1 //===-- JITEmitter.cpp - Write machine code to executable memory ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines a MachineCodeEmitter object that is used by the JIT to 11 // write machine code to memory and remember where relocatable values are. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "JIT.h" 17 #include "JITDwarfEmitter.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/OwningPtr.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/ValueMap.h" 24 #include "llvm/CodeGen/JITCodeEmitter.h" 25 #include "llvm/CodeGen/MachineCodeInfo.h" 26 #include "llvm/CodeGen/MachineConstantPool.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineJumpTableInfo.h" 29 #include "llvm/CodeGen/MachineModuleInfo.h" 30 #include "llvm/CodeGen/MachineRelocation.h" 31 #include "llvm/DebugInfo.h" 32 #include "llvm/ExecutionEngine/GenericValue.h" 33 #include "llvm/ExecutionEngine/JITEventListener.h" 34 #include "llvm/ExecutionEngine/JITMemoryManager.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/Disassembler.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/ManagedStatic.h" 43 #include "llvm/Support/Memory.h" 44 #include "llvm/Support/MutexGuard.h" 45 #include "llvm/Support/ValueHandle.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetInstrInfo.h" 48 #include "llvm/Target/TargetJITInfo.h" 49 #include "llvm/Target/TargetMachine.h" 50 #include "llvm/Target/TargetOptions.h" 51 #include <algorithm> 52 #ifndef NDEBUG 53 #include <iomanip> 54 #endif 55 using namespace llvm; 56 57 STATISTIC(NumBytes, "Number of bytes of machine code compiled"); 58 STATISTIC(NumRelos, "Number of relocations applied"); 59 STATISTIC(NumRetries, "Number of retries with more memory"); 60 61 62 // A declaration may stop being a declaration once it's fully read from bitcode. 63 // This function returns true if F is fully read and is still a declaration. 64 static bool isNonGhostDeclaration(const Function *F) { 65 return F->isDeclaration() && !F->isMaterializable(); 66 } 67 68 //===----------------------------------------------------------------------===// 69 // JIT lazy compilation code. 70 // 71 namespace { 72 class JITEmitter; 73 class JITResolverState; 74 75 template<typename ValueTy> 76 struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> { 77 typedef JITResolverState *ExtraData; 78 static void onRAUW(JITResolverState *, Value *Old, Value *New) { 79 llvm_unreachable("The JIT doesn't know how to handle a" 80 " RAUW on a value it has emitted."); 81 } 82 }; 83 84 struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> { 85 typedef JITResolverState *ExtraData; 86 static void onDelete(JITResolverState *JRS, Function *F); 87 }; 88 89 class JITResolverState { 90 public: 91 typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> > 92 FunctionToLazyStubMapTy; 93 typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy; 94 typedef ValueMap<Function *, SmallPtrSet<void*, 1>, 95 CallSiteValueMapConfig> FunctionToCallSitesMapTy; 96 typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy; 97 private: 98 /// FunctionToLazyStubMap - Keep track of the lazy stub created for a 99 /// particular function so that we can reuse them if necessary. 100 FunctionToLazyStubMapTy FunctionToLazyStubMap; 101 102 /// CallSiteToFunctionMap - Keep track of the function that each lazy call 103 /// site corresponds to, and vice versa. 104 CallSiteToFunctionMapTy CallSiteToFunctionMap; 105 FunctionToCallSitesMapTy FunctionToCallSitesMap; 106 107 /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a 108 /// particular GlobalVariable so that we can reuse them if necessary. 109 GlobalToIndirectSymMapTy GlobalToIndirectSymMap; 110 111 #ifndef NDEBUG 112 /// Instance of the JIT this ResolverState serves. 113 JIT *TheJIT; 114 #endif 115 116 public: 117 JITResolverState(JIT *jit) : FunctionToLazyStubMap(this), 118 FunctionToCallSitesMap(this) { 119 #ifndef NDEBUG 120 TheJIT = jit; 121 #endif 122 } 123 124 FunctionToLazyStubMapTy& getFunctionToLazyStubMap( 125 const MutexGuard& locked) { 126 assert(locked.holds(TheJIT->lock)); 127 return FunctionToLazyStubMap; 128 } 129 130 GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& lck) { 131 assert(lck.holds(TheJIT->lock)); 132 return GlobalToIndirectSymMap; 133 } 134 135 std::pair<void *, Function *> LookupFunctionFromCallSite( 136 const MutexGuard &locked, void *CallSite) const { 137 assert(locked.holds(TheJIT->lock)); 138 139 // The address given to us for the stub may not be exactly right, it 140 // might be a little bit after the stub. As such, use upper_bound to 141 // find it. 142 CallSiteToFunctionMapTy::const_iterator I = 143 CallSiteToFunctionMap.upper_bound(CallSite); 144 assert(I != CallSiteToFunctionMap.begin() && 145 "This is not a known call site!"); 146 --I; 147 return *I; 148 } 149 150 void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) { 151 assert(locked.holds(TheJIT->lock)); 152 153 bool Inserted = CallSiteToFunctionMap.insert( 154 std::make_pair(CallSite, F)).second; 155 (void)Inserted; 156 assert(Inserted && "Pair was already in CallSiteToFunctionMap"); 157 FunctionToCallSitesMap[F].insert(CallSite); 158 } 159 160 void EraseAllCallSitesForPrelocked(Function *F); 161 162 // Erases _all_ call sites regardless of their function. This is used to 163 // unregister the stub addresses from the StubToResolverMap in 164 // ~JITResolver(). 165 void EraseAllCallSitesPrelocked(); 166 }; 167 168 /// JITResolver - Keep track of, and resolve, call sites for functions that 169 /// have not yet been compiled. 170 class JITResolver { 171 typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy; 172 typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy; 173 typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy; 174 175 /// LazyResolverFn - The target lazy resolver function that we actually 176 /// rewrite instructions to use. 177 TargetJITInfo::LazyResolverFn LazyResolverFn; 178 179 JITResolverState state; 180 181 /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap 182 /// for external functions. TODO: Of course, external functions don't need 183 /// a lazy stub. It's actually here to make it more likely that far calls 184 /// succeed, but no single stub can guarantee that. I'll remove this in a 185 /// subsequent checkin when I actually fix far calls. 186 std::map<void*, void*> ExternalFnToStubMap; 187 188 /// revGOTMap - map addresses to indexes in the GOT 189 std::map<void*, unsigned> revGOTMap; 190 unsigned nextGOTIndex; 191 192 JITEmitter &JE; 193 194 /// Instance of JIT corresponding to this Resolver. 195 JIT *TheJIT; 196 197 public: 198 explicit JITResolver(JIT &jit, JITEmitter &je) 199 : state(&jit), nextGOTIndex(0), JE(je), TheJIT(&jit) { 200 LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn); 201 } 202 203 ~JITResolver(); 204 205 /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's 206 /// lazy-compilation stub if it has already been created. 207 void *getLazyFunctionStubIfAvailable(Function *F); 208 209 /// getLazyFunctionStub - This returns a pointer to a function's 210 /// lazy-compilation stub, creating one on demand as needed. 211 void *getLazyFunctionStub(Function *F); 212 213 /// getExternalFunctionStub - Return a stub for the function at the 214 /// specified address, created lazily on demand. 215 void *getExternalFunctionStub(void *FnAddr); 216 217 /// getGlobalValueIndirectSym - Return an indirect symbol containing the 218 /// specified GV address. 219 void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress); 220 221 /// getGOTIndexForAddress - Return a new or existing index in the GOT for 222 /// an address. This function only manages slots, it does not manage the 223 /// contents of the slots or the memory associated with the GOT. 224 unsigned getGOTIndexForAddr(void *addr); 225 226 /// JITCompilerFn - This function is called to resolve a stub to a compiled 227 /// address. If the LLVM Function corresponding to the stub has not yet 228 /// been compiled, this function compiles it first. 229 static void *JITCompilerFn(void *Stub); 230 }; 231 232 class StubToResolverMapTy { 233 /// Map a stub address to a specific instance of a JITResolver so that 234 /// lazily-compiled functions can find the right resolver to use. 235 /// 236 /// Guarded by Lock. 237 std::map<void*, JITResolver*> Map; 238 239 /// Guards Map from concurrent accesses. 240 mutable sys::Mutex Lock; 241 242 public: 243 /// Registers a Stub to be resolved by Resolver. 244 void RegisterStubResolver(void *Stub, JITResolver *Resolver) { 245 MutexGuard guard(Lock); 246 Map.insert(std::make_pair(Stub, Resolver)); 247 } 248 /// Unregisters the Stub when it's invalidated. 249 void UnregisterStubResolver(void *Stub) { 250 MutexGuard guard(Lock); 251 Map.erase(Stub); 252 } 253 /// Returns the JITResolver instance that owns the Stub. 254 JITResolver *getResolverFromStub(void *Stub) const { 255 MutexGuard guard(Lock); 256 // The address given to us for the stub may not be exactly right, it might 257 // be a little bit after the stub. As such, use upper_bound to find it. 258 // This is the same trick as in LookupFunctionFromCallSite from 259 // JITResolverState. 260 std::map<void*, JITResolver*>::const_iterator I = Map.upper_bound(Stub); 261 assert(I != Map.begin() && "This is not a known stub!"); 262 --I; 263 return I->second; 264 } 265 /// True if any stubs refer to the given resolver. Only used in an assert(). 266 /// O(N) 267 bool ResolverHasStubs(JITResolver* Resolver) const { 268 MutexGuard guard(Lock); 269 for (std::map<void*, JITResolver*>::const_iterator I = Map.begin(), 270 E = Map.end(); I != E; ++I) { 271 if (I->second == Resolver) 272 return true; 273 } 274 return false; 275 } 276 }; 277 /// This needs to be static so that a lazy call stub can access it with no 278 /// context except the address of the stub. 279 ManagedStatic<StubToResolverMapTy> StubToResolverMap; 280 281 /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is 282 /// used to output functions to memory for execution. 283 class JITEmitter : public JITCodeEmitter { 284 JITMemoryManager *MemMgr; 285 286 // When outputting a function stub in the context of some other function, we 287 // save BufferBegin/BufferEnd/CurBufferPtr here. 288 uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr; 289 290 // When reattempting to JIT a function after running out of space, we store 291 // the estimated size of the function we're trying to JIT here, so we can 292 // ask the memory manager for at least this much space. When we 293 // successfully emit the function, we reset this back to zero. 294 uintptr_t SizeEstimate; 295 296 /// Relocations - These are the relocations that the function needs, as 297 /// emitted. 298 std::vector<MachineRelocation> Relocations; 299 300 /// MBBLocations - This vector is a mapping from MBB ID's to their address. 301 /// It is filled in by the StartMachineBasicBlock callback and queried by 302 /// the getMachineBasicBlockAddress callback. 303 std::vector<uintptr_t> MBBLocations; 304 305 /// ConstantPool - The constant pool for the current function. 306 /// 307 MachineConstantPool *ConstantPool; 308 309 /// ConstantPoolBase - A pointer to the first entry in the constant pool. 310 /// 311 void *ConstantPoolBase; 312 313 /// ConstPoolAddresses - Addresses of individual constant pool entries. 314 /// 315 SmallVector<uintptr_t, 8> ConstPoolAddresses; 316 317 /// JumpTable - The jump tables for the current function. 318 /// 319 MachineJumpTableInfo *JumpTable; 320 321 /// JumpTableBase - A pointer to the first entry in the jump table. 322 /// 323 void *JumpTableBase; 324 325 /// Resolver - This contains info about the currently resolved functions. 326 JITResolver Resolver; 327 328 /// DE - The dwarf emitter for the jit. 329 OwningPtr<JITDwarfEmitter> DE; 330 331 /// LabelLocations - This vector is a mapping from Label ID's to their 332 /// address. 333 DenseMap<MCSymbol*, uintptr_t> LabelLocations; 334 335 /// MMI - Machine module info for exception informations 336 MachineModuleInfo* MMI; 337 338 // CurFn - The llvm function being emitted. Only valid during 339 // finishFunction(). 340 const Function *CurFn; 341 342 /// Information about emitted code, which is passed to the 343 /// JITEventListeners. This is reset in startFunction and used in 344 /// finishFunction. 345 JITEvent_EmittedFunctionDetails EmissionDetails; 346 347 struct EmittedCode { 348 void *FunctionBody; // Beginning of the function's allocation. 349 void *Code; // The address the function's code actually starts at. 350 void *ExceptionTable; 351 EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {} 352 }; 353 struct EmittedFunctionConfig : public ValueMapConfig<const Function*> { 354 typedef JITEmitter *ExtraData; 355 static void onDelete(JITEmitter *, const Function*); 356 static void onRAUW(JITEmitter *, const Function*, const Function*); 357 }; 358 ValueMap<const Function *, EmittedCode, 359 EmittedFunctionConfig> EmittedFunctions; 360 361 DebugLoc PrevDL; 362 363 /// Instance of the JIT 364 JIT *TheJIT; 365 366 bool JITExceptionHandling; 367 368 public: 369 JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM) 370 : SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0), 371 EmittedFunctions(this), TheJIT(&jit), 372 JITExceptionHandling(TM.Options.JITExceptionHandling) { 373 MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager(); 374 if (jit.getJITInfo().needsGOT()) { 375 MemMgr->AllocateGOT(); 376 DEBUG(dbgs() << "JIT is managing a GOT\n"); 377 } 378 379 if (JITExceptionHandling) { 380 DE.reset(new JITDwarfEmitter(jit)); 381 } 382 } 383 ~JITEmitter() { 384 delete MemMgr; 385 } 386 387 JITResolver &getJITResolver() { return Resolver; } 388 389 virtual void startFunction(MachineFunction &F); 390 virtual bool finishFunction(MachineFunction &F); 391 392 void emitConstantPool(MachineConstantPool *MCP); 393 void initJumpTableInfo(MachineJumpTableInfo *MJTI); 394 void emitJumpTableInfo(MachineJumpTableInfo *MJTI); 395 396 void startGVStub(const GlobalValue* GV, 397 unsigned StubSize, unsigned Alignment = 1); 398 void startGVStub(void *Buffer, unsigned StubSize); 399 void finishGVStub(); 400 virtual void *allocIndirectGV(const GlobalValue *GV, 401 const uint8_t *Buffer, size_t Size, 402 unsigned Alignment); 403 404 /// allocateSpace - Reserves space in the current block if any, or 405 /// allocate a new one of the given size. 406 virtual void *allocateSpace(uintptr_t Size, unsigned Alignment); 407 408 /// allocateGlobal - Allocate memory for a global. Unlike allocateSpace, 409 /// this method does not allocate memory in the current output buffer, 410 /// because a global may live longer than the current function. 411 virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment); 412 413 virtual void addRelocation(const MachineRelocation &MR) { 414 Relocations.push_back(MR); 415 } 416 417 virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) { 418 if (MBBLocations.size() <= (unsigned)MBB->getNumber()) 419 MBBLocations.resize((MBB->getNumber()+1)*2); 420 MBBLocations[MBB->getNumber()] = getCurrentPCValue(); 421 if (MBB->hasAddressTaken()) 422 TheJIT->addPointerToBasicBlock(MBB->getBasicBlock(), 423 (void*)getCurrentPCValue()); 424 DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at [" 425 << (void*) getCurrentPCValue() << "]\n"); 426 } 427 428 virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const; 429 virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const; 430 431 virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const{ 432 assert(MBBLocations.size() > (unsigned)MBB->getNumber() && 433 MBBLocations[MBB->getNumber()] && "MBB not emitted!"); 434 return MBBLocations[MBB->getNumber()]; 435 } 436 437 /// retryWithMoreMemory - Log a retry and deallocate all memory for the 438 /// given function. Increase the minimum allocation size so that we get 439 /// more memory next time. 440 void retryWithMoreMemory(MachineFunction &F); 441 442 /// deallocateMemForFunction - Deallocate all memory for the specified 443 /// function body. 444 void deallocateMemForFunction(const Function *F); 445 446 virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn); 447 448 virtual void emitLabel(MCSymbol *Label) { 449 LabelLocations[Label] = getCurrentPCValue(); 450 } 451 452 virtual DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() { 453 return &LabelLocations; 454 } 455 456 virtual uintptr_t getLabelAddress(MCSymbol *Label) const { 457 assert(LabelLocations.count(Label) && "Label not emitted!"); 458 return LabelLocations.find(Label)->second; 459 } 460 461 virtual void setModuleInfo(MachineModuleInfo* Info) { 462 MMI = Info; 463 if (DE.get()) DE->setModuleInfo(Info); 464 } 465 466 private: 467 void *getPointerToGlobal(GlobalValue *GV, void *Reference, 468 bool MayNeedFarStub); 469 void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference); 470 }; 471 } 472 473 void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) { 474 JRS->EraseAllCallSitesForPrelocked(F); 475 } 476 477 void JITResolverState::EraseAllCallSitesForPrelocked(Function *F) { 478 FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F); 479 if (F2C == FunctionToCallSitesMap.end()) 480 return; 481 StubToResolverMapTy &S2RMap = *StubToResolverMap; 482 for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(), 483 E = F2C->second.end(); I != E; ++I) { 484 S2RMap.UnregisterStubResolver(*I); 485 bool Erased = CallSiteToFunctionMap.erase(*I); 486 (void)Erased; 487 assert(Erased && "Missing call site->function mapping"); 488 } 489 FunctionToCallSitesMap.erase(F2C); 490 } 491 492 void JITResolverState::EraseAllCallSitesPrelocked() { 493 StubToResolverMapTy &S2RMap = *StubToResolverMap; 494 for (CallSiteToFunctionMapTy::const_iterator 495 I = CallSiteToFunctionMap.begin(), 496 E = CallSiteToFunctionMap.end(); I != E; ++I) { 497 S2RMap.UnregisterStubResolver(I->first); 498 } 499 CallSiteToFunctionMap.clear(); 500 FunctionToCallSitesMap.clear(); 501 } 502 503 JITResolver::~JITResolver() { 504 // No need to lock because we're in the destructor, and state isn't shared. 505 state.EraseAllCallSitesPrelocked(); 506 assert(!StubToResolverMap->ResolverHasStubs(this) && 507 "Resolver destroyed with stubs still alive."); 508 } 509 510 /// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub 511 /// if it has already been created. 512 void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) { 513 MutexGuard locked(TheJIT->lock); 514 515 // If we already have a stub for this function, recycle it. 516 return state.getFunctionToLazyStubMap(locked).lookup(F); 517 } 518 519 /// getFunctionStub - This returns a pointer to a function stub, creating 520 /// one on demand as needed. 521 void *JITResolver::getLazyFunctionStub(Function *F) { 522 MutexGuard locked(TheJIT->lock); 523 524 // If we already have a lazy stub for this function, recycle it. 525 void *&Stub = state.getFunctionToLazyStubMap(locked)[F]; 526 if (Stub) return Stub; 527 528 // Call the lazy resolver function if we are JIT'ing lazily. Otherwise we 529 // must resolve the symbol now. 530 void *Actual = TheJIT->isCompilingLazily() 531 ? (void *)(intptr_t)LazyResolverFn : (void *)0; 532 533 // If this is an external declaration, attempt to resolve the address now 534 // to place in the stub. 535 if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) { 536 Actual = TheJIT->getPointerToFunction(F); 537 538 // If we resolved the symbol to a null address (eg. a weak external) 539 // don't emit a stub. Return a null pointer to the application. 540 if (!Actual) return 0; 541 } 542 543 TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout(); 544 JE.startGVStub(F, SL.Size, SL.Alignment); 545 // Codegen a new stub, calling the lazy resolver or the actual address of the 546 // external function, if it was resolved. 547 Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE); 548 JE.finishGVStub(); 549 550 if (Actual != (void*)(intptr_t)LazyResolverFn) { 551 // If we are getting the stub for an external function, we really want the 552 // address of the stub in the GlobalAddressMap for the JIT, not the address 553 // of the external function. 554 TheJIT->updateGlobalMapping(F, Stub); 555 } 556 557 DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '" 558 << F->getName() << "'\n"); 559 560 if (TheJIT->isCompilingLazily()) { 561 // Register this JITResolver as the one corresponding to this call site so 562 // JITCompilerFn will be able to find it. 563 StubToResolverMap->RegisterStubResolver(Stub, this); 564 565 // Finally, keep track of the stub-to-Function mapping so that the 566 // JITCompilerFn knows which function to compile! 567 state.AddCallSite(locked, Stub, F); 568 } else if (!Actual) { 569 // If we are JIT'ing non-lazily but need to call a function that does not 570 // exist yet, add it to the JIT's work list so that we can fill in the 571 // stub address later. 572 assert(!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage() && 573 "'Actual' should have been set above."); 574 TheJIT->addPendingFunction(F); 575 } 576 577 return Stub; 578 } 579 580 /// getGlobalValueIndirectSym - Return a lazy pointer containing the specified 581 /// GV address. 582 void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) { 583 MutexGuard locked(TheJIT->lock); 584 585 // If we already have a stub for this global variable, recycle it. 586 void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV]; 587 if (IndirectSym) return IndirectSym; 588 589 // Otherwise, codegen a new indirect symbol. 590 IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress, 591 JE); 592 593 DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym 594 << "] for GV '" << GV->getName() << "'\n"); 595 596 return IndirectSym; 597 } 598 599 /// getExternalFunctionStub - Return a stub for the function at the 600 /// specified address, created lazily on demand. 601 void *JITResolver::getExternalFunctionStub(void *FnAddr) { 602 // If we already have a stub for this function, recycle it. 603 void *&Stub = ExternalFnToStubMap[FnAddr]; 604 if (Stub) return Stub; 605 606 TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout(); 607 JE.startGVStub(0, SL.Size, SL.Alignment); 608 Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE); 609 JE.finishGVStub(); 610 611 DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub 612 << "] for external function at '" << FnAddr << "'\n"); 613 return Stub; 614 } 615 616 unsigned JITResolver::getGOTIndexForAddr(void* addr) { 617 unsigned idx = revGOTMap[addr]; 618 if (!idx) { 619 idx = ++nextGOTIndex; 620 revGOTMap[addr] = idx; 621 DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr [" 622 << addr << "]\n"); 623 } 624 return idx; 625 } 626 627 /// JITCompilerFn - This function is called when a lazy compilation stub has 628 /// been entered. It looks up which function this stub corresponds to, compiles 629 /// it if necessary, then returns the resultant function pointer. 630 void *JITResolver::JITCompilerFn(void *Stub) { 631 JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub); 632 assert(JR && "Unable to find the corresponding JITResolver to the call site"); 633 634 Function* F = 0; 635 void* ActualPtr = 0; 636 637 { 638 // Only lock for getting the Function. The call getPointerToFunction made 639 // in this function might trigger function materializing, which requires 640 // JIT lock to be unlocked. 641 MutexGuard locked(JR->TheJIT->lock); 642 643 // The address given to us for the stub may not be exactly right, it might 644 // be a little bit after the stub. As such, use upper_bound to find it. 645 std::pair<void*, Function*> I = 646 JR->state.LookupFunctionFromCallSite(locked, Stub); 647 F = I.second; 648 ActualPtr = I.first; 649 } 650 651 // If we have already code generated the function, just return the address. 652 void *Result = JR->TheJIT->getPointerToGlobalIfAvailable(F); 653 654 if (!Result) { 655 // Otherwise we don't have it, do lazy compilation now. 656 657 // If lazy compilation is disabled, emit a useful error message and abort. 658 if (!JR->TheJIT->isCompilingLazily()) { 659 report_fatal_error("LLVM JIT requested to do lazy compilation of" 660 " function '" 661 + F->getName() + "' when lazy compiles are disabled!"); 662 } 663 664 DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName() 665 << "' In stub ptr = " << Stub << " actual ptr = " 666 << ActualPtr << "\n"); 667 (void)ActualPtr; 668 669 Result = JR->TheJIT->getPointerToFunction(F); 670 } 671 672 // Reacquire the lock to update the GOT map. 673 MutexGuard locked(JR->TheJIT->lock); 674 675 // We might like to remove the call site from the CallSiteToFunction map, but 676 // we can't do that! Multiple threads could be stuck, waiting to acquire the 677 // lock above. As soon as the 1st function finishes compiling the function, 678 // the next one will be released, and needs to be able to find the function it 679 // needs to call. 680 681 // FIXME: We could rewrite all references to this stub if we knew them. 682 683 // What we will do is set the compiled function address to map to the 684 // same GOT entry as the stub so that later clients may update the GOT 685 // if they see it still using the stub address. 686 // Note: this is done so the Resolver doesn't have to manage GOT memory 687 // Do this without allocating map space if the target isn't using a GOT 688 if(JR->revGOTMap.find(Stub) != JR->revGOTMap.end()) 689 JR->revGOTMap[Result] = JR->revGOTMap[Stub]; 690 691 return Result; 692 } 693 694 //===----------------------------------------------------------------------===// 695 // JITEmitter code. 696 // 697 void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference, 698 bool MayNeedFarStub) { 699 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 700 return TheJIT->getOrEmitGlobalVariable(GV); 701 702 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 703 return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false)); 704 705 // If we have already compiled the function, return a pointer to its body. 706 Function *F = cast<Function>(V); 707 708 void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F); 709 if (FnStub) { 710 // Return the function stub if it's already created. We do this first so 711 // that we're returning the same address for the function as any previous 712 // call. TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be 713 // close enough to call. 714 return FnStub; 715 } 716 717 // If we know the target can handle arbitrary-distance calls, try to 718 // return a direct pointer. 719 if (!MayNeedFarStub) { 720 // If we have code, go ahead and return that. 721 void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F); 722 if (ResultPtr) return ResultPtr; 723 724 // If this is an external function pointer, we can force the JIT to 725 // 'compile' it, which really just adds it to the map. 726 if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) 727 return TheJIT->getPointerToFunction(F); 728 } 729 730 // Otherwise, we may need a to emit a stub, and, conservatively, we always do 731 // so. Note that it's possible to return null from getLazyFunctionStub in the 732 // case of a weak extern that fails to resolve. 733 return Resolver.getLazyFunctionStub(F); 734 } 735 736 void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) { 737 // Make sure GV is emitted first, and create a stub containing the fully 738 // resolved address. 739 void *GVAddress = getPointerToGlobal(V, Reference, false); 740 void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress); 741 return StubAddr; 742 } 743 744 void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) { 745 if (DL.isUnknown()) return; 746 if (!BeforePrintingInsn) return; 747 748 const LLVMContext &Context = EmissionDetails.MF->getFunction()->getContext(); 749 750 if (DL.getScope(Context) != 0 && PrevDL != DL) { 751 JITEvent_EmittedFunctionDetails::LineStart NextLine; 752 NextLine.Address = getCurrentPCValue(); 753 NextLine.Loc = DL; 754 EmissionDetails.LineStarts.push_back(NextLine); 755 } 756 757 PrevDL = DL; 758 } 759 760 static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP, 761 const DataLayout *TD) { 762 const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants(); 763 if (Constants.empty()) return 0; 764 765 unsigned Size = 0; 766 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 767 MachineConstantPoolEntry CPE = Constants[i]; 768 unsigned AlignMask = CPE.getAlignment() - 1; 769 Size = (Size + AlignMask) & ~AlignMask; 770 Type *Ty = CPE.getType(); 771 Size += TD->getTypeAllocSize(Ty); 772 } 773 return Size; 774 } 775 776 void JITEmitter::startFunction(MachineFunction &F) { 777 DEBUG(dbgs() << "JIT: Starting CodeGen of Function " 778 << F.getName() << "\n"); 779 780 uintptr_t ActualSize = 0; 781 // Set the memory writable, if it's not already 782 MemMgr->setMemoryWritable(); 783 784 if (SizeEstimate > 0) { 785 // SizeEstimate will be non-zero on reallocation attempts. 786 ActualSize = SizeEstimate; 787 } 788 789 BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(), 790 ActualSize); 791 BufferEnd = BufferBegin+ActualSize; 792 EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin; 793 794 // Ensure the constant pool/jump table info is at least 4-byte aligned. 795 emitAlignment(16); 796 797 emitConstantPool(F.getConstantPool()); 798 if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo()) 799 initJumpTableInfo(MJTI); 800 801 // About to start emitting the machine code for the function. 802 emitAlignment(std::max(F.getFunction()->getAlignment(), 8U)); 803 TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr); 804 EmittedFunctions[F.getFunction()].Code = CurBufferPtr; 805 806 MBBLocations.clear(); 807 808 EmissionDetails.MF = &F; 809 EmissionDetails.LineStarts.clear(); 810 } 811 812 bool JITEmitter::finishFunction(MachineFunction &F) { 813 if (CurBufferPtr == BufferEnd) { 814 // We must call endFunctionBody before retrying, because 815 // deallocateMemForFunction requires it. 816 MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr); 817 retryWithMoreMemory(F); 818 return true; 819 } 820 821 if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo()) 822 emitJumpTableInfo(MJTI); 823 824 // FnStart is the start of the text, not the start of the constant pool and 825 // other per-function data. 826 uint8_t *FnStart = 827 (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction()); 828 829 // FnEnd is the end of the function's machine code. 830 uint8_t *FnEnd = CurBufferPtr; 831 832 if (!Relocations.empty()) { 833 CurFn = F.getFunction(); 834 NumRelos += Relocations.size(); 835 836 // Resolve the relocations to concrete pointers. 837 for (unsigned i = 0, e = Relocations.size(); i != e; ++i) { 838 MachineRelocation &MR = Relocations[i]; 839 void *ResultPtr = 0; 840 if (!MR.letTargetResolve()) { 841 if (MR.isExternalSymbol()) { 842 ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(), 843 false); 844 DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to [" 845 << ResultPtr << "]\n"); 846 847 // If the target REALLY wants a stub for this function, emit it now. 848 if (MR.mayNeedFarStub()) { 849 ResultPtr = Resolver.getExternalFunctionStub(ResultPtr); 850 } 851 } else if (MR.isGlobalValue()) { 852 ResultPtr = getPointerToGlobal(MR.getGlobalValue(), 853 BufferBegin+MR.getMachineCodeOffset(), 854 MR.mayNeedFarStub()); 855 } else if (MR.isIndirectSymbol()) { 856 ResultPtr = getPointerToGVIndirectSym( 857 MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset()); 858 } else if (MR.isBasicBlock()) { 859 ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock()); 860 } else if (MR.isConstantPoolIndex()) { 861 ResultPtr = 862 (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex()); 863 } else { 864 assert(MR.isJumpTableIndex()); 865 ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex()); 866 } 867 868 MR.setResultPointer(ResultPtr); 869 } 870 871 // if we are managing the GOT and the relocation wants an index, 872 // give it one 873 if (MR.isGOTRelative() && MemMgr->isManagingGOT()) { 874 unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr); 875 MR.setGOTIndex(idx); 876 if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) { 877 DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr 878 << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] 879 << "\n"); 880 ((void**)MemMgr->getGOTBase())[idx] = ResultPtr; 881 } 882 } 883 } 884 885 CurFn = 0; 886 TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0], 887 Relocations.size(), MemMgr->getGOTBase()); 888 } 889 890 // Update the GOT entry for F to point to the new code. 891 if (MemMgr->isManagingGOT()) { 892 unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin); 893 if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) { 894 DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin 895 << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] 896 << "\n"); 897 ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin; 898 } 899 } 900 901 // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for 902 // global variables that were referenced in the relocations. 903 MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr); 904 905 if (CurBufferPtr == BufferEnd) { 906 retryWithMoreMemory(F); 907 return true; 908 } else { 909 // Now that we've succeeded in emitting the function, reset the 910 // SizeEstimate back down to zero. 911 SizeEstimate = 0; 912 } 913 914 BufferBegin = CurBufferPtr = 0; 915 NumBytes += FnEnd-FnStart; 916 917 // Invalidate the icache if necessary. 918 sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart); 919 920 TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart, 921 EmissionDetails); 922 923 // Reset the previous debug location. 924 PrevDL = DebugLoc(); 925 926 DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart 927 << "] Function: " << F.getName() 928 << ": " << (FnEnd-FnStart) << " bytes of text, " 929 << Relocations.size() << " relocations\n"); 930 931 Relocations.clear(); 932 ConstPoolAddresses.clear(); 933 934 // Mark code region readable and executable if it's not so already. 935 MemMgr->setMemoryExecutable(); 936 937 DEBUG({ 938 if (sys::hasDisassembler()) { 939 dbgs() << "JIT: Disassembled code:\n"; 940 dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart, 941 (uintptr_t)FnStart); 942 } else { 943 dbgs() << "JIT: Binary code:\n"; 944 uint8_t* q = FnStart; 945 for (int i = 0; q < FnEnd; q += 4, ++i) { 946 if (i == 4) 947 i = 0; 948 if (i == 0) 949 dbgs() << "JIT: " << (long)(q - FnStart) << ": "; 950 bool Done = false; 951 for (int j = 3; j >= 0; --j) { 952 if (q + j >= FnEnd) 953 Done = true; 954 else 955 dbgs() << (unsigned short)q[j]; 956 } 957 if (Done) 958 break; 959 dbgs() << ' '; 960 if (i == 3) 961 dbgs() << '\n'; 962 } 963 dbgs()<< '\n'; 964 } 965 }); 966 967 if (JITExceptionHandling) { 968 uintptr_t ActualSize = 0; 969 SavedBufferBegin = BufferBegin; 970 SavedBufferEnd = BufferEnd; 971 SavedCurBufferPtr = CurBufferPtr; 972 uint8_t *FrameRegister; 973 974 while (true) { 975 BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(), 976 ActualSize); 977 BufferEnd = BufferBegin+ActualSize; 978 EmittedFunctions[F.getFunction()].ExceptionTable = BufferBegin; 979 uint8_t *EhStart; 980 FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd, EhStart); 981 982 // If the buffer was large enough to hold the table then we are done. 983 if (CurBufferPtr != BufferEnd) 984 break; 985 986 // Try again with twice as much space. 987 ActualSize = (CurBufferPtr - BufferBegin) * 2; 988 MemMgr->deallocateExceptionTable(BufferBegin); 989 } 990 MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr, 991 FrameRegister); 992 BufferBegin = SavedBufferBegin; 993 BufferEnd = SavedBufferEnd; 994 CurBufferPtr = SavedCurBufferPtr; 995 996 if (JITExceptionHandling) { 997 TheJIT->RegisterTable(F.getFunction(), FrameRegister); 998 } 999 } 1000 1001 if (MMI) 1002 MMI->EndFunction(); 1003 1004 return false; 1005 } 1006 1007 void JITEmitter::retryWithMoreMemory(MachineFunction &F) { 1008 DEBUG(dbgs() << "JIT: Ran out of space for native code. Reattempting.\n"); 1009 Relocations.clear(); // Clear the old relocations or we'll reapply them. 1010 ConstPoolAddresses.clear(); 1011 ++NumRetries; 1012 deallocateMemForFunction(F.getFunction()); 1013 // Try again with at least twice as much free space. 1014 SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin)); 1015 1016 for (MachineFunction::iterator MBB = F.begin(), E = F.end(); MBB != E; ++MBB){ 1017 if (MBB->hasAddressTaken()) 1018 TheJIT->clearPointerToBasicBlock(MBB->getBasicBlock()); 1019 } 1020 } 1021 1022 /// deallocateMemForFunction - Deallocate all memory for the specified 1023 /// function body. Also drop any references the function has to stubs. 1024 /// May be called while the Function is being destroyed inside ~Value(). 1025 void JITEmitter::deallocateMemForFunction(const Function *F) { 1026 ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator 1027 Emitted = EmittedFunctions.find(F); 1028 if (Emitted != EmittedFunctions.end()) { 1029 MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody); 1030 MemMgr->deallocateExceptionTable(Emitted->second.ExceptionTable); 1031 TheJIT->NotifyFreeingMachineCode(Emitted->second.Code); 1032 1033 EmittedFunctions.erase(Emitted); 1034 } 1035 1036 if (JITExceptionHandling) { 1037 TheJIT->DeregisterTable(F); 1038 } 1039 } 1040 1041 1042 void *JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) { 1043 if (BufferBegin) 1044 return JITCodeEmitter::allocateSpace(Size, Alignment); 1045 1046 // create a new memory block if there is no active one. 1047 // care must be taken so that BufferBegin is invalidated when a 1048 // block is trimmed 1049 BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment); 1050 BufferEnd = BufferBegin+Size; 1051 return CurBufferPtr; 1052 } 1053 1054 void *JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) { 1055 // Delegate this call through the memory manager. 1056 return MemMgr->allocateGlobal(Size, Alignment); 1057 } 1058 1059 void JITEmitter::emitConstantPool(MachineConstantPool *MCP) { 1060 if (TheJIT->getJITInfo().hasCustomConstantPool()) 1061 return; 1062 1063 const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants(); 1064 if (Constants.empty()) return; 1065 1066 unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getDataLayout()); 1067 unsigned Align = MCP->getConstantPoolAlignment(); 1068 ConstantPoolBase = allocateSpace(Size, Align); 1069 ConstantPool = MCP; 1070 1071 if (ConstantPoolBase == 0) return; // Buffer overflow. 1072 1073 DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase 1074 << "] (size: " << Size << ", alignment: " << Align << ")\n"); 1075 1076 // Initialize the memory for all of the constant pool entries. 1077 unsigned Offset = 0; 1078 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1079 MachineConstantPoolEntry CPE = Constants[i]; 1080 unsigned AlignMask = CPE.getAlignment() - 1; 1081 Offset = (Offset + AlignMask) & ~AlignMask; 1082 1083 uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset; 1084 ConstPoolAddresses.push_back(CAddr); 1085 if (CPE.isMachineConstantPoolEntry()) { 1086 // FIXME: add support to lower machine constant pool values into bytes! 1087 report_fatal_error("Initialize memory with machine specific constant pool" 1088 "entry has not been implemented!"); 1089 } 1090 TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr); 1091 DEBUG(dbgs() << "JIT: CP" << i << " at [0x"; 1092 dbgs().write_hex(CAddr) << "]\n"); 1093 1094 Type *Ty = CPE.Val.ConstVal->getType(); 1095 Offset += TheJIT->getDataLayout()->getTypeAllocSize(Ty); 1096 } 1097 } 1098 1099 void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) { 1100 if (TheJIT->getJITInfo().hasCustomJumpTables()) 1101 return; 1102 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) 1103 return; 1104 1105 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1106 if (JT.empty()) return; 1107 1108 unsigned NumEntries = 0; 1109 for (unsigned i = 0, e = JT.size(); i != e; ++i) 1110 NumEntries += JT[i].MBBs.size(); 1111 1112 unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getDataLayout()); 1113 1114 // Just allocate space for all the jump tables now. We will fix up the actual 1115 // MBB entries in the tables after we emit the code for each block, since then 1116 // we will know the final locations of the MBBs in memory. 1117 JumpTable = MJTI; 1118 JumpTableBase = allocateSpace(NumEntries * EntrySize, 1119 MJTI->getEntryAlignment(*TheJIT->getDataLayout())); 1120 } 1121 1122 void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) { 1123 if (TheJIT->getJITInfo().hasCustomJumpTables()) 1124 return; 1125 1126 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1127 if (JT.empty() || JumpTableBase == 0) return; 1128 1129 1130 switch (MJTI->getEntryKind()) { 1131 case MachineJumpTableInfo::EK_Inline: 1132 return; 1133 case MachineJumpTableInfo::EK_BlockAddress: { 1134 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1135 // .word LBB123 1136 assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == sizeof(void*) && 1137 "Cross JIT'ing?"); 1138 1139 // For each jump table, map each target in the jump table to the address of 1140 // an emitted MachineBasicBlock. 1141 intptr_t *SlotPtr = (intptr_t*)JumpTableBase; 1142 1143 for (unsigned i = 0, e = JT.size(); i != e; ++i) { 1144 const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs; 1145 // Store the address of the basic block for this jump table slot in the 1146 // memory we allocated for the jump table in 'initJumpTableInfo' 1147 for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) 1148 *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]); 1149 } 1150 break; 1151 } 1152 1153 case MachineJumpTableInfo::EK_Custom32: 1154 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1155 case MachineJumpTableInfo::EK_LabelDifference32: { 1156 assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == 4&&"Cross JIT'ing?"); 1157 // For each jump table, place the offset from the beginning of the table 1158 // to the target address. 1159 int *SlotPtr = (int*)JumpTableBase; 1160 1161 for (unsigned i = 0, e = JT.size(); i != e; ++i) { 1162 const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs; 1163 // Store the offset of the basic block for this jump table slot in the 1164 // memory we allocated for the jump table in 'initJumpTableInfo' 1165 uintptr_t Base = (uintptr_t)SlotPtr; 1166 for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) { 1167 uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]); 1168 /// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook. 1169 *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base); 1170 } 1171 } 1172 break; 1173 } 1174 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1175 llvm_unreachable( 1176 "JT Info emission not implemented for GPRel64BlockAddress yet."); 1177 } 1178 } 1179 1180 void JITEmitter::startGVStub(const GlobalValue* GV, 1181 unsigned StubSize, unsigned Alignment) { 1182 SavedBufferBegin = BufferBegin; 1183 SavedBufferEnd = BufferEnd; 1184 SavedCurBufferPtr = CurBufferPtr; 1185 1186 BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment); 1187 BufferEnd = BufferBegin+StubSize+1; 1188 } 1189 1190 void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) { 1191 SavedBufferBegin = BufferBegin; 1192 SavedBufferEnd = BufferEnd; 1193 SavedCurBufferPtr = CurBufferPtr; 1194 1195 BufferBegin = CurBufferPtr = (uint8_t *)Buffer; 1196 BufferEnd = BufferBegin+StubSize+1; 1197 } 1198 1199 void JITEmitter::finishGVStub() { 1200 assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space."); 1201 NumBytes += getCurrentPCOffset(); 1202 BufferBegin = SavedBufferBegin; 1203 BufferEnd = SavedBufferEnd; 1204 CurBufferPtr = SavedCurBufferPtr; 1205 } 1206 1207 void *JITEmitter::allocIndirectGV(const GlobalValue *GV, 1208 const uint8_t *Buffer, size_t Size, 1209 unsigned Alignment) { 1210 uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment); 1211 memcpy(IndGV, Buffer, Size); 1212 return IndGV; 1213 } 1214 1215 // getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry 1216 // in the constant pool that was last emitted with the 'emitConstantPool' 1217 // method. 1218 // 1219 uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const { 1220 assert(ConstantNum < ConstantPool->getConstants().size() && 1221 "Invalid ConstantPoolIndex!"); 1222 return ConstPoolAddresses[ConstantNum]; 1223 } 1224 1225 // getJumpTableEntryAddress - Return the address of the JumpTable with index 1226 // 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo' 1227 // 1228 uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const { 1229 const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables(); 1230 assert(Index < JT.size() && "Invalid jump table index!"); 1231 1232 unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getDataLayout()); 1233 1234 unsigned Offset = 0; 1235 for (unsigned i = 0; i < Index; ++i) 1236 Offset += JT[i].MBBs.size(); 1237 1238 Offset *= EntrySize; 1239 1240 return (uintptr_t)((char *)JumpTableBase + Offset); 1241 } 1242 1243 void JITEmitter::EmittedFunctionConfig::onDelete( 1244 JITEmitter *Emitter, const Function *F) { 1245 Emitter->deallocateMemForFunction(F); 1246 } 1247 void JITEmitter::EmittedFunctionConfig::onRAUW( 1248 JITEmitter *, const Function*, const Function*) { 1249 llvm_unreachable("The JIT doesn't know how to handle a" 1250 " RAUW on a value it has emitted."); 1251 } 1252 1253 1254 //===----------------------------------------------------------------------===// 1255 // Public interface to this file 1256 //===----------------------------------------------------------------------===// 1257 1258 JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM, 1259 TargetMachine &tm) { 1260 return new JITEmitter(jit, JMM, tm); 1261 } 1262 1263 // getPointerToFunctionOrStub - If the specified function has been 1264 // code-gen'd, return a pointer to the function. If not, compile it, or use 1265 // a stub to implement lazy compilation if available. 1266 // 1267 void *JIT::getPointerToFunctionOrStub(Function *F) { 1268 // If we have already code generated the function, just return the address. 1269 if (void *Addr = getPointerToGlobalIfAvailable(F)) 1270 return Addr; 1271 1272 // Get a stub if the target supports it. 1273 JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter()); 1274 return JE->getJITResolver().getLazyFunctionStub(F); 1275 } 1276 1277 void JIT::updateFunctionStub(Function *F) { 1278 // Get the empty stub we generated earlier. 1279 JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter()); 1280 void *Stub = JE->getJITResolver().getLazyFunctionStub(F); 1281 void *Addr = getPointerToGlobalIfAvailable(F); 1282 assert(Addr != Stub && "Function must have non-stub address to be updated."); 1283 1284 // Tell the target jit info to rewrite the stub at the specified address, 1285 // rather than creating a new one. 1286 TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout(); 1287 JE->startGVStub(Stub, layout.Size); 1288 getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter()); 1289 JE->finishGVStub(); 1290 } 1291 1292 /// freeMachineCodeForFunction - release machine code memory for given Function. 1293 /// 1294 void JIT::freeMachineCodeForFunction(Function *F) { 1295 // Delete translation for this from the ExecutionEngine, so it will get 1296 // retranslated next time it is used. 1297 updateGlobalMapping(F, 0); 1298 1299 // Free the actual memory for the function body and related stuff. 1300 static_cast<JITEmitter*>(JCE)->deallocateMemForFunction(F); 1301 } 1302