmpsBeforeRHS;
    475     }
    476 
    477     // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
    478     // set it and return success.
    479     if (Extra == 0 || Extra == I->getOperand(1)) {
    480       Extra = I->getOperand(1);
    481       return LHS;
    482     }
    483 
    484     Vals.resize(NumValsBeforeLHS);
    485     UsedICmps = UsedICmpsBeforeLHS;
    486     return 0;
    487   }
    488 
    489   // If the LHS can't be folded in, but Extra is available and RHS can, try to
    490   // use LHS as Extra.
    491   if (Extra == 0 || Extra == I->getOperand(0)) {
    492     Value *OldExtra = Extra;
    493     Extra = I->getOperand(0);
    494     if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
    495                                             isEQ, UsedICmps))
    496       return RHS;
    497     assert(Vals.size() == NumValsBeforeLHS);
    498     Extra = OldExtra;
    499   }
    500 
    501   return 0;
    502 }
    503 
    504 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
    505   Instruction *Cond = 0;
    506   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    507     Cond = dyn_cast<Instruction>(SI->getCondition());
    508   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    509     if (BI->isConditional())
    510       Cond = dyn_cast<Instruction>(BI->getCondition());
    511   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
    512     Cond = dyn_cast<Instruction>(IBI->getAddress());
    513   }
    514 
    515   TI->eraseFromParent();
    516   if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
    517 }
    518 
    519 /// isValueEqualityComparison - Return true if the specified terminator checks
    520 /// to see if a value is equal to constant integer value.
    521 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
    522   Value *CV = 0;
    523   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    524     // Do not permit merging of large switch instructions into their
    525     // predecessors unless there is only one predecessor.
    526     if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
    527                                              pred_end(SI->getParent())) <= 128)
    528       CV = SI->getCondition();
    529   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
    530     if (BI->isConditional() && BI->getCondition()->hasOneUse())
    531       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
    532         if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
    533              ICI->getPredicate() == ICmpInst::ICMP_NE) &&
    534             GetConstantInt(ICI->getOperand(1), TD))
    535           CV = ICI->getOperand(0);
    536 
    537   // Unwrap any lossless ptrtoint cast.
    538   if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext()))
    539     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV))
    540       CV = PTII->getOperand(0);
    541   return CV;
    542 }
    543 
    544 /// GetValueEqualityComparisonCases - Given a value comparison instruction,
    545 /// decode all of the 'cases' that it represents and return the 'default' block.
    546 BasicBlock *SimplifyCFGOpt::
    547 GetValueEqualityComparisonCases(TerminatorInst *TI,
    548                                 std::vector<ValueEqualityComparisonCase>
    549                                                                        &Cases) {
    550   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    551     Cases.reserve(SI->getNumCases());
    552     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
    553       Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
    554                                                   i.getCaseSuccessor()));
    555     return SI->getDefaultDest();
    556   }
    557 
    558   BranchInst *BI = cast<BranchInst>(TI);
    559   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
    560   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
    561   Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
    562                                                              TD),
    563                                               Succ));
    564   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
    565 }
    566 
    567 
    568 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
    569 /// in the list that match the specified block.
    570 static void EliminateBlockCases(BasicBlock *BB,
    571                               std::vector<ValueEqualityComparisonCase> &Cases) {
    572   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
    573 }
    574 
    575 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
    576 /// well.
    577 static bool
    578 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
    579               std::vector<ValueEqualityComparisonCase > &C2) {
    580   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
    581 
    582   // Make V1 be smaller than V2.
    583   if (V1->size() > V2->size())
    584     std::swap(V1, V2);
    585 
    586   if (V1->size() == 0) return false;
    587   if (V1->size() == 1) {
    588     // Just scan V2.
    589     ConstantInt *TheVal = (*V1)[0].Value;
    590     for (unsigned i = 0, e = V2->size(); i != e; ++i)
    591       if (TheVal == (*V2)[i].Value)
    592         return true;
    593   }
    594 
    595   // Otherwise, just sort both lists and compare element by element.
    596   array_pod_sort(V1->begin(), V1->end());
    597   array_pod_sort(V2->begin(), V2->end());
    598   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
    599   while (i1 != e1 && i2 != e2) {
    600     if ((*V1)[i1].Value == (*V2)[i2].Value)
    601       return true;
    602     if ((*V1)[i1].Value < (*V2)[i2].Value)
    603       ++i1;
    604     else
    605       ++i2;
    606   }
    607   return false;
    608 }
    609 
    610 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
    611 /// terminator instruction and its block is known to only have a single
    612 /// predecessor block, check to see if that predecessor is also a value
    613 /// comparison with the same value, and if that comparison determines the
    614 /// outcome of this comparison.  If so, simplify TI.  This does a very limited
    615 /// form of jump threading.
    616 bool SimplifyCFGOpt::
    617 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
    618                                               BasicBlock *Pred,
    619                                               IRBuilder<> &Builder) {
    620   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
    621   if (!PredVal) return false;  // Not a value comparison in predecessor.
    622 
    623   Value *ThisVal = isValueEqualityComparison(TI);
    624   assert(ThisVal && "This isn't a value comparison!!");
    625   if (ThisVal != PredVal) return false;  // Different predicates.
    626 
    627   // TODO: Preserve branch weight metadata, similarly to how
    628   // FoldValueComparisonIntoPredecessors preserves it.
    629 
    630   // Find out information about when control will move from Pred to TI's block.
    631   std::vector<ValueEqualityComparisonCase> PredCases;
    632   BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
    633                                                         PredCases);
    634   EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
    635 
    636   // Find information about how control leaves this block.
    637   std::vector<ValueEqualityComparisonCase> ThisCases;
    638   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
    639   EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
    640 
    641   // If TI's block is the default block from Pred's comparison, potentially
    642   // simplify TI based on this knowledge.
    643   if (PredDef == TI->getParent()) {
    644     // If we are here, we know that the value is none of those cases listed in
    645     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
    646     // can simplify TI.
    647     if (!ValuesOverlap(PredCases, ThisCases))
    648       return false;
    649 
    650     if (isa<BranchInst>(TI)) {
    651       // Okay, one of the successors of this condbr is dead.  Convert it to a
    652       // uncond br.
    653       assert(ThisCases.size() == 1 && "Branch can only have one case!");
    654       // Insert the new branch.
    655       Instruction *NI = Builder.CreateBr(ThisDef);
    656       (void) NI;
    657 
    658       // Remove PHI node entries for the dead edge.
    659       ThisCases[0].Dest->removePredecessor(TI->getParent());
    660 
    661       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
    662            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
    663 
    664       EraseTerminatorInstAndDCECond(TI);
    665       return true;
    666     }
    667 
    668     SwitchInst *SI = cast<SwitchInst>(TI);
    669     // Okay, TI has cases that are statically dead, prune them away.
    670     SmallPtrSet<Constant*, 16> DeadCases;
    671     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    672       DeadCases.insert(PredCases[i].Value);
    673 
    674     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
    675                  << "Through successor TI: " << *TI);
    676 
    677     // Collect branch weights into a vector.
    678     SmallVector<uint32_t, 8> Weights;
    679     MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
    680     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
    681     if (HasWeight)
    682       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
    683            ++MD_i) {
    684         ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i));
    685         assert(CI);
    686         Weights.push_back(CI->getValue().getZExtValue());
    687       }
    688     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
    689       --i;
    690       if (DeadCases.count(i.getCaseValue())) {
    691         if (HasWeight) {
    692           std::swap(Weights[i.getCaseIndex()+1], Weights.back());
    693           Weights.pop_back();
    694         }
    695         i.getCaseSuccessor()->removePredecessor(TI->getParent());
    696         SI->removeCase(i);
    697       }
    698     }
    699     if (HasWeight && Weights.size() >= 2)
    700       SI->setMetadata(LLVMContext::MD_prof,
    701                       MDBuilder(SI->getParent()->getContext()).
    702                       createBranchWeights(Weights));
    703 
    704     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
    705     return true;
    706   }
    707 
    708   // Otherwise, TI's block must correspond to some matched value.  Find out
    709   // which value (or set of values) this is.
    710   ConstantInt *TIV = 0;
    711   BasicBlock *TIBB = TI->getParent();
    712   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    713     if (PredCases[i].Dest == TIBB) {
    714       if (TIV != 0)
    715         return false;  // Cannot handle multiple values coming to this block.
    716       TIV = PredCases[i].Value;
    717     }
    718   assert(TIV && "No edge from pred to succ?");
    719 
    720   // Okay, we found the one constant that our value can be if we get into TI's
    721   // BB.  Find out which successor will unconditionally be branched to.
    722   BasicBlock *TheRealDest = 0;
    723   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
    724     if (ThisCases[i].Value == TIV) {
    725       TheRealDest = ThisCases[i].Dest;
    726       break;
    727     }
    728 
    729   // If not handled by any explicit cases, it is handled by the default case.
    730   if (TheRealDest == 0) TheRealDest = ThisDef;
    731 
    732   // Remove PHI node entries for dead edges.
    733   BasicBlock *CheckEdge = TheRealDest;
    734   for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
    735     if (*SI != CheckEdge)
    736       (*SI)->removePredecessor(TIBB);
    737     else
    738       CheckEdge = 0;
    739 
    740   // Insert the new branch.
    741   Instruction *NI = Builder.CreateBr(TheRealDest);
    742   (void) NI;
    743 
    744   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
    745             << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
    746 
    747   EraseTerminatorInstAndDCECond(TI);
    748   return true;
    749 }
    750 
    751 namespace {
    752   /// ConstantIntOrdering - This class implements a stable ordering of constant
    753   /// integers that does not depend on their address.  This is important for
    754   /// applications that sort ConstantInt's to ensure uniqueness.
    755   struct ConstantIntOrdering {
    756     bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
    757       return LHS->getValue().ult(RHS->getValue());
    758     }
    759   };
    760 }
    761 
    762 static int ConstantIntSortPredicate(const void *P1, const void *P2) {
    763   const ConstantInt *LHS = *(const ConstantInt*const*)P1;
    764   const ConstantInt *RHS = *(const ConstantInt*const*)P2;
    765   if (LHS->getValue().ult(RHS->getValue()))
    766     return 1;
    767   if (LHS->getValue() == RHS->getValue())
    768     return 0;
    769   return -1;
    770 }
    771 
    772 static inline bool HasBranchWeights(const Instruction* I) {
    773   MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof);
    774   if (ProfMD && ProfMD->getOperand(0))
    775     if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
    776       return MDS->getString().equals("branch_weights");
    777 
    778   return false;
    779 }
    780 
    781 /// Get Weights of a given TerminatorInst, the default weight is at the front
    782 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
    783 /// metadata.
    784 static void GetBranchWeights(TerminatorInst *TI,
    785                              SmallVectorImpl<uint64_t> &Weights) {
    786   MDNode* MD = TI->getMetadata(LLVMContext::MD_prof);
    787   assert(MD);
    788   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
    789     ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(i));
    790     assert(CI);
    791     Weights.push_back(CI->getValue().getZExtValue());
    792   }
    793 
    794   // If TI is a conditional eq, the default case is the false case,
    795   // and the corresponding branch-weight data is at index 2. We swap the
    796   // default weight to be the first entry.
    797   if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
    798     assert(Weights.size() == 2);
    799     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
    800     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
    801       std::swap(Weights.front(), Weights.back());
    802   }
    803 }
    804 
    805 /// Sees if any of the weights are too big for a uint32_t, and halves all the
    806 /// weights if any are.
    807 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
    808   bool Halve = false;
    809   for (unsigned i = 0; i < Weights.size(); ++i)
    810     if (Weights[i] > UINT_MAX) {
    811       Halve = true;
    812       break;
    813     }
    814 
    815   if (! Halve)
    816     return;
    817 
    818   for (unsigned i = 0; i < Weights.size(); ++i)
    819     Weights[i] /= 2;
    820 }
    821 
    822 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value
    823 /// equality comparison instruction (either a switch or a branch on "X == c").
    824 /// See if any of the predecessors of the terminator block are value comparisons
    825 /// on the same value.  If so, and if safe to do so, fold them together.
    826 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
    827                                                          IRBuilder<> &Builder) {
    828   BasicBlock *BB = TI->getParent();
    829   Value *CV = isValueEqualityComparison(TI);  // CondVal
    830   assert(CV && "Not a comparison?");
    831   bool Changed = false;
    832 
    833   SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
    834   while (!Preds.empty()) {
    835     BasicBlock *Pred = Preds.pop_back_val();
    836 
    837     // See if the predecessor is a comparison with the same value.
    838     TerminatorInst *PTI = Pred->getTerminator();
    839     Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
    840 
    841     if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
    842       // Figure out which 'cases' to copy from SI to PSI.
    843       std::vector<ValueEqualityComparisonCase> BBCases;
    844       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
    845 
    846       std::vector<ValueEqualityComparisonCase> PredCases;
    847       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
    848 
    849       // Based on whether the default edge from PTI goes to BB or not, fill in
    850       // PredCases and PredDefault with the new switch cases we would like to
    851       // build.
    852       SmallVector<BasicBlock*, 8> NewSuccessors;
    853 
    854       // Update the branch weight metadata along the way
    855       SmallVector<uint64_t, 8> Weights;
    856       bool PredHasWeights = HasBranchWeights(PTI);
    857       bool SuccHasWeights = HasBranchWeights(TI);
    858 
    859       if (PredHasWeights) {
    860         GetBranchWeights(PTI, Weights);
    861         // branch-weight metadata is inconsistent here.
    862         if (Weights.size() != 1 + PredCases.size())
    863           PredHasWeights = SuccHasWeights = false;
    864       } else if (SuccHasWeights)
    865         // If there are no predecessor weights but there are successor weights,
    866         // populate Weights with 1, which will later be scaled to the sum of
    867         // successor's weights
    868         Weights.assign(1 + PredCases.size(), 1);
    869 
    870       SmallVector<uint64_t, 8> SuccWeights;
    871       if (SuccHasWeights) {
    872         GetBranchWeights(TI, SuccWeights);
    873         // branch-weight metadata is inconsistent here.
    874         if (SuccWeights.size() != 1 + BBCases.size())
    875           PredHasWeights = SuccHasWeights = false;
    876       } else if (PredHasWeights)
    877         SuccWeights.assign(1 + BBCases.size(), 1);
    878 
    879       if (PredDefault == BB) {
    880         // If this is the default destination from PTI, only the edges in TI
    881         // that don't occur in PTI, or that branch to BB will be activated.
    882         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
    883         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    884           if (PredCases[i].Dest != BB)
    885             PTIHandled.insert(PredCases[i].Value);
    886           else {
    887             // The default destination is BB, we don't need explicit targets.
    888             std::swap(PredCases[i], PredCases.back());
    889 
    890             if (PredHasWeights || SuccHasWeights) {
    891               // Increase weight for the default case.
    892               Weights[0] += Weights[i+1];
    893               std::swap(Weights[i+1], Weights.back());
    894               Weights.pop_back();
    895             }
    896 
    897             PredCases.pop_back();
    898             --i; --e;
    899           }
    900 
    901         // Reconstruct the new switch statement we will be building.
    902         if (PredDefault != BBDefault) {
    903           PredDefault->removePredecessor(Pred);
    904           PredDefault = BBDefault;
    905           NewSuccessors.push_back(BBDefault);
    906         }
    907 
    908         unsigned CasesFromPred = Weights.size();
    909         uint64_t ValidTotalSuccWeight = 0;
    910         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
    911           if (!PTIHandled.count(BBCases[i].Value) &&
    912               BBCases[i].Dest != BBDefault) {
    913             PredCases.push_back(BBCases[i]);
    914             NewSuccessors.push_back(BBCases[i].Dest);
    915             if (SuccHasWeights || PredHasWeights) {
    916               // The default weight is at index 0, so weight for the ith case
    917               // should be at index i+1. Scale the cases from successor by
    918               // PredDefaultWeight (Weights[0]).
    919               Weights.push_back(Weights[0] * SuccWeights[i+1]);
    920               ValidTotalSuccWeight += SuccWeights[i+1];
    921             }
    922           }
    923 
    924         if (SuccHasWeights || PredHasWeights) {
    925           ValidTotalSuccWeight += SuccWeights[0];
    926           // Scale the cases from predecessor by ValidTotalSuccWeight.
    927           for (unsigned i = 1; i < CasesFromPred; ++i)
    928             Weights[i] *= ValidTotalSuccWeight;
    929           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
    930           Weights[0] *= SuccWeights[0];
    931         }
    932       } else {
    933         // If this is not the default destination from PSI, only the edges
    934         // in SI that occur in PSI with a destination of BB will be
    935         // activated.
    936         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
    937         std::map<ConstantInt*, uint64_t> WeightsForHandled;
    938         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    939           if (PredCases[i].Dest == BB) {
    940             PTIHandled.insert(PredCases[i].Value);
    941 
    942             if (PredHasWeights || SuccHasWeights) {
    943               WeightsForHandled[PredCases[i].Value] = Weights[i+1];
    944               std::swap(Weights[i+1], Weights.back());
    945               Weights.pop_back();
    946             }
    947 
    948             std::swap(PredCases[i], PredCases.back());
    949             PredCases.pop_back();
    950             --i; --e;
    951           }
    952 
    953         // Okay, now we know which constants were sent to BB from the
    954         // predecessor.  Figure out where they will all go now.
    955         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
    956           if (PTIHandled.count(BBCases[i].Value)) {
    957             // If this is one we are capable of getting...
    958             if (PredHasWeights || SuccHasWeights)
    959               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
    960             PredCases.push_back(BBCases[i]);
    961             NewSuccessors.push_back(BBCases[i].Dest);
    962             PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
    963           }
    964 
    965         // If there are any constants vectored to BB that TI doesn't handle,
    966         // they must go to the default destination of TI.
    967         for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
    968                                     PTIHandled.begin(),
    969                E = PTIHandled.end(); I != E; ++I) {
    970           if (PredHasWeights || SuccHasWeights)
    971             Weights.push_back(WeightsForHandled[*I]);
    972           PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
    973           NewSuccessors.push_back(BBDefault);
    974         }
    975       }
    976 
    977       // Okay, at this point, we know which new successor Pred will get.  Make
    978       // sure we update the number of entries in the PHI nodes for these
    979       // successors.
    980       for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
    981         AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
    982 
    983       Builder.SetInsertPoint(PTI);
    984       // Convert pointer to int before we switch.
    985       if (CV->getType()->isPointerTy()) {
    986         assert(TD && "Cannot switch on pointer without DataLayout");
    987         CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()),
    988                                     "magicptr");
    989       }
    990 
    991       // Now that the successors are updated, create the new Switch instruction.
    992       SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
    993                                                PredCases.size());
    994       NewSI->setDebugLoc(PTI->getDebugLoc());
    995       for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    996         NewSI->addCase(PredCases[i].Value, PredCases[i].Dest);
    997 
    998       if (PredHasWeights || SuccHasWeights) {
    999         // Halve the weights if any of them cannot fit in an uint32_t
   1000         FitWeights(Weights);
   1001 
   1002         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
   1003 
   1004         NewSI->setMetadata(LLVMContext::MD_prof,
   1005                            MDBuilder(BB->getContext()).
   1006                            createBranchWeights(MDWeights));
   1007       }
   1008 
   1009       EraseTerminatorInstAndDCECond(PTI);
   1010 
   1011       // Okay, last check.  If BB is still a successor of PSI, then we must
   1012       // have an infinite loop case.  If so, add an infinitely looping block
   1013       // to handle the case to preserve the behavior of the code.
   1014       BasicBlock *InfLoopBlock = 0;
   1015       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
   1016         if (NewSI->getSuccessor(i) == BB) {
   1017           if (InfLoopBlock == 0) {
   1018             // Insert it at the end of the function, because it's either code,
   1019             // or it won't matter if it's hot. :)
   1020             InfLoopBlock = BasicBlock::Create(BB->getContext(),
   1021                                               "infloop", BB->getParent());
   1022             BranchInst::Create(InfLoopBlock, InfLoopBlock);
   1023           }
   1024           NewSI->setSuccessor(i, InfLoopBlock);
   1025         }
   1026 
   1027       Changed = true;
   1028     }
   1029   }
   1030   return Changed;
   1031 }
   1032 
   1033 // isSafeToHoistInvoke - If we would need to insert a select that uses the
   1034 // value of this invoke (comments in HoistThenElseCodeToIf explain why we
   1035 // would need to do this), we can't hoist the invoke, as there is nowhere
   1036 // to put the select in this case.
   1037 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
   1038                                 Instruction *I1, Instruction *I2) {
   1039   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
   1040     PHINode *PN;
   1041     for (BasicBlock::iterator BBI = SI->begin();
   1042          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
   1043       Value *BB1V = PN->getIncomingValueForBlock(BB1);
   1044       Value *BB2V = PN->getIncomingValueForBlock(BB2);
   1045       if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
   1046         return false;
   1047       }
   1048     }
   1049   }
   1050   return true;
   1051 }
   1052 
   1053 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
   1054 /// BB2, hoist any common code in the two blocks up into the branch block.  The
   1055 /// caller of this function guarantees that BI's block dominates BB1 and BB2.
   1056 static bool HoistThenElseCodeToIf(BranchInst *BI) {
   1057   // This does very trivial matching, with limited scanning, to find identical
   1058   // instructions in the two blocks.  In particular, we don't want to get into
   1059   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
   1060   // such, we currently just scan for obviously identical instructions in an
   1061   // identical order.
   1062   BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
   1063   BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
   1064 
   1065   BasicBlock::iterator BB1_Itr = BB1->begin();
   1066   BasicBlock::iterator BB2_Itr = BB2->begin();
   1067 
   1068   Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
   1069   // Skip debug info if it is not identical.
   1070   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
   1071   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
   1072   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
   1073     while (isa<DbgInfoIntrinsic>(I1))
   1074       I1 = BB1_Itr++;
   1075     while (isa<DbgInfoIntrinsic>(I2))
   1076       I2 = BB2_Itr++;
   1077   }
   1078   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
   1079       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
   1080     return false;
   1081 
   1082   // If we get here, we can hoist at least one instruction.
   1083   BasicBlock *BIParent = BI->getParent();
   1084 
   1085   do {
   1086     // If we are hoisting the terminator instruction, don't move one (making a
   1087     // broken BB), instead clone it, and remove BI.
   1088     if (isa<TerminatorInst>(I1))
   1089       goto HoistTerminator;
   1090 
   1091     // For a normal instruction, we just move one to right before the branch,
   1092     // then replace all uses of the other with the first.  Finally, we remove
   1093     // the now redundant second instruction.
   1094     BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
   1095     if (!I2->use_empty())
   1096       I2->replaceAllUsesWith(I1);
   1097     I1->intersectOptionalDataWith(I2);
   1098     I2->eraseFromParent();
   1099 
   1100     I1 = BB1_Itr++;
   1101     I2 = BB2_Itr++;
   1102     // Skip debug info if it is not identical.
   1103     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
   1104     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
   1105     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
   1106       while (isa<DbgInfoIntrinsic>(I1))
   1107         I1 = BB1_Itr++;
   1108       while (isa<DbgInfoIntrinsic>(I2))
   1109         I2 = BB2_Itr++;
   1110     }
   1111   } while (I1->isIdenticalToWhenDefined(I2));
   1112 
   1113   return true;
   1114 
   1115 HoistTerminator:
   1116   // It may not be possible to hoist an invoke.
   1117   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
   1118     return true;
   1119 
   1120   // Okay, it is safe to hoist the terminator.
   1121   Instruction *NT = I1->clone();
   1122   BIParent->getInstList().insert(BI, NT);
   1123   if (!NT->getType()->isVoidTy()) {
   1124     I1->replaceAllUsesWith(NT);
   1125     I2->replaceAllUsesWith(NT);
   1126     NT->takeName(I1);
   1127   }
   1128 
   1129   IRBuilder<true, NoFolder> Builder(NT);
   1130   // Hoisting one of the terminators from our successor is a great thing.
   1131   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
   1132   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
   1133   // nodes, so we insert select instruction to compute the final result.
   1134   std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
   1135   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
   1136     PHINode *PN;
   1137     for (BasicBlock::iterator BBI = SI->begin();
   1138          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
   1139       Value *BB1V = PN->getIncomingValueForBlock(BB1);
   1140       Value *BB2V = PN->getIncomingValueForBlock(BB2);
   1141       if (BB1V == BB2V) continue;
   1142 
   1143       // These values do not agree.  Insert a select instruction before NT
   1144       // that determines the right value.
   1145       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
   1146       if (SI == 0)
   1147         SI = cast<SelectInst>
   1148           (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
   1149                                 BB1V->getName()+"."+BB2V->getName()));
   1150 
   1151       // Make the PHI node use the select for all incoming values for BB1/BB2
   1152       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   1153         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
   1154           PN->setIncomingValue(i, SI);
   1155     }
   1156   }
   1157 
   1158   // Update any PHI nodes in our new successors.
   1159   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
   1160     AddPredecessorToBlock(*SI, BIParent, BB1);
   1161 
   1162   EraseTerminatorInstAndDCECond(BI);
   1163   return true;
   1164 }
   1165 
   1166 /// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd,
   1167 /// check whether BBEnd has only two predecessors and the other predecessor
   1168 /// ends with an unconditional branch. If it is true, sink any common code
   1169 /// in the two predecessors to BBEnd.
   1170 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
   1171   assert(BI1->isUnconditional());
   1172   BasicBlock *BB1 = BI1->getParent();
   1173   BasicBlock *BBEnd = BI1->getSuccessor(0);
   1174 
   1175   // Check that BBEnd has two predecessors and the other predecessor ends with
   1176   // an unconditional branch.
   1177   pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
   1178   BasicBlock *Pred0 = *PI++;
   1179   if (PI == PE) // Only one predecessor.
   1180     return false;
   1181   BasicBlock *Pred1 = *PI++;
   1182   if (PI != PE) // More than two predecessors.
   1183     return false;
   1184   BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
   1185   BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
   1186   if (!BI2 || !BI2->isUnconditional())
   1187     return false;
   1188 
   1189   // Gather the PHI nodes in BBEnd.
   1190   std::map<Value*, std::pair<Value*, PHINode*> > MapValueFromBB1ToBB2;
   1191   Instruction *FirstNonPhiInBBEnd = 0;
   1192   for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end();
   1193        I != E; ++I) {
   1194     if (PHINode *PN = dyn_cast<PHINode>(I)) {
   1195       Value *BB1V = PN->getIncomingValueForBlock(BB1);
   1196       Value *BB2V = PN->getIncomingValueForBlock(BB2);
   1197       MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN);
   1198     } else {
   1199       FirstNonPhiInBBEnd = &*I;
   1200       break;
   1201     }
   1202   }
   1203   if (!FirstNonPhiInBBEnd)
   1204     return false;
   1205 
   1206 
   1207   // This does very trivial matching, with limited scanning, to find identical
   1208   // instructions in the two blocks.  We scan backward for obviously identical
   1209   // instructions in an identical order.
   1210   BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
   1211       RE1 = BB1->getInstList().rend(), RI2 = BB2->getInstList().rbegin(),
   1212       RE2 = BB2->getInstList().rend();
   1213   // Skip debug info.
   1214   while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
   1215   if (RI1 == RE1)
   1216     return false;
   1217   while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
   1218   if (RI2 == RE2)
   1219     return false;
   1220   // Skip the unconditional branches.
   1221   ++RI1;
   1222   ++RI2;
   1223 
   1224   bool Changed = false;
   1225   while (RI1 != RE1 && RI2 != RE2) {
   1226     // Skip debug info.
   1227     while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
   1228     if (RI1 == RE1)
   1229       return Changed;
   1230     while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
   1231     if (RI2 == RE2)
   1232       return Changed;
   1233 
   1234     Instruction *I1 = &*RI1, *I2 = &*RI2;
   1235     // I1 and I2 should have a single use in the same PHI node, and they
   1236     // perform the same operation.
   1237     // Cannot move control-flow-involving, volatile loads, vaarg, etc.
   1238     if (isa<PHINode>(I1) || isa<PHINode>(I2) ||
   1239         isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) ||
   1240         isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) ||
   1241         isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
   1242         I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
   1243         I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
   1244         !I1->hasOneUse() || !I2->hasOneUse() ||
   1245         MapValueFromBB1ToBB2.find(I1) == MapValueFromBB1ToBB2.end() ||
   1246         MapValueFromBB1ToBB2[I1].first != I2)
   1247       return Changed;
   1248 
   1249     // Check whether we should swap the operands of ICmpInst.
   1250     ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
   1251     bool SwapOpnds = false;
   1252     if (ICmp1 && ICmp2 &&
   1253         ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
   1254         ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
   1255         (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
   1256          ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
   1257       ICmp2->swapOperands();
   1258       SwapOpnds = true;
   1259     }
   1260     if (!I1->isSameOperationAs(I2)) {
   1261       if (SwapOpnds)
   1262         ICmp2->swapOperands();
   1263       return Changed;
   1264     }
   1265 
   1266     // The operands should be either the same or they need to be generated
   1267     // with a PHI node after sinking. We only handle the case where there is
   1268     // a single pair of different operands.
   1269     Value *DifferentOp1 = 0, *DifferentOp2 = 0;
   1270     unsigned Op1Idx = 0;
   1271     for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
   1272       if (I1->getOperand(I) == I2->getOperand(I))
   1273         continue;
   1274       // Early exit if we have more-than one pair of different operands or
   1275       // the different operand is already in MapValueFromBB1ToBB2.
   1276       // Early exit if we need a PHI node to replace a constant.
   1277       if (DifferentOp1 ||
   1278           MapValueFromBB1ToBB2.find(I1->getOperand(I)) !=
   1279           MapValueFromBB1ToBB2.end() ||
   1280           isa<Constant>(I1->getOperand(I)) ||
   1281           isa<Constant>(I2->getOperand(I))) {
   1282         // If we can't sink the instructions, undo the swapping.
   1283         if (SwapOpnds)
   1284           ICmp2->swapOperands();
   1285         return Changed;
   1286       }
   1287       DifferentOp1 = I1->getOperand(I);
   1288       Op1Idx = I;
   1289       DifferentOp2 = I2->getOperand(I);
   1290     }
   1291 
   1292     // We insert the pair of different operands to MapValueFromBB1ToBB2 and
   1293     // remove (I1, I2) from MapValueFromBB1ToBB2.
   1294     if (DifferentOp1) {
   1295       PHINode *NewPN = PHINode::Create(DifferentOp1->getType(), 2,
   1296                                        DifferentOp1->getName() + ".sink",
   1297                                        BBEnd->begin());
   1298       MapValueFromBB1ToBB2[DifferentOp1] = std::make_pair(DifferentOp2, NewPN);
   1299       // I1 should use NewPN instead of DifferentOp1.
   1300       I1->setOperand(Op1Idx, NewPN);
   1301       NewPN->addIncoming(DifferentOp1, BB1);
   1302       NewPN->addIncoming(DifferentOp2, BB2);
   1303       DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
   1304     }
   1305     PHINode *OldPN = MapValueFromBB1ToBB2[I1].second;
   1306     MapValueFromBB1ToBB2.erase(I1);
   1307 
   1308     DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n";);
   1309     DEBUG(dbgs() << "                         " << *I2 << "\n";);
   1310     // We need to update RE1 and RE2 if we are going to sink the first
   1311     // instruction in the basic block down.
   1312     bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin());
   1313     // Sink the instruction.
   1314     BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1);
   1315     if (!OldPN->use_empty())
   1316       OldPN->replaceAllUsesWith(I1);
   1317     OldPN->eraseFromParent();
   1318 
   1319     if (!I2->use_empty())
   1320       I2->replaceAllUsesWith(I1);
   1321     I1->intersectOptionalDataWith(I2);
   1322     I2->eraseFromParent();
   1323 
   1324     if (UpdateRE1)
   1325       RE1 = BB1->getInstList().rend();
   1326     if (UpdateRE2)
   1327       RE2 = BB2->getInstList().rend();
   1328     FirstNonPhiInBBEnd = I1;
   1329     NumSinkCommons++;
   1330     Changed = true;
   1331   }
   1332   return Changed;
   1333 }
   1334 
   1335 /// \brief Speculate a conditional basic block flattening the CFG.
   1336 ///
   1337 /// Note that this is a very risky transform currently. Speculating
   1338 /// instructions like this is most often not desirable. Instead, there is an MI
   1339 /// pass which can do it with full awareness of the resource constraints.
   1340 /// However, some cases are "obvious" and we should do directly. An example of
   1341 /// this is speculating a single, reasonably cheap instruction.
   1342 ///
   1343 /// There is only one distinct advantage to flattening the CFG at the IR level:
   1344 /// it makes very common but simplistic optimizations such as are common in
   1345 /// instcombine and the DAG combiner more powerful by removing CFG edges and
   1346 /// modeling their effects with easier to reason about SSA value graphs.
   1347 ///
   1348 ///
   1349 /// An illustration of this transform is turning this IR:
   1350 /// \code
   1351 ///   BB:
   1352 ///     %cmp = icmp ult %x, %y
   1353 ///     br i1 %cmp, label %EndBB, label %ThenBB
   1354 ///   ThenBB:
   1355 ///     %sub = sub %x, %y
   1356 ///     br label BB2
   1357 ///   EndBB:
   1358 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
   1359 ///     ...
   1360 /// \endcode
   1361 ///
   1362 /// Into this IR:
   1363 /// \code
   1364 ///   BB:
   1365 ///     %cmp = icmp ult %x, %y
   1366 ///     %sub = sub %x, %y
   1367 ///     %cond = select i1 %cmp, 0, %sub
   1368 ///     ...
   1369 /// \endcode
   1370 ///
   1371 /// \returns true if the conditional block is removed.
   1372 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB) {
   1373   // Be conservative for now. FP select instruction can often be expensive.
   1374   Value *BrCond = BI->getCondition();
   1375   if (isa<FCmpInst>(BrCond))
   1376     return false;
   1377 
   1378   BasicBlock *BB = BI->getParent();
   1379   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
   1380 
   1381   // If ThenBB is actually on the false edge of the conditional branch, remember
   1382   // to swap the select operands later.
   1383   bool Invert = false;
   1384   if (ThenBB != BI->getSuccessor(0)) {
   1385     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
   1386     Invert = true;
   1387   }
   1388   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
   1389 
   1390   // Keep a count of how many times instructions are used within CondBB when
   1391   // they are candidates for sinking into CondBB. Specifically:
   1392   // - They are defined in BB, and
   1393   // - They have no side effects, and
   1394   // - All of their uses are in CondBB.
   1395   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
   1396 
   1397   unsigned SpeculationCost = 0;
   1398   for (BasicBlock::iterator BBI = ThenBB->begin(),
   1399                             BBE = llvm::prior(ThenBB->end());
   1400        BBI != BBE; ++BBI) {
   1401     Instruction *I = BBI;
   1402     // Skip debug info.
   1403     if (isa<DbgInfoIntrinsic>(I))
   1404       continue;
   1405 
   1406     // Only speculatively execution a single instruction (not counting the
   1407     // terminator) for now.
   1408     ++SpeculationCost;
   1409     if (SpeculationCost > 1)
   1410       return false;
   1411 
   1412     // Don't hoist the instruction if it's unsafe or expensive.
   1413     if (!isSafeToSpeculativelyExecute(I))
   1414       return false;
   1415     if (ComputeSpeculationCost(I) > PHINodeFoldingThreshold)
   1416       return false;
   1417 
   1418     // Do not hoist the instruction if any of its operands are defined but not
   1419     // used in this BB. The transformation will prevent the operand from
   1420     // being sunk into the use block.
   1421     for (User::op_iterator i = I->op_begin(), e = I->op_end();
   1422          i != e; ++i) {
   1423       Instruction *OpI = dyn_cast<Instruction>(*i);
   1424       if (!OpI || OpI->getParent() != BB ||
   1425           OpI->mayHaveSideEffects())
   1426         continue; // Not a candidate for sinking.
   1427 
   1428       ++SinkCandidateUseCounts[OpI];
   1429     }
   1430   }
   1431 
   1432   // Consider any sink candidates which are only used in CondBB as costs for
   1433   // speculation. Note, while we iterate over a DenseMap here, we are summing
   1434   // and so iteration order isn't significant.
   1435   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I =
   1436            SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end();
   1437        I != E; ++I)
   1438     if (I->first->getNumUses() == I->second) {
   1439       ++SpeculationCost;
   1440       if (SpeculationCost > 1)
   1441         return false;
   1442     }
   1443 
   1444   // Check that the PHI nodes can be converted to selects.
   1445   bool HaveRewritablePHIs = false;
   1446   for (BasicBlock::iterator I = EndBB->begin();
   1447        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   1448     Value *OrigV = PN->getIncomingValueForBlock(BB);
   1449     Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
   1450 
   1451     // Skip PHIs which are trivial.
   1452     if (ThenV == OrigV)
   1453       continue;
   1454 
   1455     HaveRewritablePHIs = true;
   1456     ConstantExpr *CE = dyn_cast<ConstantExpr>(ThenV);
   1457     if (!CE)
   1458       continue; // Known safe and cheap.
   1459 
   1460     if (!isSafeToSpeculativelyExecute(CE))
   1461       return false;
   1462     if (ComputeSpeculationCost(CE) > PHINodeFoldingThreshold)
   1463       return false;
   1464 
   1465     // Account for the cost of an unfolded ConstantExpr which could end up
   1466     // getting expanded into Instructions.
   1467     // FIXME: This doesn't account for how many operations are combined in the
   1468     // constant expression.
   1469     ++SpeculationCost;
   1470     if (SpeculationCost > 1)
   1471       return false;
   1472   }
   1473 
   1474   // If there are no PHIs to process, bail early. This helps ensure idempotence
   1475   // as well.
   1476   if (!HaveRewritablePHIs)
   1477     return false;
   1478 
   1479   // If we get here, we can hoist the instruction and if-convert.
   1480   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
   1481 
   1482   // Hoist the instructions.
   1483   BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(),
   1484                            llvm::prior(ThenBB->end()));
   1485 
   1486   // Insert selects and rewrite the PHI operands.
   1487   IRBuilder<true, NoFolder> Builder(BI);
   1488   for (BasicBlock::iterator I = EndBB->begin();
   1489        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   1490     unsigned OrigI = PN->getBasicBlockIndex(BB);
   1491     unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
   1492     Value *OrigV = PN->getIncomingValue(OrigI);
   1493     Value *ThenV = PN->getIncomingValue(ThenI);
   1494 
   1495     // Skip PHIs which are trivial.
   1496     if (OrigV == ThenV)
   1497       continue;
   1498 
   1499     // Create a select whose true value is the speculatively executed value and
   1500     // false value is the preexisting value. Swap them if the branch
   1501     // destinations were inverted.
   1502     Value *TrueV = ThenV, *FalseV = OrigV;
   1503     if (Invert)
   1504       std::swap(TrueV, FalseV);
   1505     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV,
   1506                                     TrueV->getName() + "." + FalseV->getName());
   1507     PN->setIncomingValue(OrigI, V);
   1508     PN->setIncomingValue(ThenI, V);
   1509   }
   1510 
   1511   ++NumSpeculations;
   1512   return true;
   1513 }
   1514 
   1515 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
   1516 /// across this block.
   1517 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
   1518   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
   1519   unsigned Size = 0;
   1520 
   1521   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
   1522     if (isa<DbgInfoIntrinsic>(BBI))
   1523       continue;
   1524     if (Size > 10) return false;  // Don't clone large BB's.
   1525     ++Size;
   1526 
   1527     // We can only support instructions that do not define values that are
   1528     // live outside of the current basic block.
   1529     for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
   1530          UI != E; ++UI) {
   1531       Instruction *U = cast<Instruction>(*UI);
   1532       if (U->getParent() != BB || isa<PHINode>(U)) return false;
   1533     }
   1534 
   1535     // Looks ok, continue checking.
   1536   }
   1537 
   1538   return true;
   1539 }
   1540 
   1541 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
   1542 /// that is defined in the same block as the branch and if any PHI entries are
   1543 /// constants, thread edges corresponding to that entry to be branches to their
   1544 /// ultimate destination.
   1545 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *TD) {
   1546   BasicBlock *BB = BI->getParent();
   1547   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
   1548   // NOTE: we currently cannot transform this case if the PHI node is used
   1549   // outside of the block.
   1550   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
   1551     return false;
   1552 
   1553   // Degenerate case of a single entry PHI.
   1554   if (PN->getNumIncomingValues() == 1) {
   1555     FoldSingleEntryPHINodes(PN->getParent());
   1556     return true;
   1557   }
   1558 
   1559   // Now we know that this block has multiple preds and two succs.
   1560   if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
   1561 
   1562   // Okay, this is a simple enough basic block.  See if any phi values are
   1563   // constants.
   1564   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1565     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
   1566     if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
   1567 
   1568     // Okay, we now know that all edges from PredBB should be revectored to
   1569     // branch to RealDest.
   1570     BasicBlock *PredBB = PN->getIncomingBlock(i);
   1571     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
   1572 
   1573     if (RealDest == BB) continue;  // Skip self loops.
   1574     // Skip if the predecessor's terminator is an indirect branch.
   1575     if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
   1576 
   1577     // The dest block might have PHI nodes, other predecessors and other
   1578     // difficult cases.  Instead of being smart about this, just insert a new
   1579     // block that jumps to the destination block, effectively splitting
   1580     // the edge we are about to create.
   1581     BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
   1582                                             RealDest->getName()+".critedge",
   1583                                             RealDest->getParent(), RealDest);
   1584     BranchInst::Create(RealDest, EdgeBB);
   1585 
   1586     // Update PHI nodes.
   1587     AddPredecessorToBlock(RealDest, EdgeBB, BB);
   1588 
   1589     // BB may have instructions that are being threaded over.  Clone these
   1590     // instructions into EdgeBB.  We know that there will be no uses of the
   1591     // cloned instructions outside of EdgeBB.
   1592     BasicBlock::iterator InsertPt = EdgeBB->begin();
   1593     DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
   1594     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
   1595       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
   1596         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
   1597         continue;
   1598       }
   1599       // Clone the instruction.
   1600       Instruction *N = BBI->clone();
   1601       if (BBI->hasName()) N->setName(BBI->getName()+".c");
   1602 
   1603       // Update operands due to translation.
   1604       for (User::op_iterator i = N->op_begin(), e = N->op_end();
   1605            i != e; ++i) {
   1606         DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
   1607         if (PI != TranslateMap.end())
   1608           *i = PI->second;
   1609       }
   1610 
   1611       // Check for trivial simplification.
   1612       if (Value *V = SimplifyInstruction(N, TD)) {
   1613         TranslateMap[BBI] = V;
   1614         delete N;   // Instruction folded away, don't need actual inst
   1615       } else {
   1616         // Insert the new instruction into its new home.
   1617         EdgeBB->getInstList().insert(InsertPt, N);
   1618         if (!BBI->use_empty())
   1619           TranslateMap[BBI] = N;
   1620       }
   1621     }
   1622 
   1623     // Loop over all of the edges from PredBB to BB, changing them to branch
   1624     // to EdgeBB instead.
   1625     TerminatorInst *PredBBTI = PredBB->getTerminator();
   1626     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
   1627       if (PredBBTI->getSuccessor(i) == BB) {
   1628         BB->removePredecessor(PredBB);
   1629         PredBBTI->setSuccessor(i, EdgeBB);
   1630       }
   1631 
   1632     // Recurse, simplifying any other constants.
   1633     return FoldCondBranchOnPHI(BI, TD) | true;
   1634   }
   1635 
   1636   return false;
   1637 }
   1638 
   1639 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
   1640 /// PHI node, see if we can eliminate it.
   1641 static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *TD) {
   1642   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
   1643   // statement", which has a very simple dominance structure.  Basically, we
   1644   // are trying to find the condition that is being branched on, which
   1645   // subsequently causes this merge to happen.  We really want control
   1646   // dependence information for this check, but simplifycfg can't keep it up
   1647   // to date, and this catches most of the cases we care about anyway.
   1648   BasicBlock *BB = PN->getParent();
   1649   BasicBlock *IfTrue, *IfFalse;
   1650   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
   1651   if (!IfCond ||
   1652       // Don't bother if the branch will be constant folded trivially.
   1653       isa<ConstantInt>(IfCond))
   1654     return false;
   1655 
   1656   // Okay, we found that we can merge this two-entry phi node into a select.
   1657   // Doing so would require us to fold *all* two entry phi nodes in this block.
   1658   // At some point this becomes non-profitable (particularly if the target
   1659   // doesn't support cmov's).  Only do this transformation if there are two or
   1660   // fewer PHI nodes in this block.
   1661   unsigned NumPhis = 0;
   1662   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
   1663     if (NumPhis > 2)
   1664       return false;
   1665 
   1666   // Loop over the PHI's seeing if we can promote them all to select
   1667   // instructions.  While we are at it, keep track of the instructions
   1668   // that need to be moved to the dominating block.
   1669   SmallPtrSet<Instruction*, 4> AggressiveInsts;
   1670   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
   1671            MaxCostVal1 = PHINodeFoldingThreshold;
   1672 
   1673   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
   1674     PHINode *PN = cast<PHINode>(II++);
   1675     if (Value *V = SimplifyInstruction(PN, TD)) {
   1676       PN->replaceAllUsesWith(V);
   1677       PN->eraseFromParent();
   1678       continue;
   1679     }
   1680 
   1681     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
   1682                              MaxCostVal0) ||
   1683         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
   1684                              MaxCostVal1))
   1685       return false;
   1686   }
   1687 
   1688   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
   1689   // we ran out of PHIs then we simplified them all.
   1690   PN = dyn_cast<PHINode>(BB->begin());
   1691   if (PN == 0) return true;
   1692 
   1693   // Don't fold i1 branches on PHIs which contain binary operators.  These can
   1694   // often be turned into switches and other things.
   1695   if (PN->getType()->isIntegerTy(1) &&
   1696       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
   1697        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
   1698        isa<BinaryOperator>(IfCond)))
   1699     return false;
   1700 
   1701   // If we all PHI nodes are promotable, check to make sure that all
   1702   // instructions in the predecessor blocks can be promoted as well.  If
   1703   // not, we won't be able to get rid of the control flow, so it's not
   1704   // worth promoting to select instructions.
   1705   BasicBlock *DomBlock = 0;
   1706   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
   1707   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
   1708   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
   1709     IfBlock1 = 0;
   1710   } else {
   1711     DomBlock = *pred_begin(IfBlock1);
   1712     for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
   1713       if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
   1714         // This is not an aggressive instruction that we can promote.
   1715         // Because of this, we won't be able to get rid of the control
   1716         // flow, so the xform is not worth it.
   1717         return false;
   1718       }
   1719   }
   1720 
   1721   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
   1722     IfBlock2 = 0;
   1723   } else {
   1724     DomBlock = *pred_begin(IfBlock2);
   1725     for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
   1726       if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
   1727         // This is not an aggressive instruction that we can promote.
   1728         // Because of this, we won't be able to get rid of the control
   1729         // flow, so the xform is not worth it.
   1730         return false;
   1731       }
   1732   }
   1733 
   1734   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
   1735                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
   1736 
   1737   // If we can still promote the PHI nodes after this gauntlet of tests,
   1738   // do all of the PHI's now.
   1739   Instruction *InsertPt = DomBlock->getTerminator();
   1740   IRBuilder<true, NoFolder> Builder(InsertPt);
   1741 
   1742   // Move all 'aggressive' instructions, which are defined in the
   1743   // conditional parts of the if's up to the dominating block.
   1744   if (IfBlock1)
   1745     DomBlock->getInstList().splice(InsertPt,
   1746                                    IfBlock1->getInstList(), IfBlock1->begin(),
   1747                                    IfBlock1->getTerminator());
   1748   if (IfBlock2)
   1749     DomBlock->getInstList().splice(InsertPt,
   1750                                    IfBlock2->getInstList(), IfBlock2->begin(),
   1751                                    IfBlock2->getTerminator());
   1752 
   1753   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
   1754     // Change the PHI node into a select instruction.
   1755     Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
   1756     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
   1757 
   1758     SelectInst *NV =
   1759       cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
   1760     PN->replaceAllUsesWith(NV);
   1761     NV->takeName(PN);
   1762     PN->eraseFromParent();
   1763   }
   1764 
   1765   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
   1766   // has been flattened.  Change DomBlock to jump directly to our new block to
   1767   // avoid other simplifycfg's kicking in on the diamond.
   1768   TerminatorInst *OldTI = DomBlock->getTerminator();
   1769   Builder.SetInsertPoint(OldTI);
   1770   Builder.CreateBr(BB);
   1771   OldTI->eraseFromParent();
   1772   return true;
   1773 }
   1774 
   1775 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
   1776 /// to two returning blocks, try to merge them together into one return,
   1777 /// introducing a select if the return values disagree.
   1778 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
   1779                                            IRBuilder<> &Builder) {
   1780   assert(BI->isConditional() && "Must be a conditional branch");
   1781   BasicBlock *TrueSucc = BI->getSuccessor(0);
   1782   BasicBlock *FalseSucc = BI->getSuccessor(1);
   1783   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
   1784   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
   1785 
   1786   // Check to ensure both blocks are empty (just a return) or optionally empty
   1787   // with PHI nodes.  If there are other instructions, merging would cause extra
   1788   // computation on one path or the other.
   1789   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
   1790     return false;
   1791   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
   1792     return false;
   1793 
   1794   Builder.SetInsertPoint(BI);
   1795   // Okay, we found a branch that is going to two return nodes.  If
   1796   // there is no return value for this function, just change the
   1797   // branch into a return.
   1798   if (FalseRet->getNumOperands() == 0) {
   1799     TrueSucc->removePredecessor(BI->getParent());
   1800     FalseSucc->removePredecessor(BI->getParent());
   1801     Builder.CreateRetVoid();
   1802     EraseTerminatorInstAndDCECond(BI);
   1803     return true;
   1804   }
   1805 
   1806   // Otherwise, figure out what the true and false return values are
   1807   // so we can insert a new select instruction.
   1808   Value *TrueValue = TrueRet->getReturnValue();
   1809   Value *FalseValue = FalseRet->getReturnValue();
   1810 
   1811   // Unwrap any PHI nodes in the return blocks.
   1812   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
   1813     if (TVPN->getParent() == TrueSucc)
   1814       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
   1815   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
   1816     if (FVPN->getParent() == FalseSucc)
   1817       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
   1818 
   1819   // In order for this transformation to be safe, we must be able to
   1820   // unconditionally execute both operands to the return.  This is
   1821   // normally the case, but we could have a potentially-trapping
   1822   // constant expression that prevents this transformation from being
   1823   // safe.
   1824   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
   1825     if (TCV->canTrap())
   1826       return false;
   1827   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
   1828     if (FCV->canTrap())
   1829       return false;
   1830 
   1831   // Okay, we collected all the mapped values and checked them for sanity, and
   1832   // defined to really do this transformation.  First, update the CFG.
   1833   TrueSucc->removePredecessor(BI->getParent());
   1834   FalseSucc->removePredecessor(BI->getParent());
   1835 
   1836   // Insert select instructions where needed.
   1837   Value *BrCond = BI->getCondition();
   1838   if (TrueValue) {
   1839     // Insert a select if the results differ.
   1840     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
   1841     } else if (isa<UndefValue>(TrueValue)) {
   1842       TrueValue = FalseValue;
   1843     } else {
   1844       TrueValue = Builder.CreateSelect(BrCond, TrueValue,
   1845                                        FalseValue, "retval");
   1846     }
   1847   }
   1848 
   1849   Value *RI = !TrueValue ?
   1850     Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
   1851 
   1852   (void) RI;
   1853 
   1854   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
   1855                << "\n  " << *BI << "NewRet = " << *RI
   1856                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
   1857 
   1858   EraseTerminatorInstAndDCECond(BI);
   1859 
   1860   return true;
   1861 }
   1862 
   1863 /// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the
   1864 /// probabilities of the branch taking each edge. Fills in the two APInt
   1865 /// parameters and return true, or returns false if no or invalid metadata was
   1866 /// found.
   1867 static bool ExtractBranchMetadata(BranchInst *BI,
   1868                                   uint64_t &ProbTrue, uint64_t &ProbFalse) {
   1869   assert(BI->isConditional() &&
   1870          "Looking for probabilities on unconditional branch?");
   1871   MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
   1872   if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
   1873   ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1));
   1874   ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2));
   1875   if (!CITrue || !CIFalse) return false;
   1876   ProbTrue = CITrue->getValue().getZExtValue();
   1877   ProbFalse = CIFalse->getValue().getZExtValue();
   1878   return true;
   1879 }
   1880 
   1881 /// checkCSEInPredecessor - Return true if the given instruction is available
   1882 /// in its predecessor block. If yes, the instruction will be removed.
   1883 ///
   1884 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
   1885   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
   1886     return false;
   1887   for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
   1888     Instruction *PBI = &*I;
   1889     // Check whether Inst and PBI generate the same value.
   1890     if (Inst->isIdenticalTo(PBI)) {
   1891       Inst->replaceAllUsesWith(PBI);
   1892       Inst->eraseFromParent();
   1893       return true;
   1894     }
   1895   }
   1896   return false;
   1897 }
   1898 
   1899 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a
   1900 /// predecessor branches to us and one of our successors, fold the block into
   1901 /// the predecessor and use logical operations to pick the right destination.
   1902 bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
   1903   BasicBlock *BB = BI->getParent();
   1904 
   1905   Instruction *Cond = 0;
   1906   if (BI->isConditional())
   1907     Cond = dyn_cast<Instruction>(BI->getCondition());
   1908   else {
   1909     // For unconditional branch, check for a simple CFG pattern, where
   1910     // BB has a single predecessor and BB's successor is also its predecessor's
   1911     // successor. If such pattern exisits, check for CSE between BB and its
   1912     // predecessor.
   1913     if (BasicBlock *PB = BB->getSinglePredecessor())
   1914       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
   1915         if (PBI->isConditional() &&
   1916             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
   1917              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
   1918           for (BasicBlock::iterator I = BB->begin(), E = BB->end();
   1919                I != E; ) {
   1920             Instruction *Curr = I++;
   1921             if (isa<CmpInst>(Curr)) {
   1922               Cond = Curr;
   1923               break;
   1924             }
   1925             // Quit if we can't remove this instruction.
   1926             if (!checkCSEInPredecessor(Curr, PB))
   1927               return false;
   1928           }
   1929         }
   1930 
   1931     if (Cond == 0)
   1932       return false;
   1933   }
   1934 
   1935   if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
   1936     Cond->getParent() != BB || !Cond->hasOneUse())
   1937   return false;
   1938 
   1939   // Only allow this if the condition is a simple instruction that can be
   1940   // executed unconditionally.  It must be in the same block as the branch, and
   1941   // must be at the front of the block.
   1942   BasicBlock::iterator FrontIt = BB->front();
   1943 
   1944   // Ignore dbg intrinsics.
   1945   while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
   1946 
   1947   // Allow a single instruction to be hoisted in addition to the compare
   1948   // that feeds the branch.  We later ensure that any values that _it_ uses
   1949   // were also live in the predecessor, so that we don't unnecessarily create
   1950   // register pressure or inhibit out-of-order execution.
   1951   Instruction *BonusInst = 0;
   1952   if (&*FrontIt != Cond &&
   1953       FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
   1954       isSafeToSpeculativelyExecute(FrontIt)) {
   1955     BonusInst = &*FrontIt;
   1956     ++FrontIt;
   1957 
   1958     // Ignore dbg intrinsics.
   1959     while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
   1960   }
   1961 
   1962   // Only a single bonus inst is allowed.
   1963   if (&*FrontIt != Cond)
   1964     return false;
   1965 
   1966   // Make sure the instruction after the condition is the cond branch.
   1967   BasicBlock::iterator CondIt = Cond; ++CondIt;
   1968 
   1969   // Ingore dbg intrinsics.
   1970   while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
   1971 
   1972   if (&*CondIt != BI)
   1973     return false;
   1974 
   1975   // Cond is known to be a compare or binary operator.  Check to make sure that
   1976   // neither operand is a potentially-trapping constant expression.
   1977   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
   1978     if (CE->canTrap())
   1979       return false;
   1980   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
   1981     if (CE->canTrap())
   1982       return false;
   1983 
   1984   // Finally, don't infinitely unroll conditional loops.
   1985   BasicBlock *TrueDest  = BI->getSuccessor(0);
   1986   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : 0;
   1987   if (TrueDest == BB || FalseDest == BB)
   1988     return false;
   1989 
   1990   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
   1991     BasicBlock *PredBlock = *PI;
   1992     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
   1993 
   1994     // Check that we have two conditional branches.  If there is a PHI node in
   1995     // the common successor, verify that the same value flows in from both
   1996     // blocks.
   1997     SmallVector<PHINode*, 4> PHIs;
   1998     if (PBI == 0 || PBI->isUnconditional() ||
   1999         (BI->isConditional() &&
   2000          !SafeToMergeTerminators(BI, PBI)) ||
   2001         (!BI->isConditional() &&
   2002          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
   2003       continue;
   2004 
   2005     // Determine if the two branches share a common destination.
   2006     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
   2007     bool InvertPredCond = false;
   2008 
   2009     if (BI->isConditional()) {
   2010       if (PBI->getSuccessor(0) == TrueDest)
   2011         Opc = Instruction::Or;
   2012       else if (PBI->getSuccessor(1) == FalseDest)
   2013         Opc = Instruction::And;
   2014       else if (PBI->getSuccessor(0) == FalseDest)
   2015         Opc = Instruction::And, InvertPredCond = true;
   2016       else if (PBI->getSuccessor(1) == TrueDest)
   2017         Opc = Instruction::Or, InvertPredCond = true;
   2018       else
   2019         continue;
   2020     } else {
   2021       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
   2022         continue;
   2023     }
   2024 
   2025     // Ensure that any values used in the bonus instruction are also used
   2026     // by the terminator of the predecessor.  This means that those values
   2027     // must already have been resolved, so we won't be inhibiting the
   2028     // out-of-order core by speculating them earlier.
   2029     if (BonusInst) {
   2030       // Collect the values used by the bonus inst
   2031       SmallPtrSet<Value*, 4> UsedValues;
   2032       for (Instruction::op_iterator OI = BonusInst->op_begin(),
   2033            OE = BonusInst->op_end(); OI != OE; ++OI) {
   2034         Value *V = *OI;
   2035         if (!isa<Constant>(V))
   2036           UsedValues.insert(V);
   2037       }
   2038 
   2039       SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
   2040       Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
   2041 
   2042       // Walk up to four levels back up the use-def chain of the predecessor's
   2043       // terminator to see if all those values were used.  The choice of four
   2044       // levels is arbitrary, to provide a compile-time-cost bound.
   2045       while (!Worklist.empty()) {
   2046         std::pair<Value*, unsigned> Pair = Worklist.back();
   2047         Worklist.pop_back();
   2048 
   2049         if (Pair.second >= 4) continue;
   2050         UsedValues.erase(Pair.first);
   2051         if (UsedValues.empty()) break;
   2052 
   2053         if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
   2054           for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
   2055                OI != OE; ++OI)
   2056             Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
   2057         }
   2058       }
   2059 
   2060       if (!UsedValues.empty()) return false;
   2061     }
   2062 
   2063     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
   2064     IRBuilder<> Builder(PBI);
   2065 
   2066     // If we need to invert the condition in the pred block to match, do so now.
   2067     if (InvertPredCond) {
   2068       Value *NewCond = PBI->getCondition();
   2069 
   2070       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
   2071         CmpInst *CI = cast<CmpInst>(NewCond);
   2072         CI->setPredicate(CI->getInversePredicate());
   2073       } else {
   2074         NewCond = Builder.CreateNot(NewCond,
   2075                                     PBI->getCondition()->getName()+".not");
   2076       }
   2077 
   2078       PBI->setCondition(NewCond);
   2079       PBI->swapSuccessors();
   2080     }
   2081 
   2082     // If we have a bonus inst, clone it into the predecessor block.
   2083     Instruction *NewBonus = 0;
   2084     if (BonusInst) {
   2085       NewBonus = BonusInst->clone();
   2086       PredBlock->getInstList().insert(PBI, NewBonus);
   2087       NewBonus->takeName(BonusInst);
   2088       BonusInst->setName(BonusInst->getName()+".old");
   2089     }
   2090 
   2091     // Clone Cond into the predecessor basic block, and or/and the
   2092     // two conditions together.
   2093     Instruction *New = Cond->clone();
   2094     if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
   2095     PredBlock->getInstList().insert(PBI, New);
   2096     New->takeName(Cond);
   2097     Cond->setName(New->getName()+".old");
   2098 
   2099     if (BI->isConditional()) {
   2100       Instruction *NewCond =
   2101         cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
   2102                                             New, "or.cond"));
   2103       PBI->setCondition(NewCond);
   2104 
   2105       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
   2106       bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
   2107                                                   PredFalseWeight);
   2108       bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
   2109                                                   SuccFalseWeight);
   2110       SmallVector<uint64_t, 8> NewWeights;
   2111 
   2112       if (PBI->getSuccessor(0) == BB) {
   2113         if (PredHasWeights && SuccHasWeights) {
   2114           // PBI: br i1 %x, BB, FalseDest
   2115           // BI:  br i1 %y, TrueDest, FalseDest
   2116           //TrueWeight is TrueWeight for PBI * TrueWeight for BI.
   2117           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
   2118           //FalseWeight is FalseWeight for PBI * TotalWeight for BI +
   2119           //               TrueWeight for PBI * FalseWeight for BI.
   2120           // We assume that total weights of a BranchInst can fit into 32 bits.
   2121           // Therefore, we will not have overflow using 64-bit arithmetic.
   2122           NewWeights.push_back(PredFalseWeight * (SuccFalseWeight +
   2123                SuccTrueWeight) + PredTrueWeight * SuccFalseWeight);
   2124         }
   2125         AddPredecessorToBlock(TrueDest, PredBlock, BB);
   2126         PBI->setSuccessor(0, TrueDest);
   2127       }
   2128       if (PBI->getSuccessor(1) == BB) {
   2129         if (PredHasWeights && SuccHasWeights) {
   2130           // PBI: br i1 %x, TrueDest, BB
   2131           // BI:  br i1 %y, TrueDest, FalseDest
   2132           //TrueWeight is TrueWeight for PBI * TotalWeight for BI +
   2133           //              FalseWeight for PBI * TrueWeight for BI.
   2134           NewWeights.push_back(PredTrueWeight * (SuccFalseWeight +
   2135               SuccTrueWeight) + PredFalseWeight * SuccTrueWeight);
   2136           //FalseWeight is FalseWeight for PBI * FalseWeight for BI.
   2137           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
   2138         }
   2139         AddPredecessorToBlock(FalseDest, PredBlock, BB);
   2140         PBI->setSuccessor(1, FalseDest);
   2141       }
   2142       if (NewWeights.size() == 2) {
   2143         // Halve the weights if any of them cannot fit in an uint32_t
   2144         FitWeights(NewWeights);
   2145 
   2146         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end());
   2147         PBI->setMetadata(LLVMContext::MD_prof,
   2148                          MDBuilder(BI->getContext()).
   2149                          createBranchWeights(MDWeights));
   2150       } else
   2151         PBI->setMetadata(LLVMContext::MD_prof, NULL);
   2152     } else {
   2153       // Update PHI nodes in the common successors.
   2154       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
   2155         ConstantInt *PBI_C = cast<ConstantInt>(
   2156           PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
   2157         assert(PBI_C->getType()->isIntegerTy(1));
   2158         Instruction *MergedCond = 0;
   2159         if (PBI->getSuccessor(0) == TrueDest) {
   2160           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
   2161           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
   2162           //       is false: !PBI_Cond and BI_Value
   2163           Instruction *NotCond =
   2164             cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
   2165                                 "not.cond"));
   2166           MergedCond =
   2167             cast<Instruction>(Builder.CreateBinOp(Instruction::And,
   2168                                 NotCond, New,
   2169                                 "and.cond"));
   2170           if (PBI_C->isOne())
   2171             MergedCond =
   2172               cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
   2173                                   PBI->getCondition(), MergedCond,
   2174                                   "or.cond"));
   2175         } else {
   2176           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
   2177           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
   2178           //       is false: PBI_Cond and BI_Value
   2179           MergedCond =
   2180             cast<Instruction>(Builder.CreateBinOp(Instruction::And,
   2181                                 PBI->getCondition(), New,
   2182                                 "and.cond"));
   2183           if (PBI_C->isOne()) {
   2184             Instruction *NotCond =
   2185               cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
   2186                                   "not.cond"));
   2187             MergedCond =
   2188               cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
   2189                                   NotCond, MergedCond,
   2190                                   "or.cond"));
   2191           }
   2192         }
   2193         // Update PHI Node.
   2194         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
   2195                                   MergedCond);
   2196       }
   2197       // Change PBI from Conditional to Unconditional.
   2198       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
   2199       EraseTerminatorInstAndDCECond(PBI);
   2200       PBI = New_PBI;
   2201     }
   2202 
   2203     // TODO: If BB is reachable from all paths through PredBlock, then we
   2204     // could replace PBI's branch probabilities with BI's.
   2205 
   2206     // Copy any debug value intrinsics into the end of PredBlock.
   2207     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
   2208       if (isa<DbgInfoIntrinsic>(*I))
   2209         I->clone()->insertBefore(PBI);
   2210 
   2211     return true;
   2212   }
   2213   return false;
   2214 }
   2215 
   2216 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
   2217 /// predecessor of another block, this function tries to simplify it.  We know
   2218 /// that PBI and BI are both conditional branches, and BI is in one of the
   2219 /// successor blocks of PBI - PBI branches to BI.
   2220 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
   2221   assert(PBI->isConditional() && BI->isConditional());
   2222   BasicBlock *BB = BI->getParent();
   2223 
   2224   // If this block ends with a branch instruction, and if there is a
   2225   // predecessor that ends on a branch of the same condition, make
   2226   // this conditional branch redundant.
   2227   if (PBI->getCondition() == BI->getCondition() &&
   2228       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
   2229     // Okay, the outcome of this conditional branch is statically
   2230     // knowable.  If this block had a single pred, handle specially.
   2231     if (BB->getSinglePredecessor()) {
   2232       // Turn this into a branch on constant.
   2233       bool CondIsTrue = PBI->getSuccessor(0) == BB;
   2234       BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
   2235                                         CondIsTrue));
   2236       return true;  // Nuke the branch on constant.
   2237     }
   2238 
   2239     // Otherwise, if there are multiple predecessors, insert a PHI that merges
   2240     // in the constant and simplify the block result.  Subsequent passes of
   2241     // simplifycfg will thread the block.
   2242     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
   2243       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
   2244       PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
   2245                                        std::distance(PB, PE),
   2246                                        BI->getCondition()->getName() + ".pr",
   2247                                        BB->begin());
   2248       // Okay, we're going to insert the PHI node.  Since PBI is not the only
   2249       // predecessor, compute the PHI'd conditional value for all of the preds.
   2250       // Any predecessor where the condition is not computable we keep symbolic.
   2251       for (pred_iterator PI = PB; PI != PE; ++PI) {
   2252         BasicBlock *P = *PI;
   2253         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
   2254             PBI != BI && PBI->isConditional() &&
   2255             PBI->getCondition() == BI->getCondition() &&
   2256             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
   2257           bool CondIsTrue = PBI->getSuccessor(0) == BB;
   2258           NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
   2259                                               CondIsTrue), P);
   2260         } else {
   2261           NewPN->addIncoming(BI->getCondition(), P);
   2262         }
   2263       }
   2264 
   2265       BI->setCondition(NewPN);
   2266       return true;
   2267     }
   2268   }
   2269 
   2270   // If this is a conditional branch in an empty block, and if any
   2271   // predecessors is a conditional branch to one of our destinations,
   2272   // fold the conditions into logical ops and one cond br.
   2273   BasicBlock::iterator BBI = BB->begin();
   2274   // Ignore dbg intrinsics.
   2275   while (isa<DbgInfoIntrinsic>(BBI))
   2276     ++BBI;
   2277   if (&*BBI != BI)
   2278     return false;
   2279 
   2280 
   2281   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
   2282     if (CE->canTrap())
   2283       return false;
   2284 
   2285   int PBIOp, BIOp;
   2286   if (PBI->getSuccessor(0) == BI->getSuccessor(0))
   2287     PBIOp = BIOp = 0;
   2288   else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
   2289     PBIOp = 0, BIOp = 1;
   2290   else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
   2291     PBIOp = 1, BIOp = 0;
   2292   else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
   2293     PBIOp = BIOp = 1;
   2294   else
   2295     return false;
   2296 
   2297   // Check to make sure that the other destination of this branch
   2298   // isn't BB itself.  If so, this is an infinite loop that will
   2299   // keep getting unwound.
   2300   if (PBI->getSuccessor(PBIOp) == BB)
   2301     return false;
   2302 
   2303   // Do not perform this transformation if it would require
   2304   // insertion of a large number of select instructions. For targets
   2305   // without predication/cmovs, this is a big pessimization.
   2306   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
   2307 
   2308   unsigned NumPhis = 0;
   2309   for (BasicBlock::iterator II = CommonDest->begin();
   2310        isa<PHINode>(II); ++II, ++NumPhis)
   2311     if (NumPhis > 2) // Disable this xform.
   2312       return false;
   2313 
   2314   // Finally, if everything is ok, fold the branches to logical ops.
   2315   BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
   2316 
   2317   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
   2318                << "AND: " << *BI->getParent());
   2319 
   2320 
   2321   // If OtherDest *is* BB, then BB is a basic block with a single conditional
   2322   // branch in it, where one edge (OtherDest) goes back to itself but the other
   2323   // exits.  We don't *know* that the program avoids the infinite loop
   2324   // (even though that seems likely).  If we do this xform naively, we'll end up
   2325   // recursively unpeeling the loop.  Since we know that (after the xform is
   2326   // done) that the block *is* infinite if reached, we just make it an obviously
   2327   // infinite loop with no cond branch.
   2328   if (OtherDest == BB) {
   2329     // Insert it at the end of the function, because it's either code,
   2330     // or it won't matter if it's hot. :)
   2331     BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
   2332                                                   "infloop", BB->getParent());
   2333     BranchInst::Create(InfLoopBlock, InfLoopBlock);
   2334     OtherDest = InfLoopBlock;
   2335   }
   2336 
   2337   DEBUG(dbgs() << *PBI->getParent()->getParent());
   2338 
   2339   // BI may have other predecessors.  Because of this, we leave
   2340   // it alone, but modify PBI.
   2341 
   2342   // Make sure we get to CommonDest on True&True directions.
   2343   Value *PBICond = PBI->getCondition();
   2344   IRBuilder<true, NoFolder> Builder(PBI);
   2345   if (PBIOp)
   2346     PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
   2347 
   2348   Value *BICond = BI->getCondition();
   2349   if (BIOp)
   2350     BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
   2351 
   2352   // Merge the conditions.
   2353   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
   2354 
   2355   // Modify PBI to branch on the new condition to the new dests.
   2356   PBI->setCondition(Cond);
   2357   PBI->setSuccessor(0, CommonDest);
   2358   PBI->setSuccessor(1, OtherDest);
   2359 
   2360   // Update branch weight for PBI.
   2361   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
   2362   bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
   2363                                               PredFalseWeight);
   2364   bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
   2365                                               SuccFalseWeight);
   2366   if (PredHasWeights && SuccHasWeights) {
   2367     uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
   2368     uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight;
   2369     uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
   2370     uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
   2371     // The weight to CommonDest should be PredCommon * SuccTotal +
   2372     //                                    PredOther * SuccCommon.
   2373     // The weight to OtherDest should be PredOther * SuccOther.
   2374     SmallVector<uint64_t, 2> NewWeights;
   2375     NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) +
   2376                          PredOther * SuccCommon);
   2377     NewWeights.push_back(PredOther * SuccOther);
   2378     // Halve the weights if any of them cannot fit in an uint32_t
   2379     FitWeights(NewWeights);
   2380 
   2381     SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end());
   2382     PBI->setMetadata(LLVMContext::MD_prof,
   2383                      MDBuilder(BI->getContext()).
   2384                      createBranchWeights(MDWeights));
   2385   }
   2386 
   2387   // OtherDest may have phi nodes.  If so, add an entry from PBI's
   2388   // block that are identical to the entries for BI's block.
   2389   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
   2390 
   2391   // We know that the CommonDest already had an edge from PBI to
   2392   // it.  If it has PHIs though, the PHIs may have different
   2393   // entries for BB and PBI's BB.  If so, insert a select to make
   2394   // them agree.
   2395   PHINode *PN;
   2396   for (BasicBlock::iterator II = CommonDest->begin();
   2397        (PN = dyn_cast<PHINode>(II)); ++II) {
   2398     Value *BIV = PN->getIncomingValueForBlock(BB);
   2399     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
   2400     Value *PBIV = PN->getIncomingValue(PBBIdx);
   2401     if (BIV != PBIV) {
   2402       // Insert a select in PBI to pick the right value.
   2403       Value *NV = cast<SelectInst>
   2404         (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
   2405       PN->setIncomingValue(PBBIdx, NV);
   2406     }
   2407   }
   2408 
   2409   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
   2410   DEBUG(dbgs() << *PBI->getParent()->getParent());
   2411 
   2412   // This basic block is probably dead.  We know it has at least
   2413   // one fewer predecessor.
   2414   return true;
   2415 }
   2416 
   2417 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
   2418 // branch to TrueBB if Cond is true or to FalseBB if Cond is false.
   2419 // Takes care of updating the successors and removing the old terminator.
   2420 // Also makes sure not to introduce new successors by assuming that edges to
   2421 // non-successor TrueBBs and FalseBBs aren't reachable.
   2422 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
   2423                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
   2424                                        uint32_t TrueWeight,
   2425                                        uint32_t FalseWeight){
   2426   // Remove any superfluous successor edges from the CFG.
   2427   // First, figure out which successors to preserve.
   2428   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
   2429   // successor.
   2430   BasicBlock *KeepEdge1 = TrueBB;
   2431   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
   2432 
   2433   // Then remove the rest.
   2434   for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
   2435     BasicBlock *Succ = OldTerm->getSuccessor(I);
   2436     // Make sure only to keep exactly one copy of each edge.
   2437     if (Succ == KeepEdge1)
   2438       KeepEdge1 = 0;
   2439     else if (Succ == KeepEdge2)
   2440       KeepEdge2 = 0;
   2441     else
   2442       Succ->removePredecessor(OldTerm->getParent());
   2443   }
   2444 
   2445   IRBuilder<> Builder(OldTerm);
   2446   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
   2447 
   2448   // Insert an appropriate new terminator.
   2449   if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
   2450     if (TrueBB == FalseBB)
   2451       // We were only looking for one successor, and it was present.
   2452       // Create an unconditional branch to it.
   2453       Builder.CreateBr(TrueBB);
   2454     else {
   2455       // We found both of the successors we were looking for.
   2456       // Create a conditional branch sharing the condition of the select.
   2457       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
   2458       if (TrueWeight != FalseWeight)
   2459         NewBI->setMetadata(LLVMContext::MD_prof,
   2460                            MDBuilder(OldTerm->getContext()).
   2461                            createBranchWeights(TrueWeight, FalseWeight));
   2462     }
   2463   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
   2464     // Neither of the selected blocks were successors, so this
   2465     // terminator must be unreachable.
   2466     new UnreachableInst(OldTerm->getContext(), OldTerm);
   2467   } else {
   2468     // One of the selected values was a successor, but the other wasn't.
   2469     // Insert an unconditional branch to the one that was found;
   2470     // the edge to the one that wasn't must be unreachable.
   2471     if (KeepEdge1 == 0)
   2472       // Only TrueBB was found.
   2473       Builder.CreateBr(TrueBB);
   2474     else
   2475       // Only FalseBB was found.
   2476       Builder.CreateBr(FalseBB);
   2477   }
   2478 
   2479   EraseTerminatorInstAndDCECond(OldTerm);
   2480   return true;
   2481 }
   2482 
   2483 // SimplifySwitchOnSelect - Replaces
   2484 //   (switch (select cond, X, Y)) on constant X, Y
   2485 // with a branch - conditional if X and Y lead to distinct BBs,
   2486 // unconditional otherwise.
   2487 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
   2488   // Check for constant integer values in the select.
   2489   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
   2490   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
   2491   if (!TrueVal || !FalseVal)
   2492     return false;
   2493 
   2494   // Find the relevant condition and destinations.
   2495   Value *Condition = Select->getCondition();
   2496   BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
   2497   BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
   2498 
   2499   // Get weight for TrueBB and FalseBB.
   2500   uint32_t TrueWeight = 0, FalseWeight = 0;
   2501   SmallVector<uint64_t, 8> Weights;
   2502   bool HasWeights = HasBranchWeights(SI);
   2503   if (HasWeights) {
   2504     GetBranchWeights(SI, Weights);
   2505     if (Weights.size() == 1 + SI->getNumCases()) {
   2506       TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal).
   2507                                      getSuccessorIndex()];
   2508       FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal).
   2509                                       getSuccessorIndex()];
   2510     }
   2511   }
   2512 
   2513   // Perform the actual simplification.
   2514   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB,
   2515                                     TrueWeight, FalseWeight);
   2516 }
   2517 
   2518 // SimplifyIndirectBrOnSelect - Replaces
   2519 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
   2520 //                             blockaddress(@fn, BlockB)))
   2521 // with
   2522 //   (br cond, BlockA, BlockB).
   2523 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
   2524   // Check that both operands of the select are block addresses.
   2525   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
   2526   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
   2527   if (!TBA || !FBA)
   2528     return false;
   2529 
   2530   // Extract the actual blocks.
   2531   BasicBlock *TrueBB = TBA->getBasicBlock();
   2532   BasicBlock *FalseBB = FBA->getBasicBlock();
   2533 
   2534   // Perform the actual simplification.
   2535   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB,
   2536                                     0, 0);
   2537 }
   2538 
   2539 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
   2540 /// instruction (a seteq/setne with a constant) as the only instruction in a
   2541 /// block that ends with an uncond branch.  We are looking for a very specific
   2542 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
   2543 /// this case, we merge the first two "or's of icmp" into a switch, but then the
   2544 /// default value goes to an uncond block with a seteq in it, we get something
   2545 /// like:
   2546 ///
   2547 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
   2548 /// DEFAULT:
   2549 ///   %tmp = icmp eq i8 %A, 92
   2550 ///   br label %end
   2551 /// end:
   2552 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
   2553 ///
   2554 /// We prefer to split the edge to 'end' so that there is a true/false entry to
   2555 /// the PHI, merging the third icmp into the switch.
   2556 static bool TryToSimplifyUncondBranchWithICmpInIt(
   2557     ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI,
   2558     const DataLayout *TD) {
   2559   BasicBlock *BB = ICI->getParent();
   2560 
   2561   // If the block has any PHIs in it or the icmp has multiple uses, it is too
   2562   // complex.
   2563   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
   2564 
   2565   Value *V = ICI->getOperand(0);
   2566   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
   2567 
   2568   // The pattern we're looking for is where our only predecessor is a switch on
   2569   // 'V' and this block is the default case for the switch.  In this case we can
   2570   // fold the compared value into the switch to simplify things.
   2571   BasicBlock *Pred = BB->getSinglePredecessor();
   2572   if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
   2573 
   2574   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
   2575   if (SI->getCondition() != V)
   2576     return false;
   2577 
   2578   // If BB is reachable on a non-default case, then we simply know the value of
   2579   // V in this block.  Substitute it and constant fold the icmp instruction
   2580   // away.
   2581   if (SI->getDefaultDest() != BB) {
   2582     ConstantInt *VVal = SI->findCaseDest(BB);
   2583     assert(VVal && "Should have a unique destination value");
   2584     ICI->setOperand(0, VVal);
   2585 
   2586     if (Value *V = SimplifyInstruction(ICI, TD)) {
   2587       ICI->replaceAllUsesWith(V);
   2588       ICI->eraseFromParent();
   2589     }
   2590     // BB is now empty, so it is likely to simplify away.
   2591     return SimplifyCFG(BB, TTI, TD) | true;
   2592   }
   2593 
   2594   // Ok, the block is reachable from the default dest.  If the constant we're
   2595   // comparing exists in one of the other edges, then we can constant fold ICI
   2596   // and zap it.
   2597   if (SI->findCaseValue(Cst) != SI->case_default()) {
   2598     Value *V;
   2599     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
   2600       V = ConstantInt::getFalse(BB->getContext());
   2601     else
   2602       V = ConstantInt::getTrue(BB->getContext());
   2603 
   2604     ICI->replaceAllUsesWith(V);
   2605     ICI->eraseFromParent();
   2606     // BB is now empty, so it is likely to simplify away.
   2607     return SimplifyCFG(BB, TTI, TD) | true;
   2608   }
   2609 
   2610   // The use of the icmp has to be in the 'end' block, by the only PHI node in
   2611   // the block.
   2612   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
   2613   PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
   2614   if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
   2615       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
   2616     return false;
   2617 
   2618   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
   2619   // true in the PHI.
   2620   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
   2621   Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
   2622 
   2623   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
   2624     std::swap(DefaultCst, NewCst);
   2625 
   2626   // Replace ICI (which is used by the PHI for the default value) with true or
   2627   // false depending on if it is EQ or NE.
   2628   ICI->replaceAllUsesWith(DefaultCst);
   2629   ICI->eraseFromParent();
   2630 
   2631   // Okay, the switch goes to this block on a default value.  Add an edge from
   2632   // the switch to the merge point on the compared value.
   2633   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
   2634                                          BB->getParent(), BB);
   2635   SmallVector<uint64_t, 8> Weights;
   2636   bool HasWeights = HasBranchWeights(SI);
   2637   if (HasWeights) {
   2638     GetBranchWeights(SI, Weights);
   2639     if (Weights.size() == 1 + SI->getNumCases()) {
   2640       // Split weight for default case to case for "Cst".
   2641       Weights[0] = (Weights[0]+1) >> 1;
   2642       Weights.push_back(Weights[0]);
   2643 
   2644       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
   2645       SI->setMetadata(LLVMContext::MD_prof,
   2646                       MDBuilder(SI->getContext()).
   2647                       createBranchWeights(MDWeights));
   2648     }
   2649   }
   2650   SI->addCase(Cst, NewBB);
   2651 
   2652   // NewBB branches to the phi block, add the uncond branch and the phi entry.
   2653   Builder.SetInsertPoint(NewBB);
   2654   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
   2655   Builder.CreateBr(SuccBlock);
   2656   PHIUse->addIncoming(NewCst, NewBB);
   2657   return true;
   2658 }
   2659 
   2660 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
   2661 /// Check to see if it is branching on an or/and chain of icmp instructions, and
   2662 /// fold it into a switch instruction if so.
   2663 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *TD,
   2664                                       IRBuilder<> &Builder) {
   2665   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
   2666   if (Cond == 0) return false;
   2667 
   2668 
   2669   // Change br (X == 0 | X == 1), T, F into a switch instruction.
   2670   // If this is a bunch of seteq's or'd together, or if it's a bunch of
   2671   // 'setne's and'ed together, collect them.
   2672   Value *CompVal = 0;
   2673   std::vector<ConstantInt*> Values;
   2674   bool TrueWhenEqual = true;
   2675   Value *ExtraCase = 0;
   2676   unsigned UsedICmps = 0;
   2677 
   2678   if (Cond->getOpcode() == Instruction::Or) {
   2679     CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true,
   2680                                      UsedICmps);
   2681   } else if (Cond->getOpcode() == Instruction::And) {
   2682     CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false,
   2683                                      UsedICmps);
   2684     TrueWhenEqual = false;
   2685   }
   2686 
   2687   // If we didn't have a multiply compared value, fail.
   2688   if (CompVal == 0) return false;
   2689 
   2690   // Avoid turning single icmps into a switch.
   2691   if (UsedICmps <= 1)
   2692     return false;
   2693 
   2694   // There might be duplicate constants in the list, which the switch
   2695   // instruction can't handle, remove them now.
   2696   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
   2697   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
   2698 
   2699   // If Extra was used, we require at least two switch values to do the
   2700   // transformation.  A switch with one value is just an cond branch.
   2701   if (ExtraCase && Values.size() < 2) return false;
   2702 
   2703   // TODO: Preserve branch weight metadata, similarly to how
   2704   // FoldValueComparisonIntoPredecessors preserves it.
   2705 
   2706   // Figure out which block is which destination.
   2707   BasicBlock *DefaultBB = BI->getSuccessor(1);
   2708   BasicBlock *EdgeBB    = BI->getSuccessor(0);
   2709   if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
   2710 
   2711   BasicBlock *BB = BI->getParent();
   2712 
   2713   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
   2714                << " cases into SWITCH.  BB is:\n" << *BB);
   2715 
   2716   // If there are any extra values that couldn't be folded into the switch
   2717   // then we evaluate them with an explicit branch first.  Split the block
   2718   // right before the condbr to handle it.
   2719   if (ExtraCase) {
   2720     BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
   2721     // Remove the uncond branch added to the old block.
   2722     TerminatorInst *OldTI = BB->getTerminator();
   2723     Builder.SetInsertPoint(OldTI);
   2724 
   2725     if (TrueWhenEqual)
   2726       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
   2727     else
   2728       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
   2729 
   2730     OldTI->eraseFromParent();
   2731 
   2732     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
   2733     // for the edge we just added.
   2734     AddPredecessorToBlock(EdgeBB, BB, NewBB);
   2735 
   2736     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
   2737           << "\nEXTRABB = " << *BB);
   2738     BB = NewBB;
   2739   }
   2740 
   2741   Builder.SetInsertPoint(BI);
   2742   // Convert pointer to int before we switch.
   2743   if (CompVal->getType()->isPointerTy()) {
   2744     assert(TD && "Cannot switch on pointer without DataLayout");
   2745     CompVal = Builder.CreatePtrToInt(CompVal,
   2746                                      TD->getIntPtrType(CompVal->getContext()),
   2747                                      "magicptr");
   2748   }
   2749 
   2750   // Create the new switch instruction now.
   2751   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
   2752 
   2753   // Add all of the 'cases' to the switch instruction.
   2754   for (unsigned i = 0, e = Values.size(); i != e; ++i)
   2755     New->addCase(Values[i], EdgeBB);
   2756 
   2757   // We added edges from PI to the EdgeBB.  As such, if there were any
   2758   // PHI nodes in EdgeBB, they need entries to be added corresponding to
   2759   // the number of edges added.
   2760   for (BasicBlock::iterator BBI = EdgeBB->begin();
   2761        isa<PHINode>(BBI); ++BBI) {
   2762     PHINode *PN = cast<PHINode>(BBI);
   2763     Value *InVal = PN->getIncomingValueForBlock(BB);
   2764     for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
   2765       PN->addIncoming(InVal, BB);
   2766   }
   2767 
   2768   // Erase the old branch instruction.
   2769   EraseTerminatorInstAndDCECond(BI);
   2770 
   2771   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
   2772   return true;
   2773 }
   2774 
   2775 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
   2776   // If this is a trivial landing pad that just continues unwinding the caught
   2777   // exception then zap the landing pad, turning its invokes into calls.
   2778   BasicBlock *BB = RI->getParent();
   2779   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
   2780   if (RI->getValue() != LPInst)
   2781     // Not a landing pad, or the resume is not unwinding the exception that
   2782     // caused control to branch here.
   2783     return false;
   2784 
   2785   // Check that there are no other instructions except for debug intrinsics.
   2786   BasicBlock::iterator I = LPInst, E = RI;
   2787   while (++I != E)
   2788     if (!isa<DbgInfoIntrinsic>(I))
   2789       return false;
   2790 
   2791   // Turn all invokes that unwind here into calls and delete the basic block.
   2792   bool InvokeRequiresTableEntry = false;
   2793   bool Changed = false;
   2794   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
   2795     InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
   2796 
   2797     if (II->hasFnAttr(Attribute::UWTable)) {
   2798       // Don't remove an `invoke' instruction if the ABI requires an entry into
   2799       // the table.
   2800       InvokeRequiresTableEntry = true;
   2801       continue;
   2802     }
   2803 
   2804     SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
   2805 
   2806     // Insert a call instruction before the invoke.
   2807     CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
   2808     Call->takeName(II);
   2809     Call->setCallingConv(II->getCallingConv());
   2810     Call->setAttributes(II->getAttributes());
   2811     Call->setDebugLoc(II->getDebugLoc());
   2812 
   2813     // Anything that used the value produced by the invoke instruction now uses
   2814     // the value produced by the call instruction.  Note that we do this even
   2815     // for void functions and calls with no uses so that the callgraph edge is
   2816     // updated.
   2817     II->replaceAllUsesWith(Call);
   2818     BB->removePredecessor(II->getParent());
   2819 
   2820     // Insert a branch to the normal destination right before the invoke.
   2821     BranchInst::Create(II->getNormalDest(), II);
   2822 
   2823     // Finally, delete the invoke instruction!
   2824     II->eraseFromParent();
   2825     Changed = true;
   2826   }
   2827 
   2828   if (!InvokeRequiresTableEntry)
   2829     // The landingpad is now unreachable.  Zap it.
   2830     BB->eraseFromParent();
   2831 
   2832   return Changed;
   2833 }
   2834 
   2835 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
   2836   BasicBlock *BB = RI->getParent();
   2837   if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
   2838 
   2839   // Find predecessors that end with branches.
   2840   SmallVector<BasicBlock*, 8> UncondBranchPreds;
   2841   SmallVector<BranchInst*, 8> CondBranchPreds;
   2842   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
   2843     BasicBlock *P = *PI;
   2844     TerminatorInst *PTI = P->getTerminator();
   2845     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
   2846       if (BI->isUnconditional())
   2847         UncondBranchPreds.push_back(P);
   2848       else
   2849         CondBranchPreds.push_back(BI);
   2850     }
   2851   }
   2852 
   2853   // If we found some, do the transformation!
   2854   if (!UncondBranchPreds.empty() && DupRet) {
   2855     while (!UncondBranchPreds.empty()) {
   2856       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
   2857       DEBUG(dbgs() << "FOLDING: " << *BB
   2858             << "INTO UNCOND BRANCH PRED: " << *Pred);
   2859       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
   2860     }
   2861 
   2862     // If we eliminated all predecessors of the block, delete the block now.
   2863     if (pred_begin(BB) == pred_end(BB))
   2864       // We know there are no successors, so just nuke the block.
   2865       BB->eraseFromParent();
   2866 
   2867     return true;
   2868   }
   2869 
   2870   // Check out all of the conditional branches going to this return
   2871   // instruction.  If any of them just select between returns, change the
   2872   // branch itself into a select/return pair.
   2873   while (!CondBranchPreds.empty()) {
   2874     BranchInst *BI = CondBranchPreds.pop_back_val();
   2875 
   2876     // Check to see if the non-BB successor is also a return block.
   2877     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
   2878         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
   2879         SimplifyCondBranchToTwoReturns(BI, Builder))
   2880       return true;
   2881   }
   2882   return false;
   2883 }
   2884 
   2885 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
   2886   BasicBlock *BB = UI->getParent();
   2887 
   2888   bool Changed = false;
   2889 
   2890   // If there are any instructions immediately before the unreachable that can
   2891   // be removed, do so.
   2892   while (UI != BB->begin()) {
   2893     BasicBlock::iterator BBI = UI;
   2894     --BBI;
   2895     // Do not delete instructions that can have side effects which might cause
   2896     // the unreachable to not be reachable; specifically, calls and volatile
   2897     // operations may have this effect.
   2898     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
   2899 
   2900     if (BBI->mayHaveSideEffects()) {
   2901       if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
   2902         if (SI->isVolatile())
   2903           break;
   2904       } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
   2905         if (LI->isVolatile())
   2906           break;
   2907       } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
   2908         if (RMWI->isVolatile())
   2909           break;
   2910       } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
   2911         if (CXI->isVolatile())
   2912           break;
   2913       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
   2914                  !isa<LandingPadInst>(BBI)) {
   2915         break;
   2916       }
   2917       // Note that deleting LandingPad's here is in fact okay, although it
   2918       // involves a bit of subtle reasoning. If this inst is a LandingPad,
   2919       // all the predecessors of this block will be the unwind edges of Invokes,
   2920       // and we can therefore guarantee this block will be erased.
   2921     }
   2922 
   2923     // Delete this instruction (any uses are guaranteed to be dead)
   2924     if (!BBI->use_empty())
   2925       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
   2926     BBI->eraseFromParent();
   2927     Changed = true;
   2928   }
   2929 
   2930   // If the unreachable instruction is the first in the block, take a gander
   2931   // at all of the predecessors of this instruction, and simplify them.
   2932   if (&BB->front() != UI) return Changed;
   2933 
   2934   SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
   2935   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
   2936     TerminatorInst *TI = Preds[i]->getTerminator();
   2937     IRBuilder<> Builder(TI);
   2938     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
   2939       if (BI->isUnconditional()) {
   2940         if (BI->getSuccessor(0) == BB) {
   2941           new UnreachableInst(TI->getContext(), TI);
   2942           TI->eraseFromParent();
   2943           Changed = true;
   2944         }
   2945       } else {
   2946         if (BI->getSuccessor(0) == BB) {
   2947           Builder.CreateBr(BI->getSuccessor(1));
   2948           EraseTerminatorInstAndDCECond(BI);
   2949         } else if (BI->getSuccessor(1) == BB) {
   2950           Builder.CreateBr(BI->getSuccessor(0));
   2951           EraseTerminatorInstAndDCECond(BI);
   2952           Changed = true;
   2953         }
   2954       }
   2955     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
   2956       for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
   2957            i != e; ++i)
   2958         if (i.getCaseSuccessor() == BB) {
   2959           BB->removePredecessor(SI->getParent());
   2960           SI->removeCase(i);
   2961           --i; --e;
   2962           Changed = true;
   2963         }
   2964       // If the default value is unreachable, figure out the most popular
   2965       // destination and make it the default.
   2966       if (SI->getDefaultDest() == BB) {
   2967         std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
   2968         for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
   2969              i != e; ++i) {
   2970           std::pair<unsigned, unsigned> &entry =
   2971               Popularity[i.getCaseSuccessor()];
   2972           if (entry.first == 0) {
   2973             entry.first = 1;
   2974             entry.second = i.getCaseIndex();
   2975           } else {
   2976             entry.first++;
   2977           }
   2978         }
   2979 
   2980         // Find the most popular block.
   2981         unsigned MaxPop = 0;
   2982         unsigned MaxIndex = 0;
   2983         BasicBlock *MaxBlock = 0;
   2984         for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
   2985              I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
   2986           if (I->second.first > MaxPop ||
   2987               (I->second.first == MaxPop && MaxIndex > I->second.second)) {
   2988             MaxPop = I->second.first;
   2989             MaxIndex = I->second.second;
   2990             MaxBlock = I->first;
   2991           }
   2992         }
   2993         if (MaxBlock) {
   2994           // Make this the new default, allowing us to delete any explicit
   2995           // edges to it.
   2996           SI->setDefaultDest(MaxBlock);
   2997           Changed = true;
   2998 
   2999           // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
   3000           // it.
   3001           if (isa<PHINode>(MaxBlock->begin()))
   3002             for (unsigned i = 0; i != MaxPop-1; ++i)
   3003               MaxBlock->removePredecessor(SI->getParent());
   3004 
   3005           for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
   3006                i != e; ++i)
   3007             if (i.getCaseSuccessor() == MaxBlock) {
   3008               SI->removeCase(i);
   3009               --i; --e;
   3010             }
   3011         }
   3012       }
   3013     } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
   3014       if (II->getUnwindDest() == BB) {
   3015         // Convert the invoke to a call instruction.  This would be a good
   3016         // place to note that the call does not throw though.
   3017         BranchInst *BI = Builder.CreateBr(II->getNormalDest());
   3018         II->removeFromParent();   // Take out of symbol table
   3019 
   3020         // Insert the call now...
   3021         SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
   3022         Builder.SetInsertPoint(BI);
   3023         CallInst *CI = Builder.CreateCall(II->getCalledValue(),
   3024                                           Args, II->getName());
   3025         CI->setCallingConv(II->getCallingConv());
   3026         CI->setAttributes(II->getAttributes());
   3027         // If the invoke produced a value, the call does now instead.
   3028         II->replaceAllUsesWith(CI);
   3029         delete II;
   3030         Changed = true;
   3031       }
   3032     }
   3033   }
   3034 
   3035   // If this block is now dead, remove it.
   3036   if (pred_begin(BB) == pred_end(BB) &&
   3037       BB != &BB->getParent()->getEntryBlock()) {
   3038     // We know there are no successors, so just nuke the block.
   3039     BB->eraseFromParent();
   3040     return true;
   3041   }
   3042 
   3043   return Changed;
   3044 }
   3045 
   3046 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
   3047 /// integer range comparison into a sub, an icmp and a branch.
   3048 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
   3049   assert(SI->getNumCases() > 1 && "Degenerate switch?");
   3050 
   3051   // Make sure all cases point to the same destination and gather the values.
   3052   SmallVector<ConstantInt *, 16> Cases;
   3053   SwitchInst::CaseIt I = SI->case_begin();
   3054   Cases.push_back(I.getCaseValue());
   3055   SwitchInst::CaseIt PrevI = I++;
   3056   for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) {
   3057     if (PrevI.getCaseSuccessor() != I.getCaseSuccessor())
   3058       return false;
   3059     Cases.push_back(I.getCaseValue());
   3060   }
   3061   assert(Cases.size() == SI->getNumCases() && "Not all cases gathered");
   3062 
   3063   // Sort the case values, then check if they form a range we can transform.
   3064   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
   3065   for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
   3066     if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
   3067       return false;
   3068   }
   3069 
   3070   Constant *Offset = ConstantExpr::getNeg(Cases.back());
   3071   Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases());
   3072 
   3073   Value *Sub = SI->getCondition();
   3074   if (!Offset->isNullValue())
   3075     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
   3076   Value *Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
   3077   BranchInst *NewBI = Builder.CreateCondBr(
   3078       Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest());
   3079 
   3080   // Update weight for the newly-created conditional branch.
   3081   SmallVector<uint64_t, 8> Weights;
   3082   bool HasWeights = HasBranchWeights(SI);
   3083   if (HasWeights) {
   3084     GetBranchWeights(SI, Weights);
   3085     if (Weights.size() == 1 + SI->getNumCases()) {
   3086       // Combine all weights for the cases to be the true weight of NewBI.
   3087       // We assume that the sum of all weights for a Terminator can fit into 32
   3088       // bits.
   3089       uint32_t NewTrueWeight = 0;
   3090       for (unsigned I = 1, E = Weights.size(); I != E; ++I)
   3091         NewTrueWeight += (uint32_t)Weights[I];
   3092       NewBI->setMetadata(LLVMContext::MD_prof,
   3093                          MDBuilder(SI->getContext()).
   3094                          createBranchWeights(NewTrueWeight,
   3095                                              (uint32_t)Weights[0]));
   3096     }
   3097   }
   3098 
   3099   // Prune obsolete incoming values off the successor's PHI nodes.
   3100   for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin();
   3101        isa<PHINode>(BBI); ++BBI) {
   3102     for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I)
   3103       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
   3104   }
   3105   SI->eraseFromParent();
   3106 
   3107   return true;
   3108 }
   3109 
   3110 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
   3111 /// and use it to remove dead cases.
   3112 static bool EliminateDeadSwitchCases(SwitchInst *SI) {
   3113   Value *Cond = SI->getCondition();
   3114   unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth();
   3115   APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
   3116   ComputeMaskedBits(Cond, KnownZero, KnownOne);
   3117 
   3118   // Gather dead cases.
   3119   SmallVector<ConstantInt*, 8> DeadCases;
   3120   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
   3121     if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
   3122         (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
   3123       DeadCases.push_back(I.getCaseValue());
   3124       DEBUG(dbgs() << "SimplifyCFG: switch case '"
   3125                    << I.getCaseValue() << "' is dead.\n");
   3126     }
   3127   }
   3128 
   3129   SmallVector<uint64_t, 8> Weights;
   3130   bool HasWeight = HasBranchWeights(SI);
   3131   if (HasWeight) {
   3132     GetBranchWeights(SI, Weights);
   3133     HasWeight = (Weights.size() == 1 + SI->getNumCases());
   3134   }
   3135 
   3136   // Remove dead cases from the switch.
   3137   for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
   3138     SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
   3139     assert(Case != SI->case_default() &&
   3140            "Case was not found. Probably mistake in DeadCases forming.");
   3141     if (HasWeight) {
   3142       std::swap(Weights[Case.getCaseIndex()+1], Weights.back());
   3143       Weights.pop_back();
   3144     }
   3145 
   3146     // Prune unused values from PHI nodes.
   3147     Case.getCaseSuccessor()->removePredecessor(SI->getParent());
   3148     SI->removeCase(Case);
   3149   }
   3150   if (HasWeight) {
   3151     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
   3152     SI->setMetadata(LLVMContext::MD_prof,
   3153                     MDBuilder(SI->getParent()->getContext()).
   3154                     createBranchWeights(MDWeights));
   3155   }
   3156 
   3157   return !DeadCases.empty();
   3158 }
   3159 
   3160 /// FindPHIForConditionForwarding - If BB would be eligible for simplification
   3161 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
   3162 /// by an unconditional branch), look at the phi node for BB in the successor
   3163 /// block and see if the incoming value is equal to CaseValue. If so, return
   3164 /// the phi node, and set PhiIndex to BB's index in the phi node.
   3165 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
   3166                                               BasicBlock *BB,
   3167                                               int *PhiIndex) {
   3168   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
   3169     return NULL; // BB must be empty to be a candidate for simplification.
   3170   if (!BB->getSinglePredecessor())
   3171     return NULL; // BB must be dominated by the switch.
   3172 
   3173   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
   3174   if (!Branch || !Branch->isUnconditional())
   3175     return NULL; // Terminator must be unconditional branch.
   3176 
   3177   BasicBlock *Succ = Branch->getSuccessor(0);
   3178 
   3179   BasicBlock::iterator I = Succ->begin();
   3180   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
   3181     int Idx = PHI->getBasicBlockIndex(BB);
   3182     assert(Idx >= 0 && "PHI has no entry for predecessor?");
   3183 
   3184     Value *InValue = PHI->getIncomingValue(Idx);
   3185     if (InValue != CaseValue) continue;
   3186 
   3187     *PhiIndex = Idx;
   3188     return PHI;
   3189   }
   3190 
   3191   return NULL;
   3192 }
   3193 
   3194 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
   3195 /// instruction to a phi node dominated by the switch, if that would mean that
   3196 /// some of the destination blocks of the switch can be folded away.
   3197 /// Returns true if a change is made.
   3198 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
   3199   typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
   3200   ForwardingNodesMap ForwardingNodes;
   3201 
   3202   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
   3203     ConstantInt *CaseValue = I.getCaseValue();
   3204     BasicBlock *CaseDest = I.getCaseSuccessor();
   3205 
   3206     int PhiIndex;
   3207     PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
   3208                                                  &PhiIndex);
   3209     if (!PHI) continue;
   3210 
   3211     ForwardingNodes[PHI].push_back(PhiIndex);
   3212   }
   3213 
   3214   bool Changed = false;
   3215 
   3216   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
   3217        E = ForwardingNodes.end(); I != E; ++I) {
   3218     PHINode *Phi = I->first;
   3219     SmallVector<int,4> &Indexes = I->second;
   3220 
   3221     if (Indexes.size() < 2) continue;
   3222 
   3223     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
   3224       Phi->setIncomingValue(Indexes[I], SI->getCondition());
   3225     Changed = true;
   3226   }
   3227 
   3228   return Changed;
   3229 }
   3230 
   3231 /// ValidLookupTableConstant - Return true if the backend will be able to handle
   3232 /// initializing an array of constants like C.
   3233 static bool ValidLookupTableConstant(Constant *C) {
   3234   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
   3235     return CE->isGEPWithNoNotionalOverIndexing();
   3236 
   3237   return isa<ConstantFP>(C) ||
   3238       isa<ConstantInt>(C) ||
   3239       isa<ConstantPointerNull>(C) ||
   3240       isa<GlobalValue>(C) ||
   3241       isa<UndefValue>(C);
   3242 }
   3243 
   3244 /// LookupConstant - If V is a Constant, return it. Otherwise, try to look up
   3245 /// its constant value in ConstantPool, returning 0 if it's not there.
   3246 static Constant *LookupConstant(Value *V,
   3247                          const SmallDenseMap<Value*, Constant*>& ConstantPool) {
   3248   if (Constant *C = dyn_cast<Constant>(V))
   3249     return C;
   3250   return ConstantPool.lookup(V);
   3251 }
   3252 
   3253 /// ConstantFold - Try to fold instruction I into a constant. This works for
   3254 /// simple instructions such as binary operations where both operands are
   3255 /// constant or can be replaced by constants from the ConstantPool. Returns the
   3256 /// resulting constant on success, 0 otherwise.
   3257 static Constant *ConstantFold(Instruction *I,
   3258                          const SmallDenseMap<Value*, Constant*>& ConstantPool) {
   3259   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
   3260     Constant *A = LookupConstant(BO->getOperand(0), ConstantPool);
   3261     if (!A)
   3262       return 0;
   3263     Constant *B = LookupConstant(BO->getOperand(1), ConstantPool);
   3264     if (!B)
   3265       return 0;
   3266     return ConstantExpr::get(BO->getOpcode(), A, B);
   3267   }
   3268 
   3269   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
   3270     Constant *A = LookupConstant(I->getOperand(0), ConstantPool);
   3271     if (!A)
   3272       return 0;
   3273     Constant *B = LookupConstant(I->getOperand(1), ConstantPool);
   3274     if (!B)
   3275       return 0;
   3276     return ConstantExpr::getCompare(Cmp->getPredicate(), A, B);
   3277   }
   3278 
   3279   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
   3280     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
   3281     if (!A)
   3282       return 0;
   3283     if (A->isAllOnesValue())
   3284       return LookupConstant(Select->getTrueValue(), ConstantPool);
   3285     if (A->isNullValue())
   3286       return LookupConstant(Select->getFalseValue(), ConstantPool);
   3287     return 0;
   3288   }
   3289 
   3290   if (CastInst *Cast = dyn_cast<CastInst>(I)) {
   3291     Constant *A = LookupConstant(I->getOperand(0), ConstantPool);
   3292     if (!A)
   3293       return 0;
   3294     return ConstantExpr::getCast(Cast->getOpcode(), A, Cast->getDestTy());
   3295   }
   3296 
   3297   return 0;
   3298 }
   3299 
   3300 /// GetCaseResults - Try to determine the resulting constant values in phi nodes
   3301 /// at the common destination basic block, *CommonDest, for one of the case
   3302 /// destionations CaseDest corresponding to value CaseVal (0 for the default
   3303 /// case), of a switch instruction SI.
   3304 static bool GetCaseResults(SwitchInst *SI,
   3305                            ConstantInt *CaseVal,
   3306                            BasicBlock *CaseDest,
   3307                            BasicBlock **CommonDest,
   3308                            SmallVector<std::pair<PHINode*,Constant*>, 4> &Res) {
   3309   // The block from which we enter the common destination.
   3310   BasicBlock *Pred = SI->getParent();
   3311 
   3312   // If CaseDest is empty except for some side-effect free instructions through
   3313   // which we can constant-propagate the CaseVal, continue to its successor.
   3314   SmallDenseMap<Value*, Constant*> ConstantPool;
   3315   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
   3316   for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
   3317        ++I) {
   3318     if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
   3319       // If the terminator is a simple branch, continue to the next block.
   3320       if (T->getNumSuccessors() != 1)
   3321         return false;
   3322       Pred = CaseDest;
   3323       CaseDest = T->getSuccessor(0);
   3324     } else if (isa<DbgInfoIntrinsic>(I)) {
   3325       // Skip debug intrinsic.
   3326       continue;
   3327     } else if (Constant *C = ConstantFold(I, ConstantPool)) {
   3328       // Instruction is side-effect free and constant.
   3329       ConstantPool.insert(std::make_pair(I, C));
   3330     } else {
   3331       break;
   3332     }
   3333   }
   3334 
   3335   // If we did not have a CommonDest before, use the current one.
   3336   if (!*CommonDest)
   3337     *CommonDest = CaseDest;
   3338   // If the destination isn't the common one, abort.
   3339   if (CaseDest != *CommonDest)
   3340     return false;
   3341 
   3342   // Get the values for this case from phi nodes in the destination block.
   3343   BasicBlock::iterator I = (*CommonDest)->begin();
   3344   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
   3345     int Idx = PHI->getBasicBlockIndex(Pred);
   3346     if (Idx == -1)
   3347       continue;
   3348 
   3349     Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx),
   3350                                         ConstantPool);
   3351     if (!ConstVal)
   3352       return false;
   3353 
   3354     // Note: If the constant comes from constant-propagating the case value
   3355     // through the CaseDest basic block, it will be safe to remove the
   3356     // instructions in that block. They cannot be used (except in the phi nodes
   3357     // we visit) outside CaseDest, because that block does not dominate its
   3358     // successor. If it did, we would not be in this phi node.
   3359 
   3360     // Be conservative about which kinds of constants we support.
   3361     if (!ValidLookupTableConstant(ConstVal))
   3362       return false;
   3363 
   3364     Res.push_back(std::make_pair(PHI, ConstVal));
   3365   }
   3366 
   3367   return true;
   3368 }
   3369 
   3370 namespace {
   3371   /// SwitchLookupTable - This class represents a lookup table that can be used
   3372   /// to replace a switch.
   3373   class SwitchLookupTable {
   3374   public:
   3375     /// SwitchLookupTable - Create a lookup table to use as a switch replacement
   3376     /// with the contents of Values, using DefaultValue to fill any holes in the
   3377     /// table.
   3378     SwitchLookupTable(Module &M,
   3379                       uint64_t TableSize,
   3380                       ConstantInt *Offset,
   3381                const SmallVector<std::pair<ConstantInt*, Constant*>, 4>& Values,
   3382                       Constant *DefaultValue,
   3383                       const DataLayout *TD);
   3384 
   3385     /// BuildLookup - Build instructions with Builder to retrieve the value at
   3386     /// the position given by Index in the lookup table.
   3387     Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
   3388 
   3389     /// WouldFitInRegister - Return true if a table with TableSize elements of
   3390     /// type ElementType would fit in a target-legal register.
   3391     static bool WouldFitInRegister(const DataLayout *TD,
   3392                                    uint64_t TableSize,
   3393                                    const Type *ElementType);
   3394 
   3395   private:
   3396     // Depending on the contents of the table, it can be represented in
   3397     // different ways.
   3398     enum {
   3399       // For tables where each element contains the same value, we just have to
   3400       // store that single value and return it for each lookup.
   3401       SingleValueKind,
   3402 
   3403       // For small tables with integer elements, we can pack them into a bitmap
   3404       // that fits into a target-legal register. Values are retrieved by
   3405       // shift and mask operations.
   3406       BitMapKind,
   3407 
   3408       // The table is stored as an array of values. Values are retrieved by load
   3409       // instructions from the table.
   3410       ArrayKind
   3411     } Kind;
   3412 
   3413     // For SingleValueKind, this is the single value.
   3414     Constant *SingleValue;
   3415 
   3416     // For BitMapKind, this is the bitmap.
   3417     ConstantInt *BitMap;
   3418     IntegerType *BitMapElementTy;
   3419 
   3420     // For ArrayKind, this is the array.
   3421     GlobalVariable *Array;
   3422   };
   3423 }
   3424 
   3425 SwitchLookupTable::SwitchLookupTable(Module &M,
   3426                                      uint64_t TableSize,
   3427                                      ConstantInt *Offset,
   3428                const SmallVector<std::pair<ConstantInt*, Constant*>, 4>& Values,
   3429                                      Constant *DefaultValue,
   3430                                      const DataLayout *TD)
   3431     : SingleValue(0), BitMap(0), BitMapElementTy(0), Array(0) {
   3432   assert(Values.size() && "Can't build lookup table without values!");
   3433   assert(TableSize >= Values.size() && "Can't fit values in table!");
   3434 
   3435   // If all values in the table are equal, this is that value.
   3436   SingleValue = Values.begin()->second;
   3437 
   3438   // Build up the table contents.
   3439   SmallVector<Constant*, 64> TableContents(TableSize);
   3440   for (size_t I = 0, E = Values.size(); I != E; ++I) {
   3441     ConstantInt *CaseVal = Values[I].first;
   3442     Constant *CaseRes = Values[I].second;
   3443     assert(CaseRes->getType() == DefaultValue->getType());
   3444 
   3445     uint64_t Idx = (CaseVal->getValue() - Offset->getValue())
   3446                    .getLimitedValue();
   3447     TableContents[Idx] = CaseRes;
   3448 
   3449     if (CaseRes != SingleValue)
   3450       SingleValue = 0;
   3451   }
   3452 
   3453   // Fill in any holes in the table with the default result.
   3454   if (Values.size() < TableSize) {
   3455     for (uint64_t I = 0; I < TableSize; ++I) {
   3456       if (!TableContents[I])
   3457         TableContents[I] = DefaultValue;
   3458     }
   3459 
   3460     if (DefaultValue != SingleValue)
   3461       SingleValue = 0;
   3462   }
   3463 
   3464   // If each element in the table contains the same value, we only need to store
   3465   // that single value.
   3466   if (SingleValue) {
   3467     Kind = SingleValueKind;
   3468     return;
   3469   }
   3470 
   3471   // If the type is integer and the table fits in a register, build a bitmap.
   3472   if (WouldFitInRegister(TD, TableSize, DefaultValue->getType())) {
   3473     IntegerType *IT = cast<IntegerType>(DefaultValue->getType());
   3474     APInt TableInt(TableSize * IT->getBitWidth(), 0);
   3475     for (uint64_t I = TableSize; I > 0; --I) {
   3476       TableInt <<= IT->getBitWidth();
   3477       // Insert values into the bitmap. Undef values are set to zero.
   3478       if (!isa<UndefValue>(TableContents[I - 1])) {
   3479         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
   3480         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
   3481       }
   3482     }
   3483     BitMap = ConstantInt::get(M.getContext(), TableInt);
   3484     BitMapElementTy = IT;
   3485     Kind = BitMapKind;
   3486     ++NumBitMaps;
   3487     return;
   3488   }
   3489 
   3490   // Store the table in an array.
   3491   ArrayType *ArrayTy = ArrayType::get(DefaultValue->getType(), TableSize);
   3492   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
   3493 
   3494   Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
   3495                              GlobalVariable::PrivateLinkage,
   3496                              Initializer,
   3497                              "switch.table");
   3498   Array->setUnnamedAddr(true);
   3499   Kind = ArrayKind;
   3500 }
   3501 
   3502 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
   3503   switch (Kind) {
   3504     case SingleValueKind:
   3505       return SingleValue;
   3506     case BitMapKind: {
   3507       // Type of the bitmap (e.g. i59).
   3508       IntegerType *MapTy = BitMap->getType();
   3509 
   3510       // Cast Index to the same type as the bitmap.
   3511       // Note: The Index is <= the number of elements in the table, so
   3512       // truncating it to the width of the bitmask is safe.
   3513       Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
   3514 
   3515       // Multiply the shift amount by the element width.
   3516       ShiftAmt = Builder.CreateMul(ShiftAmt,
   3517                       ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
   3518                                    "switch.shiftamt");
   3519 
   3520       // Shift down.
   3521       Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt,
   3522                                               "switch.downshift");
   3523       // Mask off.
   3524       return Builder.CreateTrunc(DownShifted, BitMapElementTy,
   3525                                  "switch.masked");
   3526     }
   3527     case ArrayKind: {
   3528       Value *GEPIndices[] = { Builder.getInt32(0), Index };
   3529       Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices,
   3530                                              "switch.gep");
   3531       return Builder.CreateLoad(GEP, "switch.load");
   3532     }
   3533   }
   3534   llvm_unreachable("Unknown lookup table kind!");
   3535 }
   3536 
   3537 bool SwitchLookupTable::WouldFitInRegister(const DataLayout *TD,
   3538                                            uint64_t TableSize,
   3539                                            const Type *ElementType) {
   3540   if (!TD)
   3541     return false;
   3542   const IntegerType *IT = dyn_cast<IntegerType>(ElementType);
   3543   if (!IT)
   3544     return false;
   3545   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
   3546   // are <= 15, we could try to narrow the type.
   3547 
   3548   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
   3549   if (TableSize >= UINT_MAX/IT->getBitWidth())
   3550     return false;
   3551   return TD->fitsInLegalInteger(TableSize * IT->getBitWidth());
   3552 }
   3553 
   3554 /// ShouldBuildLookupTable - Determine whether a lookup table should be built
   3555 /// for this switch, based on the number of caes, size of the table and the
   3556 /// types of the results.
   3557 static bool ShouldBuildLookupTable(SwitchInst *SI,
   3558                                    uint64_t TableSize,
   3559                                    const TargetTransformInfo &TTI,
   3560                                    const DataLayout *TD,
   3561                             const SmallDenseMap<PHINode*, Type*>& ResultTypes) {
   3562   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
   3563     return false; // TableSize overflowed, or mul below might overflow.
   3564 
   3565   bool AllTablesFitInRegister = true;
   3566   bool HasIllegalType = false;
   3567   for (SmallDenseMap<PHINode*, Type*>::const_iterator I = ResultTypes.begin(),
   3568        E = ResultTypes.end(); I != E; ++I) {
   3569     Type *Ty = I->second;
   3570 
   3571     // Saturate this flag to true.
   3572     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
   3573 
   3574     // Saturate this flag to false.
   3575     AllTablesFitInRegister = AllTablesFitInRegister &&
   3576       SwitchLookupTable::WouldFitInRegister(TD, TableSize, Ty);
   3577 
   3578     // If both flags saturate, we're done. NOTE: This *only* works with
   3579     // saturating flags, and all flags have to saturate first due to the
   3580     // non-deterministic behavior of iterating over a dense map.
   3581     if (HasIllegalType && !AllTablesFitInRegister)
   3582       break;
   3583   }
   3584 
   3585   // If each table would fit in a register, we should build it anyway.
   3586   if (AllTablesFitInRegister)
   3587     return true;
   3588 
   3589   // Don't build a table that doesn't fit in-register if it has illegal types.
   3590   if (HasIllegalType)
   3591     return false;
   3592 
   3593   // The table density should be at least 40%. This is the same criterion as for
   3594   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
   3595   // FIXME: Find the best cut-off.
   3596   return SI->getNumCases() * 10 >= TableSize * 4;
   3597 }
   3598 
   3599 /// SwitchToLookupTable - If the switch is only used to initialize one or more
   3600 /// phi nodes in a common successor block with different constant values,
   3601 /// replace the switch with lookup tables.
   3602 static bool SwitchToLookupTable(SwitchInst *SI,
   3603                                 IRBuilder<> &Builder,
   3604                                 const TargetTransformInfo &TTI,
   3605                                 const DataLayout* TD) {
   3606   assert(SI->getNumCases() > 1 && "Degenerate switch?");
   3607 
   3608   // Only build lookup table when we have a target that supports it.
   3609   if (!TTI.shouldBuildLookupTables())
   3610     return false;
   3611 
   3612   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
   3613   // split off a dense part and build a lookup table for that.
   3614 
   3615   // FIXME: This creates arrays of GEPs to constant strings, which means each
   3616   // GEP needs a runtime relocation in PIC code. We should just build one big
   3617   // string and lookup indices into that.
   3618 
   3619   // Ignore the switch if the number of cases is too small.
   3620   // This is similar to the check when building jump tables in
   3621   // SelectionDAGBuilder::handleJTSwitchCase.
   3622   // FIXME: Determine the best cut-off.
   3623   if (SI->getNumCases() < 4)
   3624     return false;
   3625 
   3626   // Figure out the corresponding result for each case value and phi node in the
   3627   // common destination, as well as the the min and max case values.
   3628   assert(SI->case_begin() != SI->case_end());
   3629   SwitchInst::CaseIt CI = SI->case_begin();
   3630   ConstantInt *MinCaseVal = CI.getCaseValue();
   3631   ConstantInt *MaxCaseVal = CI.getCaseValue();
   3632 
   3633   BasicBlock *CommonDest = 0;
   3634   typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy;
   3635   SmallDenseMap<PHINode*, ResultListTy> ResultLists;
   3636   SmallDenseMap<PHINode*, Constant*> DefaultResults;
   3637   SmallDenseMap<PHINode*, Type*> ResultTypes;
   3638   SmallVector<PHINode*, 4> PHIs;
   3639 
   3640   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
   3641     ConstantInt *CaseVal = CI.getCaseValue();
   3642     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
   3643       MinCaseVal = CaseVal;
   3644     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
   3645       MaxCaseVal = CaseVal;
   3646 
   3647     // Resulting value at phi nodes for this case value.
   3648     typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
   3649     ResultsTy Results;
   3650     if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
   3651                         Results))
   3652       return false;
   3653 
   3654     // Append the result from this case to the list for each phi.
   3655     for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) {
   3656       if (!ResultLists.count(I->first))
   3657         PHIs.push_back(I->first);
   3658       ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second));
   3659     }
   3660   }
   3661 
   3662   // Get the resulting values for the default case.
   3663   SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
   3664   if (!GetCaseResults(SI, 0, SI->getDefaultDest(), &CommonDest,
   3665                       DefaultResultsList))
   3666     return false;
   3667   for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) {
   3668     PHINode *PHI = DefaultResultsList[I].first;
   3669     Constant *Result = DefaultResultsList[I].second;
   3670     DefaultResults[PHI] = Result;
   3671     ResultTypes[PHI] = Result->getType();
   3672   }
   3673 
   3674   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
   3675   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
   3676   if (!ShouldBuildLookupTable(SI, TableSize, TTI, TD, ResultTypes))
   3677     return false;
   3678 
   3679   // Create the BB that does the lookups.
   3680   Module &Mod = *CommonDest->getParent()->getParent();
   3681   BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
   3682                                             "switch.lookup",
   3683                                             CommonDest->getParent(),
   3684                                             CommonDest);
   3685 
   3686   // Check whether the condition value is within the case range, and branch to
   3687   // the new BB.
   3688   Builder.SetInsertPoint(SI);
   3689   Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
   3690                                         "switch.tableidx");
   3691   Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
   3692       MinCaseVal->getType(), TableSize));
   3693   Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
   3694 
   3695   // Populate the BB that does the lookups.
   3696   Builder.SetInsertPoint(LookupBB);
   3697   bool ReturnedEarly = false;
   3698   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
   3699     PHINode *PHI = PHIs[I];
   3700 
   3701     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultLists[PHI],
   3702                             DefaultResults[PHI], TD);
   3703 
   3704     Value *Result = Table.BuildLookup(TableIndex, Builder);
   3705 
   3706     // If the result is used to return immediately from the function, we want to
   3707     // do that right here.
   3708     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->use_begin()) &&
   3709         *PHI->use_begin() == CommonDest->getFirstNonPHIOrDbg()) {
   3710       Builder.CreateRet(Result);
   3711       ReturnedEarly = true;
   3712       break;
   3713     }
   3714 
   3715     PHI->addIncoming(Result, LookupBB);
   3716   }
   3717 
   3718   if (!ReturnedEarly)
   3719     Builder.CreateBr(CommonDest);
   3720 
   3721   // Remove the switch.
   3722   for (unsigned i = 0; i < SI->getNumSuccessors(); ++i) {
   3723     BasicBlock *Succ = SI->getSuccessor(i);
   3724     if (Succ == SI->getDefaultDest()) continue;
   3725     Succ->removePredecessor(SI->getParent());
   3726   }
   3727   SI->eraseFromParent();
   3728 
   3729   ++NumLookupTables;
   3730   return true;
   3731 }
   3732 
   3733 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
   3734   BasicBlock *BB = SI->getParent();
   3735 
   3736   if (isValueEqualityComparison(SI)) {
   3737     // If we only have one predecessor, and if it is a branch on this value,
   3738     // see if that predecessor totally determines the outcome of this switch.
   3739     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
   3740       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
   3741         return SimplifyCFG(BB, TTI, TD) | true;
   3742 
   3743     Value *Cond = SI->getCondition();
   3744     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
   3745       if (SimplifySwitchOnSelect(SI, Select))
   3746         return SimplifyCFG(BB, TTI, TD) | true;
   3747 
   3748     // If the block only contains the switch, see if we can fold the block
   3749     // away into any preds.
   3750     BasicBlock::iterator BBI = BB->begin();
   3751     // Ignore dbg intrinsics.
   3752     while (isa<DbgInfoIntrinsic>(BBI))
   3753       ++BBI;
   3754     if (SI == &*BBI)
   3755       if (FoldValueComparisonIntoPredecessors(SI, Builder))
   3756         return SimplifyCFG(BB, TTI, TD) | true;
   3757   }
   3758 
   3759   // Try to transform the switch into an icmp and a branch.
   3760   if (TurnSwitchRangeIntoICmp(SI, Builder))
   3761     return SimplifyCFG(BB, TTI, TD) | true;
   3762 
   3763   // Remove unreachable cases.
   3764   if (EliminateDeadSwitchCases(SI))
   3765     return SimplifyCFG(BB, TTI, TD) | true;
   3766 
   3767   if (ForwardSwitchConditionToPHI(SI))
   3768     return SimplifyCFG(BB, TTI, TD) | true;
   3769 
   3770   if (SwitchToLookupTable(SI, Builder, TTI, TD))
   3771     return SimplifyCFG(BB, TTI, TD) | true;
   3772 
   3773   return false;
   3774 }
   3775 
   3776 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
   3777   BasicBlock *BB = IBI->getParent();
   3778   bool Changed = false;
   3779 
   3780   // Eliminate redundant destinations.
   3781   SmallPtrSet<Value *, 8> Succs;
   3782   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
   3783     BasicBlock *Dest = IBI->getDestination(i);
   3784     if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
   3785       Dest->removePredecessor(BB);
   3786       IBI->removeDestination(i);
   3787       --i; --e;
   3788       Changed = true;
   3789     }
   3790   }
   3791 
   3792   if (IBI->getNumDestinations() == 0) {
   3793     // If the indirectbr has no successors, change it to unreachable.
   3794     new UnreachableInst(IBI->getContext(), IBI);
   3795     EraseTerminatorInstAndDCECond(IBI);
   3796     return true;
   3797   }
   3798 
   3799   if (IBI->getNumDestinations() == 1) {
   3800     // If the indirectbr has one successor, change it to a direct branch.
   3801     BranchInst::Create(IBI->getDestination(0), IBI);
   3802     EraseTerminatorInstAndDCECond(IBI);
   3803     return true;
   3804   }
   3805 
   3806   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
   3807     if (SimplifyIndirectBrOnSelect(IBI, SI))
   3808       return SimplifyCFG(BB, TTI, TD) | true;
   3809   }
   3810   return Changed;
   3811 }
   3812 
   3813 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
   3814   BasicBlock *BB = BI->getParent();
   3815 
   3816   if (SinkCommon && SinkThenElseCodeToEnd(BI))
   3817     return true;
   3818 
   3819   // If the Terminator is the only non-phi instruction, simplify the block.
   3820   BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime();
   3821   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
   3822       TryToSimplifyUncondBranchFromEmptyBlock(BB))
   3823     return true;
   3824 
   3825   // If the only instruction in the block is a seteq/setne comparison
   3826   // against a constant, try to simplify the block.
   3827   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
   3828     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
   3829       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
   3830         ;
   3831       if (I->isTerminator() &&
   3832           TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI, TD))
   3833         return true;
   3834     }
   3835 
   3836   // If this basic block is ONLY a compare and a branch, and if a predecessor
   3837   // branches to us and our successor, fold the comparison into the
   3838   // predecessor and use logical operations to update the incoming value
   3839   // for PHI nodes in common successor.
   3840   if (FoldBranchToCommonDest(BI))
   3841     return SimplifyCFG(BB, TTI, TD) | true;
   3842   return false;
   3843 }
   3844 
   3845 
   3846 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
   3847   BasicBlock *BB = BI->getParent();
   3848 
   3849   // Conditional branch
   3850   if (isValueEqualityComparison(BI)) {
   3851     // If we only have one predecessor, and if it is a branch on this value,
   3852     // see if that predecessor totally determines the outcome of this
   3853     // switch.
   3854     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
   3855       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
   3856         return SimplifyCFG(BB, TTI, TD) | true;
   3857 
   3858     // This block must be empty, except for the setcond inst, if it exists.
   3859     // Ignore dbg intrinsics.
   3860     BasicBlock::iterator I = BB->begin();
   3861     // Ignore dbg intrinsics.
   3862     while (isa<DbgInfoIntrinsic>(I))
   3863       ++I;
   3864     if (&*I == BI) {
   3865       if (FoldValueComparisonIntoPredecessors(BI, Builder))
   3866         return SimplifyCFG(BB, TTI, TD) | true;
   3867     } else if (&*I == cast<Instruction>(BI->getCondition())){
   3868       ++I;
   3869       // Ignore dbg intrinsics.
   3870       while (isa<DbgInfoIntrinsic>(I))
   3871         ++I;
   3872       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
   3873         return SimplifyCFG(BB, TTI, TD) | true;
   3874     }
   3875   }
   3876 
   3877   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
   3878   if (SimplifyBranchOnICmpChain(BI, TD, Builder))
   3879     return true;
   3880 
   3881   // If this basic block is ONLY a compare and a branch, and if a predecessor
   3882   // branches to us and one of our successors, fold the comparison into the
   3883   // predecessor and use logical operations to pick the right destination.
   3884   if (FoldBranchToCommonDest(BI))
   3885     return SimplifyCFG(BB, TTI, TD) | true;
   3886 
   3887   // We have a conditional branch to two blocks that are only reachable
   3888   // from BI.  We know that the condbr dominates the two blocks, so see if
   3889   // there is any identical code in the "then" and "else" blocks.  If so, we
   3890   // can hoist it up to the branching block.
   3891   if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
   3892     if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
   3893       if (HoistThenElseCodeToIf(BI))
   3894         return SimplifyCFG(BB, TTI, TD) | true;
   3895     } else {
   3896       // If Successor #1 has multiple preds, we may be able to conditionally
   3897       // execute Successor #0 if it branches to successor #1.
   3898       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
   3899       if (Succ0TI->getNumSuccessors() == 1 &&
   3900           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
   3901         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
   3902           return SimplifyCFG(BB, TTI, TD) | true;
   3903     }
   3904   } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
   3905     // If Successor #0 has multiple preds, we may be able to conditionally
   3906     // execute Successor #1 if it branches to successor #0.
   3907     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
   3908     if (Succ1TI->getNumSuccessors() == 1 &&
   3909         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
   3910       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
   3911         return SimplifyCFG(BB, TTI, TD) | true;
   3912   }
   3913 
   3914   // If this is a branch on a phi node in the current block, thread control
   3915   // through this block if any PHI node entries are constants.
   3916   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
   3917     if (PN->getParent() == BI->getParent())
   3918       if (FoldCondBranchOnPHI(BI, TD))
   3919         return SimplifyCFG(BB, TTI, TD) | true;
   3920 
   3921   // Scan predecessor blocks for conditional branches.
   3922   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
   3923     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
   3924       if (PBI != BI && PBI->isConditional())
   3925         if (SimplifyCondBranchToCondBranch(PBI, BI))
   3926           return SimplifyCFG(BB, TTI, TD) | true;
   3927 
   3928   return false;
   3929 }
   3930 
   3931 /// Check if passing a value to an instruction will cause undefined behavior.
   3932 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
   3933   Constant *C = dyn_cast<Constant>(V);
   3934   if (!C)
   3935     return false;
   3936 
   3937   if (I->use_empty())
   3938     return false;
   3939 
   3940   if (C->isNullValue()) {
   3941     // Only look at the first use, avoid hurting compile time with long uselists
   3942     User *Use = *I->use_begin();
   3943 
   3944     // Now make sure that there are no instructions in between that can alter
   3945     // control flow (eg. calls)
   3946     for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
   3947       if (i == I->getParent()->end() || i->mayHaveSideEffects())
   3948         return false;
   3949 
   3950     // Look through GEPs. A load from a GEP derived from NULL is still undefined
   3951     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
   3952       if (GEP->getPointerOperand() == I)
   3953         return passingValueIsAlwaysUndefined(V, GEP);
   3954 
   3955     // Look through bitcasts.
   3956     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
   3957       return passingValueIsAlwaysUndefined(V, BC);
   3958 
   3959     // Load from null is undefined.
   3960     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
   3961       if (!LI->isVolatile())
   3962         return LI->getPointerAddressSpace() == 0;
   3963 
   3964     // Store to null is undefined.
   3965     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
   3966       if (!SI->isVolatile())
   3967         return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
   3968   }
   3969   return false;
   3970 }
   3971 
   3972 /// If BB has an incoming value that will always trigger undefined behavior
   3973 /// (eg. null pointer dereference), remove the branch leading here.
   3974 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
   3975   for (BasicBlock::iterator i = BB->begin();
   3976        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
   3977     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
   3978       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
   3979         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
   3980         IRBuilder<> Builder(T);
   3981         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
   3982           BB->removePredecessor(PHI->getIncomingBlock(i));
   3983           // Turn uncoditional branches into unreachables and remove the dead
   3984           // destination from conditional branches.
   3985           if (BI->isUnconditional())
   3986             Builder.CreateUnreachable();
   3987           else
   3988             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
   3989                                                          BI->getSuccessor(0));
   3990           BI->eraseFromParent();
   3991           return true;
   3992         }
   3993         // TODO: SwitchInst.
   3994       }
   3995 
   3996   return false;
   3997 }
   3998 
   3999 bool SimplifyCFGOpt::run(BasicBlock *BB) {
   4000   bool Changed = false;
   4001 
   4002   assert(BB && BB->getParent() && "Block not embedded in function!");
   4003   assert(BB->getTerminator() && "Degenerate basic block encountered!");
   4004 
   4005   // Remove basic blocks that have no predecessors (except the entry block)...
   4006   // or that just have themself as a predecessor.  These are unreachable.
   4007   if ((pred_begin(BB) == pred_end(BB) &&
   4008        BB != &BB->getParent()->getEntryBlock()) ||
   4009       BB->getSinglePredecessor() == BB) {
   4010     DEBUG(dbgs() << "Removing BB: \n" << *BB);
   4011     DeleteDeadBlock(BB);
   4012     return true;
   4013   }
   4014 
   4015   // Check to see if we can constant propagate this terminator instruction
   4016   // away...
   4017   Changed |= ConstantFoldTerminator(BB, true);
   4018 
   4019   // Check for and eliminate duplicate PHI nodes in this block.
   4020   Changed |= EliminateDuplicatePHINodes(BB);
   4021 
   4022   // Check for and remove branches that will always cause undefined behavior.
   4023   Changed |= removeUndefIntroducingPredecessor(BB);
   4024 
   4025   // Merge basic blocks into their predecessor if there is only one distinct
   4026   // pred, and if there is only one distinct successor of the predecessor, and
   4027   // if there are no PHI nodes.
   4028   //
   4029   if (MergeBlockIntoPredecessor(BB))
   4030     return true;
   4031 
   4032   IRBuilder<> Builder(BB);
   4033 
   4034   // If there is a trivial two-entry PHI node in this basic block, and we can
   4035   // eliminate it, do so now.
   4036   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
   4037     if (PN->getNumIncomingValues() == 2)
   4038       Changed |= FoldTwoEntryPHINode(PN, TD);
   4039 
   4040   Builder.SetInsertPoint(BB->getTerminator());
   4041   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
   4042     if (BI->isUnconditional()) {
   4043       if (SimplifyUncondBranch(BI, Builder)) return true;
   4044     } else {
   4045       if (SimplifyCondBranch(BI, Builder)) return true;
   4046     }
   4047   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
   4048     if (SimplifyReturn(RI, Builder)) return true;
   4049   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
   4050     if (SimplifyResume(RI, Builder)) return true;
   4051   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
   4052     if (SimplifySwitch(SI, Builder)) return true;
   4053   } else if (UnreachableInst *UI =
   4054                dyn_cast<UnreachableInst>(BB->getTerminator())) {
   4055     if (SimplifyUnreachable(UI)) return true;
   4056   } else if (IndirectBrInst *IBI =
   4057                dyn_cast<IndirectBrInst>(BB->getTerminator())) {
   4058     if (SimplifyIndirectBr(IBI)) return true;
   4059   }
   4060 
   4061   return Changed;
   4062 }
   4063 
   4064 /// SimplifyCFG - This function is used to do simplification of a CFG.  For
   4065 /// example, it adjusts branches to branches to eliminate the extra hop, it
   4066 /// eliminates unreachable basic blocks, and does other "peephole" optimization
   4067 /// of the CFG.  It returns true if a modification was made.
   4068 ///
   4069 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
   4070                        const DataLayout *TD) {
   4071   return SimplifyCFGOpt(TTI, TD).run(BB);
   4072 }
   4073