Home | History | Annotate | Download | only in CodeGen
      1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This is the code that handles AST -> LLVM type lowering.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenTypes.h"
     15 #include "CGCXXABI.h"
     16 #include "CGCall.h"
     17 #include "CGOpenCLRuntime.h"
     18 #include "CGRecordLayout.h"
     19 #include "TargetInfo.h"
     20 #include "clang/AST/ASTContext.h"
     21 #include "clang/AST/DeclCXX.h"
     22 #include "clang/AST/DeclObjC.h"
     23 #include "clang/AST/Expr.h"
     24 #include "clang/AST/RecordLayout.h"
     25 #include "llvm/IR/DataLayout.h"
     26 #include "llvm/IR/DerivedTypes.h"
     27 #include "llvm/IR/Module.h"
     28 using namespace clang;
     29 using namespace CodeGen;
     30 
     31 CodeGenTypes::CodeGenTypes(CodeGenModule &CGM)
     32   : Context(CGM.getContext()), Target(Context.getTargetInfo()),
     33     TheModule(CGM.getModule()), TheDataLayout(CGM.getDataLayout()),
     34     TheABIInfo(CGM.getTargetCodeGenInfo().getABIInfo()),
     35     TheCXXABI(CGM.getCXXABI()),
     36     CodeGenOpts(CGM.getCodeGenOpts()), CGM(CGM) {
     37   SkippedLayout = false;
     38 }
     39 
     40 CodeGenTypes::~CodeGenTypes() {
     41   for (llvm::DenseMap<const Type *, CGRecordLayout *>::iterator
     42          I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
     43       I != E; ++I)
     44     delete I->second;
     45 
     46   for (llvm::FoldingSet<CGFunctionInfo>::iterator
     47        I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
     48     delete &*I++;
     49 }
     50 
     51 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
     52                                      llvm::StructType *Ty,
     53                                      StringRef suffix) {
     54   SmallString<256> TypeName;
     55   llvm::raw_svector_ostream OS(TypeName);
     56   OS << RD->getKindName() << '.';
     57 
     58   // Name the codegen type after the typedef name
     59   // if there is no tag type name available
     60   if (RD->getIdentifier()) {
     61     // FIXME: We should not have to check for a null decl context here.
     62     // Right now we do it because the implicit Obj-C decls don't have one.
     63     if (RD->getDeclContext())
     64       RD->printQualifiedName(OS);
     65     else
     66       RD->printName(OS);
     67   } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
     68     // FIXME: We should not have to check for a null decl context here.
     69     // Right now we do it because the implicit Obj-C decls don't have one.
     70     if (TDD->getDeclContext())
     71       TDD->printQualifiedName(OS);
     72     else
     73       TDD->printName(OS);
     74   } else
     75     OS << "anon";
     76 
     77   if (!suffix.empty())
     78     OS << suffix;
     79 
     80   Ty->setName(OS.str());
     81 }
     82 
     83 /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
     84 /// ConvertType in that it is used to convert to the memory representation for
     85 /// a type.  For example, the scalar representation for _Bool is i1, but the
     86 /// memory representation is usually i8 or i32, depending on the target.
     87 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T){
     88   llvm::Type *R = ConvertType(T);
     89 
     90   // If this is a non-bool type, don't map it.
     91   if (!R->isIntegerTy(1))
     92     return R;
     93 
     94   // Otherwise, return an integer of the target-specified size.
     95   return llvm::IntegerType::get(getLLVMContext(),
     96                                 (unsigned)Context.getTypeSize(T));
     97 }
     98 
     99 
    100 /// isRecordLayoutComplete - Return true if the specified type is already
    101 /// completely laid out.
    102 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
    103   llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
    104   RecordDeclTypes.find(Ty);
    105   return I != RecordDeclTypes.end() && !I->second->isOpaque();
    106 }
    107 
    108 static bool
    109 isSafeToConvert(QualType T, CodeGenTypes &CGT,
    110                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
    111 
    112 
    113 /// isSafeToConvert - Return true if it is safe to convert the specified record
    114 /// decl to IR and lay it out, false if doing so would cause us to get into a
    115 /// recursive compilation mess.
    116 static bool
    117 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
    118                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
    119   // If we have already checked this type (maybe the same type is used by-value
    120   // multiple times in multiple structure fields, don't check again.
    121   if (!AlreadyChecked.insert(RD)) return true;
    122 
    123   const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
    124 
    125   // If this type is already laid out, converting it is a noop.
    126   if (CGT.isRecordLayoutComplete(Key)) return true;
    127 
    128   // If this type is currently being laid out, we can't recursively compile it.
    129   if (CGT.isRecordBeingLaidOut(Key))
    130     return false;
    131 
    132   // If this type would require laying out bases that are currently being laid
    133   // out, don't do it.  This includes virtual base classes which get laid out
    134   // when a class is translated, even though they aren't embedded by-value into
    135   // the class.
    136   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
    137     for (CXXRecordDecl::base_class_const_iterator I = CRD->bases_begin(),
    138          E = CRD->bases_end(); I != E; ++I)
    139       if (!isSafeToConvert(I->getType()->getAs<RecordType>()->getDecl(),
    140                            CGT, AlreadyChecked))
    141         return false;
    142   }
    143 
    144   // If this type would require laying out members that are currently being laid
    145   // out, don't do it.
    146   for (RecordDecl::field_iterator I = RD->field_begin(),
    147        E = RD->field_end(); I != E; ++I)
    148     if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
    149       return false;
    150 
    151   // If there are no problems, lets do it.
    152   return true;
    153 }
    154 
    155 /// isSafeToConvert - Return true if it is safe to convert this field type,
    156 /// which requires the structure elements contained by-value to all be
    157 /// recursively safe to convert.
    158 static bool
    159 isSafeToConvert(QualType T, CodeGenTypes &CGT,
    160                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
    161   T = T.getCanonicalType();
    162 
    163   // If this is a record, check it.
    164   if (const RecordType *RT = dyn_cast<RecordType>(T))
    165     return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
    166 
    167   // If this is an array, check the elements, which are embedded inline.
    168   if (const ArrayType *AT = dyn_cast<ArrayType>(T))
    169     return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
    170 
    171   // Otherwise, there is no concern about transforming this.  We only care about
    172   // things that are contained by-value in a structure that can have another
    173   // structure as a member.
    174   return true;
    175 }
    176 
    177 
    178 /// isSafeToConvert - Return true if it is safe to convert the specified record
    179 /// decl to IR and lay it out, false if doing so would cause us to get into a
    180 /// recursive compilation mess.
    181 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
    182   // If no structs are being laid out, we can certainly do this one.
    183   if (CGT.noRecordsBeingLaidOut()) return true;
    184 
    185   llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
    186   return isSafeToConvert(RD, CGT, AlreadyChecked);
    187 }
    188 
    189 
    190 /// isFuncTypeArgumentConvertible - Return true if the specified type in a
    191 /// function argument or result position can be converted to an IR type at this
    192 /// point.  This boils down to being whether it is complete, as well as whether
    193 /// we've temporarily deferred expanding the type because we're in a recursive
    194 /// context.
    195 bool CodeGenTypes::isFuncTypeArgumentConvertible(QualType Ty) {
    196   // If this isn't a tagged type, we can convert it!
    197   const TagType *TT = Ty->getAs<TagType>();
    198   if (TT == 0) return true;
    199 
    200   // Incomplete types cannot be converted.
    201   if (TT->isIncompleteType())
    202     return false;
    203 
    204   // If this is an enum, then it is always safe to convert.
    205   const RecordType *RT = dyn_cast<RecordType>(TT);
    206   if (RT == 0) return true;
    207 
    208   // Otherwise, we have to be careful.  If it is a struct that we're in the
    209   // process of expanding, then we can't convert the function type.  That's ok
    210   // though because we must be in a pointer context under the struct, so we can
    211   // just convert it to a dummy type.
    212   //
    213   // We decide this by checking whether ConvertRecordDeclType returns us an
    214   // opaque type for a struct that we know is defined.
    215   return isSafeToConvert(RT->getDecl(), *this);
    216 }
    217 
    218 
    219 /// Code to verify a given function type is complete, i.e. the return type
    220 /// and all of the argument types are complete.  Also check to see if we are in
    221 /// a RS_StructPointer context, and if so whether any struct types have been
    222 /// pended.  If so, we don't want to ask the ABI lowering code to handle a type
    223 /// that cannot be converted to an IR type.
    224 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
    225   if (!isFuncTypeArgumentConvertible(FT->getResultType()))
    226     return false;
    227 
    228   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
    229     for (unsigned i = 0, e = FPT->getNumArgs(); i != e; i++)
    230       if (!isFuncTypeArgumentConvertible(FPT->getArgType(i)))
    231         return false;
    232 
    233   return true;
    234 }
    235 
    236 /// UpdateCompletedType - When we find the full definition for a TagDecl,
    237 /// replace the 'opaque' type we previously made for it if applicable.
    238 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
    239   // If this is an enum being completed, then we flush all non-struct types from
    240   // the cache.  This allows function types and other things that may be derived
    241   // from the enum to be recomputed.
    242   if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
    243     // Only flush the cache if we've actually already converted this type.
    244     if (TypeCache.count(ED->getTypeForDecl())) {
    245       // Okay, we formed some types based on this.  We speculated that the enum
    246       // would be lowered to i32, so we only need to flush the cache if this
    247       // didn't happen.
    248       if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
    249         TypeCache.clear();
    250     }
    251     return;
    252   }
    253 
    254   // If we completed a RecordDecl that we previously used and converted to an
    255   // anonymous type, then go ahead and complete it now.
    256   const RecordDecl *RD = cast<RecordDecl>(TD);
    257   if (RD->isDependentType()) return;
    258 
    259   // Only complete it if we converted it already.  If we haven't converted it
    260   // yet, we'll just do it lazily.
    261   if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
    262     ConvertRecordDeclType(RD);
    263 }
    264 
    265 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
    266                                     const llvm::fltSemantics &format,
    267                                     bool UseNativeHalf = false) {
    268   if (&format == &llvm::APFloat::IEEEhalf) {
    269     if (UseNativeHalf)
    270       return llvm::Type::getHalfTy(VMContext);
    271     else
    272       return llvm::Type::getInt16Ty(VMContext);
    273   }
    274   if (&format == &llvm::APFloat::IEEEsingle)
    275     return llvm::Type::getFloatTy(VMContext);
    276   if (&format == &llvm::APFloat::IEEEdouble)
    277     return llvm::Type::getDoubleTy(VMContext);
    278   if (&format == &llvm::APFloat::IEEEquad)
    279     return llvm::Type::getFP128Ty(VMContext);
    280   if (&format == &llvm::APFloat::PPCDoubleDouble)
    281     return llvm::Type::getPPC_FP128Ty(VMContext);
    282   if (&format == &llvm::APFloat::x87DoubleExtended)
    283     return llvm::Type::getX86_FP80Ty(VMContext);
    284   llvm_unreachable("Unknown float format!");
    285 }
    286 
    287 /// ConvertType - Convert the specified type to its LLVM form.
    288 llvm::Type *CodeGenTypes::ConvertType(QualType T) {
    289   T = Context.getCanonicalType(T);
    290 
    291   const Type *Ty = T.getTypePtr();
    292 
    293   // RecordTypes are cached and processed specially.
    294   if (const RecordType *RT = dyn_cast<RecordType>(Ty))
    295     return ConvertRecordDeclType(RT->getDecl());
    296 
    297   // See if type is already cached.
    298   llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
    299   // If type is found in map then use it. Otherwise, convert type T.
    300   if (TCI != TypeCache.end())
    301     return TCI->second;
    302 
    303   // If we don't have it in the cache, convert it now.
    304   llvm::Type *ResultType = 0;
    305   switch (Ty->getTypeClass()) {
    306   case Type::Record: // Handled above.
    307 #define TYPE(Class, Base)
    308 #define ABSTRACT_TYPE(Class, Base)
    309 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
    310 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
    311 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
    312 #include "clang/AST/TypeNodes.def"
    313     llvm_unreachable("Non-canonical or dependent types aren't possible.");
    314 
    315   case Type::Builtin: {
    316     switch (cast<BuiltinType>(Ty)->getKind()) {
    317     case BuiltinType::Void:
    318     case BuiltinType::ObjCId:
    319     case BuiltinType::ObjCClass:
    320     case BuiltinType::ObjCSel:
    321       // LLVM void type can only be used as the result of a function call.  Just
    322       // map to the same as char.
    323       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
    324       break;
    325 
    326     case BuiltinType::Bool:
    327       // Note that we always return bool as i1 for use as a scalar type.
    328       ResultType = llvm::Type::getInt1Ty(getLLVMContext());
    329       break;
    330 
    331     case BuiltinType::Char_S:
    332     case BuiltinType::Char_U:
    333     case BuiltinType::SChar:
    334     case BuiltinType::UChar:
    335     case BuiltinType::Short:
    336     case BuiltinType::UShort:
    337     case BuiltinType::Int:
    338     case BuiltinType::UInt:
    339     case BuiltinType::Long:
    340     case BuiltinType::ULong:
    341     case BuiltinType::LongLong:
    342     case BuiltinType::ULongLong:
    343     case BuiltinType::WChar_S:
    344     case BuiltinType::WChar_U:
    345     case BuiltinType::Char16:
    346     case BuiltinType::Char32:
    347       ResultType = llvm::IntegerType::get(getLLVMContext(),
    348                                  static_cast<unsigned>(Context.getTypeSize(T)));
    349       break;
    350 
    351     case BuiltinType::Half:
    352       // Half FP can either be storage-only (lowered to i16) or native.
    353       ResultType = getTypeForFormat(getLLVMContext(),
    354           Context.getFloatTypeSemantics(T),
    355           Context.getLangOpts().NativeHalfType);
    356       break;
    357     case BuiltinType::Float:
    358     case BuiltinType::Double:
    359     case BuiltinType::LongDouble:
    360       ResultType = getTypeForFormat(getLLVMContext(),
    361                                     Context.getFloatTypeSemantics(T),
    362                                     /* UseNativeHalf = */ false);
    363       break;
    364 
    365     case BuiltinType::NullPtr:
    366       // Model std::nullptr_t as i8*
    367       ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
    368       break;
    369 
    370     case BuiltinType::UInt128:
    371     case BuiltinType::Int128:
    372       ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
    373       break;
    374 
    375     case BuiltinType::OCLImage1d:
    376     case BuiltinType::OCLImage1dArray:
    377     case BuiltinType::OCLImage1dBuffer:
    378     case BuiltinType::OCLImage2d:
    379     case BuiltinType::OCLImage2dArray:
    380     case BuiltinType::OCLImage3d:
    381     case BuiltinType::OCLSampler:
    382     case BuiltinType::OCLEvent:
    383       ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty);
    384       break;
    385 
    386     case BuiltinType::Dependent:
    387 #define BUILTIN_TYPE(Id, SingletonId)
    388 #define PLACEHOLDER_TYPE(Id, SingletonId) \
    389     case BuiltinType::Id:
    390 #include "clang/AST/BuiltinTypes.def"
    391       llvm_unreachable("Unexpected placeholder builtin type!");
    392     }
    393     break;
    394   }
    395   case Type::Complex: {
    396     llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
    397     ResultType = llvm::StructType::get(EltTy, EltTy, NULL);
    398     break;
    399   }
    400   case Type::LValueReference:
    401   case Type::RValueReference: {
    402     const ReferenceType *RTy = cast<ReferenceType>(Ty);
    403     QualType ETy = RTy->getPointeeType();
    404     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
    405     unsigned AS = Context.getTargetAddressSpace(ETy);
    406     ResultType = llvm::PointerType::get(PointeeType, AS);
    407     break;
    408   }
    409   case Type::Pointer: {
    410     const PointerType *PTy = cast<PointerType>(Ty);
    411     QualType ETy = PTy->getPointeeType();
    412     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
    413     if (PointeeType->isVoidTy())
    414       PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
    415     unsigned AS = Context.getTargetAddressSpace(ETy);
    416     ResultType = llvm::PointerType::get(PointeeType, AS);
    417     break;
    418   }
    419 
    420   case Type::VariableArray: {
    421     const VariableArrayType *A = cast<VariableArrayType>(Ty);
    422     assert(A->getIndexTypeCVRQualifiers() == 0 &&
    423            "FIXME: We only handle trivial array types so far!");
    424     // VLAs resolve to the innermost element type; this matches
    425     // the return of alloca, and there isn't any obviously better choice.
    426     ResultType = ConvertTypeForMem(A->getElementType());
    427     break;
    428   }
    429   case Type::IncompleteArray: {
    430     const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
    431     assert(A->getIndexTypeCVRQualifiers() == 0 &&
    432            "FIXME: We only handle trivial array types so far!");
    433     // int X[] -> [0 x int], unless the element type is not sized.  If it is
    434     // unsized (e.g. an incomplete struct) just use [0 x i8].
    435     ResultType = ConvertTypeForMem(A->getElementType());
    436     if (!ResultType->isSized()) {
    437       SkippedLayout = true;
    438       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
    439     }
    440     ResultType = llvm::ArrayType::get(ResultType, 0);
    441     break;
    442   }
    443   case Type::ConstantArray: {
    444     const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
    445     llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
    446 
    447     // Lower arrays of undefined struct type to arrays of i8 just to have a
    448     // concrete type.
    449     if (!EltTy->isSized()) {
    450       SkippedLayout = true;
    451       EltTy = llvm::Type::getInt8Ty(getLLVMContext());
    452     }
    453 
    454     ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
    455     break;
    456   }
    457   case Type::ExtVector:
    458   case Type::Vector: {
    459     const VectorType *VT = cast<VectorType>(Ty);
    460     ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
    461                                        VT->getNumElements());
    462     break;
    463   }
    464   case Type::FunctionNoProto:
    465   case Type::FunctionProto: {
    466     const FunctionType *FT = cast<FunctionType>(Ty);
    467     // First, check whether we can build the full function type.  If the
    468     // function type depends on an incomplete type (e.g. a struct or enum), we
    469     // cannot lower the function type.
    470     if (!isFuncTypeConvertible(FT)) {
    471       // This function's type depends on an incomplete tag type.
    472 
    473       // Force conversion of all the relevant record types, to make sure
    474       // we re-convert the FunctionType when appropriate.
    475       if (const RecordType *RT = FT->getResultType()->getAs<RecordType>())
    476         ConvertRecordDeclType(RT->getDecl());
    477       if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
    478         for (unsigned i = 0, e = FPT->getNumArgs(); i != e; i++)
    479           if (const RecordType *RT = FPT->getArgType(i)->getAs<RecordType>())
    480             ConvertRecordDeclType(RT->getDecl());
    481 
    482       // Return a placeholder type.
    483       ResultType = llvm::StructType::get(getLLVMContext());
    484 
    485       SkippedLayout = true;
    486       break;
    487     }
    488 
    489     // While we're converting the argument types for a function, we don't want
    490     // to recursively convert any pointed-to structs.  Converting directly-used
    491     // structs is ok though.
    492     if (!RecordsBeingLaidOut.insert(Ty)) {
    493       ResultType = llvm::StructType::get(getLLVMContext());
    494 
    495       SkippedLayout = true;
    496       break;
    497     }
    498 
    499     // The function type can be built; call the appropriate routines to
    500     // build it.
    501     const CGFunctionInfo *FI;
    502     if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
    503       FI = &arrangeFreeFunctionType(
    504                    CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
    505     } else {
    506       const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
    507       FI = &arrangeFreeFunctionType(
    508                 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
    509     }
    510 
    511     // If there is something higher level prodding our CGFunctionInfo, then
    512     // don't recurse into it again.
    513     if (FunctionsBeingProcessed.count(FI)) {
    514 
    515       ResultType = llvm::StructType::get(getLLVMContext());
    516       SkippedLayout = true;
    517     } else {
    518 
    519       // Otherwise, we're good to go, go ahead and convert it.
    520       ResultType = GetFunctionType(*FI);
    521     }
    522 
    523     RecordsBeingLaidOut.erase(Ty);
    524 
    525     if (SkippedLayout)
    526       TypeCache.clear();
    527 
    528     if (RecordsBeingLaidOut.empty())
    529       while (!DeferredRecords.empty())
    530         ConvertRecordDeclType(DeferredRecords.pop_back_val());
    531     break;
    532   }
    533 
    534   case Type::ObjCObject:
    535     ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
    536     break;
    537 
    538   case Type::ObjCInterface: {
    539     // Objective-C interfaces are always opaque (outside of the
    540     // runtime, which can do whatever it likes); we never refine
    541     // these.
    542     llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
    543     if (!T)
    544       T = llvm::StructType::create(getLLVMContext());
    545     ResultType = T;
    546     break;
    547   }
    548 
    549   case Type::ObjCObjectPointer: {
    550     // Protocol qualifications do not influence the LLVM type, we just return a
    551     // pointer to the underlying interface type. We don't need to worry about
    552     // recursive conversion.
    553     llvm::Type *T =
    554       ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
    555     ResultType = T->getPointerTo();
    556     break;
    557   }
    558 
    559   case Type::Enum: {
    560     const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
    561     if (ED->isCompleteDefinition() || ED->isFixed())
    562       return ConvertType(ED->getIntegerType());
    563     // Return a placeholder 'i32' type.  This can be changed later when the
    564     // type is defined (see UpdateCompletedType), but is likely to be the
    565     // "right" answer.
    566     ResultType = llvm::Type::getInt32Ty(getLLVMContext());
    567     break;
    568   }
    569 
    570   case Type::BlockPointer: {
    571     const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
    572     llvm::Type *PointeeType = ConvertTypeForMem(FTy);
    573     unsigned AS = Context.getTargetAddressSpace(FTy);
    574     ResultType = llvm::PointerType::get(PointeeType, AS);
    575     break;
    576   }
    577 
    578   case Type::MemberPointer: {
    579     ResultType =
    580       getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty));
    581     break;
    582   }
    583 
    584   case Type::Atomic: {
    585     QualType valueType = cast<AtomicType>(Ty)->getValueType();
    586     ResultType = ConvertTypeForMem(valueType);
    587 
    588     // Pad out to the inflated size if necessary.
    589     uint64_t valueSize = Context.getTypeSize(valueType);
    590     uint64_t atomicSize = Context.getTypeSize(Ty);
    591     if (valueSize != atomicSize) {
    592       assert(valueSize < atomicSize);
    593       llvm::Type *elts[] = {
    594         ResultType,
    595         llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8)
    596       };
    597       ResultType = llvm::StructType::get(getLLVMContext(),
    598                                          llvm::makeArrayRef(elts));
    599     }
    600     break;
    601   }
    602   }
    603 
    604   assert(ResultType && "Didn't convert a type?");
    605 
    606   TypeCache[Ty] = ResultType;
    607   return ResultType;
    608 }
    609 
    610 bool CodeGenModule::isPaddedAtomicType(QualType type) {
    611   return isPaddedAtomicType(type->castAs<AtomicType>());
    612 }
    613 
    614 bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) {
    615   return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType());
    616 }
    617 
    618 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
    619 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
    620   // TagDecl's are not necessarily unique, instead use the (clang)
    621   // type connected to the decl.
    622   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
    623 
    624   llvm::StructType *&Entry = RecordDeclTypes[Key];
    625 
    626   // If we don't have a StructType at all yet, create the forward declaration.
    627   if (Entry == 0) {
    628     Entry = llvm::StructType::create(getLLVMContext());
    629     addRecordTypeName(RD, Entry, "");
    630   }
    631   llvm::StructType *Ty = Entry;
    632 
    633   // If this is still a forward declaration, or the LLVM type is already
    634   // complete, there's nothing more to do.
    635   RD = RD->getDefinition();
    636   if (RD == 0 || !RD->isCompleteDefinition() || !Ty->isOpaque())
    637     return Ty;
    638 
    639   // If converting this type would cause us to infinitely loop, don't do it!
    640   if (!isSafeToConvert(RD, *this)) {
    641     DeferredRecords.push_back(RD);
    642     return Ty;
    643   }
    644 
    645   // Okay, this is a definition of a type.  Compile the implementation now.
    646   bool InsertResult = RecordsBeingLaidOut.insert(Key); (void)InsertResult;
    647   assert(InsertResult && "Recursively compiling a struct?");
    648 
    649   // Force conversion of non-virtual base classes recursively.
    650   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
    651     for (CXXRecordDecl::base_class_const_iterator i = CRD->bases_begin(),
    652          e = CRD->bases_end(); i != e; ++i) {
    653       if (i->isVirtual()) continue;
    654 
    655       ConvertRecordDeclType(i->getType()->getAs<RecordType>()->getDecl());
    656     }
    657   }
    658 
    659   // Layout fields.
    660   CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
    661   CGRecordLayouts[Key] = Layout;
    662 
    663   // We're done laying out this struct.
    664   bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
    665   assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
    666 
    667   // If this struct blocked a FunctionType conversion, then recompute whatever
    668   // was derived from that.
    669   // FIXME: This is hugely overconservative.
    670   if (SkippedLayout)
    671     TypeCache.clear();
    672 
    673   // If we're done converting the outer-most record, then convert any deferred
    674   // structs as well.
    675   if (RecordsBeingLaidOut.empty())
    676     while (!DeferredRecords.empty())
    677       ConvertRecordDeclType(DeferredRecords.pop_back_val());
    678 
    679   return Ty;
    680 }
    681 
    682 /// getCGRecordLayout - Return record layout info for the given record decl.
    683 const CGRecordLayout &
    684 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
    685   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
    686 
    687   const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
    688   if (!Layout) {
    689     // Compute the type information.
    690     ConvertRecordDeclType(RD);
    691 
    692     // Now try again.
    693     Layout = CGRecordLayouts.lookup(Key);
    694   }
    695 
    696   assert(Layout && "Unable to find record layout information for type");
    697   return *Layout;
    698 }
    699 
    700 bool CodeGenTypes::isZeroInitializable(QualType T) {
    701   // No need to check for member pointers when not compiling C++.
    702   if (!Context.getLangOpts().CPlusPlus)
    703     return true;
    704 
    705   T = Context.getBaseElementType(T);
    706 
    707   // Records are non-zero-initializable if they contain any
    708   // non-zero-initializable subobjects.
    709   if (const RecordType *RT = T->getAs<RecordType>()) {
    710     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    711     return isZeroInitializable(RD);
    712   }
    713 
    714   // We have to ask the ABI about member pointers.
    715   if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
    716     return getCXXABI().isZeroInitializable(MPT);
    717 
    718   // Everything else is okay.
    719   return true;
    720 }
    721 
    722 bool CodeGenTypes::isZeroInitializable(const CXXRecordDecl *RD) {
    723   return getCGRecordLayout(RD).isZeroInitializable();
    724 }
    725