Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
     11 // srem, urem, frem.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "InstCombine.h"
     16 #include "llvm/Analysis/InstructionSimplify.h"
     17 #include "llvm/IR/IntrinsicInst.h"
     18 #include "llvm/Support/PatternMatch.h"
     19 using namespace llvm;
     20 using namespace PatternMatch;
     21 
     22 
     23 /// simplifyValueKnownNonZero - The specific integer value is used in a context
     24 /// where it is known to be non-zero.  If this allows us to simplify the
     25 /// computation, do so and return the new operand, otherwise return null.
     26 static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) {
     27   // If V has multiple uses, then we would have to do more analysis to determine
     28   // if this is safe.  For example, the use could be in dynamically unreached
     29   // code.
     30   if (!V->hasOneUse()) return 0;
     31 
     32   bool MadeChange = false;
     33 
     34   // ((1 << A) >>u B) --> (1 << (A-B))
     35   // Because V cannot be zero, we know that B is less than A.
     36   Value *A = 0, *B = 0, *PowerOf2 = 0;
     37   if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))),
     38                       m_Value(B))) &&
     39       // The "1" can be any value known to be a power of 2.
     40       isKnownToBeAPowerOfTwo(PowerOf2)) {
     41     A = IC.Builder->CreateSub(A, B);
     42     return IC.Builder->CreateShl(PowerOf2, A);
     43   }
     44 
     45   // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
     46   // inexact.  Similarly for <<.
     47   if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
     48     if (I->isLogicalShift() && isKnownToBeAPowerOfTwo(I->getOperand(0))) {
     49       // We know that this is an exact/nuw shift and that the input is a
     50       // non-zero context as well.
     51       if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC)) {
     52         I->setOperand(0, V2);
     53         MadeChange = true;
     54       }
     55 
     56       if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
     57         I->setIsExact();
     58         MadeChange = true;
     59       }
     60 
     61       if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
     62         I->setHasNoUnsignedWrap();
     63         MadeChange = true;
     64       }
     65     }
     66 
     67   // TODO: Lots more we could do here:
     68   //    If V is a phi node, we can call this on each of its operands.
     69   //    "select cond, X, 0" can simplify to "X".
     70 
     71   return MadeChange ? V : 0;
     72 }
     73 
     74 
     75 /// MultiplyOverflows - True if the multiply can not be expressed in an int
     76 /// this size.
     77 static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
     78   uint32_t W = C1->getBitWidth();
     79   APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
     80   if (sign) {
     81     LHSExt = LHSExt.sext(W * 2);
     82     RHSExt = RHSExt.sext(W * 2);
     83   } else {
     84     LHSExt = LHSExt.zext(W * 2);
     85     RHSExt = RHSExt.zext(W * 2);
     86   }
     87 
     88   APInt MulExt = LHSExt * RHSExt;
     89 
     90   if (!sign)
     91     return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
     92 
     93   APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
     94   APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
     95   return MulExt.slt(Min) || MulExt.sgt(Max);
     96 }
     97 
     98 Instruction *InstCombiner::visitMul(BinaryOperator &I) {
     99   bool Changed = SimplifyAssociativeOrCommutative(I);
    100   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    101 
    102   if (Value *V = SimplifyMulInst(Op0, Op1, TD))
    103     return ReplaceInstUsesWith(I, V);
    104 
    105   if (Value *V = SimplifyUsingDistributiveLaws(I))
    106     return ReplaceInstUsesWith(I, V);
    107 
    108   if (match(Op1, m_AllOnes()))  // X * -1 == 0 - X
    109     return BinaryOperator::CreateNeg(Op0, I.getName());
    110 
    111   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
    112 
    113     // ((X << C1)*C2) == (X * (C2 << C1))
    114     if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
    115       if (SI->getOpcode() == Instruction::Shl)
    116         if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
    117           return BinaryOperator::CreateMul(SI->getOperand(0),
    118                                            ConstantExpr::getShl(CI, ShOp));
    119 
    120     const APInt &Val = CI->getValue();
    121     if (Val.isPowerOf2()) {          // Replace X*(2^C) with X << C
    122       Constant *NewCst = ConstantInt::get(Op0->getType(), Val.logBase2());
    123       BinaryOperator *Shl = BinaryOperator::CreateShl(Op0, NewCst);
    124       if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap();
    125       if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap();
    126       return Shl;
    127     }
    128 
    129     // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
    130     { Value *X; ConstantInt *C1;
    131       if (Op0->hasOneUse() &&
    132           match(Op0, m_Add(m_Value(X), m_ConstantInt(C1)))) {
    133         Value *Add = Builder->CreateMul(X, CI);
    134         return BinaryOperator::CreateAdd(Add, Builder->CreateMul(C1, CI));
    135       }
    136     }
    137 
    138     // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
    139     // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
    140     // The "* (2**n)" thus becomes a potential shifting opportunity.
    141     {
    142       const APInt &   Val = CI->getValue();
    143       const APInt &PosVal = Val.abs();
    144       if (Val.isNegative() && PosVal.isPowerOf2()) {
    145         Value *X = 0, *Y = 0;
    146         if (Op0->hasOneUse()) {
    147           ConstantInt *C1;
    148           Value *Sub = 0;
    149           if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
    150             Sub = Builder->CreateSub(X, Y, "suba");
    151           else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
    152             Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc");
    153           if (Sub)
    154             return
    155               BinaryOperator::CreateMul(Sub,
    156                                         ConstantInt::get(Y->getType(), PosVal));
    157         }
    158       }
    159     }
    160   }
    161 
    162   // Simplify mul instructions with a constant RHS.
    163   if (isa<Constant>(Op1)) {
    164     // Try to fold constant mul into select arguments.
    165     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
    166       if (Instruction *R = FoldOpIntoSelect(I, SI))
    167         return R;
    168 
    169     if (isa<PHINode>(Op0))
    170       if (Instruction *NV = FoldOpIntoPhi(I))
    171         return NV;
    172   }
    173 
    174   if (Value *Op0v = dyn_castNegVal(Op0))     // -X * -Y = X*Y
    175     if (Value *Op1v = dyn_castNegVal(Op1))
    176       return BinaryOperator::CreateMul(Op0v, Op1v);
    177 
    178   // (X / Y) *  Y = X - (X % Y)
    179   // (X / Y) * -Y = (X % Y) - X
    180   {
    181     Value *Op1C = Op1;
    182     BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
    183     if (!BO ||
    184         (BO->getOpcode() != Instruction::UDiv &&
    185          BO->getOpcode() != Instruction::SDiv)) {
    186       Op1C = Op0;
    187       BO = dyn_cast<BinaryOperator>(Op1);
    188     }
    189     Value *Neg = dyn_castNegVal(Op1C);
    190     if (BO && BO->hasOneUse() &&
    191         (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
    192         (BO->getOpcode() == Instruction::UDiv ||
    193          BO->getOpcode() == Instruction::SDiv)) {
    194       Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
    195 
    196       // If the division is exact, X % Y is zero, so we end up with X or -X.
    197       if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO))
    198         if (SDiv->isExact()) {
    199           if (Op1BO == Op1C)
    200             return ReplaceInstUsesWith(I, Op0BO);
    201           return BinaryOperator::CreateNeg(Op0BO);
    202         }
    203 
    204       Value *Rem;
    205       if (BO->getOpcode() == Instruction::UDiv)
    206         Rem = Builder->CreateURem(Op0BO, Op1BO);
    207       else
    208         Rem = Builder->CreateSRem(Op0BO, Op1BO);
    209       Rem->takeName(BO);
    210 
    211       if (Op1BO == Op1C)
    212         return BinaryOperator::CreateSub(Op0BO, Rem);
    213       return BinaryOperator::CreateSub(Rem, Op0BO);
    214     }
    215   }
    216 
    217   /// i1 mul -> i1 and.
    218   if (I.getType()->isIntegerTy(1))
    219     return BinaryOperator::CreateAnd(Op0, Op1);
    220 
    221   // X*(1 << Y) --> X << Y
    222   // (1 << Y)*X --> X << Y
    223   {
    224     Value *Y;
    225     if (match(Op0, m_Shl(m_One(), m_Value(Y))))
    226       return BinaryOperator::CreateShl(Op1, Y);
    227     if (match(Op1, m_Shl(m_One(), m_Value(Y))))
    228       return BinaryOperator::CreateShl(Op0, Y);
    229   }
    230 
    231   // If one of the operands of the multiply is a cast from a boolean value, then
    232   // we know the bool is either zero or one, so this is a 'masking' multiply.
    233   //   X * Y (where Y is 0 or 1) -> X & (0-Y)
    234   if (!I.getType()->isVectorTy()) {
    235     // -2 is "-1 << 1" so it is all bits set except the low one.
    236     APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
    237 
    238     Value *BoolCast = 0, *OtherOp = 0;
    239     if (MaskedValueIsZero(Op0, Negative2))
    240       BoolCast = Op0, OtherOp = Op1;
    241     else if (MaskedValueIsZero(Op1, Negative2))
    242       BoolCast = Op1, OtherOp = Op0;
    243 
    244     if (BoolCast) {
    245       Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
    246                                     BoolCast);
    247       return BinaryOperator::CreateAnd(V, OtherOp);
    248     }
    249   }
    250 
    251   return Changed ? &I : 0;
    252 }
    253 
    254 //
    255 // Detect pattern:
    256 //
    257 // log2(Y*0.5)
    258 //
    259 // And check for corresponding fast math flags
    260 //
    261 
    262 static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) {
    263 
    264    if (!Op->hasOneUse())
    265      return;
    266 
    267    IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op);
    268    if (!II)
    269      return;
    270    if (II->getIntrinsicID() != Intrinsic::log2 || !II->hasUnsafeAlgebra())
    271      return;
    272    Log2 = II;
    273 
    274    Value *OpLog2Of = II->getArgOperand(0);
    275    if (!OpLog2Of->hasOneUse())
    276      return;
    277 
    278    Instruction *I = dyn_cast<Instruction>(OpLog2Of);
    279    if (!I)
    280      return;
    281    if (I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
    282      return;
    283 
    284    ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(0));
    285    if (CFP && CFP->isExactlyValue(0.5)) {
    286      Y = I->getOperand(1);
    287      return;
    288    }
    289    CFP = dyn_cast<ConstantFP>(I->getOperand(1));
    290    if (CFP && CFP->isExactlyValue(0.5))
    291      Y = I->getOperand(0);
    292 }
    293 
    294 /// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns
    295 /// true iff the given value is FMul or FDiv with one and only one operand
    296 /// being a normal constant (i.e. not Zero/NaN/Infinity).
    297 static bool isFMulOrFDivWithConstant(Value *V) {
    298   Instruction *I = dyn_cast<Instruction>(V);
    299   if (!I || (I->getOpcode() != Instruction::FMul &&
    300              I->getOpcode() != Instruction::FDiv))
    301     return false;
    302 
    303   ConstantFP *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
    304   ConstantFP *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
    305 
    306   if (C0 && C1)
    307     return false;
    308 
    309   return (C0 && C0->getValueAPF().isNormal()) ||
    310          (C1 && C1->getValueAPF().isNormal());
    311 }
    312 
    313 static bool isNormalFp(const ConstantFP *C) {
    314   const APFloat &Flt = C->getValueAPF();
    315   return Flt.isNormal() && !Flt.isDenormal();
    316 }
    317 
    318 /// foldFMulConst() is a helper routine of InstCombiner::visitFMul().
    319 /// The input \p FMulOrDiv is a FMul/FDiv with one and only one operand
    320 /// being a constant (i.e. isFMulOrFDivWithConstant(FMulOrDiv) == true).
    321 /// This function is to simplify "FMulOrDiv * C" and returns the
    322 /// resulting expression. Note that this function could return NULL in
    323 /// case the constants cannot be folded into a normal floating-point.
    324 ///
    325 Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, ConstantFP *C,
    326                                    Instruction *InsertBefore) {
    327   assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid");
    328 
    329   Value *Opnd0 = FMulOrDiv->getOperand(0);
    330   Value *Opnd1 = FMulOrDiv->getOperand(1);
    331 
    332   ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0);
    333   ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1);
    334 
    335   BinaryOperator *R = 0;
    336 
    337   // (X * C0) * C => X * (C0*C)
    338   if (FMulOrDiv->getOpcode() == Instruction::FMul) {
    339     Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C);
    340     if (isNormalFp(cast<ConstantFP>(F)))
    341       R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F);
    342   } else {
    343     if (C0) {
    344       // (C0 / X) * C => (C0 * C) / X
    345       ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFMul(C0, C));
    346       if (isNormalFp(F))
    347         R = BinaryOperator::CreateFDiv(F, Opnd1);
    348     } else {
    349       // (X / C1) * C => X * (C/C1) if C/C1 is not a denormal
    350       ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFDiv(C, C1));
    351       if (isNormalFp(F)) {
    352         R = BinaryOperator::CreateFMul(Opnd0, F);
    353       } else {
    354         // (X / C1) * C => X / (C1/C)
    355         Constant *F = ConstantExpr::getFDiv(C1, C);
    356         if (isNormalFp(cast<ConstantFP>(F)))
    357           R = BinaryOperator::CreateFDiv(Opnd0, F);
    358       }
    359     }
    360   }
    361 
    362   if (R) {
    363     R->setHasUnsafeAlgebra(true);
    364     InsertNewInstWith(R, *InsertBefore);
    365   }
    366 
    367   return R;
    368 }
    369 
    370 Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
    371   bool Changed = SimplifyAssociativeOrCommutative(I);
    372   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    373 
    374   if (isa<Constant>(Op0))
    375     std::swap(Op0, Op1);
    376 
    377   if (Value *V = SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), TD))
    378     return ReplaceInstUsesWith(I, V);
    379 
    380   bool AllowReassociate = I.hasUnsafeAlgebra();
    381 
    382   // Simplify mul instructions with a constant RHS.
    383   if (isa<Constant>(Op1)) {
    384     // Try to fold constant mul into select arguments.
    385     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
    386       if (Instruction *R = FoldOpIntoSelect(I, SI))
    387         return R;
    388 
    389     if (isa<PHINode>(Op0))
    390       if (Instruction *NV = FoldOpIntoPhi(I))
    391         return NV;
    392 
    393     ConstantFP *C = dyn_cast<ConstantFP>(Op1);
    394     if (C && AllowReassociate && C->getValueAPF().isNormal()) {
    395       // Let MDC denote an expression in one of these forms:
    396       // X * C, C/X, X/C, where C is a constant.
    397       //
    398       // Try to simplify "MDC * Constant"
    399       if (isFMulOrFDivWithConstant(Op0)) {
    400         Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I);
    401         if (V)
    402           return ReplaceInstUsesWith(I, V);
    403       }
    404 
    405       // (MDC +/- C1) * C => (MDC * C) +/- (C1 * C)
    406       Instruction *FAddSub = dyn_cast<Instruction>(Op0);
    407       if (FAddSub &&
    408           (FAddSub->getOpcode() == Instruction::FAdd ||
    409            FAddSub->getOpcode() == Instruction::FSub)) {
    410         Value *Opnd0 = FAddSub->getOperand(0);
    411         Value *Opnd1 = FAddSub->getOperand(1);
    412         ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0);
    413         ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1);
    414         bool Swap = false;
    415         if (C0) {
    416           std::swap(C0, C1);
    417           std::swap(Opnd0, Opnd1);
    418           Swap = true;
    419         }
    420 
    421         if (C1 && C1->getValueAPF().isNormal() &&
    422             isFMulOrFDivWithConstant(Opnd0)) {
    423           Value *M1 = ConstantExpr::getFMul(C1, C);
    424           Value *M0 = isNormalFp(cast<ConstantFP>(M1)) ?
    425                       foldFMulConst(cast<Instruction>(Opnd0), C, &I) :
    426                       0;
    427           if (M0 && M1) {
    428             if (Swap && FAddSub->getOpcode() == Instruction::FSub)
    429               std::swap(M0, M1);
    430 
    431             Value *R = (FAddSub->getOpcode() == Instruction::FAdd) ?
    432                         BinaryOperator::CreateFAdd(M0, M1) :
    433                         BinaryOperator::CreateFSub(M0, M1);
    434             Instruction *RI = cast<Instruction>(R);
    435             RI->copyFastMathFlags(&I);
    436             return RI;
    437           }
    438         }
    439       }
    440     }
    441   }
    442 
    443 
    444   // Under unsafe algebra do:
    445   // X * log2(0.5*Y) = X*log2(Y) - X
    446   if (I.hasUnsafeAlgebra()) {
    447     Value *OpX = NULL;
    448     Value *OpY = NULL;
    449     IntrinsicInst *Log2;
    450     detectLog2OfHalf(Op0, OpY, Log2);
    451     if (OpY) {
    452       OpX = Op1;
    453     } else {
    454       detectLog2OfHalf(Op1, OpY, Log2);
    455       if (OpY) {
    456         OpX = Op0;
    457       }
    458     }
    459     // if pattern detected emit alternate sequence
    460     if (OpX && OpY) {
    461       Log2->setArgOperand(0, OpY);
    462       Value *FMulVal = Builder->CreateFMul(OpX, Log2);
    463       Instruction *FMul = cast<Instruction>(FMulVal);
    464       FMul->copyFastMathFlags(Log2);
    465       Instruction *FSub = BinaryOperator::CreateFSub(FMulVal, OpX);
    466       FSub->copyFastMathFlags(Log2);
    467       return FSub;
    468     }
    469   }
    470 
    471   // Handle symmetric situation in a 2-iteration loop
    472   Value *Opnd0 = Op0;
    473   Value *Opnd1 = Op1;
    474   for (int i = 0; i < 2; i++) {
    475     bool IgnoreZeroSign = I.hasNoSignedZeros();
    476     if (BinaryOperator::isFNeg(Opnd0, IgnoreZeroSign)) {
    477       Value *N0 = dyn_castFNegVal(Opnd0, IgnoreZeroSign);
    478       Value *N1 = dyn_castFNegVal(Opnd1, IgnoreZeroSign);
    479 
    480       // -X * -Y => X*Y
    481       if (N1)
    482         return BinaryOperator::CreateFMul(N0, N1);
    483 
    484       if (Opnd0->hasOneUse()) {
    485         // -X * Y => -(X*Y) (Promote negation as high as possible)
    486         Value *T = Builder->CreateFMul(N0, Opnd1);
    487         cast<Instruction>(T)->setDebugLoc(I.getDebugLoc());
    488         Instruction *Neg = BinaryOperator::CreateFNeg(T);
    489         if (I.getFastMathFlags().any()) {
    490           cast<Instruction>(T)->copyFastMathFlags(&I);
    491           Neg->copyFastMathFlags(&I);
    492         }
    493         return Neg;
    494       }
    495     }
    496 
    497     // (X*Y) * X => (X*X) * Y where Y != X
    498     //  The purpose is two-fold:
    499     //   1) to form a power expression (of X).
    500     //   2) potentially shorten the critical path: After transformation, the
    501     //  latency of the instruction Y is amortized by the expression of X*X,
    502     //  and therefore Y is in a "less critical" position compared to what it
    503     //  was before the transformation.
    504     //
    505     if (AllowReassociate) {
    506       Value *Opnd0_0, *Opnd0_1;
    507       if (Opnd0->hasOneUse() &&
    508           match(Opnd0, m_FMul(m_Value(Opnd0_0), m_Value(Opnd0_1)))) {
    509         Value *Y = 0;
    510         if (Opnd0_0 == Opnd1 && Opnd0_1 != Opnd1)
    511           Y = Opnd0_1;
    512         else if (Opnd0_1 == Opnd1 && Opnd0_0 != Opnd1)
    513           Y = Opnd0_0;
    514 
    515         if (Y) {
    516           Instruction *T = cast<Instruction>(Builder->CreateFMul(Opnd1, Opnd1));
    517           T->copyFastMathFlags(&I);
    518           T->setDebugLoc(I.getDebugLoc());
    519 
    520           Instruction *R = BinaryOperator::CreateFMul(T, Y);
    521           R->copyFastMathFlags(&I);
    522           return R;
    523         }
    524       }
    525     }
    526 
    527     if (!isa<Constant>(Op1))
    528       std::swap(Opnd0, Opnd1);
    529     else
    530       break;
    531   }
    532 
    533   return Changed ? &I : 0;
    534 }
    535 
    536 /// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
    537 /// instruction.
    538 bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
    539   SelectInst *SI = cast<SelectInst>(I.getOperand(1));
    540 
    541   // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
    542   int NonNullOperand = -1;
    543   if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
    544     if (ST->isNullValue())
    545       NonNullOperand = 2;
    546   // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
    547   if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
    548     if (ST->isNullValue())
    549       NonNullOperand = 1;
    550 
    551   if (NonNullOperand == -1)
    552     return false;
    553 
    554   Value *SelectCond = SI->getOperand(0);
    555 
    556   // Change the div/rem to use 'Y' instead of the select.
    557   I.setOperand(1, SI->getOperand(NonNullOperand));
    558 
    559   // Okay, we know we replace the operand of the div/rem with 'Y' with no
    560   // problem.  However, the select, or the condition of the select may have
    561   // multiple uses.  Based on our knowledge that the operand must be non-zero,
    562   // propagate the known value for the select into other uses of it, and
    563   // propagate a known value of the condition into its other users.
    564 
    565   // If the select and condition only have a single use, don't bother with this,
    566   // early exit.
    567   if (SI->use_empty() && SelectCond->hasOneUse())
    568     return true;
    569 
    570   // Scan the current block backward, looking for other uses of SI.
    571   BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
    572 
    573   while (BBI != BBFront) {
    574     --BBI;
    575     // If we found a call to a function, we can't assume it will return, so
    576     // information from below it cannot be propagated above it.
    577     if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
    578       break;
    579 
    580     // Replace uses of the select or its condition with the known values.
    581     for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
    582          I != E; ++I) {
    583       if (*I == SI) {
    584         *I = SI->getOperand(NonNullOperand);
    585         Worklist.Add(BBI);
    586       } else if (*I == SelectCond) {
    587         *I = NonNullOperand == 1 ? ConstantInt::getTrue(BBI->getContext()) :
    588                                    ConstantInt::getFalse(BBI->getContext());
    589         Worklist.Add(BBI);
    590       }
    591     }
    592 
    593     // If we past the instruction, quit looking for it.
    594     if (&*BBI == SI)
    595       SI = 0;
    596     if (&*BBI == SelectCond)
    597       SelectCond = 0;
    598 
    599     // If we ran out of things to eliminate, break out of the loop.
    600     if (SelectCond == 0 && SI == 0)
    601       break;
    602 
    603   }
    604   return true;
    605 }
    606 
    607 
    608 /// This function implements the transforms common to both integer division
    609 /// instructions (udiv and sdiv). It is called by the visitors to those integer
    610 /// division instructions.
    611 /// @brief Common integer divide transforms
    612 Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
    613   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    614 
    615   // The RHS is known non-zero.
    616   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
    617     I.setOperand(1, V);
    618     return &I;
    619   }
    620 
    621   // Handle cases involving: [su]div X, (select Cond, Y, Z)
    622   // This does not apply for fdiv.
    623   if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
    624     return &I;
    625 
    626   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
    627     // (X / C1) / C2  -> X / (C1*C2)
    628     if (Instruction *LHS = dyn_cast<Instruction>(Op0))
    629       if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
    630         if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
    631           if (MultiplyOverflows(RHS, LHSRHS,
    632                                 I.getOpcode()==Instruction::SDiv))
    633             return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
    634           return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
    635                                         ConstantExpr::getMul(RHS, LHSRHS));
    636         }
    637 
    638     if (!RHS->isZero()) { // avoid X udiv 0
    639       if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
    640         if (Instruction *R = FoldOpIntoSelect(I, SI))
    641           return R;
    642       if (isa<PHINode>(Op0))
    643         if (Instruction *NV = FoldOpIntoPhi(I))
    644           return NV;
    645     }
    646   }
    647 
    648   // See if we can fold away this div instruction.
    649   if (SimplifyDemandedInstructionBits(I))
    650     return &I;
    651 
    652   // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
    653   Value *X = 0, *Z = 0;
    654   if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
    655     bool isSigned = I.getOpcode() == Instruction::SDiv;
    656     if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
    657         (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
    658       return BinaryOperator::Create(I.getOpcode(), X, Op1);
    659   }
    660 
    661   return 0;
    662 }
    663 
    664 /// dyn_castZExtVal - Checks if V is a zext or constant that can
    665 /// be truncated to Ty without losing bits.
    666 static Value *dyn_castZExtVal(Value *V, Type *Ty) {
    667   if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) {
    668     if (Z->getSrcTy() == Ty)
    669       return Z->getOperand(0);
    670   } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) {
    671     if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth())
    672       return ConstantExpr::getTrunc(C, Ty);
    673   }
    674   return 0;
    675 }
    676 
    677 Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
    678   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    679 
    680   if (Value *V = SimplifyUDivInst(Op0, Op1, TD))
    681     return ReplaceInstUsesWith(I, V);
    682 
    683   // Handle the integer div common cases
    684   if (Instruction *Common = commonIDivTransforms(I))
    685     return Common;
    686 
    687   {
    688     // X udiv 2^C -> X >> C
    689     // Check to see if this is an unsigned division with an exact power of 2,
    690     // if so, convert to a right shift.
    691     const APInt *C;
    692     if (match(Op1, m_Power2(C))) {
    693       BinaryOperator *LShr =
    694       BinaryOperator::CreateLShr(Op0,
    695                                  ConstantInt::get(Op0->getType(),
    696                                                   C->logBase2()));
    697       if (I.isExact()) LShr->setIsExact();
    698       return LShr;
    699     }
    700   }
    701 
    702   if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
    703     // X udiv C, where C >= signbit
    704     if (C->getValue().isNegative()) {
    705       Value *IC = Builder->CreateICmpULT(Op0, C);
    706       return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
    707                                 ConstantInt::get(I.getType(), 1));
    708     }
    709   }
    710 
    711   // (x lshr C1) udiv C2 --> x udiv (C2 << C1)
    712   if (ConstantInt *C2 = dyn_cast<ConstantInt>(Op1)) {
    713     Value *X;
    714     ConstantInt *C1;
    715     if (match(Op0, m_LShr(m_Value(X), m_ConstantInt(C1)))) {
    716       APInt NC = C2->getValue().shl(C1->getLimitedValue(C1->getBitWidth()-1));
    717       return BinaryOperator::CreateUDiv(X, Builder->getInt(NC));
    718     }
    719   }
    720 
    721   // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
    722   { const APInt *CI; Value *N;
    723     if (match(Op1, m_Shl(m_Power2(CI), m_Value(N))) ||
    724         match(Op1, m_ZExt(m_Shl(m_Power2(CI), m_Value(N))))) {
    725       if (*CI != 1)
    726         N = Builder->CreateAdd(N,
    727                                ConstantInt::get(N->getType(), CI->logBase2()));
    728       if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1))
    729         N = Builder->CreateZExt(N, Z->getDestTy());
    730       if (I.isExact())
    731         return BinaryOperator::CreateExactLShr(Op0, N);
    732       return BinaryOperator::CreateLShr(Op0, N);
    733     }
    734   }
    735 
    736   // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
    737   // where C1&C2 are powers of two.
    738   { Value *Cond; const APInt *C1, *C2;
    739     if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
    740       // Construct the "on true" case of the select
    741       Value *TSI = Builder->CreateLShr(Op0, C1->logBase2(), Op1->getName()+".t",
    742                                        I.isExact());
    743 
    744       // Construct the "on false" case of the select
    745       Value *FSI = Builder->CreateLShr(Op0, C2->logBase2(), Op1->getName()+".f",
    746                                        I.isExact());
    747 
    748       // construct the select instruction and return it.
    749       return SelectInst::Create(Cond, TSI, FSI);
    750     }
    751   }
    752 
    753   // (zext A) udiv (zext B) --> zext (A udiv B)
    754   if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
    755     if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
    756       return new ZExtInst(Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div",
    757                                               I.isExact()),
    758                           I.getType());
    759 
    760   return 0;
    761 }
    762 
    763 Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
    764   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    765 
    766   if (Value *V = SimplifySDivInst(Op0, Op1, TD))
    767     return ReplaceInstUsesWith(I, V);
    768 
    769   // Handle the integer div common cases
    770   if (Instruction *Common = commonIDivTransforms(I))
    771     return Common;
    772 
    773   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
    774     // sdiv X, -1 == -X
    775     if (RHS->isAllOnesValue())
    776       return BinaryOperator::CreateNeg(Op0);
    777 
    778     // sdiv X, C  -->  ashr exact X, log2(C)
    779     if (I.isExact() && RHS->getValue().isNonNegative() &&
    780         RHS->getValue().isPowerOf2()) {
    781       Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
    782                                             RHS->getValue().exactLogBase2());
    783       return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
    784     }
    785 
    786     // -X/C  -->  X/-C  provided the negation doesn't overflow.
    787     if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
    788       if (match(Sub->getOperand(0), m_Zero()) && Sub->hasNoSignedWrap())
    789         return BinaryOperator::CreateSDiv(Sub->getOperand(1),
    790                                           ConstantExpr::getNeg(RHS));
    791   }
    792 
    793   // If the sign bits of both operands are zero (i.e. we can prove they are
    794   // unsigned inputs), turn this into a udiv.
    795   if (I.getType()->isIntegerTy()) {
    796     APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
    797     if (MaskedValueIsZero(Op0, Mask)) {
    798       if (MaskedValueIsZero(Op1, Mask)) {
    799         // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
    800         return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
    801       }
    802 
    803       if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
    804         // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
    805         // Safe because the only negative value (1 << Y) can take on is
    806         // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
    807         // the sign bit set.
    808         return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
    809       }
    810     }
    811   }
    812 
    813   return 0;
    814 }
    815 
    816 /// CvtFDivConstToReciprocal tries to convert X/C into X*1/C if C not a special
    817 /// FP value and:
    818 ///    1) 1/C is exact, or
    819 ///    2) reciprocal is allowed.
    820 /// If the convertion was successful, the simplified expression "X * 1/C" is
    821 /// returned; otherwise, NULL is returned.
    822 ///
    823 static Instruction *CvtFDivConstToReciprocal(Value *Dividend,
    824                                              ConstantFP *Divisor,
    825                                              bool AllowReciprocal) {
    826   const APFloat &FpVal = Divisor->getValueAPF();
    827   APFloat Reciprocal(FpVal.getSemantics());
    828   bool Cvt = FpVal.getExactInverse(&Reciprocal);
    829 
    830   if (!Cvt && AllowReciprocal && FpVal.isNormal()) {
    831     Reciprocal = APFloat(FpVal.getSemantics(), 1.0f);
    832     (void)Reciprocal.divide(FpVal, APFloat::rmNearestTiesToEven);
    833     Cvt = !Reciprocal.isDenormal();
    834   }
    835 
    836   if (!Cvt)
    837     return 0;
    838 
    839   ConstantFP *R;
    840   R = ConstantFP::get(Dividend->getType()->getContext(), Reciprocal);
    841   return BinaryOperator::CreateFMul(Dividend, R);
    842 }
    843 
    844 Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
    845   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    846 
    847   if (Value *V = SimplifyFDivInst(Op0, Op1, TD))
    848     return ReplaceInstUsesWith(I, V);
    849 
    850   bool AllowReassociate = I.hasUnsafeAlgebra();
    851   bool AllowReciprocal = I.hasAllowReciprocal();
    852 
    853   if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
    854     if (AllowReassociate) {
    855       ConstantFP *C1 = 0;
    856       ConstantFP *C2 = Op1C;
    857       Value *X;
    858       Instruction *Res = 0;
    859 
    860       if (match(Op0, m_FMul(m_Value(X), m_ConstantFP(C1)))) {
    861         // (X*C1)/C2 => X * (C1/C2)
    862         //
    863         Constant *C = ConstantExpr::getFDiv(C1, C2);
    864         const APFloat &F = cast<ConstantFP>(C)->getValueAPF();
    865         if (F.isNormal() && !F.isDenormal())
    866           Res = BinaryOperator::CreateFMul(X, C);
    867       } else if (match(Op0, m_FDiv(m_Value(X), m_ConstantFP(C1)))) {
    868         // (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed]
    869         //
    870         Constant *C = ConstantExpr::getFMul(C1, C2);
    871         const APFloat &F = cast<ConstantFP>(C)->getValueAPF();
    872         if (F.isNormal() && !F.isDenormal()) {
    873           Res = CvtFDivConstToReciprocal(X, cast<ConstantFP>(C),
    874                                          AllowReciprocal);
    875           if (!Res)
    876             Res = BinaryOperator::CreateFDiv(X, C);
    877         }
    878       }
    879 
    880       if (Res) {
    881         Res->setFastMathFlags(I.getFastMathFlags());
    882         return Res;
    883       }
    884     }
    885 
    886     // X / C => X * 1/C
    887     if (Instruction *T = CvtFDivConstToReciprocal(Op0, Op1C, AllowReciprocal))
    888       return T;
    889 
    890     return 0;
    891   }
    892 
    893   if (AllowReassociate && isa<ConstantFP>(Op0)) {
    894     ConstantFP *C1 = cast<ConstantFP>(Op0), *C2;
    895     Constant *Fold = 0;
    896     Value *X;
    897     bool CreateDiv = true;
    898 
    899     // C1 / (X*C2) => (C1/C2) / X
    900     if (match(Op1, m_FMul(m_Value(X), m_ConstantFP(C2))))
    901       Fold = ConstantExpr::getFDiv(C1, C2);
    902     else if (match(Op1, m_FDiv(m_Value(X), m_ConstantFP(C2)))) {
    903       // C1 / (X/C2) => (C1*C2) / X
    904       Fold = ConstantExpr::getFMul(C1, C2);
    905     } else if (match(Op1, m_FDiv(m_ConstantFP(C2), m_Value(X)))) {
    906       // C1 / (C2/X) => (C1/C2) * X
    907       Fold = ConstantExpr::getFDiv(C1, C2);
    908       CreateDiv = false;
    909     }
    910 
    911     if (Fold) {
    912       const APFloat &FoldC = cast<ConstantFP>(Fold)->getValueAPF();
    913       if (FoldC.isNormal() && !FoldC.isDenormal()) {
    914         Instruction *R = CreateDiv ?
    915                          BinaryOperator::CreateFDiv(Fold, X) :
    916                          BinaryOperator::CreateFMul(X, Fold);
    917         R->setFastMathFlags(I.getFastMathFlags());
    918         return R;
    919       }
    920     }
    921     return 0;
    922   }
    923 
    924   if (AllowReassociate) {
    925     Value *X, *Y;
    926     Value *NewInst = 0;
    927     Instruction *SimpR = 0;
    928 
    929     if (Op0->hasOneUse() && match(Op0, m_FDiv(m_Value(X), m_Value(Y)))) {
    930       // (X/Y) / Z => X / (Y*Z)
    931       //
    932       if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op1)) {
    933         NewInst = Builder->CreateFMul(Y, Op1);
    934         SimpR = BinaryOperator::CreateFDiv(X, NewInst);
    935       }
    936     } else if (Op1->hasOneUse() && match(Op1, m_FDiv(m_Value(X), m_Value(Y)))) {
    937       // Z / (X/Y) => Z*Y / X
    938       //
    939       if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op0)) {
    940         NewInst = Builder->CreateFMul(Op0, Y);
    941         SimpR = BinaryOperator::CreateFDiv(NewInst, X);
    942       }
    943     }
    944 
    945     if (NewInst) {
    946       if (Instruction *T = dyn_cast<Instruction>(NewInst))
    947         T->setDebugLoc(I.getDebugLoc());
    948       SimpR->setFastMathFlags(I.getFastMathFlags());
    949       return SimpR;
    950     }
    951   }
    952 
    953   return 0;
    954 }
    955 
    956 /// This function implements the transforms common to both integer remainder
    957 /// instructions (urem and srem). It is called by the visitors to those integer
    958 /// remainder instructions.
    959 /// @brief Common integer remainder transforms
    960 Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
    961   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    962 
    963   // The RHS is known non-zero.
    964   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
    965     I.setOperand(1, V);
    966     return &I;
    967   }
    968 
    969   // Handle cases involving: rem X, (select Cond, Y, Z)
    970   if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
    971     return &I;
    972 
    973   if (isa<ConstantInt>(Op1)) {
    974     if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
    975       if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
    976         if (Instruction *R = FoldOpIntoSelect(I, SI))
    977           return R;
    978       } else if (isa<PHINode>(Op0I)) {
    979         if (Instruction *NV = FoldOpIntoPhi(I))
    980           return NV;
    981       }
    982 
    983       // See if we can fold away this rem instruction.
    984       if (SimplifyDemandedInstructionBits(I))
    985         return &I;
    986     }
    987   }
    988 
    989   return 0;
    990 }
    991 
    992 Instruction *InstCombiner::visitURem(BinaryOperator &I) {
    993   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    994 
    995   if (Value *V = SimplifyURemInst(Op0, Op1, TD))
    996     return ReplaceInstUsesWith(I, V);
    997 
    998   if (Instruction *common = commonIRemTransforms(I))
    999     return common;
   1000 
   1001   // X urem C^2 -> X and C-1
   1002   { const APInt *C;
   1003     if (match(Op1, m_Power2(C)))
   1004       return BinaryOperator::CreateAnd(Op0,
   1005                                        ConstantInt::get(I.getType(), *C-1));
   1006   }
   1007 
   1008   // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
   1009   if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
   1010     Constant *N1 = Constant::getAllOnesValue(I.getType());
   1011     Value *Add = Builder->CreateAdd(Op1, N1);
   1012     return BinaryOperator::CreateAnd(Op0, Add);
   1013   }
   1014 
   1015   // urem X, (select Cond, 2^C1, 2^C2) -->
   1016   //    select Cond, (and X, C1-1), (and X, C2-1)
   1017   // when C1&C2 are powers of two.
   1018   { Value *Cond; const APInt *C1, *C2;
   1019     if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
   1020       Value *TrueAnd = Builder->CreateAnd(Op0, *C1-1, Op1->getName()+".t");
   1021       Value *FalseAnd = Builder->CreateAnd(Op0, *C2-1, Op1->getName()+".f");
   1022       return SelectInst::Create(Cond, TrueAnd, FalseAnd);
   1023     }
   1024   }
   1025 
   1026   // (zext A) urem (zext B) --> zext (A urem B)
   1027   if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
   1028     if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
   1029       return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1),
   1030                           I.getType());
   1031 
   1032   return 0;
   1033 }
   1034 
   1035 Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
   1036   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1037 
   1038   if (Value *V = SimplifySRemInst(Op0, Op1, TD))
   1039     return ReplaceInstUsesWith(I, V);
   1040 
   1041   // Handle the integer rem common cases
   1042   if (Instruction *Common = commonIRemTransforms(I))
   1043     return Common;
   1044 
   1045   if (Value *RHSNeg = dyn_castNegVal(Op1))
   1046     if (!isa<Constant>(RHSNeg) ||
   1047         (isa<ConstantInt>(RHSNeg) &&
   1048          cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
   1049       // X % -Y -> X % Y
   1050       Worklist.AddValue(I.getOperand(1));
   1051       I.setOperand(1, RHSNeg);
   1052       return &I;
   1053     }
   1054 
   1055   // If the sign bits of both operands are zero (i.e. we can prove they are
   1056   // unsigned inputs), turn this into a urem.
   1057   if (I.getType()->isIntegerTy()) {
   1058     APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
   1059     if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
   1060       // X srem Y -> X urem Y, iff X and Y don't have sign bit set
   1061       return BinaryOperator::CreateURem(Op0, Op1, I.getName());
   1062     }
   1063   }
   1064 
   1065   // If it's a constant vector, flip any negative values positive.
   1066   if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
   1067     Constant *C = cast<Constant>(Op1);
   1068     unsigned VWidth = C->getType()->getVectorNumElements();
   1069 
   1070     bool hasNegative = false;
   1071     bool hasMissing = false;
   1072     for (unsigned i = 0; i != VWidth; ++i) {
   1073       Constant *Elt = C->getAggregateElement(i);
   1074       if (Elt == 0) {
   1075         hasMissing = true;
   1076         break;
   1077       }
   1078 
   1079       if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
   1080         if (RHS->isNegative())
   1081           hasNegative = true;
   1082     }
   1083 
   1084     if (hasNegative && !hasMissing) {
   1085       SmallVector<Constant *, 16> Elts(VWidth);
   1086       for (unsigned i = 0; i != VWidth; ++i) {
   1087         Elts[i] = C->getAggregateElement(i);  // Handle undef, etc.
   1088         if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
   1089           if (RHS->isNegative())
   1090             Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
   1091         }
   1092       }
   1093 
   1094       Constant *NewRHSV = ConstantVector::get(Elts);
   1095       if (NewRHSV != C) {  // Don't loop on -MININT
   1096         Worklist.AddValue(I.getOperand(1));
   1097         I.setOperand(1, NewRHSV);
   1098         return &I;
   1099       }
   1100     }
   1101   }
   1102 
   1103   return 0;
   1104 }
   1105 
   1106 Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
   1107   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1108 
   1109   if (Value *V = SimplifyFRemInst(Op0, Op1, TD))
   1110     return ReplaceInstUsesWith(I, V);
   1111 
   1112   // Handle cases involving: rem X, (select Cond, Y, Z)
   1113   if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
   1114     return &I;
   1115 
   1116   return 0;
   1117 }
   1118