Home | History | Annotate | Download | only in IR
      1 //===--------- llvm/DataLayout.h - Data size & alignment info ---*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines layout properties related to datatype size/offset/alignment
     11 // information.  It uses lazy annotations to cache information about how
     12 // structure types are laid out and used.
     13 //
     14 // This structure should be created once, filled in if the defaults are not
     15 // correct and then passed around by const&.  None of the members functions
     16 // require modification to the object.
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #ifndef LLVM_IR_DATALAYOUT_H
     21 #define LLVM_IR_DATALAYOUT_H
     22 
     23 #include "llvm/ADT/DenseMap.h"
     24 #include "llvm/ADT/SmallVector.h"
     25 #include "llvm/Pass.h"
     26 #include "llvm/Support/DataTypes.h"
     27 
     28 namespace llvm {
     29 
     30 class Value;
     31 class Type;
     32 class IntegerType;
     33 class StructType;
     34 class StructLayout;
     35 class GlobalVariable;
     36 class LLVMContext;
     37 template<typename T>
     38 class ArrayRef;
     39 
     40 /// Enum used to categorize the alignment types stored by LayoutAlignElem
     41 enum AlignTypeEnum {
     42   INVALID_ALIGN = 0,                 ///< An invalid alignment
     43   INTEGER_ALIGN = 'i',               ///< Integer type alignment
     44   VECTOR_ALIGN = 'v',                ///< Vector type alignment
     45   FLOAT_ALIGN = 'f',                 ///< Floating point type alignment
     46   AGGREGATE_ALIGN = 'a',             ///< Aggregate alignment
     47   STACK_ALIGN = 's'                  ///< Stack objects alignment
     48 };
     49 
     50 /// Layout alignment element.
     51 ///
     52 /// Stores the alignment data associated with a given alignment type (integer,
     53 /// vector, float) and type bit width.
     54 ///
     55 /// @note The unusual order of elements in the structure attempts to reduce
     56 /// padding and make the structure slightly more cache friendly.
     57 struct LayoutAlignElem {
     58   unsigned AlignType    : 8;  ///< Alignment type (AlignTypeEnum)
     59   unsigned TypeBitWidth : 24; ///< Type bit width
     60   unsigned ABIAlign     : 16; ///< ABI alignment for this type/bitw
     61   unsigned PrefAlign    : 16; ///< Pref. alignment for this type/bitw
     62 
     63   /// Initializer
     64   static LayoutAlignElem get(AlignTypeEnum align_type, unsigned abi_align,
     65                              unsigned pref_align, uint32_t bit_width);
     66   /// Equality predicate
     67   bool operator==(const LayoutAlignElem &rhs) const;
     68 };
     69 
     70 /// Layout pointer alignment element.
     71 ///
     72 /// Stores the alignment data associated with a given pointer and address space.
     73 ///
     74 /// @note The unusual order of elements in the structure attempts to reduce
     75 /// padding and make the structure slightly more cache friendly.
     76 struct PointerAlignElem {
     77   unsigned            ABIAlign;       ///< ABI alignment for this type/bitw
     78   unsigned            PrefAlign;      ///< Pref. alignment for this type/bitw
     79   uint32_t            TypeBitWidth;   ///< Type bit width
     80   uint32_t            AddressSpace;   ///< Address space for the pointer type
     81 
     82   /// Initializer
     83   static PointerAlignElem get(uint32_t addr_space, unsigned abi_align,
     84                              unsigned pref_align, uint32_t bit_width);
     85   /// Equality predicate
     86   bool operator==(const PointerAlignElem &rhs) const;
     87 };
     88 
     89 
     90 /// DataLayout - This class holds a parsed version of the target data layout
     91 /// string in a module and provides methods for querying it.  The target data
     92 /// layout string is specified *by the target* - a frontend generating LLVM IR
     93 /// is required to generate the right target data for the target being codegen'd
     94 /// to.  If some measure of portability is desired, an empty string may be
     95 /// specified in the module.
     96 class DataLayout : public ImmutablePass {
     97 private:
     98   bool          LittleEndian;          ///< Defaults to false
     99   unsigned      StackNaturalAlign;     ///< Stack natural alignment
    100 
    101   SmallVector<unsigned char, 8> LegalIntWidths; ///< Legal Integers.
    102 
    103   /// Alignments - Where the primitive type alignment data is stored.
    104   ///
    105   /// @sa init().
    106   /// @note Could support multiple size pointer alignments, e.g., 32-bit
    107   /// pointers vs. 64-bit pointers by extending LayoutAlignment, but for now,
    108   /// we don't.
    109   SmallVector<LayoutAlignElem, 16> Alignments;
    110   DenseMap<unsigned, PointerAlignElem> Pointers;
    111 
    112   /// InvalidAlignmentElem - This member is a signal that a requested alignment
    113   /// type and bit width were not found in the SmallVector.
    114   static const LayoutAlignElem InvalidAlignmentElem;
    115 
    116   /// InvalidPointerElem - This member is a signal that a requested pointer
    117   /// type and bit width were not found in the DenseSet.
    118   static const PointerAlignElem InvalidPointerElem;
    119 
    120   // The StructType -> StructLayout map.
    121   mutable void *LayoutMap;
    122 
    123   //! Set/initialize target alignments
    124   void setAlignment(AlignTypeEnum align_type, unsigned abi_align,
    125                     unsigned pref_align, uint32_t bit_width);
    126   unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
    127                             bool ABIAlign, Type *Ty) const;
    128 
    129   //! Set/initialize pointer alignments
    130   void setPointerAlignment(uint32_t addr_space, unsigned abi_align,
    131       unsigned pref_align, uint32_t bit_width);
    132 
    133   //! Internal helper method that returns requested alignment for type.
    134   unsigned getAlignment(Type *Ty, bool abi_or_pref) const;
    135 
    136   /// Valid alignment predicate.
    137   ///
    138   /// Predicate that tests a LayoutAlignElem reference returned by get() against
    139   /// InvalidAlignmentElem.
    140   bool validAlignment(const LayoutAlignElem &align) const {
    141     return &align != &InvalidAlignmentElem;
    142   }
    143 
    144   /// Valid pointer predicate.
    145   ///
    146   /// Predicate that tests a PointerAlignElem reference returned by get() against
    147   /// InvalidPointerElem.
    148   bool validPointer(const PointerAlignElem &align) const {
    149     return &align != &InvalidPointerElem;
    150   }
    151 
    152   /// Parses a target data specification string. Assert if the string is
    153   /// malformed.
    154   void parseSpecifier(StringRef LayoutDescription);
    155 
    156 public:
    157   /// Default ctor.
    158   ///
    159   /// @note This has to exist, because this is a pass, but it should never be
    160   /// used.
    161   DataLayout();
    162 
    163   /// Constructs a DataLayout from a specification string. See init().
    164   explicit DataLayout(StringRef LayoutDescription)
    165     : ImmutablePass(ID) {
    166     init(LayoutDescription);
    167   }
    168 
    169   /// Initialize target data from properties stored in the module.
    170   explicit DataLayout(const Module *M);
    171 
    172   DataLayout(const DataLayout &TD) :
    173     ImmutablePass(ID),
    174     LittleEndian(TD.isLittleEndian()),
    175     StackNaturalAlign(TD.StackNaturalAlign),
    176     LegalIntWidths(TD.LegalIntWidths),
    177     Alignments(TD.Alignments),
    178     Pointers(TD.Pointers),
    179     LayoutMap(0)
    180   { }
    181 
    182   ~DataLayout();  // Not virtual, do not subclass this class
    183 
    184   /// DataLayout is an immutable pass, but holds state.  This allows the pass
    185   /// manager to clear its mutable state.
    186   bool doFinalization(Module &M);
    187 
    188   /// Parse a data layout string (with fallback to default values). Ensure that
    189   /// the data layout pass is registered.
    190   void init(StringRef LayoutDescription);
    191 
    192   /// Layout endianness...
    193   bool isLittleEndian() const { return LittleEndian; }
    194   bool isBigEndian() const { return !LittleEndian; }
    195 
    196   /// getStringRepresentation - Return the string representation of the
    197   /// DataLayout.  This representation is in the same format accepted by the
    198   /// string constructor above.
    199   std::string getStringRepresentation() const;
    200 
    201   /// isLegalInteger - This function returns true if the specified type is
    202   /// known to be a native integer type supported by the CPU.  For example,
    203   /// i64 is not native on most 32-bit CPUs and i37 is not native on any known
    204   /// one.  This returns false if the integer width is not legal.
    205   ///
    206   /// The width is specified in bits.
    207   ///
    208   bool isLegalInteger(unsigned Width) const {
    209     for (unsigned i = 0, e = (unsigned)LegalIntWidths.size(); i != e; ++i)
    210       if (LegalIntWidths[i] == Width)
    211         return true;
    212     return false;
    213   }
    214 
    215   bool isIllegalInteger(unsigned Width) const {
    216     return !isLegalInteger(Width);
    217   }
    218 
    219   /// Returns true if the given alignment exceeds the natural stack alignment.
    220   bool exceedsNaturalStackAlignment(unsigned Align) const {
    221     return (StackNaturalAlign != 0) && (Align > StackNaturalAlign);
    222   }
    223 
    224   /// fitsInLegalInteger - This function returns true if the specified type fits
    225   /// in a native integer type supported by the CPU.  For example, if the CPU
    226   /// only supports i32 as a native integer type, then i27 fits in a legal
    227   // integer type but i45 does not.
    228   bool fitsInLegalInteger(unsigned Width) const {
    229     for (unsigned i = 0, e = (unsigned)LegalIntWidths.size(); i != e; ++i)
    230       if (Width <= LegalIntWidths[i])
    231         return true;
    232     return false;
    233   }
    234 
    235   /// Layout pointer alignment
    236   /// FIXME: The defaults need to be removed once all of
    237   /// the backends/clients are updated.
    238   unsigned getPointerABIAlignment(unsigned AS = 0)  const {
    239     DenseMap<unsigned, PointerAlignElem>::const_iterator val = Pointers.find(AS);
    240     if (val == Pointers.end()) {
    241       val = Pointers.find(0);
    242     }
    243     return val->second.ABIAlign;
    244   }
    245   /// Return target's alignment for stack-based pointers
    246   /// FIXME: The defaults need to be removed once all of
    247   /// the backends/clients are updated.
    248   unsigned getPointerPrefAlignment(unsigned AS = 0) const {
    249     DenseMap<unsigned, PointerAlignElem>::const_iterator val = Pointers.find(AS);
    250     if (val == Pointers.end()) {
    251       val = Pointers.find(0);
    252     }
    253     return val->second.PrefAlign;
    254   }
    255   /// Layout pointer size
    256   /// FIXME: The defaults need to be removed once all of
    257   /// the backends/clients are updated.
    258   unsigned getPointerSize(unsigned AS = 0)          const {
    259     DenseMap<unsigned, PointerAlignElem>::const_iterator val = Pointers.find(AS);
    260     if (val == Pointers.end()) {
    261       val = Pointers.find(0);
    262     }
    263     return val->second.TypeBitWidth;
    264   }
    265   /// Layout pointer size, in bits
    266   /// FIXME: The defaults need to be removed once all of
    267   /// the backends/clients are updated.
    268   unsigned getPointerSizeInBits(unsigned AS = 0)    const {
    269     return getPointerSize(AS) * 8;
    270   }
    271   /// Size examples:
    272   ///
    273   /// Type        SizeInBits  StoreSizeInBits  AllocSizeInBits[*]
    274   /// ----        ----------  ---------------  ---------------
    275   ///  i1            1           8                8
    276   ///  i8            8           8                8
    277   ///  i19          19          24               32
    278   ///  i32          32          32               32
    279   ///  i100        100         104              128
    280   ///  i128        128         128              128
    281   ///  Float        32          32               32
    282   ///  Double       64          64               64
    283   ///  X86_FP80     80          80               96
    284   ///
    285   /// [*] The alloc size depends on the alignment, and thus on the target.
    286   ///     These values are for x86-32 linux.
    287 
    288   /// getTypeSizeInBits - Return the number of bits necessary to hold the
    289   /// specified type.  For example, returns 36 for i36 and 80 for x86_fp80.
    290   /// The type passed must have a size (Type::isSized() must return true).
    291   uint64_t getTypeSizeInBits(Type *Ty) const;
    292 
    293   /// getTypeStoreSize - Return the maximum number of bytes that may be
    294   /// overwritten by storing the specified type.  For example, returns 5
    295   /// for i36 and 10 for x86_fp80.
    296   uint64_t getTypeStoreSize(Type *Ty) const {
    297     return (getTypeSizeInBits(Ty)+7)/8;
    298   }
    299 
    300   /// getTypeStoreSizeInBits - Return the maximum number of bits that may be
    301   /// overwritten by storing the specified type; always a multiple of 8.  For
    302   /// example, returns 40 for i36 and 80 for x86_fp80.
    303   uint64_t getTypeStoreSizeInBits(Type *Ty) const {
    304     return 8*getTypeStoreSize(Ty);
    305   }
    306 
    307   /// getTypeAllocSize - Return the offset in bytes between successive objects
    308   /// of the specified type, including alignment padding.  This is the amount
    309   /// that alloca reserves for this type.  For example, returns 12 or 16 for
    310   /// x86_fp80, depending on alignment.
    311   uint64_t getTypeAllocSize(Type *Ty) const {
    312     // Round up to the next alignment boundary.
    313     return RoundUpAlignment(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
    314   }
    315 
    316   /// getTypeAllocSizeInBits - Return the offset in bits between successive
    317   /// objects of the specified type, including alignment padding; always a
    318   /// multiple of 8.  This is the amount that alloca reserves for this type.
    319   /// For example, returns 96 or 128 for x86_fp80, depending on alignment.
    320   uint64_t getTypeAllocSizeInBits(Type *Ty) const {
    321     return 8*getTypeAllocSize(Ty);
    322   }
    323 
    324   /// getABITypeAlignment - Return the minimum ABI-required alignment for the
    325   /// specified type.
    326   unsigned getABITypeAlignment(Type *Ty) const;
    327 
    328   /// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for
    329   /// an integer type of the specified bitwidth.
    330   unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const;
    331 
    332   /// getCallFrameTypeAlignment - Return the minimum ABI-required alignment
    333   /// for the specified type when it is part of a call frame.
    334   unsigned getCallFrameTypeAlignment(Type *Ty) const;
    335 
    336   /// getPrefTypeAlignment - Return the preferred stack/global alignment for
    337   /// the specified type.  This is always at least as good as the ABI alignment.
    338   unsigned getPrefTypeAlignment(Type *Ty) const;
    339 
    340   /// getPreferredTypeAlignmentShift - Return the preferred alignment for the
    341   /// specified type, returned as log2 of the value (a shift amount).
    342   unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
    343 
    344   /// getIntPtrType - Return an integer type with size at least as big as that
    345   /// of a pointer in the given address space.
    346   IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
    347 
    348   /// getIntPtrType - Return an integer (vector of integer) type with size at
    349   /// least as big as that of a pointer of the given pointer (vector of pointer)
    350   /// type.
    351   Type *getIntPtrType(Type *) const;
    352 
    353   /// getIndexedOffset - return the offset from the beginning of the type for
    354   /// the specified indices.  This is used to implement getelementptr.
    355   uint64_t getIndexedOffset(Type *Ty, ArrayRef<Value *> Indices) const;
    356 
    357   /// getStructLayout - Return a StructLayout object, indicating the alignment
    358   /// of the struct, its size, and the offsets of its fields.  Note that this
    359   /// information is lazily cached.
    360   const StructLayout *getStructLayout(StructType *Ty) const;
    361 
    362   /// getPreferredAlignment - Return the preferred alignment of the specified
    363   /// global.  This includes an explicitly requested alignment (if the global
    364   /// has one).
    365   unsigned getPreferredAlignment(const GlobalVariable *GV) const;
    366 
    367   /// getPreferredAlignmentLog - Return the preferred alignment of the
    368   /// specified global, returned in log form.  This includes an explicitly
    369   /// requested alignment (if the global has one).
    370   unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
    371 
    372   /// RoundUpAlignment - Round the specified value up to the next alignment
    373   /// boundary specified by Alignment.  For example, 7 rounded up to an
    374   /// alignment boundary of 4 is 8.  8 rounded up to the alignment boundary of 4
    375   /// is 8 because it is already aligned.
    376   template <typename UIntTy>
    377   static UIntTy RoundUpAlignment(UIntTy Val, unsigned Alignment) {
    378     assert((Alignment & (Alignment-1)) == 0 && "Alignment must be power of 2!");
    379     return (Val + (Alignment-1)) & ~UIntTy(Alignment-1);
    380   }
    381 
    382   static char ID; // Pass identification, replacement for typeid
    383 };
    384 
    385 /// StructLayout - used to lazily calculate structure layout information for a
    386 /// target machine, based on the DataLayout structure.
    387 ///
    388 class StructLayout {
    389   uint64_t StructSize;
    390   unsigned StructAlignment;
    391   unsigned NumElements;
    392   uint64_t MemberOffsets[1];  // variable sized array!
    393 public:
    394 
    395   uint64_t getSizeInBytes() const {
    396     return StructSize;
    397   }
    398 
    399   uint64_t getSizeInBits() const {
    400     return 8*StructSize;
    401   }
    402 
    403   unsigned getAlignment() const {
    404     return StructAlignment;
    405   }
    406 
    407   /// getElementContainingOffset - Given a valid byte offset into the structure,
    408   /// return the structure index that contains it.
    409   ///
    410   unsigned getElementContainingOffset(uint64_t Offset) const;
    411 
    412   uint64_t getElementOffset(unsigned Idx) const {
    413     assert(Idx < NumElements && "Invalid element idx!");
    414     return MemberOffsets[Idx];
    415   }
    416 
    417   uint64_t getElementOffsetInBits(unsigned Idx) const {
    418     return getElementOffset(Idx)*8;
    419   }
    420 
    421 private:
    422   friend class DataLayout;   // Only DataLayout can create this class
    423   StructLayout(StructType *ST, const DataLayout &TD);
    424 };
    425 
    426 } // End llvm namespace
    427 
    428 #endif
    429