Home | History | Annotate | Download | only in IR
      1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Constant* classes.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/IR/Constants.h"
     15 #include "ConstantFold.h"
     16 #include "LLVMContextImpl.h"
     17 #include "llvm/ADT/DenseMap.h"
     18 #include "llvm/ADT/FoldingSet.h"
     19 #include "llvm/ADT/STLExtras.h"
     20 #include "llvm/ADT/SmallVector.h"
     21 #include "llvm/ADT/StringExtras.h"
     22 #include "llvm/ADT/StringMap.h"
     23 #include "llvm/IR/DerivedTypes.h"
     24 #include "llvm/IR/GlobalValue.h"
     25 #include "llvm/IR/Instructions.h"
     26 #include "llvm/IR/Module.h"
     27 #include "llvm/IR/Operator.h"
     28 #include "llvm/Support/Compiler.h"
     29 #include "llvm/Support/Debug.h"
     30 #include "llvm/Support/ErrorHandling.h"
     31 #include "llvm/Support/GetElementPtrTypeIterator.h"
     32 #include "llvm/Support/ManagedStatic.h"
     33 #include "llvm/Support/MathExtras.h"
     34 #include "llvm/Support/raw_ostream.h"
     35 #include <algorithm>
     36 #include <cstdarg>
     37 using namespace llvm;
     38 
     39 //===----------------------------------------------------------------------===//
     40 //                              Constant Class
     41 //===----------------------------------------------------------------------===//
     42 
     43 void Constant::anchor() { }
     44 
     45 bool Constant::isNegativeZeroValue() const {
     46   // Floating point values have an explicit -0.0 value.
     47   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
     48     return CFP->isZero() && CFP->isNegative();
     49 
     50   // Equivalent for a vector of -0.0's.
     51   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
     52     if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
     53       if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
     54         return true;
     55 
     56   // However, vectors of zeroes which are floating point represent +0.0's.
     57   if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this))
     58     if (const VectorType *VT = dyn_cast<VectorType>(CAZ->getType()))
     59       if (VT->getElementType()->isFloatingPointTy())
     60         // As it's a CAZ, we know it's the zero bit-pattern (ie, +0.0) in each element.
     61         return false;
     62 
     63   // Otherwise, just use +0.0.
     64   return isNullValue();
     65 }
     66 
     67 // Return true iff this constant is positive zero (floating point), negative
     68 // zero (floating point), or a null value.
     69 bool Constant::isZeroValue() const {
     70   // Floating point values have an explicit -0.0 value.
     71   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
     72     return CFP->isZero();
     73 
     74   // Otherwise, just use +0.0.
     75   return isNullValue();
     76 }
     77 
     78 bool Constant::isNullValue() const {
     79   // 0 is null.
     80   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
     81     return CI->isZero();
     82 
     83   // +0.0 is null.
     84   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
     85     return CFP->isZero() && !CFP->isNegative();
     86 
     87   // constant zero is zero for aggregates and cpnull is null for pointers.
     88   return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
     89 }
     90 
     91 bool Constant::isAllOnesValue() const {
     92   // Check for -1 integers
     93   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
     94     return CI->isMinusOne();
     95 
     96   // Check for FP which are bitcasted from -1 integers
     97   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
     98     return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
     99 
    100   // Check for constant vectors which are splats of -1 values.
    101   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
    102     if (Constant *Splat = CV->getSplatValue())
    103       return Splat->isAllOnesValue();
    104 
    105   // Check for constant vectors which are splats of -1 values.
    106   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
    107     if (Constant *Splat = CV->getSplatValue())
    108       return Splat->isAllOnesValue();
    109 
    110   return false;
    111 }
    112 
    113 // Constructor to create a '0' constant of arbitrary type...
    114 Constant *Constant::getNullValue(Type *Ty) {
    115   switch (Ty->getTypeID()) {
    116   case Type::IntegerTyID:
    117     return ConstantInt::get(Ty, 0);
    118   case Type::HalfTyID:
    119     return ConstantFP::get(Ty->getContext(),
    120                            APFloat::getZero(APFloat::IEEEhalf));
    121   case Type::FloatTyID:
    122     return ConstantFP::get(Ty->getContext(),
    123                            APFloat::getZero(APFloat::IEEEsingle));
    124   case Type::DoubleTyID:
    125     return ConstantFP::get(Ty->getContext(),
    126                            APFloat::getZero(APFloat::IEEEdouble));
    127   case Type::X86_FP80TyID:
    128     return ConstantFP::get(Ty->getContext(),
    129                            APFloat::getZero(APFloat::x87DoubleExtended));
    130   case Type::FP128TyID:
    131     return ConstantFP::get(Ty->getContext(),
    132                            APFloat::getZero(APFloat::IEEEquad));
    133   case Type::PPC_FP128TyID:
    134     return ConstantFP::get(Ty->getContext(),
    135                            APFloat(APFloat::PPCDoubleDouble,
    136                                    APInt::getNullValue(128)));
    137   case Type::PointerTyID:
    138     return ConstantPointerNull::get(cast<PointerType>(Ty));
    139   case Type::StructTyID:
    140   case Type::ArrayTyID:
    141   case Type::VectorTyID:
    142     return ConstantAggregateZero::get(Ty);
    143   default:
    144     // Function, Label, or Opaque type?
    145     llvm_unreachable("Cannot create a null constant of that type!");
    146   }
    147 }
    148 
    149 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
    150   Type *ScalarTy = Ty->getScalarType();
    151 
    152   // Create the base integer constant.
    153   Constant *C = ConstantInt::get(Ty->getContext(), V);
    154 
    155   // Convert an integer to a pointer, if necessary.
    156   if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
    157     C = ConstantExpr::getIntToPtr(C, PTy);
    158 
    159   // Broadcast a scalar to a vector, if necessary.
    160   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    161     C = ConstantVector::getSplat(VTy->getNumElements(), C);
    162 
    163   return C;
    164 }
    165 
    166 Constant *Constant::getAllOnesValue(Type *Ty) {
    167   if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
    168     return ConstantInt::get(Ty->getContext(),
    169                             APInt::getAllOnesValue(ITy->getBitWidth()));
    170 
    171   if (Ty->isFloatingPointTy()) {
    172     APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
    173                                           !Ty->isPPC_FP128Ty());
    174     return ConstantFP::get(Ty->getContext(), FL);
    175   }
    176 
    177   VectorType *VTy = cast<VectorType>(Ty);
    178   return ConstantVector::getSplat(VTy->getNumElements(),
    179                                   getAllOnesValue(VTy->getElementType()));
    180 }
    181 
    182 /// getAggregateElement - For aggregates (struct/array/vector) return the
    183 /// constant that corresponds to the specified element if possible, or null if
    184 /// not.  This can return null if the element index is a ConstantExpr, or if
    185 /// 'this' is a constant expr.
    186 Constant *Constant::getAggregateElement(unsigned Elt) const {
    187   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
    188     return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : 0;
    189 
    190   if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
    191     return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : 0;
    192 
    193   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
    194     return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : 0;
    195 
    196   if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this))
    197     return CAZ->getElementValue(Elt);
    198 
    199   if (const UndefValue *UV = dyn_cast<UndefValue>(this))
    200     return UV->getElementValue(Elt);
    201 
    202   if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
    203     return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) : 0;
    204   return 0;
    205 }
    206 
    207 Constant *Constant::getAggregateElement(Constant *Elt) const {
    208   assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
    209   if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
    210     return getAggregateElement(CI->getZExtValue());
    211   return 0;
    212 }
    213 
    214 
    215 void Constant::destroyConstantImpl() {
    216   // When a Constant is destroyed, there may be lingering
    217   // references to the constant by other constants in the constant pool.  These
    218   // constants are implicitly dependent on the module that is being deleted,
    219   // but they don't know that.  Because we only find out when the CPV is
    220   // deleted, we must now notify all of our users (that should only be
    221   // Constants) that they are, in fact, invalid now and should be deleted.
    222   //
    223   while (!use_empty()) {
    224     Value *V = use_back();
    225 #ifndef NDEBUG      // Only in -g mode...
    226     if (!isa<Constant>(V)) {
    227       dbgs() << "While deleting: " << *this
    228              << "\n\nUse still stuck around after Def is destroyed: "
    229              << *V << "\n\n";
    230     }
    231 #endif
    232     assert(isa<Constant>(V) && "References remain to Constant being destroyed");
    233     cast<Constant>(V)->destroyConstant();
    234 
    235     // The constant should remove itself from our use list...
    236     assert((use_empty() || use_back() != V) && "Constant not removed!");
    237   }
    238 
    239   // Value has no outstanding references it is safe to delete it now...
    240   delete this;
    241 }
    242 
    243 /// canTrap - Return true if evaluation of this constant could trap.  This is
    244 /// true for things like constant expressions that could divide by zero.
    245 bool Constant::canTrap() const {
    246   assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
    247   // The only thing that could possibly trap are constant exprs.
    248   const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
    249   if (!CE) return false;
    250 
    251   // ConstantExpr traps if any operands can trap.
    252   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    253     if (CE->getOperand(i)->canTrap())
    254       return true;
    255 
    256   // Otherwise, only specific operations can trap.
    257   switch (CE->getOpcode()) {
    258   default:
    259     return false;
    260   case Instruction::UDiv:
    261   case Instruction::SDiv:
    262   case Instruction::FDiv:
    263   case Instruction::URem:
    264   case Instruction::SRem:
    265   case Instruction::FRem:
    266     // Div and rem can trap if the RHS is not known to be non-zero.
    267     if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
    268       return true;
    269     return false;
    270   }
    271 }
    272 
    273 /// isThreadDependent - Return true if the value can vary between threads.
    274 bool Constant::isThreadDependent() const {
    275   SmallPtrSet<const Constant*, 64> Visited;
    276   SmallVector<const Constant*, 64> WorkList;
    277   WorkList.push_back(this);
    278   Visited.insert(this);
    279 
    280   while (!WorkList.empty()) {
    281     const Constant *C = WorkList.pop_back_val();
    282 
    283     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
    284       if (GV->isThreadLocal())
    285         return true;
    286     }
    287 
    288     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) {
    289       const Constant *D = dyn_cast<Constant>(C->getOperand(I));
    290       if (!D)
    291         continue;
    292       if (Visited.insert(D))
    293         WorkList.push_back(D);
    294     }
    295   }
    296 
    297   return false;
    298 }
    299 
    300 /// isConstantUsed - Return true if the constant has users other than constant
    301 /// exprs and other dangling things.
    302 bool Constant::isConstantUsed() const {
    303   for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
    304     const Constant *UC = dyn_cast<Constant>(*UI);
    305     if (UC == 0 || isa<GlobalValue>(UC))
    306       return true;
    307 
    308     if (UC->isConstantUsed())
    309       return true;
    310   }
    311   return false;
    312 }
    313 
    314 
    315 
    316 /// getRelocationInfo - This method classifies the entry according to
    317 /// whether or not it may generate a relocation entry.  This must be
    318 /// conservative, so if it might codegen to a relocatable entry, it should say
    319 /// so.  The return values are:
    320 ///
    321 ///  NoRelocation: This constant pool entry is guaranteed to never have a
    322 ///     relocation applied to it (because it holds a simple constant like
    323 ///     '4').
    324 ///  LocalRelocation: This entry has relocations, but the entries are
    325 ///     guaranteed to be resolvable by the static linker, so the dynamic
    326 ///     linker will never see them.
    327 ///  GlobalRelocations: This entry may have arbitrary relocations.
    328 ///
    329 /// FIXME: This really should not be in IR.
    330 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
    331   if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
    332     if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
    333       return LocalRelocation;  // Local to this file/library.
    334     return GlobalRelocations;    // Global reference.
    335   }
    336 
    337   if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
    338     return BA->getFunction()->getRelocationInfo();
    339 
    340   // While raw uses of blockaddress need to be relocated, differences between
    341   // two of them don't when they are for labels in the same function.  This is a
    342   // common idiom when creating a table for the indirect goto extension, so we
    343   // handle it efficiently here.
    344   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
    345     if (CE->getOpcode() == Instruction::Sub) {
    346       ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
    347       ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
    348       if (LHS && RHS &&
    349           LHS->getOpcode() == Instruction::PtrToInt &&
    350           RHS->getOpcode() == Instruction::PtrToInt &&
    351           isa<BlockAddress>(LHS->getOperand(0)) &&
    352           isa<BlockAddress>(RHS->getOperand(0)) &&
    353           cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
    354             cast<BlockAddress>(RHS->getOperand(0))->getFunction())
    355         return NoRelocation;
    356     }
    357 
    358   PossibleRelocationsTy Result = NoRelocation;
    359   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    360     Result = std::max(Result,
    361                       cast<Constant>(getOperand(i))->getRelocationInfo());
    362 
    363   return Result;
    364 }
    365 
    366 /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
    367 /// it.  This involves recursively eliminating any dead users of the
    368 /// constantexpr.
    369 static bool removeDeadUsersOfConstant(const Constant *C) {
    370   if (isa<GlobalValue>(C)) return false; // Cannot remove this
    371 
    372   while (!C->use_empty()) {
    373     const Constant *User = dyn_cast<Constant>(C->use_back());
    374     if (!User) return false; // Non-constant usage;
    375     if (!removeDeadUsersOfConstant(User))
    376       return false; // Constant wasn't dead
    377   }
    378 
    379   const_cast<Constant*>(C)->destroyConstant();
    380   return true;
    381 }
    382 
    383 
    384 /// removeDeadConstantUsers - If there are any dead constant users dangling
    385 /// off of this constant, remove them.  This method is useful for clients
    386 /// that want to check to see if a global is unused, but don't want to deal
    387 /// with potentially dead constants hanging off of the globals.
    388 void Constant::removeDeadConstantUsers() const {
    389   Value::const_use_iterator I = use_begin(), E = use_end();
    390   Value::const_use_iterator LastNonDeadUser = E;
    391   while (I != E) {
    392     const Constant *User = dyn_cast<Constant>(*I);
    393     if (User == 0) {
    394       LastNonDeadUser = I;
    395       ++I;
    396       continue;
    397     }
    398 
    399     if (!removeDeadUsersOfConstant(User)) {
    400       // If the constant wasn't dead, remember that this was the last live use
    401       // and move on to the next constant.
    402       LastNonDeadUser = I;
    403       ++I;
    404       continue;
    405     }
    406 
    407     // If the constant was dead, then the iterator is invalidated.
    408     if (LastNonDeadUser == E) {
    409       I = use_begin();
    410       if (I == E) break;
    411     } else {
    412       I = LastNonDeadUser;
    413       ++I;
    414     }
    415   }
    416 }
    417 
    418 
    419 
    420 //===----------------------------------------------------------------------===//
    421 //                                ConstantInt
    422 //===----------------------------------------------------------------------===//
    423 
    424 void ConstantInt::anchor() { }
    425 
    426 ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
    427   : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
    428   assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
    429 }
    430 
    431 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
    432   LLVMContextImpl *pImpl = Context.pImpl;
    433   if (!pImpl->TheTrueVal)
    434     pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
    435   return pImpl->TheTrueVal;
    436 }
    437 
    438 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
    439   LLVMContextImpl *pImpl = Context.pImpl;
    440   if (!pImpl->TheFalseVal)
    441     pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
    442   return pImpl->TheFalseVal;
    443 }
    444 
    445 Constant *ConstantInt::getTrue(Type *Ty) {
    446   VectorType *VTy = dyn_cast<VectorType>(Ty);
    447   if (!VTy) {
    448     assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
    449     return ConstantInt::getTrue(Ty->getContext());
    450   }
    451   assert(VTy->getElementType()->isIntegerTy(1) &&
    452          "True must be vector of i1 or i1.");
    453   return ConstantVector::getSplat(VTy->getNumElements(),
    454                                   ConstantInt::getTrue(Ty->getContext()));
    455 }
    456 
    457 Constant *ConstantInt::getFalse(Type *Ty) {
    458   VectorType *VTy = dyn_cast<VectorType>(Ty);
    459   if (!VTy) {
    460     assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
    461     return ConstantInt::getFalse(Ty->getContext());
    462   }
    463   assert(VTy->getElementType()->isIntegerTy(1) &&
    464          "False must be vector of i1 or i1.");
    465   return ConstantVector::getSplat(VTy->getNumElements(),
    466                                   ConstantInt::getFalse(Ty->getContext()));
    467 }
    468 
    469 
    470 // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
    471 // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
    472 // operator== and operator!= to ensure that the DenseMap doesn't attempt to
    473 // compare APInt's of different widths, which would violate an APInt class
    474 // invariant which generates an assertion.
    475 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
    476   // Get the corresponding integer type for the bit width of the value.
    477   IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
    478   // get an existing value or the insertion position
    479   DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
    480   ConstantInt *&Slot = Context.pImpl->IntConstants[Key];
    481   if (!Slot) Slot = new ConstantInt(ITy, V);
    482   return Slot;
    483 }
    484 
    485 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
    486   Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
    487 
    488   // For vectors, broadcast the value.
    489   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    490     return ConstantVector::getSplat(VTy->getNumElements(), C);
    491 
    492   return C;
    493 }
    494 
    495 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V,
    496                               bool isSigned) {
    497   return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
    498 }
    499 
    500 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
    501   return get(Ty, V, true);
    502 }
    503 
    504 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
    505   return get(Ty, V, true);
    506 }
    507 
    508 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
    509   ConstantInt *C = get(Ty->getContext(), V);
    510   assert(C->getType() == Ty->getScalarType() &&
    511          "ConstantInt type doesn't match the type implied by its value!");
    512 
    513   // For vectors, broadcast the value.
    514   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    515     return ConstantVector::getSplat(VTy->getNumElements(), C);
    516 
    517   return C;
    518 }
    519 
    520 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
    521                               uint8_t radix) {
    522   return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
    523 }
    524 
    525 //===----------------------------------------------------------------------===//
    526 //                                ConstantFP
    527 //===----------------------------------------------------------------------===//
    528 
    529 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
    530   if (Ty->isHalfTy())
    531     return &APFloat::IEEEhalf;
    532   if (Ty->isFloatTy())
    533     return &APFloat::IEEEsingle;
    534   if (Ty->isDoubleTy())
    535     return &APFloat::IEEEdouble;
    536   if (Ty->isX86_FP80Ty())
    537     return &APFloat::x87DoubleExtended;
    538   else if (Ty->isFP128Ty())
    539     return &APFloat::IEEEquad;
    540 
    541   assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
    542   return &APFloat::PPCDoubleDouble;
    543 }
    544 
    545 void ConstantFP::anchor() { }
    546 
    547 /// get() - This returns a constant fp for the specified value in the
    548 /// specified type.  This should only be used for simple constant values like
    549 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
    550 Constant *ConstantFP::get(Type *Ty, double V) {
    551   LLVMContext &Context = Ty->getContext();
    552 
    553   APFloat FV(V);
    554   bool ignored;
    555   FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
    556              APFloat::rmNearestTiesToEven, &ignored);
    557   Constant *C = get(Context, FV);
    558 
    559   // For vectors, broadcast the value.
    560   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    561     return ConstantVector::getSplat(VTy->getNumElements(), C);
    562 
    563   return C;
    564 }
    565 
    566 
    567 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
    568   LLVMContext &Context = Ty->getContext();
    569 
    570   APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
    571   Constant *C = get(Context, FV);
    572 
    573   // For vectors, broadcast the value.
    574   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    575     return ConstantVector::getSplat(VTy->getNumElements(), C);
    576 
    577   return C;
    578 }
    579 
    580 
    581 ConstantFP *ConstantFP::getNegativeZero(Type *Ty) {
    582   LLVMContext &Context = Ty->getContext();
    583   APFloat apf = cast<ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
    584   apf.changeSign();
    585   return get(Context, apf);
    586 }
    587 
    588 
    589 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
    590   Type *ScalarTy = Ty->getScalarType();
    591   if (ScalarTy->isFloatingPointTy()) {
    592     Constant *C = getNegativeZero(ScalarTy);
    593     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    594       return ConstantVector::getSplat(VTy->getNumElements(), C);
    595     return C;
    596   }
    597 
    598   return Constant::getNullValue(Ty);
    599 }
    600 
    601 
    602 // ConstantFP accessors.
    603 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
    604   DenseMapAPFloatKeyInfo::KeyTy Key(V);
    605 
    606   LLVMContextImpl* pImpl = Context.pImpl;
    607 
    608   ConstantFP *&Slot = pImpl->FPConstants[Key];
    609 
    610   if (!Slot) {
    611     Type *Ty;
    612     if (&V.getSemantics() == &APFloat::IEEEhalf)
    613       Ty = Type::getHalfTy(Context);
    614     else if (&V.getSemantics() == &APFloat::IEEEsingle)
    615       Ty = Type::getFloatTy(Context);
    616     else if (&V.getSemantics() == &APFloat::IEEEdouble)
    617       Ty = Type::getDoubleTy(Context);
    618     else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
    619       Ty = Type::getX86_FP80Ty(Context);
    620     else if (&V.getSemantics() == &APFloat::IEEEquad)
    621       Ty = Type::getFP128Ty(Context);
    622     else {
    623       assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
    624              "Unknown FP format");
    625       Ty = Type::getPPC_FP128Ty(Context);
    626     }
    627     Slot = new ConstantFP(Ty, V);
    628   }
    629 
    630   return Slot;
    631 }
    632 
    633 ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) {
    634   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty);
    635   return ConstantFP::get(Ty->getContext(),
    636                          APFloat::getInf(Semantics, Negative));
    637 }
    638 
    639 ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
    640   : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
    641   assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
    642          "FP type Mismatch");
    643 }
    644 
    645 bool ConstantFP::isExactlyValue(const APFloat &V) const {
    646   return Val.bitwiseIsEqual(V);
    647 }
    648 
    649 //===----------------------------------------------------------------------===//
    650 //                   ConstantAggregateZero Implementation
    651 //===----------------------------------------------------------------------===//
    652 
    653 /// getSequentialElement - If this CAZ has array or vector type, return a zero
    654 /// with the right element type.
    655 Constant *ConstantAggregateZero::getSequentialElement() const {
    656   return Constant::getNullValue(getType()->getSequentialElementType());
    657 }
    658 
    659 /// getStructElement - If this CAZ has struct type, return a zero with the
    660 /// right element type for the specified element.
    661 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
    662   return Constant::getNullValue(getType()->getStructElementType(Elt));
    663 }
    664 
    665 /// getElementValue - Return a zero of the right value for the specified GEP
    666 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
    667 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
    668   if (isa<SequentialType>(getType()))
    669     return getSequentialElement();
    670   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
    671 }
    672 
    673 /// getElementValue - Return a zero of the right value for the specified GEP
    674 /// index.
    675 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
    676   if (isa<SequentialType>(getType()))
    677     return getSequentialElement();
    678   return getStructElement(Idx);
    679 }
    680 
    681 
    682 //===----------------------------------------------------------------------===//
    683 //                         UndefValue Implementation
    684 //===----------------------------------------------------------------------===//
    685 
    686 /// getSequentialElement - If this undef has array or vector type, return an
    687 /// undef with the right element type.
    688 UndefValue *UndefValue::getSequentialElement() const {
    689   return UndefValue::get(getType()->getSequentialElementType());
    690 }
    691 
    692 /// getStructElement - If this undef has struct type, return a zero with the
    693 /// right element type for the specified element.
    694 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
    695   return UndefValue::get(getType()->getStructElementType(Elt));
    696 }
    697 
    698 /// getElementValue - Return an undef of the right value for the specified GEP
    699 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
    700 UndefValue *UndefValue::getElementValue(Constant *C) const {
    701   if (isa<SequentialType>(getType()))
    702     return getSequentialElement();
    703   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
    704 }
    705 
    706 /// getElementValue - Return an undef of the right value for the specified GEP
    707 /// index.
    708 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
    709   if (isa<SequentialType>(getType()))
    710     return getSequentialElement();
    711   return getStructElement(Idx);
    712 }
    713 
    714 
    715 
    716 //===----------------------------------------------------------------------===//
    717 //                            ConstantXXX Classes
    718 //===----------------------------------------------------------------------===//
    719 
    720 template <typename ItTy, typename EltTy>
    721 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
    722   for (; Start != End; ++Start)
    723     if (*Start != Elt)
    724       return false;
    725   return true;
    726 }
    727 
    728 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
    729   : Constant(T, ConstantArrayVal,
    730              OperandTraits<ConstantArray>::op_end(this) - V.size(),
    731              V.size()) {
    732   assert(V.size() == T->getNumElements() &&
    733          "Invalid initializer vector for constant array");
    734   for (unsigned i = 0, e = V.size(); i != e; ++i)
    735     assert(V[i]->getType() == T->getElementType() &&
    736            "Initializer for array element doesn't match array element type!");
    737   std::copy(V.begin(), V.end(), op_begin());
    738 }
    739 
    740 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
    741   // Empty arrays are canonicalized to ConstantAggregateZero.
    742   if (V.empty())
    743     return ConstantAggregateZero::get(Ty);
    744 
    745   for (unsigned i = 0, e = V.size(); i != e; ++i) {
    746     assert(V[i]->getType() == Ty->getElementType() &&
    747            "Wrong type in array element initializer");
    748   }
    749   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
    750 
    751   // If this is an all-zero array, return a ConstantAggregateZero object.  If
    752   // all undef, return an UndefValue, if "all simple", then return a
    753   // ConstantDataArray.
    754   Constant *C = V[0];
    755   if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
    756     return UndefValue::get(Ty);
    757 
    758   if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
    759     return ConstantAggregateZero::get(Ty);
    760 
    761   // Check to see if all of the elements are ConstantFP or ConstantInt and if
    762   // the element type is compatible with ConstantDataVector.  If so, use it.
    763   if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
    764     // We speculatively build the elements here even if it turns out that there
    765     // is a constantexpr or something else weird in the array, since it is so
    766     // uncommon for that to happen.
    767     if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
    768       if (CI->getType()->isIntegerTy(8)) {
    769         SmallVector<uint8_t, 16> Elts;
    770         for (unsigned i = 0, e = V.size(); i != e; ++i)
    771           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
    772             Elts.push_back(CI->getZExtValue());
    773           else
    774             break;
    775         if (Elts.size() == V.size())
    776           return ConstantDataArray::get(C->getContext(), Elts);
    777       } else if (CI->getType()->isIntegerTy(16)) {
    778         SmallVector<uint16_t, 16> Elts;
    779         for (unsigned i = 0, e = V.size(); i != e; ++i)
    780           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
    781             Elts.push_back(CI->getZExtValue());
    782           else
    783             break;
    784         if (Elts.size() == V.size())
    785           return ConstantDataArray::get(C->getContext(), Elts);
    786       } else if (CI->getType()->isIntegerTy(32)) {
    787         SmallVector<uint32_t, 16> Elts;
    788         for (unsigned i = 0, e = V.size(); i != e; ++i)
    789           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
    790             Elts.push_back(CI->getZExtValue());
    791           else
    792             break;
    793         if (Elts.size() == V.size())
    794           return ConstantDataArray::get(C->getContext(), Elts);
    795       } else if (CI->getType()->isIntegerTy(64)) {
    796         SmallVector<uint64_t, 16> Elts;
    797         for (unsigned i = 0, e = V.size(); i != e; ++i)
    798           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
    799             Elts.push_back(CI->getZExtValue());
    800           else
    801             break;
    802         if (Elts.size() == V.size())
    803           return ConstantDataArray::get(C->getContext(), Elts);
    804       }
    805     }
    806 
    807     if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
    808       if (CFP->getType()->isFloatTy()) {
    809         SmallVector<float, 16> Elts;
    810         for (unsigned i = 0, e = V.size(); i != e; ++i)
    811           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
    812             Elts.push_back(CFP->getValueAPF().convertToFloat());
    813           else
    814             break;
    815         if (Elts.size() == V.size())
    816           return ConstantDataArray::get(C->getContext(), Elts);
    817       } else if (CFP->getType()->isDoubleTy()) {
    818         SmallVector<double, 16> Elts;
    819         for (unsigned i = 0, e = V.size(); i != e; ++i)
    820           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
    821             Elts.push_back(CFP->getValueAPF().convertToDouble());
    822           else
    823             break;
    824         if (Elts.size() == V.size())
    825           return ConstantDataArray::get(C->getContext(), Elts);
    826       }
    827     }
    828   }
    829 
    830   // Otherwise, we really do want to create a ConstantArray.
    831   return pImpl->ArrayConstants.getOrCreate(Ty, V);
    832 }
    833 
    834 /// getTypeForElements - Return an anonymous struct type to use for a constant
    835 /// with the specified set of elements.  The list must not be empty.
    836 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
    837                                                ArrayRef<Constant*> V,
    838                                                bool Packed) {
    839   unsigned VecSize = V.size();
    840   SmallVector<Type*, 16> EltTypes(VecSize);
    841   for (unsigned i = 0; i != VecSize; ++i)
    842     EltTypes[i] = V[i]->getType();
    843 
    844   return StructType::get(Context, EltTypes, Packed);
    845 }
    846 
    847 
    848 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
    849                                                bool Packed) {
    850   assert(!V.empty() &&
    851          "ConstantStruct::getTypeForElements cannot be called on empty list");
    852   return getTypeForElements(V[0]->getContext(), V, Packed);
    853 }
    854 
    855 
    856 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
    857   : Constant(T, ConstantStructVal,
    858              OperandTraits<ConstantStruct>::op_end(this) - V.size(),
    859              V.size()) {
    860   assert(V.size() == T->getNumElements() &&
    861          "Invalid initializer vector for constant structure");
    862   for (unsigned i = 0, e = V.size(); i != e; ++i)
    863     assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
    864            "Initializer for struct element doesn't match struct element type!");
    865   std::copy(V.begin(), V.end(), op_begin());
    866 }
    867 
    868 // ConstantStruct accessors.
    869 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
    870   assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
    871          "Incorrect # elements specified to ConstantStruct::get");
    872 
    873   // Create a ConstantAggregateZero value if all elements are zeros.
    874   bool isZero = true;
    875   bool isUndef = false;
    876 
    877   if (!V.empty()) {
    878     isUndef = isa<UndefValue>(V[0]);
    879     isZero = V[0]->isNullValue();
    880     if (isUndef || isZero) {
    881       for (unsigned i = 0, e = V.size(); i != e; ++i) {
    882         if (!V[i]->isNullValue())
    883           isZero = false;
    884         if (!isa<UndefValue>(V[i]))
    885           isUndef = false;
    886       }
    887     }
    888   }
    889   if (isZero)
    890     return ConstantAggregateZero::get(ST);
    891   if (isUndef)
    892     return UndefValue::get(ST);
    893 
    894   return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
    895 }
    896 
    897 Constant *ConstantStruct::get(StructType *T, ...) {
    898   va_list ap;
    899   SmallVector<Constant*, 8> Values;
    900   va_start(ap, T);
    901   while (Constant *Val = va_arg(ap, llvm::Constant*))
    902     Values.push_back(Val);
    903   va_end(ap);
    904   return get(T, Values);
    905 }
    906 
    907 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
    908   : Constant(T, ConstantVectorVal,
    909              OperandTraits<ConstantVector>::op_end(this) - V.size(),
    910              V.size()) {
    911   for (size_t i = 0, e = V.size(); i != e; i++)
    912     assert(V[i]->getType() == T->getElementType() &&
    913            "Initializer for vector element doesn't match vector element type!");
    914   std::copy(V.begin(), V.end(), op_begin());
    915 }
    916 
    917 // ConstantVector accessors.
    918 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
    919   assert(!V.empty() && "Vectors can't be empty");
    920   VectorType *T = VectorType::get(V.front()->getType(), V.size());
    921   LLVMContextImpl *pImpl = T->getContext().pImpl;
    922 
    923   // If this is an all-undef or all-zero vector, return a
    924   // ConstantAggregateZero or UndefValue.
    925   Constant *C = V[0];
    926   bool isZero = C->isNullValue();
    927   bool isUndef = isa<UndefValue>(C);
    928 
    929   if (isZero || isUndef) {
    930     for (unsigned i = 1, e = V.size(); i != e; ++i)
    931       if (V[i] != C) {
    932         isZero = isUndef = false;
    933         break;
    934       }
    935   }
    936 
    937   if (isZero)
    938     return ConstantAggregateZero::get(T);
    939   if (isUndef)
    940     return UndefValue::get(T);
    941 
    942   // Check to see if all of the elements are ConstantFP or ConstantInt and if
    943   // the element type is compatible with ConstantDataVector.  If so, use it.
    944   if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
    945     // We speculatively build the elements here even if it turns out that there
    946     // is a constantexpr or something else weird in the array, since it is so
    947     // uncommon for that to happen.
    948     if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
    949       if (CI->getType()->isIntegerTy(8)) {
    950         SmallVector<uint8_t, 16> Elts;
    951         for (unsigned i = 0, e = V.size(); i != e; ++i)
    952           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
    953             Elts.push_back(CI->getZExtValue());
    954           else
    955             break;
    956         if (Elts.size() == V.size())
    957           return ConstantDataVector::get(C->getContext(), Elts);
    958       } else if (CI->getType()->isIntegerTy(16)) {
    959         SmallVector<uint16_t, 16> Elts;
    960         for (unsigned i = 0, e = V.size(); i != e; ++i)
    961           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
    962             Elts.push_back(CI->getZExtValue());
    963           else
    964             break;
    965         if (Elts.size() == V.size())
    966           return ConstantDataVector::get(C->getContext(), Elts);
    967       } else if (CI->getType()->isIntegerTy(32)) {
    968         SmallVector<uint32_t, 16> Elts;
    969         for (unsigned i = 0, e = V.size(); i != e; ++i)
    970           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
    971             Elts.push_back(CI->getZExtValue());
    972           else
    973             break;
    974         if (Elts.size() == V.size())
    975           return ConstantDataVector::get(C->getContext(), Elts);
    976       } else if (CI->getType()->isIntegerTy(64)) {
    977         SmallVector<uint64_t, 16> Elts;
    978         for (unsigned i = 0, e = V.size(); i != e; ++i)
    979           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
    980             Elts.push_back(CI->getZExtValue());
    981           else
    982             break;
    983         if (Elts.size() == V.size())
    984           return ConstantDataVector::get(C->getContext(), Elts);
    985       }
    986     }
    987 
    988     if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
    989       if (CFP->getType()->isFloatTy()) {
    990         SmallVector<float, 16> Elts;
    991         for (unsigned i = 0, e = V.size(); i != e; ++i)
    992           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
    993             Elts.push_back(CFP->getValueAPF().convertToFloat());
    994           else
    995             break;
    996         if (Elts.size() == V.size())
    997           return ConstantDataVector::get(C->getContext(), Elts);
    998       } else if (CFP->getType()->isDoubleTy()) {
    999         SmallVector<double, 16> Elts;
   1000         for (unsigned i = 0, e = V.size(); i != e; ++i)
   1001           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
   1002             Elts.push_back(CFP->getValueAPF().convertToDouble());
   1003           else
   1004             break;
   1005         if (Elts.size() == V.size())
   1006           return ConstantDataVector::get(C->getContext(), Elts);
   1007       }
   1008     }
   1009   }
   1010 
   1011   // Otherwise, the element type isn't compatible with ConstantDataVector, or
   1012   // the operand list constants a ConstantExpr or something else strange.
   1013   return pImpl->VectorConstants.getOrCreate(T, V);
   1014 }
   1015 
   1016 Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
   1017   // If this splat is compatible with ConstantDataVector, use it instead of
   1018   // ConstantVector.
   1019   if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
   1020       ConstantDataSequential::isElementTypeCompatible(V->getType()))
   1021     return ConstantDataVector::getSplat(NumElts, V);
   1022 
   1023   SmallVector<Constant*, 32> Elts(NumElts, V);
   1024   return get(Elts);
   1025 }
   1026 
   1027 
   1028 // Utility function for determining if a ConstantExpr is a CastOp or not. This
   1029 // can't be inline because we don't want to #include Instruction.h into
   1030 // Constant.h
   1031 bool ConstantExpr::isCast() const {
   1032   return Instruction::isCast(getOpcode());
   1033 }
   1034 
   1035 bool ConstantExpr::isCompare() const {
   1036   return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
   1037 }
   1038 
   1039 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
   1040   if (getOpcode() != Instruction::GetElementPtr) return false;
   1041 
   1042   gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
   1043   User::const_op_iterator OI = llvm::next(this->op_begin());
   1044 
   1045   // Skip the first index, as it has no static limit.
   1046   ++GEPI;
   1047   ++OI;
   1048 
   1049   // The remaining indices must be compile-time known integers within the
   1050   // bounds of the corresponding notional static array types.
   1051   for (; GEPI != E; ++GEPI, ++OI) {
   1052     ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
   1053     if (!CI) return false;
   1054     if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
   1055       if (CI->getValue().getActiveBits() > 64 ||
   1056           CI->getZExtValue() >= ATy->getNumElements())
   1057         return false;
   1058   }
   1059 
   1060   // All the indices checked out.
   1061   return true;
   1062 }
   1063 
   1064 bool ConstantExpr::hasIndices() const {
   1065   return getOpcode() == Instruction::ExtractValue ||
   1066          getOpcode() == Instruction::InsertValue;
   1067 }
   1068 
   1069 ArrayRef<unsigned> ConstantExpr::getIndices() const {
   1070   if (const ExtractValueConstantExpr *EVCE =
   1071         dyn_cast<ExtractValueConstantExpr>(this))
   1072     return EVCE->Indices;
   1073 
   1074   return cast<InsertValueConstantExpr>(this)->Indices;
   1075 }
   1076 
   1077 unsigned ConstantExpr::getPredicate() const {
   1078   assert(isCompare());
   1079   return ((const CompareConstantExpr*)this)->predicate;
   1080 }
   1081 
   1082 /// getWithOperandReplaced - Return a constant expression identical to this
   1083 /// one, but with the specified operand set to the specified value.
   1084 Constant *
   1085 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
   1086   assert(Op->getType() == getOperand(OpNo)->getType() &&
   1087          "Replacing operand with value of different type!");
   1088   if (getOperand(OpNo) == Op)
   1089     return const_cast<ConstantExpr*>(this);
   1090 
   1091   SmallVector<Constant*, 8> NewOps;
   1092   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
   1093     NewOps.push_back(i == OpNo ? Op : getOperand(i));
   1094 
   1095   return getWithOperands(NewOps);
   1096 }
   1097 
   1098 /// getWithOperands - This returns the current constant expression with the
   1099 /// operands replaced with the specified values.  The specified array must
   1100 /// have the same number of operands as our current one.
   1101 Constant *ConstantExpr::
   1102 getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const {
   1103   assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
   1104   bool AnyChange = Ty != getType();
   1105   for (unsigned i = 0; i != Ops.size(); ++i)
   1106     AnyChange |= Ops[i] != getOperand(i);
   1107 
   1108   if (!AnyChange)  // No operands changed, return self.
   1109     return const_cast<ConstantExpr*>(this);
   1110 
   1111   switch (getOpcode()) {
   1112   case Instruction::Trunc:
   1113   case Instruction::ZExt:
   1114   case Instruction::SExt:
   1115   case Instruction::FPTrunc:
   1116   case Instruction::FPExt:
   1117   case Instruction::UIToFP:
   1118   case Instruction::SIToFP:
   1119   case Instruction::FPToUI:
   1120   case Instruction::FPToSI:
   1121   case Instruction::PtrToInt:
   1122   case Instruction::IntToPtr:
   1123   case Instruction::BitCast:
   1124     return ConstantExpr::getCast(getOpcode(), Ops[0], Ty);
   1125   case Instruction::Select:
   1126     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
   1127   case Instruction::InsertElement:
   1128     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
   1129   case Instruction::ExtractElement:
   1130     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
   1131   case Instruction::InsertValue:
   1132     return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices());
   1133   case Instruction::ExtractValue:
   1134     return ConstantExpr::getExtractValue(Ops[0], getIndices());
   1135   case Instruction::ShuffleVector:
   1136     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
   1137   case Instruction::GetElementPtr:
   1138     return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1),
   1139                                       cast<GEPOperator>(this)->isInBounds());
   1140   case Instruction::ICmp:
   1141   case Instruction::FCmp:
   1142     return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
   1143   default:
   1144     assert(getNumOperands() == 2 && "Must be binary operator?");
   1145     return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData);
   1146   }
   1147 }
   1148 
   1149 
   1150 //===----------------------------------------------------------------------===//
   1151 //                      isValueValidForType implementations
   1152 
   1153 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
   1154   unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
   1155   if (Ty->isIntegerTy(1))
   1156     return Val == 0 || Val == 1;
   1157   if (NumBits >= 64)
   1158     return true; // always true, has to fit in largest type
   1159   uint64_t Max = (1ll << NumBits) - 1;
   1160   return Val <= Max;
   1161 }
   1162 
   1163 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
   1164   unsigned NumBits = Ty->getIntegerBitWidth();
   1165   if (Ty->isIntegerTy(1))
   1166     return Val == 0 || Val == 1 || Val == -1;
   1167   if (NumBits >= 64)
   1168     return true; // always true, has to fit in largest type
   1169   int64_t Min = -(1ll << (NumBits-1));
   1170   int64_t Max = (1ll << (NumBits-1)) - 1;
   1171   return (Val >= Min && Val <= Max);
   1172 }
   1173 
   1174 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
   1175   // convert modifies in place, so make a copy.
   1176   APFloat Val2 = APFloat(Val);
   1177   bool losesInfo;
   1178   switch (Ty->getTypeID()) {
   1179   default:
   1180     return false;         // These can't be represented as floating point!
   1181 
   1182   // FIXME rounding mode needs to be more flexible
   1183   case Type::HalfTyID: {
   1184     if (&Val2.getSemantics() == &APFloat::IEEEhalf)
   1185       return true;
   1186     Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
   1187     return !losesInfo;
   1188   }
   1189   case Type::FloatTyID: {
   1190     if (&Val2.getSemantics() == &APFloat::IEEEsingle)
   1191       return true;
   1192     Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
   1193     return !losesInfo;
   1194   }
   1195   case Type::DoubleTyID: {
   1196     if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
   1197         &Val2.getSemantics() == &APFloat::IEEEsingle ||
   1198         &Val2.getSemantics() == &APFloat::IEEEdouble)
   1199       return true;
   1200     Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
   1201     return !losesInfo;
   1202   }
   1203   case Type::X86_FP80TyID:
   1204     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
   1205            &Val2.getSemantics() == &APFloat::IEEEsingle ||
   1206            &Val2.getSemantics() == &APFloat::IEEEdouble ||
   1207            &Val2.getSemantics() == &APFloat::x87DoubleExtended;
   1208   case Type::FP128TyID:
   1209     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
   1210            &Val2.getSemantics() == &APFloat::IEEEsingle ||
   1211            &Val2.getSemantics() == &APFloat::IEEEdouble ||
   1212            &Val2.getSemantics() == &APFloat::IEEEquad;
   1213   case Type::PPC_FP128TyID:
   1214     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
   1215            &Val2.getSemantics() == &APFloat::IEEEsingle ||
   1216            &Val2.getSemantics() == &APFloat::IEEEdouble ||
   1217            &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
   1218   }
   1219 }
   1220 
   1221 
   1222 //===----------------------------------------------------------------------===//
   1223 //                      Factory Function Implementation
   1224 
   1225 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
   1226   assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
   1227          "Cannot create an aggregate zero of non-aggregate type!");
   1228 
   1229   ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
   1230   if (Entry == 0)
   1231     Entry = new ConstantAggregateZero(Ty);
   1232 
   1233   return Entry;
   1234 }
   1235 
   1236 /// destroyConstant - Remove the constant from the constant table.
   1237 ///
   1238 void ConstantAggregateZero::destroyConstant() {
   1239   getContext().pImpl->CAZConstants.erase(getType());
   1240   destroyConstantImpl();
   1241 }
   1242 
   1243 /// destroyConstant - Remove the constant from the constant table...
   1244 ///
   1245 void ConstantArray::destroyConstant() {
   1246   getType()->getContext().pImpl->ArrayConstants.remove(this);
   1247   destroyConstantImpl();
   1248 }
   1249 
   1250 
   1251 //---- ConstantStruct::get() implementation...
   1252 //
   1253 
   1254 // destroyConstant - Remove the constant from the constant table...
   1255 //
   1256 void ConstantStruct::destroyConstant() {
   1257   getType()->getContext().pImpl->StructConstants.remove(this);
   1258   destroyConstantImpl();
   1259 }
   1260 
   1261 // destroyConstant - Remove the constant from the constant table...
   1262 //
   1263 void ConstantVector::destroyConstant() {
   1264   getType()->getContext().pImpl->VectorConstants.remove(this);
   1265   destroyConstantImpl();
   1266 }
   1267 
   1268 /// getSplatValue - If this is a splat vector constant, meaning that all of
   1269 /// the elements have the same value, return that value. Otherwise return 0.
   1270 Constant *Constant::getSplatValue() const {
   1271   assert(this->getType()->isVectorTy() && "Only valid for vectors!");
   1272   if (isa<ConstantAggregateZero>(this))
   1273     return getNullValue(this->getType()->getVectorElementType());
   1274   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
   1275     return CV->getSplatValue();
   1276   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
   1277     return CV->getSplatValue();
   1278   return 0;
   1279 }
   1280 
   1281 /// getSplatValue - If this is a splat constant, where all of the
   1282 /// elements have the same value, return that value. Otherwise return null.
   1283 Constant *ConstantVector::getSplatValue() const {
   1284   // Check out first element.
   1285   Constant *Elt = getOperand(0);
   1286   // Then make sure all remaining elements point to the same value.
   1287   for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
   1288     if (getOperand(I) != Elt)
   1289       return 0;
   1290   return Elt;
   1291 }
   1292 
   1293 /// If C is a constant integer then return its value, otherwise C must be a
   1294 /// vector of constant integers, all equal, and the common value is returned.
   1295 const APInt &Constant::getUniqueInteger() const {
   1296   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
   1297     return CI->getValue();
   1298   assert(this->getSplatValue() && "Doesn't contain a unique integer!");
   1299   const Constant *C = this->getAggregateElement(0U);
   1300   assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
   1301   return cast<ConstantInt>(C)->getValue();
   1302 }
   1303 
   1304 
   1305 //---- ConstantPointerNull::get() implementation.
   1306 //
   1307 
   1308 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
   1309   ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
   1310   if (Entry == 0)
   1311     Entry = new ConstantPointerNull(Ty);
   1312 
   1313   return Entry;
   1314 }
   1315 
   1316 // destroyConstant - Remove the constant from the constant table...
   1317 //
   1318 void ConstantPointerNull::destroyConstant() {
   1319   getContext().pImpl->CPNConstants.erase(getType());
   1320   // Free the constant and any dangling references to it.
   1321   destroyConstantImpl();
   1322 }
   1323 
   1324 
   1325 //---- UndefValue::get() implementation.
   1326 //
   1327 
   1328 UndefValue *UndefValue::get(Type *Ty) {
   1329   UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
   1330   if (Entry == 0)
   1331     Entry = new UndefValue(Ty);
   1332 
   1333   return Entry;
   1334 }
   1335 
   1336 // destroyConstant - Remove the constant from the constant table.
   1337 //
   1338 void UndefValue::destroyConstant() {
   1339   // Free the constant and any dangling references to it.
   1340   getContext().pImpl->UVConstants.erase(getType());
   1341   destroyConstantImpl();
   1342 }
   1343 
   1344 //---- BlockAddress::get() implementation.
   1345 //
   1346 
   1347 BlockAddress *BlockAddress::get(BasicBlock *BB) {
   1348   assert(BB->getParent() != 0 && "Block must have a parent");
   1349   return get(BB->getParent(), BB);
   1350 }
   1351 
   1352 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
   1353   BlockAddress *&BA =
   1354     F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
   1355   if (BA == 0)
   1356     BA = new BlockAddress(F, BB);
   1357 
   1358   assert(BA->getFunction() == F && "Basic block moved between functions");
   1359   return BA;
   1360 }
   1361 
   1362 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
   1363 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
   1364            &Op<0>(), 2) {
   1365   setOperand(0, F);
   1366   setOperand(1, BB);
   1367   BB->AdjustBlockAddressRefCount(1);
   1368 }
   1369 
   1370 
   1371 // destroyConstant - Remove the constant from the constant table.
   1372 //
   1373 void BlockAddress::destroyConstant() {
   1374   getFunction()->getType()->getContext().pImpl
   1375     ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
   1376   getBasicBlock()->AdjustBlockAddressRefCount(-1);
   1377   destroyConstantImpl();
   1378 }
   1379 
   1380 void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
   1381   // This could be replacing either the Basic Block or the Function.  In either
   1382   // case, we have to remove the map entry.
   1383   Function *NewF = getFunction();
   1384   BasicBlock *NewBB = getBasicBlock();
   1385 
   1386   if (U == &Op<0>())
   1387     NewF = cast<Function>(To);
   1388   else
   1389     NewBB = cast<BasicBlock>(To);
   1390 
   1391   // See if the 'new' entry already exists, if not, just update this in place
   1392   // and return early.
   1393   BlockAddress *&NewBA =
   1394     getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
   1395   if (NewBA == 0) {
   1396     getBasicBlock()->AdjustBlockAddressRefCount(-1);
   1397 
   1398     // Remove the old entry, this can't cause the map to rehash (just a
   1399     // tombstone will get added).
   1400     getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
   1401                                                             getBasicBlock()));
   1402     NewBA = this;
   1403     setOperand(0, NewF);
   1404     setOperand(1, NewBB);
   1405     getBasicBlock()->AdjustBlockAddressRefCount(1);
   1406     return;
   1407   }
   1408 
   1409   // Otherwise, I do need to replace this with an existing value.
   1410   assert(NewBA != this && "I didn't contain From!");
   1411 
   1412   // Everyone using this now uses the replacement.
   1413   replaceAllUsesWith(NewBA);
   1414 
   1415   destroyConstant();
   1416 }
   1417 
   1418 //---- ConstantExpr::get() implementations.
   1419 //
   1420 
   1421 /// This is a utility function to handle folding of casts and lookup of the
   1422 /// cast in the ExprConstants map. It is used by the various get* methods below.
   1423 static inline Constant *getFoldedCast(
   1424   Instruction::CastOps opc, Constant *C, Type *Ty) {
   1425   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
   1426   // Fold a few common cases
   1427   if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
   1428     return FC;
   1429 
   1430   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
   1431 
   1432   // Look up the constant in the table first to ensure uniqueness.
   1433   ExprMapKeyType Key(opc, C);
   1434 
   1435   return pImpl->ExprConstants.getOrCreate(Ty, Key);
   1436 }
   1437 
   1438 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) {
   1439   Instruction::CastOps opc = Instruction::CastOps(oc);
   1440   assert(Instruction::isCast(opc) && "opcode out of range");
   1441   assert(C && Ty && "Null arguments to getCast");
   1442   assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
   1443 
   1444   switch (opc) {
   1445   default:
   1446     llvm_unreachable("Invalid cast opcode");
   1447   case Instruction::Trunc:    return getTrunc(C, Ty);
   1448   case Instruction::ZExt:     return getZExt(C, Ty);
   1449   case Instruction::SExt:     return getSExt(C, Ty);
   1450   case Instruction::FPTrunc:  return getFPTrunc(C, Ty);
   1451   case Instruction::FPExt:    return getFPExtend(C, Ty);
   1452   case Instruction::UIToFP:   return getUIToFP(C, Ty);
   1453   case Instruction::SIToFP:   return getSIToFP(C, Ty);
   1454   case Instruction::FPToUI:   return getFPToUI(C, Ty);
   1455   case Instruction::FPToSI:   return getFPToSI(C, Ty);
   1456   case Instruction::PtrToInt: return getPtrToInt(C, Ty);
   1457   case Instruction::IntToPtr: return getIntToPtr(C, Ty);
   1458   case Instruction::BitCast:  return getBitCast(C, Ty);
   1459   }
   1460 }
   1461 
   1462 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
   1463   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   1464     return getBitCast(C, Ty);
   1465   return getZExt(C, Ty);
   1466 }
   1467 
   1468 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
   1469   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   1470     return getBitCast(C, Ty);
   1471   return getSExt(C, Ty);
   1472 }
   1473 
   1474 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
   1475   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   1476     return getBitCast(C, Ty);
   1477   return getTrunc(C, Ty);
   1478 }
   1479 
   1480 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
   1481   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
   1482   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
   1483           "Invalid cast");
   1484 
   1485   if (Ty->isIntOrIntVectorTy())
   1486     return getPtrToInt(S, Ty);
   1487   return getBitCast(S, Ty);
   1488 }
   1489 
   1490 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,
   1491                                        bool isSigned) {
   1492   assert(C->getType()->isIntOrIntVectorTy() &&
   1493          Ty->isIntOrIntVectorTy() && "Invalid cast");
   1494   unsigned SrcBits = C->getType()->getScalarSizeInBits();
   1495   unsigned DstBits = Ty->getScalarSizeInBits();
   1496   Instruction::CastOps opcode =
   1497     (SrcBits == DstBits ? Instruction::BitCast :
   1498      (SrcBits > DstBits ? Instruction::Trunc :
   1499       (isSigned ? Instruction::SExt : Instruction::ZExt)));
   1500   return getCast(opcode, C, Ty);
   1501 }
   1502 
   1503 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
   1504   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
   1505          "Invalid cast");
   1506   unsigned SrcBits = C->getType()->getScalarSizeInBits();
   1507   unsigned DstBits = Ty->getScalarSizeInBits();
   1508   if (SrcBits == DstBits)
   1509     return C; // Avoid a useless cast
   1510   Instruction::CastOps opcode =
   1511     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
   1512   return getCast(opcode, C, Ty);
   1513 }
   1514 
   1515 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) {
   1516 #ifndef NDEBUG
   1517   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1518   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1519 #endif
   1520   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1521   assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
   1522   assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
   1523   assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
   1524          "SrcTy must be larger than DestTy for Trunc!");
   1525 
   1526   return getFoldedCast(Instruction::Trunc, C, Ty);
   1527 }
   1528 
   1529 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) {
   1530 #ifndef NDEBUG
   1531   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1532   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1533 #endif
   1534   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1535   assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
   1536   assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
   1537   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
   1538          "SrcTy must be smaller than DestTy for SExt!");
   1539 
   1540   return getFoldedCast(Instruction::SExt, C, Ty);
   1541 }
   1542 
   1543 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) {
   1544 #ifndef NDEBUG
   1545   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1546   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1547 #endif
   1548   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1549   assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
   1550   assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
   1551   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
   1552          "SrcTy must be smaller than DestTy for ZExt!");
   1553 
   1554   return getFoldedCast(Instruction::ZExt, C, Ty);
   1555 }
   1556 
   1557 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) {
   1558 #ifndef NDEBUG
   1559   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1560   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1561 #endif
   1562   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1563   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
   1564          C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
   1565          "This is an illegal floating point truncation!");
   1566   return getFoldedCast(Instruction::FPTrunc, C, Ty);
   1567 }
   1568 
   1569 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) {
   1570 #ifndef NDEBUG
   1571   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1572   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1573 #endif
   1574   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1575   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
   1576          C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
   1577          "This is an illegal floating point extension!");
   1578   return getFoldedCast(Instruction::FPExt, C, Ty);
   1579 }
   1580 
   1581 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) {
   1582 #ifndef NDEBUG
   1583   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1584   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1585 #endif
   1586   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1587   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
   1588          "This is an illegal uint to floating point cast!");
   1589   return getFoldedCast(Instruction::UIToFP, C, Ty);
   1590 }
   1591 
   1592 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) {
   1593 #ifndef NDEBUG
   1594   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1595   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1596 #endif
   1597   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1598   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
   1599          "This is an illegal sint to floating point cast!");
   1600   return getFoldedCast(Instruction::SIToFP, C, Ty);
   1601 }
   1602 
   1603 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) {
   1604 #ifndef NDEBUG
   1605   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1606   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1607 #endif
   1608   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1609   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
   1610          "This is an illegal floating point to uint cast!");
   1611   return getFoldedCast(Instruction::FPToUI, C, Ty);
   1612 }
   1613 
   1614 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) {
   1615 #ifndef NDEBUG
   1616   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1617   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1618 #endif
   1619   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1620   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
   1621          "This is an illegal floating point to sint cast!");
   1622   return getFoldedCast(Instruction::FPToSI, C, Ty);
   1623 }
   1624 
   1625 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) {
   1626   assert(C->getType()->getScalarType()->isPointerTy() &&
   1627          "PtrToInt source must be pointer or pointer vector");
   1628   assert(DstTy->getScalarType()->isIntegerTy() &&
   1629          "PtrToInt destination must be integer or integer vector");
   1630   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
   1631   if (isa<VectorType>(C->getType()))
   1632     assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
   1633            "Invalid cast between a different number of vector elements");
   1634   return getFoldedCast(Instruction::PtrToInt, C, DstTy);
   1635 }
   1636 
   1637 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) {
   1638   assert(C->getType()->getScalarType()->isIntegerTy() &&
   1639          "IntToPtr source must be integer or integer vector");
   1640   assert(DstTy->getScalarType()->isPointerTy() &&
   1641          "IntToPtr destination must be a pointer or pointer vector");
   1642   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
   1643   if (isa<VectorType>(C->getType()))
   1644     assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
   1645            "Invalid cast between a different number of vector elements");
   1646   return getFoldedCast(Instruction::IntToPtr, C, DstTy);
   1647 }
   1648 
   1649 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) {
   1650   assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
   1651          "Invalid constantexpr bitcast!");
   1652 
   1653   // It is common to ask for a bitcast of a value to its own type, handle this
   1654   // speedily.
   1655   if (C->getType() == DstTy) return C;
   1656 
   1657   return getFoldedCast(Instruction::BitCast, C, DstTy);
   1658 }
   1659 
   1660 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
   1661                             unsigned Flags) {
   1662   // Check the operands for consistency first.
   1663   assert(Opcode >= Instruction::BinaryOpsBegin &&
   1664          Opcode <  Instruction::BinaryOpsEnd   &&
   1665          "Invalid opcode in binary constant expression");
   1666   assert(C1->getType() == C2->getType() &&
   1667          "Operand types in binary constant expression should match");
   1668 
   1669 #ifndef NDEBUG
   1670   switch (Opcode) {
   1671   case Instruction::Add:
   1672   case Instruction::Sub:
   1673   case Instruction::Mul:
   1674     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1675     assert(C1->getType()->isIntOrIntVectorTy() &&
   1676            "Tried to create an integer operation on a non-integer type!");
   1677     break;
   1678   case Instruction::FAdd:
   1679   case Instruction::FSub:
   1680   case Instruction::FMul:
   1681     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1682     assert(C1->getType()->isFPOrFPVectorTy() &&
   1683            "Tried to create a floating-point operation on a "
   1684            "non-floating-point type!");
   1685     break;
   1686   case Instruction::UDiv:
   1687   case Instruction::SDiv:
   1688     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1689     assert(C1->getType()->isIntOrIntVectorTy() &&
   1690            "Tried to create an arithmetic operation on a non-arithmetic type!");
   1691     break;
   1692   case Instruction::FDiv:
   1693     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1694     assert(C1->getType()->isFPOrFPVectorTy() &&
   1695            "Tried to create an arithmetic operation on a non-arithmetic type!");
   1696     break;
   1697   case Instruction::URem:
   1698   case Instruction::SRem:
   1699     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1700     assert(C1->getType()->isIntOrIntVectorTy() &&
   1701            "Tried to create an arithmetic operation on a non-arithmetic type!");
   1702     break;
   1703   case Instruction::FRem:
   1704     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1705     assert(C1->getType()->isFPOrFPVectorTy() &&
   1706            "Tried to create an arithmetic operation on a non-arithmetic type!");
   1707     break;
   1708   case Instruction::And:
   1709   case Instruction::Or:
   1710   case Instruction::Xor:
   1711     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1712     assert(C1->getType()->isIntOrIntVectorTy() &&
   1713            "Tried to create a logical operation on a non-integral type!");
   1714     break;
   1715   case Instruction::Shl:
   1716   case Instruction::LShr:
   1717   case Instruction::AShr:
   1718     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1719     assert(C1->getType()->isIntOrIntVectorTy() &&
   1720            "Tried to create a shift operation on a non-integer type!");
   1721     break;
   1722   default:
   1723     break;
   1724   }
   1725 #endif
   1726 
   1727   if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
   1728     return FC;          // Fold a few common cases.
   1729 
   1730   Constant *ArgVec[] = { C1, C2 };
   1731   ExprMapKeyType Key(Opcode, ArgVec, 0, Flags);
   1732 
   1733   LLVMContextImpl *pImpl = C1->getContext().pImpl;
   1734   return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
   1735 }
   1736 
   1737 Constant *ConstantExpr::getSizeOf(Type* Ty) {
   1738   // sizeof is implemented as: (i64) gep (Ty*)null, 1
   1739   // Note that a non-inbounds gep is used, as null isn't within any object.
   1740   Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
   1741   Constant *GEP = getGetElementPtr(
   1742                  Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
   1743   return getPtrToInt(GEP,
   1744                      Type::getInt64Ty(Ty->getContext()));
   1745 }
   1746 
   1747 Constant *ConstantExpr::getAlignOf(Type* Ty) {
   1748   // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
   1749   // Note that a non-inbounds gep is used, as null isn't within any object.
   1750   Type *AligningTy =
   1751     StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL);
   1752   Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
   1753   Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
   1754   Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
   1755   Constant *Indices[2] = { Zero, One };
   1756   Constant *GEP = getGetElementPtr(NullPtr, Indices);
   1757   return getPtrToInt(GEP,
   1758                      Type::getInt64Ty(Ty->getContext()));
   1759 }
   1760 
   1761 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
   1762   return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
   1763                                            FieldNo));
   1764 }
   1765 
   1766 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
   1767   // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
   1768   // Note that a non-inbounds gep is used, as null isn't within any object.
   1769   Constant *GEPIdx[] = {
   1770     ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
   1771     FieldNo
   1772   };
   1773   Constant *GEP = getGetElementPtr(
   1774                 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
   1775   return getPtrToInt(GEP,
   1776                      Type::getInt64Ty(Ty->getContext()));
   1777 }
   1778 
   1779 Constant *ConstantExpr::getCompare(unsigned short Predicate,
   1780                                    Constant *C1, Constant *C2) {
   1781   assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1782 
   1783   switch (Predicate) {
   1784   default: llvm_unreachable("Invalid CmpInst predicate");
   1785   case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
   1786   case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
   1787   case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
   1788   case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
   1789   case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
   1790   case CmpInst::FCMP_TRUE:
   1791     return getFCmp(Predicate, C1, C2);
   1792 
   1793   case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
   1794   case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
   1795   case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
   1796   case CmpInst::ICMP_SLE:
   1797     return getICmp(Predicate, C1, C2);
   1798   }
   1799 }
   1800 
   1801 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) {
   1802   assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
   1803 
   1804   if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
   1805     return SC;        // Fold common cases
   1806 
   1807   Constant *ArgVec[] = { C, V1, V2 };
   1808   ExprMapKeyType Key(Instruction::Select, ArgVec);
   1809 
   1810   LLVMContextImpl *pImpl = C->getContext().pImpl;
   1811   return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
   1812 }
   1813 
   1814 Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
   1815                                          bool InBounds) {
   1816   assert(C->getType()->isPtrOrPtrVectorTy() &&
   1817          "Non-pointer type for constant GetElementPtr expression");
   1818 
   1819   if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs))
   1820     return FC;          // Fold a few common cases.
   1821 
   1822   // Get the result type of the getelementptr!
   1823   Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs);
   1824   assert(Ty && "GEP indices invalid!");
   1825   unsigned AS = C->getType()->getPointerAddressSpace();
   1826   Type *ReqTy = Ty->getPointerTo(AS);
   1827   if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
   1828     ReqTy = VectorType::get(ReqTy, VecTy->getNumElements());
   1829 
   1830   // Look up the constant in the table first to ensure uniqueness
   1831   std::vector<Constant*> ArgVec;
   1832   ArgVec.reserve(1 + Idxs.size());
   1833   ArgVec.push_back(C);
   1834   for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
   1835     assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() &&
   1836            "getelementptr index type missmatch");
   1837     assert((!Idxs[i]->getType()->isVectorTy() ||
   1838             ReqTy->getVectorNumElements() ==
   1839             Idxs[i]->getType()->getVectorNumElements()) &&
   1840            "getelementptr index type missmatch");
   1841     ArgVec.push_back(cast<Constant>(Idxs[i]));
   1842   }
   1843   const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
   1844                            InBounds ? GEPOperator::IsInBounds : 0);
   1845 
   1846   LLVMContextImpl *pImpl = C->getContext().pImpl;
   1847   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
   1848 }
   1849 
   1850 Constant *
   1851 ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
   1852   assert(LHS->getType() == RHS->getType());
   1853   assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
   1854          pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
   1855 
   1856   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
   1857     return FC;          // Fold a few common cases...
   1858 
   1859   // Look up the constant in the table first to ensure uniqueness
   1860   Constant *ArgVec[] = { LHS, RHS };
   1861   // Get the key type with both the opcode and predicate
   1862   const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
   1863 
   1864   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
   1865   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
   1866     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
   1867 
   1868   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
   1869   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
   1870 }
   1871 
   1872 Constant *
   1873 ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
   1874   assert(LHS->getType() == RHS->getType());
   1875   assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
   1876 
   1877   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
   1878     return FC;          // Fold a few common cases...
   1879 
   1880   // Look up the constant in the table first to ensure uniqueness
   1881   Constant *ArgVec[] = { LHS, RHS };
   1882   // Get the key type with both the opcode and predicate
   1883   const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
   1884 
   1885   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
   1886   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
   1887     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
   1888 
   1889   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
   1890   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
   1891 }
   1892 
   1893 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
   1894   assert(Val->getType()->isVectorTy() &&
   1895          "Tried to create extractelement operation on non-vector type!");
   1896   assert(Idx->getType()->isIntegerTy(32) &&
   1897          "Extractelement index must be i32 type!");
   1898 
   1899   if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
   1900     return FC;          // Fold a few common cases.
   1901 
   1902   // Look up the constant in the table first to ensure uniqueness
   1903   Constant *ArgVec[] = { Val, Idx };
   1904   const ExprMapKeyType Key(Instruction::ExtractElement, ArgVec);
   1905 
   1906   LLVMContextImpl *pImpl = Val->getContext().pImpl;
   1907   Type *ReqTy = Val->getType()->getVectorElementType();
   1908   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
   1909 }
   1910 
   1911 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
   1912                                          Constant *Idx) {
   1913   assert(Val->getType()->isVectorTy() &&
   1914          "Tried to create insertelement operation on non-vector type!");
   1915   assert(Elt->getType() == Val->getType()->getVectorElementType() &&
   1916          "Insertelement types must match!");
   1917   assert(Idx->getType()->isIntegerTy(32) &&
   1918          "Insertelement index must be i32 type!");
   1919 
   1920   if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
   1921     return FC;          // Fold a few common cases.
   1922   // Look up the constant in the table first to ensure uniqueness
   1923   Constant *ArgVec[] = { Val, Elt, Idx };
   1924   const ExprMapKeyType Key(Instruction::InsertElement, ArgVec);
   1925 
   1926   LLVMContextImpl *pImpl = Val->getContext().pImpl;
   1927   return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
   1928 }
   1929 
   1930 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
   1931                                          Constant *Mask) {
   1932   assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
   1933          "Invalid shuffle vector constant expr operands!");
   1934 
   1935   if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
   1936     return FC;          // Fold a few common cases.
   1937 
   1938   unsigned NElts = Mask->getType()->getVectorNumElements();
   1939   Type *EltTy = V1->getType()->getVectorElementType();
   1940   Type *ShufTy = VectorType::get(EltTy, NElts);
   1941 
   1942   // Look up the constant in the table first to ensure uniqueness
   1943   Constant *ArgVec[] = { V1, V2, Mask };
   1944   const ExprMapKeyType Key(Instruction::ShuffleVector, ArgVec);
   1945 
   1946   LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
   1947   return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
   1948 }
   1949 
   1950 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
   1951                                        ArrayRef<unsigned> Idxs) {
   1952   assert(ExtractValueInst::getIndexedType(Agg->getType(),
   1953                                           Idxs) == Val->getType() &&
   1954          "insertvalue indices invalid!");
   1955   assert(Agg->getType()->isFirstClassType() &&
   1956          "Non-first-class type for constant insertvalue expression");
   1957   Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs);
   1958   assert(FC && "insertvalue constant expr couldn't be folded!");
   1959   return FC;
   1960 }
   1961 
   1962 Constant *ConstantExpr::getExtractValue(Constant *Agg,
   1963                                         ArrayRef<unsigned> Idxs) {
   1964   assert(Agg->getType()->isFirstClassType() &&
   1965          "Tried to create extractelement operation on non-first-class type!");
   1966 
   1967   Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
   1968   (void)ReqTy;
   1969   assert(ReqTy && "extractvalue indices invalid!");
   1970 
   1971   assert(Agg->getType()->isFirstClassType() &&
   1972          "Non-first-class type for constant extractvalue expression");
   1973   Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs);
   1974   assert(FC && "ExtractValue constant expr couldn't be folded!");
   1975   return FC;
   1976 }
   1977 
   1978 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
   1979   assert(C->getType()->isIntOrIntVectorTy() &&
   1980          "Cannot NEG a nonintegral value!");
   1981   return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
   1982                 C, HasNUW, HasNSW);
   1983 }
   1984 
   1985 Constant *ConstantExpr::getFNeg(Constant *C) {
   1986   assert(C->getType()->isFPOrFPVectorTy() &&
   1987          "Cannot FNEG a non-floating-point value!");
   1988   return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
   1989 }
   1990 
   1991 Constant *ConstantExpr::getNot(Constant *C) {
   1992   assert(C->getType()->isIntOrIntVectorTy() &&
   1993          "Cannot NOT a nonintegral value!");
   1994   return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
   1995 }
   1996 
   1997 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
   1998                                bool HasNUW, bool HasNSW) {
   1999   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
   2000                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
   2001   return get(Instruction::Add, C1, C2, Flags);
   2002 }
   2003 
   2004 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
   2005   return get(Instruction::FAdd, C1, C2);
   2006 }
   2007 
   2008 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
   2009                                bool HasNUW, bool HasNSW) {
   2010   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
   2011                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
   2012   return get(Instruction::Sub, C1, C2, Flags);
   2013 }
   2014 
   2015 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
   2016   return get(Instruction::FSub, C1, C2);
   2017 }
   2018 
   2019 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
   2020                                bool HasNUW, bool HasNSW) {
   2021   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
   2022                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
   2023   return get(Instruction::Mul, C1, C2, Flags);
   2024 }
   2025 
   2026 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
   2027   return get(Instruction::FMul, C1, C2);
   2028 }
   2029 
   2030 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
   2031   return get(Instruction::UDiv, C1, C2,
   2032              isExact ? PossiblyExactOperator::IsExact : 0);
   2033 }
   2034 
   2035 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
   2036   return get(Instruction::SDiv, C1, C2,
   2037              isExact ? PossiblyExactOperator::IsExact : 0);
   2038 }
   2039 
   2040 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
   2041   return get(Instruction::FDiv, C1, C2);
   2042 }
   2043 
   2044 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
   2045   return get(Instruction::URem, C1, C2);
   2046 }
   2047 
   2048 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
   2049   return get(Instruction::SRem, C1, C2);
   2050 }
   2051 
   2052 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
   2053   return get(Instruction::FRem, C1, C2);
   2054 }
   2055 
   2056 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
   2057   return get(Instruction::And, C1, C2);
   2058 }
   2059 
   2060 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
   2061   return get(Instruction::Or, C1, C2);
   2062 }
   2063 
   2064 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
   2065   return get(Instruction::Xor, C1, C2);
   2066 }
   2067 
   2068 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
   2069                                bool HasNUW, bool HasNSW) {
   2070   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
   2071                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
   2072   return get(Instruction::Shl, C1, C2, Flags);
   2073 }
   2074 
   2075 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
   2076   return get(Instruction::LShr, C1, C2,
   2077              isExact ? PossiblyExactOperator::IsExact : 0);
   2078 }
   2079 
   2080 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
   2081   return get(Instruction::AShr, C1, C2,
   2082              isExact ? PossiblyExactOperator::IsExact : 0);
   2083 }
   2084 
   2085 /// getBinOpIdentity - Return the identity for the given binary operation,
   2086 /// i.e. a constant C such that X op C = X and C op X = X for every X.  It
   2087 /// returns null if the operator doesn't have an identity.
   2088 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
   2089   switch (Opcode) {
   2090   default:
   2091     // Doesn't have an identity.
   2092     return 0;
   2093 
   2094   case Instruction::Add:
   2095   case Instruction::Or:
   2096   case Instruction::Xor:
   2097     return Constant::getNullValue(Ty);
   2098 
   2099   case Instruction::Mul:
   2100     return ConstantInt::get(Ty, 1);
   2101 
   2102   case Instruction::And:
   2103     return Constant::getAllOnesValue(Ty);
   2104   }
   2105 }
   2106 
   2107 /// getBinOpAbsorber - Return the absorbing element for the given binary
   2108 /// operation, i.e. a constant C such that X op C = C and C op X = C for
   2109 /// every X.  For example, this returns zero for integer multiplication.
   2110 /// It returns null if the operator doesn't have an absorbing element.
   2111 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
   2112   switch (Opcode) {
   2113   default:
   2114     // Doesn't have an absorber.
   2115     return 0;
   2116 
   2117   case Instruction::Or:
   2118     return Constant::getAllOnesValue(Ty);
   2119 
   2120   case Instruction::And:
   2121   case Instruction::Mul:
   2122     return Constant::getNullValue(Ty);
   2123   }
   2124 }
   2125 
   2126 // destroyConstant - Remove the constant from the constant table...
   2127 //
   2128 void ConstantExpr::destroyConstant() {
   2129   getType()->getContext().pImpl->ExprConstants.remove(this);
   2130   destroyConstantImpl();
   2131 }
   2132 
   2133 const char *ConstantExpr::getOpcodeName() const {
   2134   return Instruction::getOpcodeName(getOpcode());
   2135 }
   2136 
   2137 
   2138 
   2139 GetElementPtrConstantExpr::
   2140 GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
   2141                           Type *DestTy)
   2142   : ConstantExpr(DestTy, Instruction::GetElementPtr,
   2143                  OperandTraits<GetElementPtrConstantExpr>::op_end(this)
   2144                  - (IdxList.size()+1), IdxList.size()+1) {
   2145   OperandList[0] = C;
   2146   for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
   2147     OperandList[i+1] = IdxList[i];
   2148 }
   2149 
   2150 //===----------------------------------------------------------------------===//
   2151 //                       ConstantData* implementations
   2152 
   2153 void ConstantDataArray::anchor() {}
   2154 void ConstantDataVector::anchor() {}
   2155 
   2156 /// getElementType - Return the element type of the array/vector.
   2157 Type *ConstantDataSequential::getElementType() const {
   2158   return getType()->getElementType();
   2159 }
   2160 
   2161 StringRef ConstantDataSequential::getRawDataValues() const {
   2162   return StringRef(DataElements, getNumElements()*getElementByteSize());
   2163 }
   2164 
   2165 /// isElementTypeCompatible - Return true if a ConstantDataSequential can be
   2166 /// formed with a vector or array of the specified element type.
   2167 /// ConstantDataArray only works with normal float and int types that are
   2168 /// stored densely in memory, not with things like i42 or x86_f80.
   2169 bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) {
   2170   if (Ty->isFloatTy() || Ty->isDoubleTy()) return true;
   2171   if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) {
   2172     switch (IT->getBitWidth()) {
   2173     case 8:
   2174     case 16:
   2175     case 32:
   2176     case 64:
   2177       return true;
   2178     default: break;
   2179     }
   2180   }
   2181   return false;
   2182 }
   2183 
   2184 /// getNumElements - Return the number of elements in the array or vector.
   2185 unsigned ConstantDataSequential::getNumElements() const {
   2186   if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
   2187     return AT->getNumElements();
   2188   return getType()->getVectorNumElements();
   2189 }
   2190 
   2191 
   2192 /// getElementByteSize - Return the size in bytes of the elements in the data.
   2193 uint64_t ConstantDataSequential::getElementByteSize() const {
   2194   return getElementType()->getPrimitiveSizeInBits()/8;
   2195 }
   2196 
   2197 /// getElementPointer - Return the start of the specified element.
   2198 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
   2199   assert(Elt < getNumElements() && "Invalid Elt");
   2200   return DataElements+Elt*getElementByteSize();
   2201 }
   2202 
   2203 
   2204 /// isAllZeros - return true if the array is empty or all zeros.
   2205 static bool isAllZeros(StringRef Arr) {
   2206   for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
   2207     if (*I != 0)
   2208       return false;
   2209   return true;
   2210 }
   2211 
   2212 /// getImpl - This is the underlying implementation of all of the
   2213 /// ConstantDataSequential::get methods.  They all thunk down to here, providing
   2214 /// the correct element type.  We take the bytes in as a StringRef because
   2215 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
   2216 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
   2217   assert(isElementTypeCompatible(Ty->getSequentialElementType()));
   2218   // If the elements are all zero or there are no elements, return a CAZ, which
   2219   // is more dense and canonical.
   2220   if (isAllZeros(Elements))
   2221     return ConstantAggregateZero::get(Ty);
   2222 
   2223   // Do a lookup to see if we have already formed one of these.
   2224   StringMap<ConstantDataSequential*>::MapEntryTy &Slot =
   2225     Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements);
   2226 
   2227   // The bucket can point to a linked list of different CDS's that have the same
   2228   // body but different types.  For example, 0,0,0,1 could be a 4 element array
   2229   // of i8, or a 1-element array of i32.  They'll both end up in the same
   2230   /// StringMap bucket, linked up by their Next pointers.  Walk the list.
   2231   ConstantDataSequential **Entry = &Slot.getValue();
   2232   for (ConstantDataSequential *Node = *Entry; Node != 0;
   2233        Entry = &Node->Next, Node = *Entry)
   2234     if (Node->getType() == Ty)
   2235       return Node;
   2236 
   2237   // Okay, we didn't get a hit.  Create a node of the right class, link it in,
   2238   // and return it.
   2239   if (isa<ArrayType>(Ty))
   2240     return *Entry = new ConstantDataArray(Ty, Slot.getKeyData());
   2241 
   2242   assert(isa<VectorType>(Ty));
   2243   return *Entry = new ConstantDataVector(Ty, Slot.getKeyData());
   2244 }
   2245 
   2246 void ConstantDataSequential::destroyConstant() {
   2247   // Remove the constant from the StringMap.
   2248   StringMap<ConstantDataSequential*> &CDSConstants =
   2249     getType()->getContext().pImpl->CDSConstants;
   2250 
   2251   StringMap<ConstantDataSequential*>::iterator Slot =
   2252     CDSConstants.find(getRawDataValues());
   2253 
   2254   assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
   2255 
   2256   ConstantDataSequential **Entry = &Slot->getValue();
   2257 
   2258   // Remove the entry from the hash table.
   2259   if ((*Entry)->Next == 0) {
   2260     // If there is only one value in the bucket (common case) it must be this
   2261     // entry, and removing the entry should remove the bucket completely.
   2262     assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
   2263     getContext().pImpl->CDSConstants.erase(Slot);
   2264   } else {
   2265     // Otherwise, there are multiple entries linked off the bucket, unlink the
   2266     // node we care about but keep the bucket around.
   2267     for (ConstantDataSequential *Node = *Entry; ;
   2268          Entry = &Node->Next, Node = *Entry) {
   2269       assert(Node && "Didn't find entry in its uniquing hash table!");
   2270       // If we found our entry, unlink it from the list and we're done.
   2271       if (Node == this) {
   2272         *Entry = Node->Next;
   2273         break;
   2274       }
   2275     }
   2276   }
   2277 
   2278   // If we were part of a list, make sure that we don't delete the list that is
   2279   // still owned by the uniquing map.
   2280   Next = 0;
   2281 
   2282   // Finally, actually delete it.
   2283   destroyConstantImpl();
   2284 }
   2285 
   2286 /// get() constructors - Return a constant with array type with an element
   2287 /// count and element type matching the ArrayRef passed in.  Note that this
   2288 /// can return a ConstantAggregateZero object.
   2289 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
   2290   Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
   2291   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2292   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
   2293 }
   2294 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
   2295   Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
   2296   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2297   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
   2298 }
   2299 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
   2300   Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
   2301   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2302   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
   2303 }
   2304 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
   2305   Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
   2306   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2307   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
   2308 }
   2309 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
   2310   Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
   2311   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2312   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
   2313 }
   2314 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
   2315   Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
   2316   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2317   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
   2318 }
   2319 
   2320 /// getString - This method constructs a CDS and initializes it with a text
   2321 /// string. The default behavior (AddNull==true) causes a null terminator to
   2322 /// be placed at the end of the array (increasing the length of the string by
   2323 /// one more than the StringRef would normally indicate.  Pass AddNull=false
   2324 /// to disable this behavior.
   2325 Constant *ConstantDataArray::getString(LLVMContext &Context,
   2326                                        StringRef Str, bool AddNull) {
   2327   if (!AddNull) {
   2328     const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
   2329     return get(Context, ArrayRef<uint8_t>(const_cast<uint8_t *>(Data),
   2330                Str.size()));
   2331   }
   2332 
   2333   SmallVector<uint8_t, 64> ElementVals;
   2334   ElementVals.append(Str.begin(), Str.end());
   2335   ElementVals.push_back(0);
   2336   return get(Context, ElementVals);
   2337 }
   2338 
   2339 /// get() constructors - Return a constant with vector type with an element
   2340 /// count and element type matching the ArrayRef passed in.  Note that this
   2341 /// can return a ConstantAggregateZero object.
   2342 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
   2343   Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
   2344   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2345   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
   2346 }
   2347 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
   2348   Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
   2349   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2350   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
   2351 }
   2352 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
   2353   Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
   2354   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2355   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
   2356 }
   2357 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
   2358   Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
   2359   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2360   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
   2361 }
   2362 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
   2363   Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
   2364   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2365   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
   2366 }
   2367 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
   2368   Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
   2369   const char *Data = reinterpret_cast<const char *>(Elts.data());
   2370   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
   2371 }
   2372 
   2373 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
   2374   assert(isElementTypeCompatible(V->getType()) &&
   2375          "Element type not compatible with ConstantData");
   2376   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
   2377     if (CI->getType()->isIntegerTy(8)) {
   2378       SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
   2379       return get(V->getContext(), Elts);
   2380     }
   2381     if (CI->getType()->isIntegerTy(16)) {
   2382       SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
   2383       return get(V->getContext(), Elts);
   2384     }
   2385     if (CI->getType()->isIntegerTy(32)) {
   2386       SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
   2387       return get(V->getContext(), Elts);
   2388     }
   2389     assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
   2390     SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
   2391     return get(V->getContext(), Elts);
   2392   }
   2393 
   2394   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
   2395     if (CFP->getType()->isFloatTy()) {
   2396       SmallVector<float, 16> Elts(NumElts, CFP->getValueAPF().convertToFloat());
   2397       return get(V->getContext(), Elts);
   2398     }
   2399     if (CFP->getType()->isDoubleTy()) {
   2400       SmallVector<double, 16> Elts(NumElts,
   2401                                    CFP->getValueAPF().convertToDouble());
   2402       return get(V->getContext(), Elts);
   2403     }
   2404   }
   2405   return ConstantVector::getSplat(NumElts, V);
   2406 }
   2407 
   2408 
   2409 /// getElementAsInteger - If this is a sequential container of integers (of
   2410 /// any size), return the specified element in the low bits of a uint64_t.
   2411 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
   2412   assert(isa<IntegerType>(getElementType()) &&
   2413          "Accessor can only be used when element is an integer");
   2414   const char *EltPtr = getElementPointer(Elt);
   2415 
   2416   // The data is stored in host byte order, make sure to cast back to the right
   2417   // type to load with the right endianness.
   2418   switch (getElementType()->getIntegerBitWidth()) {
   2419   default: llvm_unreachable("Invalid bitwidth for CDS");
   2420   case 8:
   2421     return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
   2422   case 16:
   2423     return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
   2424   case 32:
   2425     return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
   2426   case 64:
   2427     return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
   2428   }
   2429 }
   2430 
   2431 /// getElementAsAPFloat - If this is a sequential container of floating point
   2432 /// type, return the specified element as an APFloat.
   2433 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
   2434   const char *EltPtr = getElementPointer(Elt);
   2435 
   2436   switch (getElementType()->getTypeID()) {
   2437   default:
   2438     llvm_unreachable("Accessor can only be used when element is float/double!");
   2439   case Type::FloatTyID: {
   2440       const float *FloatPrt = reinterpret_cast<const float *>(EltPtr);
   2441       return APFloat(*const_cast<float *>(FloatPrt));
   2442     }
   2443   case Type::DoubleTyID: {
   2444       const double *DoublePtr = reinterpret_cast<const double *>(EltPtr);
   2445       return APFloat(*const_cast<double *>(DoublePtr));
   2446     }
   2447   }
   2448 }
   2449 
   2450 /// getElementAsFloat - If this is an sequential container of floats, return
   2451 /// the specified element as a float.
   2452 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
   2453   assert(getElementType()->isFloatTy() &&
   2454          "Accessor can only be used when element is a 'float'");
   2455   const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
   2456   return *const_cast<float *>(EltPtr);
   2457 }
   2458 
   2459 /// getElementAsDouble - If this is an sequential container of doubles, return
   2460 /// the specified element as a float.
   2461 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
   2462   assert(getElementType()->isDoubleTy() &&
   2463          "Accessor can only be used when element is a 'float'");
   2464   const double *EltPtr =
   2465       reinterpret_cast<const double *>(getElementPointer(Elt));
   2466   return *const_cast<double *>(EltPtr);
   2467 }
   2468 
   2469 /// getElementAsConstant - Return a Constant for a specified index's element.
   2470 /// Note that this has to compute a new constant to return, so it isn't as
   2471 /// efficient as getElementAsInteger/Float/Double.
   2472 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
   2473   if (getElementType()->isFloatTy() || getElementType()->isDoubleTy())
   2474     return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
   2475 
   2476   return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
   2477 }
   2478 
   2479 /// isString - This method returns true if this is an array of i8.
   2480 bool ConstantDataSequential::isString() const {
   2481   return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
   2482 }
   2483 
   2484 /// isCString - This method returns true if the array "isString", ends with a
   2485 /// nul byte, and does not contains any other nul bytes.
   2486 bool ConstantDataSequential::isCString() const {
   2487   if (!isString())
   2488     return false;
   2489 
   2490   StringRef Str = getAsString();
   2491 
   2492   // The last value must be nul.
   2493   if (Str.back() != 0) return false;
   2494 
   2495   // Other elements must be non-nul.
   2496   return Str.drop_back().find(0) == StringRef::npos;
   2497 }
   2498 
   2499 /// getSplatValue - If this is a splat constant, meaning that all of the
   2500 /// elements have the same value, return that value. Otherwise return NULL.
   2501 Constant *ConstantDataVector::getSplatValue() const {
   2502   const char *Base = getRawDataValues().data();
   2503 
   2504   // Compare elements 1+ to the 0'th element.
   2505   unsigned EltSize = getElementByteSize();
   2506   for (unsigned i = 1, e = getNumElements(); i != e; ++i)
   2507     if (memcmp(Base, Base+i*EltSize, EltSize))
   2508       return 0;
   2509 
   2510   // If they're all the same, return the 0th one as a representative.
   2511   return getElementAsConstant(0);
   2512 }
   2513 
   2514 //===----------------------------------------------------------------------===//
   2515 //                replaceUsesOfWithOnConstant implementations
   2516 
   2517 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
   2518 /// 'From' to be uses of 'To'.  This must update the uniquing data structures
   2519 /// etc.
   2520 ///
   2521 /// Note that we intentionally replace all uses of From with To here.  Consider
   2522 /// a large array that uses 'From' 1000 times.  By handling this case all here,
   2523 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
   2524 /// single invocation handles all 1000 uses.  Handling them one at a time would
   2525 /// work, but would be really slow because it would have to unique each updated
   2526 /// array instance.
   2527 ///
   2528 void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
   2529                                                 Use *U) {
   2530   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
   2531   Constant *ToC = cast<Constant>(To);
   2532 
   2533   LLVMContextImpl *pImpl = getType()->getContext().pImpl;
   2534 
   2535   SmallVector<Constant*, 8> Values;
   2536   LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup;
   2537   Lookup.first = cast<ArrayType>(getType());
   2538   Values.reserve(getNumOperands());  // Build replacement array.
   2539 
   2540   // Fill values with the modified operands of the constant array.  Also,
   2541   // compute whether this turns into an all-zeros array.
   2542   unsigned NumUpdated = 0;
   2543 
   2544   // Keep track of whether all the values in the array are "ToC".
   2545   bool AllSame = true;
   2546   for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
   2547     Constant *Val = cast<Constant>(O->get());
   2548     if (Val == From) {
   2549       Val = ToC;
   2550       ++NumUpdated;
   2551     }
   2552     Values.push_back(Val);
   2553     AllSame &= Val == ToC;
   2554   }
   2555 
   2556   Constant *Replacement = 0;
   2557   if (AllSame && ToC->isNullValue()) {
   2558     Replacement = ConstantAggregateZero::get(getType());
   2559   } else if (AllSame && isa<UndefValue>(ToC)) {
   2560     Replacement = UndefValue::get(getType());
   2561   } else {
   2562     // Check to see if we have this array type already.
   2563     Lookup.second = makeArrayRef(Values);
   2564     LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
   2565       pImpl->ArrayConstants.find(Lookup);
   2566 
   2567     if (I != pImpl->ArrayConstants.map_end()) {
   2568       Replacement = I->first;
   2569     } else {
   2570       // Okay, the new shape doesn't exist in the system yet.  Instead of
   2571       // creating a new constant array, inserting it, replaceallusesof'ing the
   2572       // old with the new, then deleting the old... just update the current one
   2573       // in place!
   2574       pImpl->ArrayConstants.remove(this);
   2575 
   2576       // Update to the new value.  Optimize for the case when we have a single
   2577       // operand that we're changing, but handle bulk updates efficiently.
   2578       if (NumUpdated == 1) {
   2579         unsigned OperandToUpdate = U - OperandList;
   2580         assert(getOperand(OperandToUpdate) == From &&
   2581                "ReplaceAllUsesWith broken!");
   2582         setOperand(OperandToUpdate, ToC);
   2583       } else {
   2584         for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
   2585           if (getOperand(i) == From)
   2586             setOperand(i, ToC);
   2587       }
   2588       pImpl->ArrayConstants.insert(this);
   2589       return;
   2590     }
   2591   }
   2592 
   2593   // Otherwise, I do need to replace this with an existing value.
   2594   assert(Replacement != this && "I didn't contain From!");
   2595 
   2596   // Everyone using this now uses the replacement.
   2597   replaceAllUsesWith(Replacement);
   2598 
   2599   // Delete the old constant!
   2600   destroyConstant();
   2601 }
   2602 
   2603 void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
   2604                                                  Use *U) {
   2605   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
   2606   Constant *ToC = cast<Constant>(To);
   2607 
   2608   unsigned OperandToUpdate = U-OperandList;
   2609   assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
   2610 
   2611   SmallVector<Constant*, 8> Values;
   2612   LLVMContextImpl::StructConstantsTy::LookupKey Lookup;
   2613   Lookup.first = cast<StructType>(getType());
   2614   Values.reserve(getNumOperands());  // Build replacement struct.
   2615 
   2616   // Fill values with the modified operands of the constant struct.  Also,
   2617   // compute whether this turns into an all-zeros struct.
   2618   bool isAllZeros = false;
   2619   bool isAllUndef = false;
   2620   if (ToC->isNullValue()) {
   2621     isAllZeros = true;
   2622     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
   2623       Constant *Val = cast<Constant>(O->get());
   2624       Values.push_back(Val);
   2625       if (isAllZeros) isAllZeros = Val->isNullValue();
   2626     }
   2627   } else if (isa<UndefValue>(ToC)) {
   2628     isAllUndef = true;
   2629     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
   2630       Constant *Val = cast<Constant>(O->get());
   2631       Values.push_back(Val);
   2632       if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
   2633     }
   2634   } else {
   2635     for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
   2636       Values.push_back(cast<Constant>(O->get()));
   2637   }
   2638   Values[OperandToUpdate] = ToC;
   2639 
   2640   LLVMContextImpl *pImpl = getContext().pImpl;
   2641 
   2642   Constant *Replacement = 0;
   2643   if (isAllZeros) {
   2644     Replacement = ConstantAggregateZero::get(getType());
   2645   } else if (isAllUndef) {
   2646     Replacement = UndefValue::get(getType());
   2647   } else {
   2648     // Check to see if we have this struct type already.
   2649     Lookup.second = makeArrayRef(Values);
   2650     LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
   2651       pImpl->StructConstants.find(Lookup);
   2652 
   2653     if (I != pImpl->StructConstants.map_end()) {
   2654       Replacement = I->first;
   2655     } else {
   2656       // Okay, the new shape doesn't exist in the system yet.  Instead of
   2657       // creating a new constant struct, inserting it, replaceallusesof'ing the
   2658       // old with the new, then deleting the old... just update the current one
   2659       // in place!
   2660       pImpl->StructConstants.remove(this);
   2661 
   2662       // Update to the new value.
   2663       setOperand(OperandToUpdate, ToC);
   2664       pImpl->StructConstants.insert(this);
   2665       return;
   2666     }
   2667   }
   2668 
   2669   assert(Replacement != this && "I didn't contain From!");
   2670 
   2671   // Everyone using this now uses the replacement.
   2672   replaceAllUsesWith(Replacement);
   2673 
   2674   // Delete the old constant!
   2675   destroyConstant();
   2676 }
   2677 
   2678 void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
   2679                                                  Use *U) {
   2680   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
   2681 
   2682   SmallVector<Constant*, 8> Values;
   2683   Values.reserve(getNumOperands());  // Build replacement array...
   2684   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   2685     Constant *Val = getOperand(i);
   2686     if (Val == From) Val = cast<Constant>(To);
   2687     Values.push_back(Val);
   2688   }
   2689 
   2690   Constant *Replacement = get(Values);
   2691   assert(Replacement != this && "I didn't contain From!");
   2692 
   2693   // Everyone using this now uses the replacement.
   2694   replaceAllUsesWith(Replacement);
   2695 
   2696   // Delete the old constant!
   2697   destroyConstant();
   2698 }
   2699 
   2700 void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
   2701                                                Use *U) {
   2702   assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
   2703   Constant *To = cast<Constant>(ToV);
   2704 
   2705   SmallVector<Constant*, 8> NewOps;
   2706   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   2707     Constant *Op = getOperand(i);
   2708     NewOps.push_back(Op == From ? To : Op);
   2709   }
   2710 
   2711   Constant *Replacement = getWithOperands(NewOps);
   2712   assert(Replacement != this && "I didn't contain From!");
   2713 
   2714   // Everyone using this now uses the replacement.
   2715   replaceAllUsesWith(Replacement);
   2716 
   2717   // Delete the old constant!
   2718   destroyConstant();
   2719 }
   2720 
   2721 Instruction *ConstantExpr::getAsInstruction() {
   2722   SmallVector<Value*,4> ValueOperands;
   2723   for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
   2724     ValueOperands.push_back(cast<Value>(I));
   2725 
   2726   ArrayRef<Value*> Ops(ValueOperands);
   2727 
   2728   switch (getOpcode()) {
   2729   case Instruction::Trunc:
   2730   case Instruction::ZExt:
   2731   case Instruction::SExt:
   2732   case Instruction::FPTrunc:
   2733   case Instruction::FPExt:
   2734   case Instruction::UIToFP:
   2735   case Instruction::SIToFP:
   2736   case Instruction::FPToUI:
   2737   case Instruction::FPToSI:
   2738   case Instruction::PtrToInt:
   2739   case Instruction::IntToPtr:
   2740   case Instruction::BitCast:
   2741     return CastInst::Create((Instruction::CastOps)getOpcode(),
   2742                             Ops[0], getType());
   2743   case Instruction::Select:
   2744     return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
   2745   case Instruction::InsertElement:
   2746     return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
   2747   case Instruction::ExtractElement:
   2748     return ExtractElementInst::Create(Ops[0], Ops[1]);
   2749   case Instruction::InsertValue:
   2750     return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
   2751   case Instruction::ExtractValue:
   2752     return ExtractValueInst::Create(Ops[0], getIndices());
   2753   case Instruction::ShuffleVector:
   2754     return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
   2755 
   2756   case Instruction::GetElementPtr:
   2757     if (cast<GEPOperator>(this)->isInBounds())
   2758       return GetElementPtrInst::CreateInBounds(Ops[0], Ops.slice(1));
   2759     else
   2760       return GetElementPtrInst::Create(Ops[0], Ops.slice(1));
   2761 
   2762   case Instruction::ICmp:
   2763   case Instruction::FCmp:
   2764     return CmpInst::Create((Instruction::OtherOps)getOpcode(),
   2765                            getPredicate(), Ops[0], Ops[1]);
   2766 
   2767   default:
   2768     assert(getNumOperands() == 2 && "Must be binary operator?");
   2769     BinaryOperator *BO =
   2770       BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
   2771                              Ops[0], Ops[1]);
   2772     if (isa<OverflowingBinaryOperator>(BO)) {
   2773       BO->setHasNoUnsignedWrap(SubclassOptionalData &
   2774                                OverflowingBinaryOperator::NoUnsignedWrap);
   2775       BO->setHasNoSignedWrap(SubclassOptionalData &
   2776                              OverflowingBinaryOperator::NoSignedWrap);
   2777     }
   2778     if (isa<PossiblyExactOperator>(BO))
   2779       BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
   2780     return BO;
   2781   }
   2782 }
   2783