Home | History | Annotate | Download | only in CodeGen
      1 //===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // These classes implement wrappers around llvm::Value in order to
     11 // fully represent the range of values for C L- and R- values.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef CLANG_CODEGEN_CGVALUE_H
     16 #define CLANG_CODEGEN_CGVALUE_H
     17 
     18 #include "clang/AST/ASTContext.h"
     19 #include "clang/AST/CharUnits.h"
     20 #include "clang/AST/Type.h"
     21 #include "llvm/IR/Value.h"
     22 
     23 namespace llvm {
     24   class Constant;
     25   class MDNode;
     26 }
     27 
     28 namespace clang {
     29 namespace CodeGen {
     30   class AggValueSlot;
     31   struct CGBitFieldInfo;
     32 
     33 /// RValue - This trivial value class is used to represent the result of an
     34 /// expression that is evaluated.  It can be one of three things: either a
     35 /// simple LLVM SSA value, a pair of SSA values for complex numbers, or the
     36 /// address of an aggregate value in memory.
     37 class RValue {
     38   enum Flavor { Scalar, Complex, Aggregate };
     39 
     40   // Stores first value and flavor.
     41   llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1;
     42   // Stores second value and volatility.
     43   llvm::PointerIntPair<llvm::Value *, 1, bool> V2;
     44 
     45 public:
     46   bool isScalar() const { return V1.getInt() == Scalar; }
     47   bool isComplex() const { return V1.getInt() == Complex; }
     48   bool isAggregate() const { return V1.getInt() == Aggregate; }
     49 
     50   bool isVolatileQualified() const { return V2.getInt(); }
     51 
     52   /// getScalarVal() - Return the Value* of this scalar value.
     53   llvm::Value *getScalarVal() const {
     54     assert(isScalar() && "Not a scalar!");
     55     return V1.getPointer();
     56   }
     57 
     58   /// getComplexVal - Return the real/imag components of this complex value.
     59   ///
     60   std::pair<llvm::Value *, llvm::Value *> getComplexVal() const {
     61     return std::make_pair(V1.getPointer(), V2.getPointer());
     62   }
     63 
     64   /// getAggregateAddr() - Return the Value* of the address of the aggregate.
     65   llvm::Value *getAggregateAddr() const {
     66     assert(isAggregate() && "Not an aggregate!");
     67     return V1.getPointer();
     68   }
     69 
     70   static RValue get(llvm::Value *V) {
     71     RValue ER;
     72     ER.V1.setPointer(V);
     73     ER.V1.setInt(Scalar);
     74     ER.V2.setInt(false);
     75     return ER;
     76   }
     77   static RValue getComplex(llvm::Value *V1, llvm::Value *V2) {
     78     RValue ER;
     79     ER.V1.setPointer(V1);
     80     ER.V2.setPointer(V2);
     81     ER.V1.setInt(Complex);
     82     ER.V2.setInt(false);
     83     return ER;
     84   }
     85   static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) {
     86     return getComplex(C.first, C.second);
     87   }
     88   // FIXME: Aggregate rvalues need to retain information about whether they are
     89   // volatile or not.  Remove default to find all places that probably get this
     90   // wrong.
     91   static RValue getAggregate(llvm::Value *V, bool Volatile = false) {
     92     RValue ER;
     93     ER.V1.setPointer(V);
     94     ER.V1.setInt(Aggregate);
     95     ER.V2.setInt(Volatile);
     96     return ER;
     97   }
     98 };
     99 
    100 /// Does an ARC strong l-value have precise lifetime?
    101 enum ARCPreciseLifetime_t {
    102   ARCImpreciseLifetime, ARCPreciseLifetime
    103 };
    104 
    105 /// LValue - This represents an lvalue references.  Because C/C++ allow
    106 /// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a
    107 /// bitrange.
    108 class LValue {
    109   enum {
    110     Simple,       // This is a normal l-value, use getAddress().
    111     VectorElt,    // This is a vector element l-value (V[i]), use getVector*
    112     BitField,     // This is a bitfield l-value, use getBitfield*.
    113     ExtVectorElt  // This is an extended vector subset, use getExtVectorComp
    114   } LVType;
    115 
    116   llvm::Value *V;
    117 
    118   union {
    119     // Index into a vector subscript: V[i]
    120     llvm::Value *VectorIdx;
    121 
    122     // ExtVector element subset: V.xyx
    123     llvm::Constant *VectorElts;
    124 
    125     // BitField start bit and size
    126     const CGBitFieldInfo *BitFieldInfo;
    127   };
    128 
    129   QualType Type;
    130 
    131   // 'const' is unused here
    132   Qualifiers Quals;
    133 
    134   // The alignment to use when accessing this lvalue.  (For vector elements,
    135   // this is the alignment of the whole vector.)
    136   int64_t Alignment;
    137 
    138   // objective-c's ivar
    139   bool Ivar:1;
    140 
    141   // objective-c's ivar is an array
    142   bool ObjIsArray:1;
    143 
    144   // LValue is non-gc'able for any reason, including being a parameter or local
    145   // variable.
    146   bool NonGC: 1;
    147 
    148   // Lvalue is a global reference of an objective-c object
    149   bool GlobalObjCRef : 1;
    150 
    151   // Lvalue is a thread local reference
    152   bool ThreadLocalRef : 1;
    153 
    154   // Lvalue has ARC imprecise lifetime.  We store this inverted to try
    155   // to make the default bitfield pattern all-zeroes.
    156   bool ImpreciseLifetime : 1;
    157 
    158   Expr *BaseIvarExp;
    159 
    160   /// TBAAInfo - TBAA information to attach to dereferences of this LValue.
    161   llvm::MDNode *TBAAInfo;
    162 
    163 private:
    164   void Initialize(QualType Type, Qualifiers Quals,
    165                   CharUnits Alignment,
    166                   llvm::MDNode *TBAAInfo = 0) {
    167     this->Type = Type;
    168     this->Quals = Quals;
    169     this->Alignment = Alignment.getQuantity();
    170     assert(this->Alignment == Alignment.getQuantity() &&
    171            "Alignment exceeds allowed max!");
    172 
    173     // Initialize Objective-C flags.
    174     this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false;
    175     this->ImpreciseLifetime = false;
    176     this->ThreadLocalRef = false;
    177     this->BaseIvarExp = 0;
    178     this->TBAAInfo = TBAAInfo;
    179   }
    180 
    181 public:
    182   bool isSimple() const { return LVType == Simple; }
    183   bool isVectorElt() const { return LVType == VectorElt; }
    184   bool isBitField() const { return LVType == BitField; }
    185   bool isExtVectorElt() const { return LVType == ExtVectorElt; }
    186 
    187   bool isVolatileQualified() const { return Quals.hasVolatile(); }
    188   bool isRestrictQualified() const { return Quals.hasRestrict(); }
    189   unsigned getVRQualifiers() const {
    190     return Quals.getCVRQualifiers() & ~Qualifiers::Const;
    191   }
    192 
    193   QualType getType() const { return Type; }
    194 
    195   Qualifiers::ObjCLifetime getObjCLifetime() const {
    196     return Quals.getObjCLifetime();
    197   }
    198 
    199   bool isObjCIvar() const { return Ivar; }
    200   void setObjCIvar(bool Value) { Ivar = Value; }
    201 
    202   bool isObjCArray() const { return ObjIsArray; }
    203   void setObjCArray(bool Value) { ObjIsArray = Value; }
    204 
    205   bool isNonGC () const { return NonGC; }
    206   void setNonGC(bool Value) { NonGC = Value; }
    207 
    208   bool isGlobalObjCRef() const { return GlobalObjCRef; }
    209   void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; }
    210 
    211   bool isThreadLocalRef() const { return ThreadLocalRef; }
    212   void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;}
    213 
    214   ARCPreciseLifetime_t isARCPreciseLifetime() const {
    215     return ARCPreciseLifetime_t(!ImpreciseLifetime);
    216   }
    217   void setARCPreciseLifetime(ARCPreciseLifetime_t value) {
    218     ImpreciseLifetime = (value == ARCImpreciseLifetime);
    219   }
    220 
    221   bool isObjCWeak() const {
    222     return Quals.getObjCGCAttr() == Qualifiers::Weak;
    223   }
    224   bool isObjCStrong() const {
    225     return Quals.getObjCGCAttr() == Qualifiers::Strong;
    226   }
    227 
    228   bool isVolatile() const {
    229     return Quals.hasVolatile();
    230   }
    231 
    232   Expr *getBaseIvarExp() const { return BaseIvarExp; }
    233   void setBaseIvarExp(Expr *V) { BaseIvarExp = V; }
    234 
    235   llvm::MDNode *getTBAAInfo() const { return TBAAInfo; }
    236   void setTBAAInfo(llvm::MDNode *N) { TBAAInfo = N; }
    237 
    238   const Qualifiers &getQuals() const { return Quals; }
    239   Qualifiers &getQuals() { return Quals; }
    240 
    241   unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
    242 
    243   CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); }
    244   void setAlignment(CharUnits A) { Alignment = A.getQuantity(); }
    245 
    246   // simple lvalue
    247   llvm::Value *getAddress() const { assert(isSimple()); return V; }
    248   void setAddress(llvm::Value *address) {
    249     assert(isSimple());
    250     V = address;
    251   }
    252 
    253   // vector elt lvalue
    254   llvm::Value *getVectorAddr() const { assert(isVectorElt()); return V; }
    255   llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; }
    256 
    257   // extended vector elements.
    258   llvm::Value *getExtVectorAddr() const { assert(isExtVectorElt()); return V; }
    259   llvm::Constant *getExtVectorElts() const {
    260     assert(isExtVectorElt());
    261     return VectorElts;
    262   }
    263 
    264   // bitfield lvalue
    265   llvm::Value *getBitFieldAddr() const {
    266     assert(isBitField());
    267     return V;
    268   }
    269   const CGBitFieldInfo &getBitFieldInfo() const {
    270     assert(isBitField());
    271     return *BitFieldInfo;
    272   }
    273 
    274   static LValue MakeAddr(llvm::Value *address, QualType type,
    275                          CharUnits alignment, ASTContext &Context,
    276                          llvm::MDNode *TBAAInfo = 0) {
    277     Qualifiers qs = type.getQualifiers();
    278     qs.setObjCGCAttr(Context.getObjCGCAttrKind(type));
    279 
    280     LValue R;
    281     R.LVType = Simple;
    282     R.V = address;
    283     R.Initialize(type, qs, alignment, TBAAInfo);
    284     return R;
    285   }
    286 
    287   static LValue MakeVectorElt(llvm::Value *Vec, llvm::Value *Idx,
    288                               QualType type, CharUnits Alignment) {
    289     LValue R;
    290     R.LVType = VectorElt;
    291     R.V = Vec;
    292     R.VectorIdx = Idx;
    293     R.Initialize(type, type.getQualifiers(), Alignment);
    294     return R;
    295   }
    296 
    297   static LValue MakeExtVectorElt(llvm::Value *Vec, llvm::Constant *Elts,
    298                                  QualType type, CharUnits Alignment) {
    299     LValue R;
    300     R.LVType = ExtVectorElt;
    301     R.V = Vec;
    302     R.VectorElts = Elts;
    303     R.Initialize(type, type.getQualifiers(), Alignment);
    304     return R;
    305   }
    306 
    307   /// \brief Create a new object to represent a bit-field access.
    308   ///
    309   /// \param Addr - The base address of the bit-field sequence this
    310   /// bit-field refers to.
    311   /// \param Info - The information describing how to perform the bit-field
    312   /// access.
    313   static LValue MakeBitfield(llvm::Value *Addr,
    314                              const CGBitFieldInfo &Info,
    315                              QualType type, CharUnits Alignment) {
    316     LValue R;
    317     R.LVType = BitField;
    318     R.V = Addr;
    319     R.BitFieldInfo = &Info;
    320     R.Initialize(type, type.getQualifiers(), Alignment);
    321     return R;
    322   }
    323 
    324   RValue asAggregateRValue() const {
    325     // FIMXE: Alignment
    326     return RValue::getAggregate(getAddress(), isVolatileQualified());
    327   }
    328 };
    329 
    330 /// An aggregate value slot.
    331 class AggValueSlot {
    332   /// The address.
    333   llvm::Value *Addr;
    334 
    335   // Qualifiers
    336   Qualifiers Quals;
    337 
    338   unsigned short Alignment;
    339 
    340   /// DestructedFlag - This is set to true if some external code is
    341   /// responsible for setting up a destructor for the slot.  Otherwise
    342   /// the code which constructs it should push the appropriate cleanup.
    343   bool DestructedFlag : 1;
    344 
    345   /// ObjCGCFlag - This is set to true if writing to the memory in the
    346   /// slot might require calling an appropriate Objective-C GC
    347   /// barrier.  The exact interaction here is unnecessarily mysterious.
    348   bool ObjCGCFlag : 1;
    349 
    350   /// ZeroedFlag - This is set to true if the memory in the slot is
    351   /// known to be zero before the assignment into it.  This means that
    352   /// zero fields don't need to be set.
    353   bool ZeroedFlag : 1;
    354 
    355   /// AliasedFlag - This is set to true if the slot might be aliased
    356   /// and it's not undefined behavior to access it through such an
    357   /// alias.  Note that it's always undefined behavior to access a C++
    358   /// object that's under construction through an alias derived from
    359   /// outside the construction process.
    360   ///
    361   /// This flag controls whether calls that produce the aggregate
    362   /// value may be evaluated directly into the slot, or whether they
    363   /// must be evaluated into an unaliased temporary and then memcpy'ed
    364   /// over.  Since it's invalid in general to memcpy a non-POD C++
    365   /// object, it's important that this flag never be set when
    366   /// evaluating an expression which constructs such an object.
    367   bool AliasedFlag : 1;
    368 
    369   /// ValueOfAtomicFlag - This is set to true if the slot is the value
    370   /// subobject of an object the size of an _Atomic(T).  The specific
    371   /// guarantees this makes are:
    372   ///   - the address is guaranteed to be a getelementptr into the
    373   ///     padding struct and
    374   ///   - it is okay to store something the width of an _Atomic(T)
    375   ///     into the address.
    376   /// Tracking this allows us to avoid some obviously unnecessary
    377   /// memcpys.
    378   bool ValueOfAtomicFlag : 1;
    379 
    380 public:
    381   enum IsAliased_t { IsNotAliased, IsAliased };
    382   enum IsDestructed_t { IsNotDestructed, IsDestructed };
    383   enum IsZeroed_t { IsNotZeroed, IsZeroed };
    384   enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers };
    385   enum IsValueOfAtomic_t { IsNotValueOfAtomic, IsValueOfAtomic };
    386 
    387   /// ignored - Returns an aggregate value slot indicating that the
    388   /// aggregate value is being ignored.
    389   static AggValueSlot ignored() {
    390     return forAddr(0, CharUnits(), Qualifiers(), IsNotDestructed,
    391                    DoesNotNeedGCBarriers, IsNotAliased);
    392   }
    393 
    394   /// forAddr - Make a slot for an aggregate value.
    395   ///
    396   /// \param quals - The qualifiers that dictate how the slot should
    397   /// be initialied. Only 'volatile' and the Objective-C lifetime
    398   /// qualifiers matter.
    399   ///
    400   /// \param isDestructed - true if something else is responsible
    401   ///   for calling destructors on this object
    402   /// \param needsGC - true if the slot is potentially located
    403   ///   somewhere that ObjC GC calls should be emitted for
    404   static AggValueSlot forAddr(llvm::Value *addr, CharUnits align,
    405                               Qualifiers quals,
    406                               IsDestructed_t isDestructed,
    407                               NeedsGCBarriers_t needsGC,
    408                               IsAliased_t isAliased,
    409                               IsZeroed_t isZeroed = IsNotZeroed,
    410                               IsValueOfAtomic_t isValueOfAtomic
    411                                 = IsNotValueOfAtomic) {
    412     AggValueSlot AV;
    413     AV.Addr = addr;
    414     AV.Alignment = align.getQuantity();
    415     AV.Quals = quals;
    416     AV.DestructedFlag = isDestructed;
    417     AV.ObjCGCFlag = needsGC;
    418     AV.ZeroedFlag = isZeroed;
    419     AV.AliasedFlag = isAliased;
    420     AV.ValueOfAtomicFlag = isValueOfAtomic;
    421     return AV;
    422   }
    423 
    424   static AggValueSlot forLValue(const LValue &LV,
    425                                 IsDestructed_t isDestructed,
    426                                 NeedsGCBarriers_t needsGC,
    427                                 IsAliased_t isAliased,
    428                                 IsZeroed_t isZeroed = IsNotZeroed,
    429                                 IsValueOfAtomic_t isValueOfAtomic
    430                                   = IsNotValueOfAtomic) {
    431     return forAddr(LV.getAddress(), LV.getAlignment(),
    432                    LV.getQuals(), isDestructed, needsGC, isAliased, isZeroed,
    433                    isValueOfAtomic);
    434   }
    435 
    436   IsDestructed_t isExternallyDestructed() const {
    437     return IsDestructed_t(DestructedFlag);
    438   }
    439   void setExternallyDestructed(bool destructed = true) {
    440     DestructedFlag = destructed;
    441   }
    442 
    443   Qualifiers getQualifiers() const { return Quals; }
    444 
    445   bool isVolatile() const {
    446     return Quals.hasVolatile();
    447   }
    448 
    449   void setVolatile(bool flag) {
    450     Quals.setVolatile(flag);
    451   }
    452 
    453   Qualifiers::ObjCLifetime getObjCLifetime() const {
    454     return Quals.getObjCLifetime();
    455   }
    456 
    457   NeedsGCBarriers_t requiresGCollection() const {
    458     return NeedsGCBarriers_t(ObjCGCFlag);
    459   }
    460 
    461   llvm::Value *getAddr() const {
    462     return Addr;
    463   }
    464 
    465   IsValueOfAtomic_t isValueOfAtomic() const {
    466     return IsValueOfAtomic_t(ValueOfAtomicFlag);
    467   }
    468 
    469   llvm::Value *getPaddedAtomicAddr() const;
    470 
    471   bool isIgnored() const {
    472     return Addr == 0;
    473   }
    474 
    475   CharUnits getAlignment() const {
    476     return CharUnits::fromQuantity(Alignment);
    477   }
    478 
    479   IsAliased_t isPotentiallyAliased() const {
    480     return IsAliased_t(AliasedFlag);
    481   }
    482 
    483   // FIXME: Alignment?
    484   RValue asRValue() const {
    485     return RValue::getAggregate(getAddr(), isVolatile());
    486   }
    487 
    488   void setZeroed(bool V = true) { ZeroedFlag = V; }
    489   IsZeroed_t isZeroed() const {
    490     return IsZeroed_t(ZeroedFlag);
    491   }
    492 };
    493 
    494 }  // end namespace CodeGen
    495 }  // end namespace clang
    496 
    497 #endif
    498