Home | History | Annotate | Download | only in JIT
      1 //===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines a MachineCodeEmitter object that is used by the JIT to
     11 // write machine code to memory and remember where relocatable values are.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "jit"
     16 #include "JIT.h"
     17 #include "JITDwarfEmitter.h"
     18 #include "llvm/ADT/DenseMap.h"
     19 #include "llvm/ADT/OwningPtr.h"
     20 #include "llvm/ADT/SmallPtrSet.h"
     21 #include "llvm/ADT/SmallVector.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/ADT/ValueMap.h"
     24 #include "llvm/CodeGen/JITCodeEmitter.h"
     25 #include "llvm/CodeGen/MachineCodeInfo.h"
     26 #include "llvm/CodeGen/MachineConstantPool.h"
     27 #include "llvm/CodeGen/MachineFunction.h"
     28 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     29 #include "llvm/CodeGen/MachineModuleInfo.h"
     30 #include "llvm/CodeGen/MachineRelocation.h"
     31 #include "llvm/DebugInfo.h"
     32 #include "llvm/ExecutionEngine/GenericValue.h"
     33 #include "llvm/ExecutionEngine/JITEventListener.h"
     34 #include "llvm/ExecutionEngine/JITMemoryManager.h"
     35 #include "llvm/IR/Constants.h"
     36 #include "llvm/IR/DataLayout.h"
     37 #include "llvm/IR/DerivedTypes.h"
     38 #include "llvm/IR/Module.h"
     39 #include "llvm/Support/Debug.h"
     40 #include "llvm/Support/Disassembler.h"
     41 #include "llvm/Support/ErrorHandling.h"
     42 #include "llvm/Support/ManagedStatic.h"
     43 #include "llvm/Support/Memory.h"
     44 #include "llvm/Support/MutexGuard.h"
     45 #include "llvm/Support/ValueHandle.h"
     46 #include "llvm/Support/raw_ostream.h"
     47 #include "llvm/Target/TargetInstrInfo.h"
     48 #include "llvm/Target/TargetJITInfo.h"
     49 #include "llvm/Target/TargetMachine.h"
     50 #include "llvm/Target/TargetOptions.h"
     51 #include <algorithm>
     52 #ifndef NDEBUG
     53 #include <iomanip>
     54 #endif
     55 using namespace llvm;
     56 
     57 STATISTIC(NumBytes, "Number of bytes of machine code compiled");
     58 STATISTIC(NumRelos, "Number of relocations applied");
     59 STATISTIC(NumRetries, "Number of retries with more memory");
     60 
     61 
     62 // A declaration may stop being a declaration once it's fully read from bitcode.
     63 // This function returns true if F is fully read and is still a declaration.
     64 static bool isNonGhostDeclaration(const Function *F) {
     65   return F->isDeclaration() && !F->isMaterializable();
     66 }
     67 
     68 //===----------------------------------------------------------------------===//
     69 // JIT lazy compilation code.
     70 //
     71 namespace {
     72   class JITEmitter;
     73   class JITResolverState;
     74 
     75   template<typename ValueTy>
     76   struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> {
     77     typedef JITResolverState *ExtraData;
     78     static void onRAUW(JITResolverState *, Value *Old, Value *New) {
     79       llvm_unreachable("The JIT doesn't know how to handle a"
     80                        " RAUW on a value it has emitted.");
     81     }
     82   };
     83 
     84   struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> {
     85     typedef JITResolverState *ExtraData;
     86     static void onDelete(JITResolverState *JRS, Function *F);
     87   };
     88 
     89   class JITResolverState {
     90   public:
     91     typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> >
     92       FunctionToLazyStubMapTy;
     93     typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy;
     94     typedef ValueMap<Function *, SmallPtrSet<void*, 1>,
     95                      CallSiteValueMapConfig> FunctionToCallSitesMapTy;
     96     typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy;
     97   private:
     98     /// FunctionToLazyStubMap - Keep track of the lazy stub created for a
     99     /// particular function so that we can reuse them if necessary.
    100     FunctionToLazyStubMapTy FunctionToLazyStubMap;
    101 
    102     /// CallSiteToFunctionMap - Keep track of the function that each lazy call
    103     /// site corresponds to, and vice versa.
    104     CallSiteToFunctionMapTy CallSiteToFunctionMap;
    105     FunctionToCallSitesMapTy FunctionToCallSitesMap;
    106 
    107     /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a
    108     /// particular GlobalVariable so that we can reuse them if necessary.
    109     GlobalToIndirectSymMapTy GlobalToIndirectSymMap;
    110 
    111 #ifndef NDEBUG
    112     /// Instance of the JIT this ResolverState serves.
    113     JIT *TheJIT;
    114 #endif
    115 
    116   public:
    117     JITResolverState(JIT *jit) : FunctionToLazyStubMap(this),
    118                                  FunctionToCallSitesMap(this) {
    119 #ifndef NDEBUG
    120       TheJIT = jit;
    121 #endif
    122     }
    123 
    124     FunctionToLazyStubMapTy& getFunctionToLazyStubMap(
    125       const MutexGuard& locked) {
    126       assert(locked.holds(TheJIT->lock));
    127       return FunctionToLazyStubMap;
    128     }
    129 
    130     GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& lck) {
    131       assert(lck.holds(TheJIT->lock));
    132       return GlobalToIndirectSymMap;
    133     }
    134 
    135     std::pair<void *, Function *> LookupFunctionFromCallSite(
    136         const MutexGuard &locked, void *CallSite) const {
    137       assert(locked.holds(TheJIT->lock));
    138 
    139       // The address given to us for the stub may not be exactly right, it
    140       // might be a little bit after the stub.  As such, use upper_bound to
    141       // find it.
    142       CallSiteToFunctionMapTy::const_iterator I =
    143         CallSiteToFunctionMap.upper_bound(CallSite);
    144       assert(I != CallSiteToFunctionMap.begin() &&
    145              "This is not a known call site!");
    146       --I;
    147       return *I;
    148     }
    149 
    150     void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) {
    151       assert(locked.holds(TheJIT->lock));
    152 
    153       bool Inserted = CallSiteToFunctionMap.insert(
    154           std::make_pair(CallSite, F)).second;
    155       (void)Inserted;
    156       assert(Inserted && "Pair was already in CallSiteToFunctionMap");
    157       FunctionToCallSitesMap[F].insert(CallSite);
    158     }
    159 
    160     void EraseAllCallSitesForPrelocked(Function *F);
    161 
    162     // Erases _all_ call sites regardless of their function.  This is used to
    163     // unregister the stub addresses from the StubToResolverMap in
    164     // ~JITResolver().
    165     void EraseAllCallSitesPrelocked();
    166   };
    167 
    168   /// JITResolver - Keep track of, and resolve, call sites for functions that
    169   /// have not yet been compiled.
    170   class JITResolver {
    171     typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy;
    172     typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy;
    173     typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy;
    174 
    175     /// LazyResolverFn - The target lazy resolver function that we actually
    176     /// rewrite instructions to use.
    177     TargetJITInfo::LazyResolverFn LazyResolverFn;
    178 
    179     JITResolverState state;
    180 
    181     /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap
    182     /// for external functions.  TODO: Of course, external functions don't need
    183     /// a lazy stub.  It's actually here to make it more likely that far calls
    184     /// succeed, but no single stub can guarantee that.  I'll remove this in a
    185     /// subsequent checkin when I actually fix far calls.
    186     std::map<void*, void*> ExternalFnToStubMap;
    187 
    188     /// revGOTMap - map addresses to indexes in the GOT
    189     std::map<void*, unsigned> revGOTMap;
    190     unsigned nextGOTIndex;
    191 
    192     JITEmitter &JE;
    193 
    194     /// Instance of JIT corresponding to this Resolver.
    195     JIT *TheJIT;
    196 
    197   public:
    198     explicit JITResolver(JIT &jit, JITEmitter &je)
    199       : state(&jit), nextGOTIndex(0), JE(je), TheJIT(&jit) {
    200       LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
    201     }
    202 
    203     ~JITResolver();
    204 
    205     /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's
    206     /// lazy-compilation stub if it has already been created.
    207     void *getLazyFunctionStubIfAvailable(Function *F);
    208 
    209     /// getLazyFunctionStub - This returns a pointer to a function's
    210     /// lazy-compilation stub, creating one on demand as needed.
    211     void *getLazyFunctionStub(Function *F);
    212 
    213     /// getExternalFunctionStub - Return a stub for the function at the
    214     /// specified address, created lazily on demand.
    215     void *getExternalFunctionStub(void *FnAddr);
    216 
    217     /// getGlobalValueIndirectSym - Return an indirect symbol containing the
    218     /// specified GV address.
    219     void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress);
    220 
    221     /// getGOTIndexForAddress - Return a new or existing index in the GOT for
    222     /// an address.  This function only manages slots, it does not manage the
    223     /// contents of the slots or the memory associated with the GOT.
    224     unsigned getGOTIndexForAddr(void *addr);
    225 
    226     /// JITCompilerFn - This function is called to resolve a stub to a compiled
    227     /// address.  If the LLVM Function corresponding to the stub has not yet
    228     /// been compiled, this function compiles it first.
    229     static void *JITCompilerFn(void *Stub);
    230   };
    231 
    232   class StubToResolverMapTy {
    233     /// Map a stub address to a specific instance of a JITResolver so that
    234     /// lazily-compiled functions can find the right resolver to use.
    235     ///
    236     /// Guarded by Lock.
    237     std::map<void*, JITResolver*> Map;
    238 
    239     /// Guards Map from concurrent accesses.
    240     mutable sys::Mutex Lock;
    241 
    242   public:
    243     /// Registers a Stub to be resolved by Resolver.
    244     void RegisterStubResolver(void *Stub, JITResolver *Resolver) {
    245       MutexGuard guard(Lock);
    246       Map.insert(std::make_pair(Stub, Resolver));
    247     }
    248     /// Unregisters the Stub when it's invalidated.
    249     void UnregisterStubResolver(void *Stub) {
    250       MutexGuard guard(Lock);
    251       Map.erase(Stub);
    252     }
    253     /// Returns the JITResolver instance that owns the Stub.
    254     JITResolver *getResolverFromStub(void *Stub) const {
    255       MutexGuard guard(Lock);
    256       // The address given to us for the stub may not be exactly right, it might
    257       // be a little bit after the stub.  As such, use upper_bound to find it.
    258       // This is the same trick as in LookupFunctionFromCallSite from
    259       // JITResolverState.
    260       std::map<void*, JITResolver*>::const_iterator I = Map.upper_bound(Stub);
    261       assert(I != Map.begin() && "This is not a known stub!");
    262       --I;
    263       return I->second;
    264     }
    265     /// True if any stubs refer to the given resolver. Only used in an assert().
    266     /// O(N)
    267     bool ResolverHasStubs(JITResolver* Resolver) const {
    268       MutexGuard guard(Lock);
    269       for (std::map<void*, JITResolver*>::const_iterator I = Map.begin(),
    270              E = Map.end(); I != E; ++I) {
    271         if (I->second == Resolver)
    272           return true;
    273       }
    274       return false;
    275     }
    276   };
    277   /// This needs to be static so that a lazy call stub can access it with no
    278   /// context except the address of the stub.
    279   ManagedStatic<StubToResolverMapTy> StubToResolverMap;
    280 
    281   /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
    282   /// used to output functions to memory for execution.
    283   class JITEmitter : public JITCodeEmitter {
    284     JITMemoryManager *MemMgr;
    285 
    286     // When outputting a function stub in the context of some other function, we
    287     // save BufferBegin/BufferEnd/CurBufferPtr here.
    288     uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
    289 
    290     // When reattempting to JIT a function after running out of space, we store
    291     // the estimated size of the function we're trying to JIT here, so we can
    292     // ask the memory manager for at least this much space.  When we
    293     // successfully emit the function, we reset this back to zero.
    294     uintptr_t SizeEstimate;
    295 
    296     /// Relocations - These are the relocations that the function needs, as
    297     /// emitted.
    298     std::vector<MachineRelocation> Relocations;
    299 
    300     /// MBBLocations - This vector is a mapping from MBB ID's to their address.
    301     /// It is filled in by the StartMachineBasicBlock callback and queried by
    302     /// the getMachineBasicBlockAddress callback.
    303     std::vector<uintptr_t> MBBLocations;
    304 
    305     /// ConstantPool - The constant pool for the current function.
    306     ///
    307     MachineConstantPool *ConstantPool;
    308 
    309     /// ConstantPoolBase - A pointer to the first entry in the constant pool.
    310     ///
    311     void *ConstantPoolBase;
    312 
    313     /// ConstPoolAddresses - Addresses of individual constant pool entries.
    314     ///
    315     SmallVector<uintptr_t, 8> ConstPoolAddresses;
    316 
    317     /// JumpTable - The jump tables for the current function.
    318     ///
    319     MachineJumpTableInfo *JumpTable;
    320 
    321     /// JumpTableBase - A pointer to the first entry in the jump table.
    322     ///
    323     void *JumpTableBase;
    324 
    325     /// Resolver - This contains info about the currently resolved functions.
    326     JITResolver Resolver;
    327 
    328     /// DE - The dwarf emitter for the jit.
    329     OwningPtr<JITDwarfEmitter> DE;
    330 
    331     /// LabelLocations - This vector is a mapping from Label ID's to their
    332     /// address.
    333     DenseMap<MCSymbol*, uintptr_t> LabelLocations;
    334 
    335     /// MMI - Machine module info for exception informations
    336     MachineModuleInfo* MMI;
    337 
    338     // CurFn - The llvm function being emitted.  Only valid during
    339     // finishFunction().
    340     const Function *CurFn;
    341 
    342     /// Information about emitted code, which is passed to the
    343     /// JITEventListeners.  This is reset in startFunction and used in
    344     /// finishFunction.
    345     JITEvent_EmittedFunctionDetails EmissionDetails;
    346 
    347     struct EmittedCode {
    348       void *FunctionBody;  // Beginning of the function's allocation.
    349       void *Code;  // The address the function's code actually starts at.
    350       void *ExceptionTable;
    351       EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {}
    352     };
    353     struct EmittedFunctionConfig : public ValueMapConfig<const Function*> {
    354       typedef JITEmitter *ExtraData;
    355       static void onDelete(JITEmitter *, const Function*);
    356       static void onRAUW(JITEmitter *, const Function*, const Function*);
    357     };
    358     ValueMap<const Function *, EmittedCode,
    359              EmittedFunctionConfig> EmittedFunctions;
    360 
    361     DebugLoc PrevDL;
    362 
    363     /// Instance of the JIT
    364     JIT *TheJIT;
    365 
    366     bool JITExceptionHandling;
    367 
    368   public:
    369     JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM)
    370       : SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0),
    371         EmittedFunctions(this), TheJIT(&jit),
    372         JITExceptionHandling(TM.Options.JITExceptionHandling) {
    373       MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
    374       if (jit.getJITInfo().needsGOT()) {
    375         MemMgr->AllocateGOT();
    376         DEBUG(dbgs() << "JIT is managing a GOT\n");
    377       }
    378 
    379       if (JITExceptionHandling) {
    380         DE.reset(new JITDwarfEmitter(jit));
    381       }
    382     }
    383     ~JITEmitter() {
    384       delete MemMgr;
    385     }
    386 
    387     JITResolver &getJITResolver() { return Resolver; }
    388 
    389     virtual void startFunction(MachineFunction &F);
    390     virtual bool finishFunction(MachineFunction &F);
    391 
    392     void emitConstantPool(MachineConstantPool *MCP);
    393     void initJumpTableInfo(MachineJumpTableInfo *MJTI);
    394     void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
    395 
    396     void startGVStub(const GlobalValue* GV,
    397                      unsigned StubSize, unsigned Alignment = 1);
    398     void startGVStub(void *Buffer, unsigned StubSize);
    399     void finishGVStub();
    400     virtual void *allocIndirectGV(const GlobalValue *GV,
    401                                   const uint8_t *Buffer, size_t Size,
    402                                   unsigned Alignment);
    403 
    404     /// allocateSpace - Reserves space in the current block if any, or
    405     /// allocate a new one of the given size.
    406     virtual void *allocateSpace(uintptr_t Size, unsigned Alignment);
    407 
    408     /// allocateGlobal - Allocate memory for a global.  Unlike allocateSpace,
    409     /// this method does not allocate memory in the current output buffer,
    410     /// because a global may live longer than the current function.
    411     virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment);
    412 
    413     virtual void addRelocation(const MachineRelocation &MR) {
    414       Relocations.push_back(MR);
    415     }
    416 
    417     virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
    418       if (MBBLocations.size() <= (unsigned)MBB->getNumber())
    419         MBBLocations.resize((MBB->getNumber()+1)*2);
    420       MBBLocations[MBB->getNumber()] = getCurrentPCValue();
    421       if (MBB->hasAddressTaken())
    422         TheJIT->addPointerToBasicBlock(MBB->getBasicBlock(),
    423                                        (void*)getCurrentPCValue());
    424       DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at ["
    425                    << (void*) getCurrentPCValue() << "]\n");
    426     }
    427 
    428     virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const;
    429     virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const;
    430 
    431     virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const{
    432       assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
    433              MBBLocations[MBB->getNumber()] && "MBB not emitted!");
    434       return MBBLocations[MBB->getNumber()];
    435     }
    436 
    437     /// retryWithMoreMemory - Log a retry and deallocate all memory for the
    438     /// given function.  Increase the minimum allocation size so that we get
    439     /// more memory next time.
    440     void retryWithMoreMemory(MachineFunction &F);
    441 
    442     /// deallocateMemForFunction - Deallocate all memory for the specified
    443     /// function body.
    444     void deallocateMemForFunction(const Function *F);
    445 
    446     virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn);
    447 
    448     virtual void emitLabel(MCSymbol *Label) {
    449       LabelLocations[Label] = getCurrentPCValue();
    450     }
    451 
    452     virtual DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() {
    453       return &LabelLocations;
    454     }
    455 
    456     virtual uintptr_t getLabelAddress(MCSymbol *Label) const {
    457       assert(LabelLocations.count(Label) && "Label not emitted!");
    458       return LabelLocations.find(Label)->second;
    459     }
    460 
    461     virtual void setModuleInfo(MachineModuleInfo* Info) {
    462       MMI = Info;
    463       if (DE.get()) DE->setModuleInfo(Info);
    464     }
    465 
    466   private:
    467     void *getPointerToGlobal(GlobalValue *GV, void *Reference,
    468                              bool MayNeedFarStub);
    469     void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference);
    470   };
    471 }
    472 
    473 void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) {
    474   JRS->EraseAllCallSitesForPrelocked(F);
    475 }
    476 
    477 void JITResolverState::EraseAllCallSitesForPrelocked(Function *F) {
    478   FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F);
    479   if (F2C == FunctionToCallSitesMap.end())
    480     return;
    481   StubToResolverMapTy &S2RMap = *StubToResolverMap;
    482   for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(),
    483          E = F2C->second.end(); I != E; ++I) {
    484     S2RMap.UnregisterStubResolver(*I);
    485     bool Erased = CallSiteToFunctionMap.erase(*I);
    486     (void)Erased;
    487     assert(Erased && "Missing call site->function mapping");
    488   }
    489   FunctionToCallSitesMap.erase(F2C);
    490 }
    491 
    492 void JITResolverState::EraseAllCallSitesPrelocked() {
    493   StubToResolverMapTy &S2RMap = *StubToResolverMap;
    494   for (CallSiteToFunctionMapTy::const_iterator
    495          I = CallSiteToFunctionMap.begin(),
    496          E = CallSiteToFunctionMap.end(); I != E; ++I) {
    497     S2RMap.UnregisterStubResolver(I->first);
    498   }
    499   CallSiteToFunctionMap.clear();
    500   FunctionToCallSitesMap.clear();
    501 }
    502 
    503 JITResolver::~JITResolver() {
    504   // No need to lock because we're in the destructor, and state isn't shared.
    505   state.EraseAllCallSitesPrelocked();
    506   assert(!StubToResolverMap->ResolverHasStubs(this) &&
    507          "Resolver destroyed with stubs still alive.");
    508 }
    509 
    510 /// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub
    511 /// if it has already been created.
    512 void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) {
    513   MutexGuard locked(TheJIT->lock);
    514 
    515   // If we already have a stub for this function, recycle it.
    516   return state.getFunctionToLazyStubMap(locked).lookup(F);
    517 }
    518 
    519 /// getFunctionStub - This returns a pointer to a function stub, creating
    520 /// one on demand as needed.
    521 void *JITResolver::getLazyFunctionStub(Function *F) {
    522   MutexGuard locked(TheJIT->lock);
    523 
    524   // If we already have a lazy stub for this function, recycle it.
    525   void *&Stub = state.getFunctionToLazyStubMap(locked)[F];
    526   if (Stub) return Stub;
    527 
    528   // Call the lazy resolver function if we are JIT'ing lazily.  Otherwise we
    529   // must resolve the symbol now.
    530   void *Actual = TheJIT->isCompilingLazily()
    531     ? (void *)(intptr_t)LazyResolverFn : (void *)0;
    532 
    533   // If this is an external declaration, attempt to resolve the address now
    534   // to place in the stub.
    535   if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) {
    536     Actual = TheJIT->getPointerToFunction(F);
    537 
    538     // If we resolved the symbol to a null address (eg. a weak external)
    539     // don't emit a stub. Return a null pointer to the application.
    540     if (!Actual) return 0;
    541   }
    542 
    543   TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
    544   JE.startGVStub(F, SL.Size, SL.Alignment);
    545   // Codegen a new stub, calling the lazy resolver or the actual address of the
    546   // external function, if it was resolved.
    547   Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE);
    548   JE.finishGVStub();
    549 
    550   if (Actual != (void*)(intptr_t)LazyResolverFn) {
    551     // If we are getting the stub for an external function, we really want the
    552     // address of the stub in the GlobalAddressMap for the JIT, not the address
    553     // of the external function.
    554     TheJIT->updateGlobalMapping(F, Stub);
    555   }
    556 
    557   DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '"
    558         << F->getName() << "'\n");
    559 
    560   if (TheJIT->isCompilingLazily()) {
    561     // Register this JITResolver as the one corresponding to this call site so
    562     // JITCompilerFn will be able to find it.
    563     StubToResolverMap->RegisterStubResolver(Stub, this);
    564 
    565     // Finally, keep track of the stub-to-Function mapping so that the
    566     // JITCompilerFn knows which function to compile!
    567     state.AddCallSite(locked, Stub, F);
    568   } else if (!Actual) {
    569     // If we are JIT'ing non-lazily but need to call a function that does not
    570     // exist yet, add it to the JIT's work list so that we can fill in the
    571     // stub address later.
    572     assert(!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage() &&
    573            "'Actual' should have been set above.");
    574     TheJIT->addPendingFunction(F);
    575   }
    576 
    577   return Stub;
    578 }
    579 
    580 /// getGlobalValueIndirectSym - Return a lazy pointer containing the specified
    581 /// GV address.
    582 void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
    583   MutexGuard locked(TheJIT->lock);
    584 
    585   // If we already have a stub for this global variable, recycle it.
    586   void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV];
    587   if (IndirectSym) return IndirectSym;
    588 
    589   // Otherwise, codegen a new indirect symbol.
    590   IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
    591                                                                 JE);
    592 
    593   DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym
    594         << "] for GV '" << GV->getName() << "'\n");
    595 
    596   return IndirectSym;
    597 }
    598 
    599 /// getExternalFunctionStub - Return a stub for the function at the
    600 /// specified address, created lazily on demand.
    601 void *JITResolver::getExternalFunctionStub(void *FnAddr) {
    602   // If we already have a stub for this function, recycle it.
    603   void *&Stub = ExternalFnToStubMap[FnAddr];
    604   if (Stub) return Stub;
    605 
    606   TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
    607   JE.startGVStub(0, SL.Size, SL.Alignment);
    608   Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE);
    609   JE.finishGVStub();
    610 
    611   DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub
    612                << "] for external function at '" << FnAddr << "'\n");
    613   return Stub;
    614 }
    615 
    616 unsigned JITResolver::getGOTIndexForAddr(void* addr) {
    617   unsigned idx = revGOTMap[addr];
    618   if (!idx) {
    619     idx = ++nextGOTIndex;
    620     revGOTMap[addr] = idx;
    621     DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr ["
    622                  << addr << "]\n");
    623   }
    624   return idx;
    625 }
    626 
    627 /// JITCompilerFn - This function is called when a lazy compilation stub has
    628 /// been entered.  It looks up which function this stub corresponds to, compiles
    629 /// it if necessary, then returns the resultant function pointer.
    630 void *JITResolver::JITCompilerFn(void *Stub) {
    631   JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub);
    632   assert(JR && "Unable to find the corresponding JITResolver to the call site");
    633 
    634   Function* F = 0;
    635   void* ActualPtr = 0;
    636 
    637   {
    638     // Only lock for getting the Function. The call getPointerToFunction made
    639     // in this function might trigger function materializing, which requires
    640     // JIT lock to be unlocked.
    641     MutexGuard locked(JR->TheJIT->lock);
    642 
    643     // The address given to us for the stub may not be exactly right, it might
    644     // be a little bit after the stub.  As such, use upper_bound to find it.
    645     std::pair<void*, Function*> I =
    646       JR->state.LookupFunctionFromCallSite(locked, Stub);
    647     F = I.second;
    648     ActualPtr = I.first;
    649   }
    650 
    651   // If we have already code generated the function, just return the address.
    652   void *Result = JR->TheJIT->getPointerToGlobalIfAvailable(F);
    653 
    654   if (!Result) {
    655     // Otherwise we don't have it, do lazy compilation now.
    656 
    657     // If lazy compilation is disabled, emit a useful error message and abort.
    658     if (!JR->TheJIT->isCompilingLazily()) {
    659       report_fatal_error("LLVM JIT requested to do lazy compilation of"
    660                          " function '"
    661                         + F->getName() + "' when lazy compiles are disabled!");
    662     }
    663 
    664     DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName()
    665           << "' In stub ptr = " << Stub << " actual ptr = "
    666           << ActualPtr << "\n");
    667     (void)ActualPtr;
    668 
    669     Result = JR->TheJIT->getPointerToFunction(F);
    670   }
    671 
    672   // Reacquire the lock to update the GOT map.
    673   MutexGuard locked(JR->TheJIT->lock);
    674 
    675   // We might like to remove the call site from the CallSiteToFunction map, but
    676   // we can't do that! Multiple threads could be stuck, waiting to acquire the
    677   // lock above. As soon as the 1st function finishes compiling the function,
    678   // the next one will be released, and needs to be able to find the function it
    679   // needs to call.
    680 
    681   // FIXME: We could rewrite all references to this stub if we knew them.
    682 
    683   // What we will do is set the compiled function address to map to the
    684   // same GOT entry as the stub so that later clients may update the GOT
    685   // if they see it still using the stub address.
    686   // Note: this is done so the Resolver doesn't have to manage GOT memory
    687   // Do this without allocating map space if the target isn't using a GOT
    688   if(JR->revGOTMap.find(Stub) != JR->revGOTMap.end())
    689     JR->revGOTMap[Result] = JR->revGOTMap[Stub];
    690 
    691   return Result;
    692 }
    693 
    694 //===----------------------------------------------------------------------===//
    695 // JITEmitter code.
    696 //
    697 void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
    698                                      bool MayNeedFarStub) {
    699   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
    700     return TheJIT->getOrEmitGlobalVariable(GV);
    701 
    702   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
    703     return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false));
    704 
    705   // If we have already compiled the function, return a pointer to its body.
    706   Function *F = cast<Function>(V);
    707 
    708   void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F);
    709   if (FnStub) {
    710     // Return the function stub if it's already created.  We do this first so
    711     // that we're returning the same address for the function as any previous
    712     // call.  TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be
    713     // close enough to call.
    714     return FnStub;
    715   }
    716 
    717   // If we know the target can handle arbitrary-distance calls, try to
    718   // return a direct pointer.
    719   if (!MayNeedFarStub) {
    720     // If we have code, go ahead and return that.
    721     void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
    722     if (ResultPtr) return ResultPtr;
    723 
    724     // If this is an external function pointer, we can force the JIT to
    725     // 'compile' it, which really just adds it to the map.
    726     if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage())
    727       return TheJIT->getPointerToFunction(F);
    728   }
    729 
    730   // Otherwise, we may need a to emit a stub, and, conservatively, we always do
    731   // so.  Note that it's possible to return null from getLazyFunctionStub in the
    732   // case of a weak extern that fails to resolve.
    733   return Resolver.getLazyFunctionStub(F);
    734 }
    735 
    736 void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) {
    737   // Make sure GV is emitted first, and create a stub containing the fully
    738   // resolved address.
    739   void *GVAddress = getPointerToGlobal(V, Reference, false);
    740   void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress);
    741   return StubAddr;
    742 }
    743 
    744 void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) {
    745   if (DL.isUnknown()) return;
    746   if (!BeforePrintingInsn) return;
    747 
    748   const LLVMContext &Context = EmissionDetails.MF->getFunction()->getContext();
    749 
    750   if (DL.getScope(Context) != 0 && PrevDL != DL) {
    751     JITEvent_EmittedFunctionDetails::LineStart NextLine;
    752     NextLine.Address = getCurrentPCValue();
    753     NextLine.Loc = DL;
    754     EmissionDetails.LineStarts.push_back(NextLine);
    755   }
    756 
    757   PrevDL = DL;
    758 }
    759 
    760 static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
    761                                            const DataLayout *TD) {
    762   const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
    763   if (Constants.empty()) return 0;
    764 
    765   unsigned Size = 0;
    766   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
    767     MachineConstantPoolEntry CPE = Constants[i];
    768     unsigned AlignMask = CPE.getAlignment() - 1;
    769     Size = (Size + AlignMask) & ~AlignMask;
    770     Type *Ty = CPE.getType();
    771     Size += TD->getTypeAllocSize(Ty);
    772   }
    773   return Size;
    774 }
    775 
    776 void JITEmitter::startFunction(MachineFunction &F) {
    777   DEBUG(dbgs() << "JIT: Starting CodeGen of Function "
    778         << F.getName() << "\n");
    779 
    780   uintptr_t ActualSize = 0;
    781   // Set the memory writable, if it's not already
    782   MemMgr->setMemoryWritable();
    783 
    784   if (SizeEstimate > 0) {
    785     // SizeEstimate will be non-zero on reallocation attempts.
    786     ActualSize = SizeEstimate;
    787   }
    788 
    789   BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
    790                                                          ActualSize);
    791   BufferEnd = BufferBegin+ActualSize;
    792   EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin;
    793 
    794   // Ensure the constant pool/jump table info is at least 4-byte aligned.
    795   emitAlignment(16);
    796 
    797   emitConstantPool(F.getConstantPool());
    798   if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
    799     initJumpTableInfo(MJTI);
    800 
    801   // About to start emitting the machine code for the function.
    802   emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
    803   TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
    804   EmittedFunctions[F.getFunction()].Code = CurBufferPtr;
    805 
    806   MBBLocations.clear();
    807 
    808   EmissionDetails.MF = &F;
    809   EmissionDetails.LineStarts.clear();
    810 }
    811 
    812 bool JITEmitter::finishFunction(MachineFunction &F) {
    813   if (CurBufferPtr == BufferEnd) {
    814     // We must call endFunctionBody before retrying, because
    815     // deallocateMemForFunction requires it.
    816     MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
    817     retryWithMoreMemory(F);
    818     return true;
    819   }
    820 
    821   if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
    822     emitJumpTableInfo(MJTI);
    823 
    824   // FnStart is the start of the text, not the start of the constant pool and
    825   // other per-function data.
    826   uint8_t *FnStart =
    827     (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
    828 
    829   // FnEnd is the end of the function's machine code.
    830   uint8_t *FnEnd = CurBufferPtr;
    831 
    832   if (!Relocations.empty()) {
    833     CurFn = F.getFunction();
    834     NumRelos += Relocations.size();
    835 
    836     // Resolve the relocations to concrete pointers.
    837     for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
    838       MachineRelocation &MR = Relocations[i];
    839       void *ResultPtr = 0;
    840       if (!MR.letTargetResolve()) {
    841         if (MR.isExternalSymbol()) {
    842           ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
    843                                                         false);
    844           DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
    845                        << ResultPtr << "]\n");
    846 
    847           // If the target REALLY wants a stub for this function, emit it now.
    848           if (MR.mayNeedFarStub()) {
    849             ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
    850           }
    851         } else if (MR.isGlobalValue()) {
    852           ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
    853                                          BufferBegin+MR.getMachineCodeOffset(),
    854                                          MR.mayNeedFarStub());
    855         } else if (MR.isIndirectSymbol()) {
    856           ResultPtr = getPointerToGVIndirectSym(
    857               MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset());
    858         } else if (MR.isBasicBlock()) {
    859           ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
    860         } else if (MR.isConstantPoolIndex()) {
    861           ResultPtr =
    862             (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
    863         } else {
    864           assert(MR.isJumpTableIndex());
    865           ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
    866         }
    867 
    868         MR.setResultPointer(ResultPtr);
    869       }
    870 
    871       // if we are managing the GOT and the relocation wants an index,
    872       // give it one
    873       if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
    874         unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
    875         MR.setGOTIndex(idx);
    876         if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
    877           DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr
    878                        << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
    879                        << "\n");
    880           ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
    881         }
    882       }
    883     }
    884 
    885     CurFn = 0;
    886     TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
    887                                   Relocations.size(), MemMgr->getGOTBase());
    888   }
    889 
    890   // Update the GOT entry for F to point to the new code.
    891   if (MemMgr->isManagingGOT()) {
    892     unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
    893     if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
    894       DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin
    895                    << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
    896                    << "\n");
    897       ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
    898     }
    899   }
    900 
    901   // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for
    902   // global variables that were referenced in the relocations.
    903   MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
    904 
    905   if (CurBufferPtr == BufferEnd) {
    906     retryWithMoreMemory(F);
    907     return true;
    908   } else {
    909     // Now that we've succeeded in emitting the function, reset the
    910     // SizeEstimate back down to zero.
    911     SizeEstimate = 0;
    912   }
    913 
    914   BufferBegin = CurBufferPtr = 0;
    915   NumBytes += FnEnd-FnStart;
    916 
    917   // Invalidate the icache if necessary.
    918   sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
    919 
    920   TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
    921                                 EmissionDetails);
    922 
    923   // Reset the previous debug location.
    924   PrevDL = DebugLoc();
    925 
    926   DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart
    927         << "] Function: " << F.getName()
    928         << ": " << (FnEnd-FnStart) << " bytes of text, "
    929         << Relocations.size() << " relocations\n");
    930 
    931   Relocations.clear();
    932   ConstPoolAddresses.clear();
    933 
    934   // Mark code region readable and executable if it's not so already.
    935   MemMgr->setMemoryExecutable();
    936 
    937   DEBUG({
    938       if (sys::hasDisassembler()) {
    939         dbgs() << "JIT: Disassembled code:\n";
    940         dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart,
    941                                          (uintptr_t)FnStart);
    942       } else {
    943         dbgs() << "JIT: Binary code:\n";
    944         uint8_t* q = FnStart;
    945         for (int i = 0; q < FnEnd; q += 4, ++i) {
    946           if (i == 4)
    947             i = 0;
    948           if (i == 0)
    949             dbgs() << "JIT: " << (long)(q - FnStart) << ": ";
    950           bool Done = false;
    951           for (int j = 3; j >= 0; --j) {
    952             if (q + j >= FnEnd)
    953               Done = true;
    954             else
    955               dbgs() << (unsigned short)q[j];
    956           }
    957           if (Done)
    958             break;
    959           dbgs() << ' ';
    960           if (i == 3)
    961             dbgs() << '\n';
    962         }
    963         dbgs()<< '\n';
    964       }
    965     });
    966 
    967   if (JITExceptionHandling) {
    968     uintptr_t ActualSize = 0;
    969     SavedBufferBegin = BufferBegin;
    970     SavedBufferEnd = BufferEnd;
    971     SavedCurBufferPtr = CurBufferPtr;
    972     uint8_t *FrameRegister;
    973 
    974     while (true) {
    975       BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(),
    976                                                                ActualSize);
    977       BufferEnd = BufferBegin+ActualSize;
    978       EmittedFunctions[F.getFunction()].ExceptionTable = BufferBegin;
    979       uint8_t *EhStart;
    980       FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd, EhStart);
    981 
    982       // If the buffer was large enough to hold the table then we are done.
    983       if (CurBufferPtr != BufferEnd)
    984         break;
    985 
    986       // Try again with twice as much space.
    987       ActualSize = (CurBufferPtr - BufferBegin) * 2;
    988       MemMgr->deallocateExceptionTable(BufferBegin);
    989     }
    990     MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr,
    991                               FrameRegister);
    992     BufferBegin = SavedBufferBegin;
    993     BufferEnd = SavedBufferEnd;
    994     CurBufferPtr = SavedCurBufferPtr;
    995 
    996     if (JITExceptionHandling) {
    997       TheJIT->RegisterTable(F.getFunction(), FrameRegister);
    998     }
    999   }
   1000 
   1001   if (MMI)
   1002     MMI->EndFunction();
   1003 
   1004   return false;
   1005 }
   1006 
   1007 void JITEmitter::retryWithMoreMemory(MachineFunction &F) {
   1008   DEBUG(dbgs() << "JIT: Ran out of space for native code.  Reattempting.\n");
   1009   Relocations.clear();  // Clear the old relocations or we'll reapply them.
   1010   ConstPoolAddresses.clear();
   1011   ++NumRetries;
   1012   deallocateMemForFunction(F.getFunction());
   1013   // Try again with at least twice as much free space.
   1014   SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin));
   1015 
   1016   for (MachineFunction::iterator MBB = F.begin(), E = F.end(); MBB != E; ++MBB){
   1017     if (MBB->hasAddressTaken())
   1018       TheJIT->clearPointerToBasicBlock(MBB->getBasicBlock());
   1019   }
   1020 }
   1021 
   1022 /// deallocateMemForFunction - Deallocate all memory for the specified
   1023 /// function body.  Also drop any references the function has to stubs.
   1024 /// May be called while the Function is being destroyed inside ~Value().
   1025 void JITEmitter::deallocateMemForFunction(const Function *F) {
   1026   ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator
   1027     Emitted = EmittedFunctions.find(F);
   1028   if (Emitted != EmittedFunctions.end()) {
   1029     MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody);
   1030     MemMgr->deallocateExceptionTable(Emitted->second.ExceptionTable);
   1031     TheJIT->NotifyFreeingMachineCode(Emitted->second.Code);
   1032 
   1033     EmittedFunctions.erase(Emitted);
   1034   }
   1035 
   1036   if (JITExceptionHandling) {
   1037     TheJIT->DeregisterTable(F);
   1038   }
   1039 }
   1040 
   1041 
   1042 void *JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) {
   1043   if (BufferBegin)
   1044     return JITCodeEmitter::allocateSpace(Size, Alignment);
   1045 
   1046   // create a new memory block if there is no active one.
   1047   // care must be taken so that BufferBegin is invalidated when a
   1048   // block is trimmed
   1049   BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
   1050   BufferEnd = BufferBegin+Size;
   1051   return CurBufferPtr;
   1052 }
   1053 
   1054 void *JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) {
   1055   // Delegate this call through the memory manager.
   1056   return MemMgr->allocateGlobal(Size, Alignment);
   1057 }
   1058 
   1059 void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
   1060   if (TheJIT->getJITInfo().hasCustomConstantPool())
   1061     return;
   1062 
   1063   const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
   1064   if (Constants.empty()) return;
   1065 
   1066   unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getDataLayout());
   1067   unsigned Align = MCP->getConstantPoolAlignment();
   1068   ConstantPoolBase = allocateSpace(Size, Align);
   1069   ConstantPool = MCP;
   1070 
   1071   if (ConstantPoolBase == 0) return;  // Buffer overflow.
   1072 
   1073   DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase
   1074                << "] (size: " << Size << ", alignment: " << Align << ")\n");
   1075 
   1076   // Initialize the memory for all of the constant pool entries.
   1077   unsigned Offset = 0;
   1078   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
   1079     MachineConstantPoolEntry CPE = Constants[i];
   1080     unsigned AlignMask = CPE.getAlignment() - 1;
   1081     Offset = (Offset + AlignMask) & ~AlignMask;
   1082 
   1083     uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset;
   1084     ConstPoolAddresses.push_back(CAddr);
   1085     if (CPE.isMachineConstantPoolEntry()) {
   1086       // FIXME: add support to lower machine constant pool values into bytes!
   1087       report_fatal_error("Initialize memory with machine specific constant pool"
   1088                         "entry has not been implemented!");
   1089     }
   1090     TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
   1091     DEBUG(dbgs() << "JIT:   CP" << i << " at [0x";
   1092           dbgs().write_hex(CAddr) << "]\n");
   1093 
   1094     Type *Ty = CPE.Val.ConstVal->getType();
   1095     Offset += TheJIT->getDataLayout()->getTypeAllocSize(Ty);
   1096   }
   1097 }
   1098 
   1099 void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
   1100   if (TheJIT->getJITInfo().hasCustomJumpTables())
   1101     return;
   1102   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline)
   1103     return;
   1104 
   1105   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   1106   if (JT.empty()) return;
   1107 
   1108   unsigned NumEntries = 0;
   1109   for (unsigned i = 0, e = JT.size(); i != e; ++i)
   1110     NumEntries += JT[i].MBBs.size();
   1111 
   1112   unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getDataLayout());
   1113 
   1114   // Just allocate space for all the jump tables now.  We will fix up the actual
   1115   // MBB entries in the tables after we emit the code for each block, since then
   1116   // we will know the final locations of the MBBs in memory.
   1117   JumpTable = MJTI;
   1118   JumpTableBase = allocateSpace(NumEntries * EntrySize,
   1119                              MJTI->getEntryAlignment(*TheJIT->getDataLayout()));
   1120 }
   1121 
   1122 void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
   1123   if (TheJIT->getJITInfo().hasCustomJumpTables())
   1124     return;
   1125 
   1126   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   1127   if (JT.empty() || JumpTableBase == 0) return;
   1128 
   1129 
   1130   switch (MJTI->getEntryKind()) {
   1131   case MachineJumpTableInfo::EK_Inline:
   1132     return;
   1133   case MachineJumpTableInfo::EK_BlockAddress: {
   1134     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
   1135     //     .word LBB123
   1136     assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == sizeof(void*) &&
   1137            "Cross JIT'ing?");
   1138 
   1139     // For each jump table, map each target in the jump table to the address of
   1140     // an emitted MachineBasicBlock.
   1141     intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
   1142 
   1143     for (unsigned i = 0, e = JT.size(); i != e; ++i) {
   1144       const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
   1145       // Store the address of the basic block for this jump table slot in the
   1146       // memory we allocated for the jump table in 'initJumpTableInfo'
   1147       for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
   1148         *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
   1149     }
   1150     break;
   1151   }
   1152 
   1153   case MachineJumpTableInfo::EK_Custom32:
   1154   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
   1155   case MachineJumpTableInfo::EK_LabelDifference32: {
   1156     assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == 4&&"Cross JIT'ing?");
   1157     // For each jump table, place the offset from the beginning of the table
   1158     // to the target address.
   1159     int *SlotPtr = (int*)JumpTableBase;
   1160 
   1161     for (unsigned i = 0, e = JT.size(); i != e; ++i) {
   1162       const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
   1163       // Store the offset of the basic block for this jump table slot in the
   1164       // memory we allocated for the jump table in 'initJumpTableInfo'
   1165       uintptr_t Base = (uintptr_t)SlotPtr;
   1166       for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
   1167         uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
   1168         /// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook.
   1169         *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
   1170       }
   1171     }
   1172     break;
   1173   }
   1174   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
   1175     llvm_unreachable(
   1176            "JT Info emission not implemented for GPRel64BlockAddress yet.");
   1177   }
   1178 }
   1179 
   1180 void JITEmitter::startGVStub(const GlobalValue* GV,
   1181                              unsigned StubSize, unsigned Alignment) {
   1182   SavedBufferBegin = BufferBegin;
   1183   SavedBufferEnd = BufferEnd;
   1184   SavedCurBufferPtr = CurBufferPtr;
   1185 
   1186   BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment);
   1187   BufferEnd = BufferBegin+StubSize+1;
   1188 }
   1189 
   1190 void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) {
   1191   SavedBufferBegin = BufferBegin;
   1192   SavedBufferEnd = BufferEnd;
   1193   SavedCurBufferPtr = CurBufferPtr;
   1194 
   1195   BufferBegin = CurBufferPtr = (uint8_t *)Buffer;
   1196   BufferEnd = BufferBegin+StubSize+1;
   1197 }
   1198 
   1199 void JITEmitter::finishGVStub() {
   1200   assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space.");
   1201   NumBytes += getCurrentPCOffset();
   1202   BufferBegin = SavedBufferBegin;
   1203   BufferEnd = SavedBufferEnd;
   1204   CurBufferPtr = SavedCurBufferPtr;
   1205 }
   1206 
   1207 void *JITEmitter::allocIndirectGV(const GlobalValue *GV,
   1208                                   const uint8_t *Buffer, size_t Size,
   1209                                   unsigned Alignment) {
   1210   uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment);
   1211   memcpy(IndGV, Buffer, Size);
   1212   return IndGV;
   1213 }
   1214 
   1215 // getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
   1216 // in the constant pool that was last emitted with the 'emitConstantPool'
   1217 // method.
   1218 //
   1219 uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
   1220   assert(ConstantNum < ConstantPool->getConstants().size() &&
   1221          "Invalid ConstantPoolIndex!");
   1222   return ConstPoolAddresses[ConstantNum];
   1223 }
   1224 
   1225 // getJumpTableEntryAddress - Return the address of the JumpTable with index
   1226 // 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
   1227 //
   1228 uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
   1229   const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
   1230   assert(Index < JT.size() && "Invalid jump table index!");
   1231 
   1232   unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getDataLayout());
   1233 
   1234   unsigned Offset = 0;
   1235   for (unsigned i = 0; i < Index; ++i)
   1236     Offset += JT[i].MBBs.size();
   1237 
   1238    Offset *= EntrySize;
   1239 
   1240   return (uintptr_t)((char *)JumpTableBase + Offset);
   1241 }
   1242 
   1243 void JITEmitter::EmittedFunctionConfig::onDelete(
   1244   JITEmitter *Emitter, const Function *F) {
   1245   Emitter->deallocateMemForFunction(F);
   1246 }
   1247 void JITEmitter::EmittedFunctionConfig::onRAUW(
   1248   JITEmitter *, const Function*, const Function*) {
   1249   llvm_unreachable("The JIT doesn't know how to handle a"
   1250                    " RAUW on a value it has emitted.");
   1251 }
   1252 
   1253 
   1254 //===----------------------------------------------------------------------===//
   1255 //  Public interface to this file
   1256 //===----------------------------------------------------------------------===//
   1257 
   1258 JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM,
   1259                                    TargetMachine &tm) {
   1260   return new JITEmitter(jit, JMM, tm);
   1261 }
   1262 
   1263 // getPointerToFunctionOrStub - If the specified function has been
   1264 // code-gen'd, return a pointer to the function.  If not, compile it, or use
   1265 // a stub to implement lazy compilation if available.
   1266 //
   1267 void *JIT::getPointerToFunctionOrStub(Function *F) {
   1268   // If we have already code generated the function, just return the address.
   1269   if (void *Addr = getPointerToGlobalIfAvailable(F))
   1270     return Addr;
   1271 
   1272   // Get a stub if the target supports it.
   1273   JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter());
   1274   return JE->getJITResolver().getLazyFunctionStub(F);
   1275 }
   1276 
   1277 void JIT::updateFunctionStub(Function *F) {
   1278   // Get the empty stub we generated earlier.
   1279   JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter());
   1280   void *Stub = JE->getJITResolver().getLazyFunctionStub(F);
   1281   void *Addr = getPointerToGlobalIfAvailable(F);
   1282   assert(Addr != Stub && "Function must have non-stub address to be updated.");
   1283 
   1284   // Tell the target jit info to rewrite the stub at the specified address,
   1285   // rather than creating a new one.
   1286   TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout();
   1287   JE->startGVStub(Stub, layout.Size);
   1288   getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter());
   1289   JE->finishGVStub();
   1290 }
   1291 
   1292 /// freeMachineCodeForFunction - release machine code memory for given Function.
   1293 ///
   1294 void JIT::freeMachineCodeForFunction(Function *F) {
   1295   // Delete translation for this from the ExecutionEngine, so it will get
   1296   // retranslated next time it is used.
   1297   updateGlobalMapping(F, 0);
   1298 
   1299   // Free the actual memory for the function body and related stuff.
   1300   static_cast<JITEmitter*>(JCE)->deallocateMemForFunction(F);
   1301 }
   1302