Home | History | Annotate | Download | only in CodeGen
      1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines several CodeGen-specific LLVM IR analysis utilties.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/CodeGen/Analysis.h"
     15 #include "llvm/Analysis/ValueTracking.h"
     16 #include "llvm/CodeGen/MachineFunction.h"
     17 #include "llvm/IR/DataLayout.h"
     18 #include "llvm/IR/DerivedTypes.h"
     19 #include "llvm/IR/Function.h"
     20 #include "llvm/IR/Instructions.h"
     21 #include "llvm/IR/IntrinsicInst.h"
     22 #include "llvm/IR/LLVMContext.h"
     23 #include "llvm/IR/Module.h"
     24 #include "llvm/Support/ErrorHandling.h"
     25 #include "llvm/Support/MathExtras.h"
     26 #include "llvm/Target/TargetLowering.h"
     27 using namespace llvm;
     28 
     29 /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
     30 /// of insertvalue or extractvalue indices that identify a member, return
     31 /// the linearized index of the start of the member.
     32 ///
     33 unsigned llvm::ComputeLinearIndex(Type *Ty,
     34                                   const unsigned *Indices,
     35                                   const unsigned *IndicesEnd,
     36                                   unsigned CurIndex) {
     37   // Base case: We're done.
     38   if (Indices && Indices == IndicesEnd)
     39     return CurIndex;
     40 
     41   // Given a struct type, recursively traverse the elements.
     42   if (StructType *STy = dyn_cast<StructType>(Ty)) {
     43     for (StructType::element_iterator EB = STy->element_begin(),
     44                                       EI = EB,
     45                                       EE = STy->element_end();
     46         EI != EE; ++EI) {
     47       if (Indices && *Indices == unsigned(EI - EB))
     48         return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
     49       CurIndex = ComputeLinearIndex(*EI, 0, 0, CurIndex);
     50     }
     51     return CurIndex;
     52   }
     53   // Given an array type, recursively traverse the elements.
     54   else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
     55     Type *EltTy = ATy->getElementType();
     56     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
     57       if (Indices && *Indices == i)
     58         return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
     59       CurIndex = ComputeLinearIndex(EltTy, 0, 0, CurIndex);
     60     }
     61     return CurIndex;
     62   }
     63   // We haven't found the type we're looking for, so keep searching.
     64   return CurIndex + 1;
     65 }
     66 
     67 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
     68 /// EVTs that represent all the individual underlying
     69 /// non-aggregate types that comprise it.
     70 ///
     71 /// If Offsets is non-null, it points to a vector to be filled in
     72 /// with the in-memory offsets of each of the individual values.
     73 ///
     74 void llvm::ComputeValueVTs(const TargetLowering &TLI, Type *Ty,
     75                            SmallVectorImpl<EVT> &ValueVTs,
     76                            SmallVectorImpl<uint64_t> *Offsets,
     77                            uint64_t StartingOffset) {
     78   // Given a struct type, recursively traverse the elements.
     79   if (StructType *STy = dyn_cast<StructType>(Ty)) {
     80     const StructLayout *SL = TLI.getDataLayout()->getStructLayout(STy);
     81     for (StructType::element_iterator EB = STy->element_begin(),
     82                                       EI = EB,
     83                                       EE = STy->element_end();
     84          EI != EE; ++EI)
     85       ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
     86                       StartingOffset + SL->getElementOffset(EI - EB));
     87     return;
     88   }
     89   // Given an array type, recursively traverse the elements.
     90   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
     91     Type *EltTy = ATy->getElementType();
     92     uint64_t EltSize = TLI.getDataLayout()->getTypeAllocSize(EltTy);
     93     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
     94       ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
     95                       StartingOffset + i * EltSize);
     96     return;
     97   }
     98   // Interpret void as zero return values.
     99   if (Ty->isVoidTy())
    100     return;
    101   // Base case: we can get an EVT for this LLVM IR type.
    102   ValueVTs.push_back(TLI.getValueType(Ty));
    103   if (Offsets)
    104     Offsets->push_back(StartingOffset);
    105 }
    106 
    107 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
    108 GlobalVariable *llvm::ExtractTypeInfo(Value *V) {
    109   V = V->stripPointerCasts();
    110   GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
    111 
    112   if (GV && GV->getName() == "llvm.eh.catch.all.value") {
    113     assert(GV->hasInitializer() &&
    114            "The EH catch-all value must have an initializer");
    115     Value *Init = GV->getInitializer();
    116     GV = dyn_cast<GlobalVariable>(Init);
    117     if (!GV) V = cast<ConstantPointerNull>(Init);
    118   }
    119 
    120   assert((GV || isa<ConstantPointerNull>(V)) &&
    121          "TypeInfo must be a global variable or NULL");
    122   return GV;
    123 }
    124 
    125 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
    126 /// processed uses a memory 'm' constraint.
    127 bool
    128 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
    129                                 const TargetLowering &TLI) {
    130   for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
    131     InlineAsm::ConstraintInfo &CI = CInfos[i];
    132     for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
    133       TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
    134       if (CType == TargetLowering::C_Memory)
    135         return true;
    136     }
    137 
    138     // Indirect operand accesses access memory.
    139     if (CI.isIndirect)
    140       return true;
    141   }
    142 
    143   return false;
    144 }
    145 
    146 /// getFCmpCondCode - Return the ISD condition code corresponding to
    147 /// the given LLVM IR floating-point condition code.  This includes
    148 /// consideration of global floating-point math flags.
    149 ///
    150 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
    151   switch (Pred) {
    152   case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
    153   case FCmpInst::FCMP_OEQ:   return ISD::SETOEQ;
    154   case FCmpInst::FCMP_OGT:   return ISD::SETOGT;
    155   case FCmpInst::FCMP_OGE:   return ISD::SETOGE;
    156   case FCmpInst::FCMP_OLT:   return ISD::SETOLT;
    157   case FCmpInst::FCMP_OLE:   return ISD::SETOLE;
    158   case FCmpInst::FCMP_ONE:   return ISD::SETONE;
    159   case FCmpInst::FCMP_ORD:   return ISD::SETO;
    160   case FCmpInst::FCMP_UNO:   return ISD::SETUO;
    161   case FCmpInst::FCMP_UEQ:   return ISD::SETUEQ;
    162   case FCmpInst::FCMP_UGT:   return ISD::SETUGT;
    163   case FCmpInst::FCMP_UGE:   return ISD::SETUGE;
    164   case FCmpInst::FCMP_ULT:   return ISD::SETULT;
    165   case FCmpInst::FCMP_ULE:   return ISD::SETULE;
    166   case FCmpInst::FCMP_UNE:   return ISD::SETUNE;
    167   case FCmpInst::FCMP_TRUE:  return ISD::SETTRUE;
    168   default: llvm_unreachable("Invalid FCmp predicate opcode!");
    169   }
    170 }
    171 
    172 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
    173   switch (CC) {
    174     case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
    175     case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
    176     case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
    177     case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
    178     case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
    179     case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
    180     default: return CC;
    181   }
    182 }
    183 
    184 /// getICmpCondCode - Return the ISD condition code corresponding to
    185 /// the given LLVM IR integer condition code.
    186 ///
    187 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
    188   switch (Pred) {
    189   case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
    190   case ICmpInst::ICMP_NE:  return ISD::SETNE;
    191   case ICmpInst::ICMP_SLE: return ISD::SETLE;
    192   case ICmpInst::ICMP_ULE: return ISD::SETULE;
    193   case ICmpInst::ICMP_SGE: return ISD::SETGE;
    194   case ICmpInst::ICMP_UGE: return ISD::SETUGE;
    195   case ICmpInst::ICMP_SLT: return ISD::SETLT;
    196   case ICmpInst::ICMP_ULT: return ISD::SETULT;
    197   case ICmpInst::ICMP_SGT: return ISD::SETGT;
    198   case ICmpInst::ICMP_UGT: return ISD::SETUGT;
    199   default:
    200     llvm_unreachable("Invalid ICmp predicate opcode!");
    201   }
    202 }
    203 
    204 
    205 /// getNoopInput - If V is a noop (i.e., lowers to no machine code), look
    206 /// through it (and any transitive noop operands to it) and return its input
    207 /// value.  This is used to determine if a tail call can be formed.
    208 ///
    209 static const Value *getNoopInput(const Value *V, const TargetLowering &TLI) {
    210   // If V is not an instruction, it can't be looked through.
    211   const Instruction *I = dyn_cast<Instruction>(V);
    212   if (I == 0 || !I->hasOneUse() || I->getNumOperands() == 0) return V;
    213 
    214   Value *Op = I->getOperand(0);
    215 
    216   // Look through truly no-op truncates.
    217   if (isa<TruncInst>(I) &&
    218       TLI.isTruncateFree(I->getOperand(0)->getType(), I->getType()))
    219     return getNoopInput(I->getOperand(0), TLI);
    220 
    221   // Look through truly no-op bitcasts.
    222   if (isa<BitCastInst>(I)) {
    223     // No type change at all.
    224     if (Op->getType() == I->getType())
    225       return getNoopInput(Op, TLI);
    226 
    227     // Pointer to pointer cast.
    228     if (Op->getType()->isPointerTy() && I->getType()->isPointerTy())
    229       return getNoopInput(Op, TLI);
    230 
    231     if (isa<VectorType>(Op->getType()) && isa<VectorType>(I->getType()) &&
    232         TLI.isTypeLegal(EVT::getEVT(Op->getType())) &&
    233         TLI.isTypeLegal(EVT::getEVT(I->getType())))
    234       return getNoopInput(Op, TLI);
    235   }
    236 
    237   // Look through inttoptr.
    238   if (isa<IntToPtrInst>(I) && !isa<VectorType>(I->getType())) {
    239     // Make sure this isn't a truncating or extending cast.  We could support
    240     // this eventually, but don't bother for now.
    241     if (TLI.getPointerTy().getSizeInBits() ==
    242           cast<IntegerType>(Op->getType())->getBitWidth())
    243       return getNoopInput(Op, TLI);
    244   }
    245 
    246   // Look through ptrtoint.
    247   if (isa<PtrToIntInst>(I) && !isa<VectorType>(I->getType())) {
    248     // Make sure this isn't a truncating or extending cast.  We could support
    249     // this eventually, but don't bother for now.
    250     if (TLI.getPointerTy().getSizeInBits() ==
    251         cast<IntegerType>(I->getType())->getBitWidth())
    252       return getNoopInput(Op, TLI);
    253   }
    254 
    255 
    256   // Otherwise it's not something we can look through.
    257   return V;
    258 }
    259 
    260 
    261 /// Test if the given instruction is in a position to be optimized
    262 /// with a tail-call. This roughly means that it's in a block with
    263 /// a return and there's nothing that needs to be scheduled
    264 /// between it and the return.
    265 ///
    266 /// This function only tests target-independent requirements.
    267 bool llvm::isInTailCallPosition(ImmutableCallSite CS,const TargetLowering &TLI){
    268   const Instruction *I = CS.getInstruction();
    269   const BasicBlock *ExitBB = I->getParent();
    270   const TerminatorInst *Term = ExitBB->getTerminator();
    271   const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
    272 
    273   // The block must end in a return statement or unreachable.
    274   //
    275   // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
    276   // an unreachable, for now. The way tailcall optimization is currently
    277   // implemented means it will add an epilogue followed by a jump. That is
    278   // not profitable. Also, if the callee is a special function (e.g.
    279   // longjmp on x86), it can end up causing miscompilation that has not
    280   // been fully understood.
    281   if (!Ret &&
    282       (!TLI.getTargetMachine().Options.GuaranteedTailCallOpt ||
    283        !isa<UnreachableInst>(Term)))
    284     return false;
    285 
    286   // If I will have a chain, make sure no other instruction that will have a
    287   // chain interposes between I and the return.
    288   if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
    289       !isSafeToSpeculativelyExecute(I))
    290     for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
    291          --BBI) {
    292       if (&*BBI == I)
    293         break;
    294       // Debug info intrinsics do not get in the way of tail call optimization.
    295       if (isa<DbgInfoIntrinsic>(BBI))
    296         continue;
    297       if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
    298           !isSafeToSpeculativelyExecute(BBI))
    299         return false;
    300     }
    301 
    302   // If the block ends with a void return or unreachable, it doesn't matter
    303   // what the call's return type is.
    304   if (!Ret || Ret->getNumOperands() == 0) return true;
    305 
    306   // If the return value is undef, it doesn't matter what the call's
    307   // return type is.
    308   if (isa<UndefValue>(Ret->getOperand(0))) return true;
    309 
    310   // Conservatively require the attributes of the call to match those of
    311   // the return. Ignore noalias because it doesn't affect the call sequence.
    312   const Function *F = ExitBB->getParent();
    313   AttributeSet CallerAttrs = F->getAttributes();
    314   if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex).
    315         removeAttribute(Attribute::NoAlias) !=
    316       AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex).
    317         removeAttribute(Attribute::NoAlias))
    318     return false;
    319 
    320   // It's not safe to eliminate the sign / zero extension of the return value.
    321   if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
    322       CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
    323     return false;
    324 
    325   // Otherwise, make sure the unmodified return value of I is the return value.
    326   // We handle two cases: multiple return values + scalars.
    327   Value *RetVal = Ret->getOperand(0);
    328   if (!isa<InsertValueInst>(RetVal) || !isa<StructType>(RetVal->getType()))
    329     // Handle scalars first.
    330     return getNoopInput(Ret->getOperand(0), TLI) == I;
    331 
    332   // If this is an aggregate return, look through the insert/extract values and
    333   // see if each is transparent.
    334   for (unsigned i = 0, e =cast<StructType>(RetVal->getType())->getNumElements();
    335        i != e; ++i) {
    336     const Value *InScalar = FindInsertedValue(RetVal, i);
    337     if (InScalar == 0) return false;
    338     InScalar = getNoopInput(InScalar, TLI);
    339 
    340     // If the scalar value being inserted is an extractvalue of the right index
    341     // from the call, then everything is good.
    342     const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(InScalar);
    343     if (EVI == 0 || EVI->getOperand(0) != I || EVI->getNumIndices() != 1 ||
    344         EVI->getIndices()[0] != i)
    345       return false;
    346   }
    347 
    348   return true;
    349 }
    350