Home | History | Annotate | Download | only in graphics
      1 /*
      2  * Copyright (C) 2006 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 package android.graphics;
     18 
     19 import android.view.HardwareRenderer;
     20 
     21 /**
     22  * The Path class encapsulates compound (multiple contour) geometric paths
     23  * consisting of straight line segments, quadratic curves, and cubic curves.
     24  * It can be drawn with canvas.drawPath(path, paint), either filled or stroked
     25  * (based on the paint's Style), or it can be used for clipping or to draw
     26  * text on a path.
     27  */
     28 public class Path {
     29     /**
     30      * @hide
     31      */
     32     public final int mNativePath;
     33 
     34     /**
     35      * @hide
     36      */
     37     public boolean isSimplePath = true;
     38     /**
     39      * @hide
     40      */
     41     public Region rects;
     42     private boolean mDetectSimplePaths;
     43     private Direction mLastDirection = null;
     44 
     45     /**
     46      * Create an empty path
     47      */
     48     public Path() {
     49         mNativePath = init1();
     50         mDetectSimplePaths = HardwareRenderer.isAvailable();
     51     }
     52 
     53     /**
     54      * Create a new path, copying the contents from the src path.
     55      *
     56      * @param src The path to copy from when initializing the new path
     57      */
     58     public Path(Path src) {
     59         int valNative = 0;
     60         if (src != null) {
     61             valNative = src.mNativePath;
     62             isSimplePath = src.isSimplePath;
     63             if (src.rects != null) {
     64                 rects = new Region(src.rects);
     65             }
     66         }
     67         mNativePath = init2(valNative);
     68         mDetectSimplePaths = HardwareRenderer.isAvailable();
     69     }
     70 
     71     /**
     72      * Clear any lines and curves from the path, making it empty.
     73      * This does NOT change the fill-type setting.
     74      */
     75     public void reset() {
     76         isSimplePath = true;
     77         if (mDetectSimplePaths) {
     78             mLastDirection = null;
     79             if (rects != null) rects.setEmpty();
     80         }
     81         native_reset(mNativePath);
     82     }
     83 
     84     /**
     85      * Rewinds the path: clears any lines and curves from the path but
     86      * keeps the internal data structure for faster reuse.
     87      */
     88     public void rewind() {
     89         isSimplePath = true;
     90         if (mDetectSimplePaths) {
     91             mLastDirection = null;
     92             if (rects != null) rects.setEmpty();
     93         }
     94         native_rewind(mNativePath);
     95     }
     96 
     97     /** Replace the contents of this with the contents of src.
     98     */
     99     public void set(Path src) {
    100         if (this != src) {
    101             isSimplePath = src.isSimplePath;
    102             native_set(mNativePath, src.mNativePath);
    103         }
    104     }
    105 
    106     /** Enum for the ways a path may be filled
    107     */
    108     public enum FillType {
    109         // these must match the values in SkPath.h
    110         WINDING         (0),
    111         EVEN_ODD        (1),
    112         INVERSE_WINDING (2),
    113         INVERSE_EVEN_ODD(3);
    114 
    115         FillType(int ni) {
    116             nativeInt = ni;
    117         }
    118         final int nativeInt;
    119     }
    120 
    121     // these must be in the same order as their native values
    122     static final FillType[] sFillTypeArray = {
    123         FillType.WINDING,
    124         FillType.EVEN_ODD,
    125         FillType.INVERSE_WINDING,
    126         FillType.INVERSE_EVEN_ODD
    127     };
    128 
    129     /**
    130      * Return the path's fill type. This defines how "inside" is
    131      * computed. The default value is WINDING.
    132      *
    133      * @return the path's fill type
    134      */
    135     public FillType getFillType() {
    136         return sFillTypeArray[native_getFillType(mNativePath)];
    137     }
    138 
    139     /**
    140      * Set the path's fill type. This defines how "inside" is computed.
    141      *
    142      * @param ft The new fill type for this path
    143      */
    144     public void setFillType(FillType ft) {
    145         native_setFillType(mNativePath, ft.nativeInt);
    146     }
    147 
    148     /**
    149      * Returns true if the filltype is one of the INVERSE variants
    150      *
    151      * @return true if the filltype is one of the INVERSE variants
    152      */
    153     public boolean isInverseFillType() {
    154         final int ft = native_getFillType(mNativePath);
    155         return (ft & 2) != 0;
    156     }
    157 
    158     /**
    159      * Toggles the INVERSE state of the filltype
    160      */
    161     public void toggleInverseFillType() {
    162         int ft = native_getFillType(mNativePath);
    163         ft ^= 2;
    164         native_setFillType(mNativePath, ft);
    165     }
    166 
    167     /**
    168      * Returns true if the path is empty (contains no lines or curves)
    169      *
    170      * @return true if the path is empty (contains no lines or curves)
    171      */
    172     public boolean isEmpty() {
    173         return native_isEmpty(mNativePath);
    174     }
    175 
    176     /**
    177      * Returns true if the path specifies a rectangle. If so, and if rect is
    178      * not null, set rect to the bounds of the path. If the path does not
    179      * specify a rectangle, return false and ignore rect.
    180      *
    181      * @param rect If not null, returns the bounds of the path if it specifies
    182      *             a rectangle
    183      * @return     true if the path specifies a rectangle
    184      */
    185     public boolean isRect(RectF rect) {
    186         return native_isRect(mNativePath, rect);
    187     }
    188 
    189     /**
    190      * Compute the bounds of the control points of the path, and write the
    191      * answer into bounds. If the path contains 0 or 1 points, the bounds is
    192      * set to (0,0,0,0)
    193      *
    194      * @param bounds Returns the computed bounds of the path's control points.
    195      * @param exact This parameter is no longer used.
    196      */
    197     @SuppressWarnings({"UnusedDeclaration"})
    198     public void computeBounds(RectF bounds, boolean exact) {
    199         native_computeBounds(mNativePath, bounds);
    200     }
    201 
    202     /**
    203      * Hint to the path to prepare for adding more points. This can allow the
    204      * path to more efficiently allocate its storage.
    205      *
    206      * @param extraPtCount The number of extra points that may be added to this
    207      *                     path
    208      */
    209     public void incReserve(int extraPtCount) {
    210         native_incReserve(mNativePath, extraPtCount);
    211     }
    212 
    213     /**
    214      * Set the beginning of the next contour to the point (x,y).
    215      *
    216      * @param x The x-coordinate of the start of a new contour
    217      * @param y The y-coordinate of the start of a new contour
    218      */
    219     public void moveTo(float x, float y) {
    220         native_moveTo(mNativePath, x, y);
    221     }
    222 
    223     /**
    224      * Set the beginning of the next contour relative to the last point on the
    225      * previous contour. If there is no previous contour, this is treated the
    226      * same as moveTo().
    227      *
    228      * @param dx The amount to add to the x-coordinate of the end of the
    229      *           previous contour, to specify the start of a new contour
    230      * @param dy The amount to add to the y-coordinate of the end of the
    231      *           previous contour, to specify the start of a new contour
    232      */
    233     public void rMoveTo(float dx, float dy) {
    234         native_rMoveTo(mNativePath, dx, dy);
    235     }
    236 
    237     /**
    238      * Add a line from the last point to the specified point (x,y).
    239      * If no moveTo() call has been made for this contour, the first point is
    240      * automatically set to (0,0).
    241      *
    242      * @param x The x-coordinate of the end of a line
    243      * @param y The y-coordinate of the end of a line
    244      */
    245     public void lineTo(float x, float y) {
    246         isSimplePath = false;
    247         native_lineTo(mNativePath, x, y);
    248     }
    249 
    250     /**
    251      * Same as lineTo, but the coordinates are considered relative to the last
    252      * point on this contour. If there is no previous point, then a moveTo(0,0)
    253      * is inserted automatically.
    254      *
    255      * @param dx The amount to add to the x-coordinate of the previous point on
    256      *           this contour, to specify a line
    257      * @param dy The amount to add to the y-coordinate of the previous point on
    258      *           this contour, to specify a line
    259      */
    260     public void rLineTo(float dx, float dy) {
    261         isSimplePath = false;
    262         native_rLineTo(mNativePath, dx, dy);
    263     }
    264 
    265     /**
    266      * Add a quadratic bezier from the last point, approaching control point
    267      * (x1,y1), and ending at (x2,y2). If no moveTo() call has been made for
    268      * this contour, the first point is automatically set to (0,0).
    269      *
    270      * @param x1 The x-coordinate of the control point on a quadratic curve
    271      * @param y1 The y-coordinate of the control point on a quadratic curve
    272      * @param x2 The x-coordinate of the end point on a quadratic curve
    273      * @param y2 The y-coordinate of the end point on a quadratic curve
    274      */
    275     public void quadTo(float x1, float y1, float x2, float y2) {
    276         isSimplePath = false;
    277         native_quadTo(mNativePath, x1, y1, x2, y2);
    278     }
    279 
    280     /**
    281      * Same as quadTo, but the coordinates are considered relative to the last
    282      * point on this contour. If there is no previous point, then a moveTo(0,0)
    283      * is inserted automatically.
    284      *
    285      * @param dx1 The amount to add to the x-coordinate of the last point on
    286      *            this contour, for the control point of a quadratic curve
    287      * @param dy1 The amount to add to the y-coordinate of the last point on
    288      *            this contour, for the control point of a quadratic curve
    289      * @param dx2 The amount to add to the x-coordinate of the last point on
    290      *            this contour, for the end point of a quadratic curve
    291      * @param dy2 The amount to add to the y-coordinate of the last point on
    292      *            this contour, for the end point of a quadratic curve
    293      */
    294     public void rQuadTo(float dx1, float dy1, float dx2, float dy2) {
    295         isSimplePath = false;
    296         native_rQuadTo(mNativePath, dx1, dy1, dx2, dy2);
    297     }
    298 
    299     /**
    300      * Add a cubic bezier from the last point, approaching control points
    301      * (x1,y1) and (x2,y2), and ending at (x3,y3). If no moveTo() call has been
    302      * made for this contour, the first point is automatically set to (0,0).
    303      *
    304      * @param x1 The x-coordinate of the 1st control point on a cubic curve
    305      * @param y1 The y-coordinate of the 1st control point on a cubic curve
    306      * @param x2 The x-coordinate of the 2nd control point on a cubic curve
    307      * @param y2 The y-coordinate of the 2nd control point on a cubic curve
    308      * @param x3 The x-coordinate of the end point on a cubic curve
    309      * @param y3 The y-coordinate of the end point on a cubic curve
    310      */
    311     public void cubicTo(float x1, float y1, float x2, float y2,
    312                         float x3, float y3) {
    313         isSimplePath = false;
    314         native_cubicTo(mNativePath, x1, y1, x2, y2, x3, y3);
    315     }
    316 
    317     /**
    318      * Same as cubicTo, but the coordinates are considered relative to the
    319      * current point on this contour. If there is no previous point, then a
    320      * moveTo(0,0) is inserted automatically.
    321      */
    322     public void rCubicTo(float x1, float y1, float x2, float y2,
    323                          float x3, float y3) {
    324         isSimplePath = false;
    325         native_rCubicTo(mNativePath, x1, y1, x2, y2, x3, y3);
    326     }
    327 
    328     /**
    329      * Append the specified arc to the path as a new contour. If the start of
    330      * the path is different from the path's current last point, then an
    331      * automatic lineTo() is added to connect the current contour to the
    332      * start of the arc. However, if the path is empty, then we call moveTo()
    333      * with the first point of the arc. The sweep angle is tread mod 360.
    334      *
    335      * @param oval        The bounds of oval defining shape and size of the arc
    336      * @param startAngle  Starting angle (in degrees) where the arc begins
    337      * @param sweepAngle  Sweep angle (in degrees) measured clockwise, treated
    338      *                    mod 360.
    339      * @param forceMoveTo If true, always begin a new contour with the arc
    340      */
    341     public void arcTo(RectF oval, float startAngle, float sweepAngle,
    342                       boolean forceMoveTo) {
    343         isSimplePath = false;
    344         native_arcTo(mNativePath, oval, startAngle, sweepAngle, forceMoveTo);
    345     }
    346 
    347     /**
    348      * Append the specified arc to the path as a new contour. If the start of
    349      * the path is different from the path's current last point, then an
    350      * automatic lineTo() is added to connect the current contour to the
    351      * start of the arc. However, if the path is empty, then we call moveTo()
    352      * with the first point of the arc.
    353      *
    354      * @param oval        The bounds of oval defining shape and size of the arc
    355      * @param startAngle  Starting angle (in degrees) where the arc begins
    356      * @param sweepAngle  Sweep angle (in degrees) measured clockwise
    357      */
    358     public void arcTo(RectF oval, float startAngle, float sweepAngle) {
    359         isSimplePath = false;
    360         native_arcTo(mNativePath, oval, startAngle, sweepAngle, false);
    361     }
    362 
    363     /**
    364      * Close the current contour. If the current point is not equal to the
    365      * first point of the contour, a line segment is automatically added.
    366      */
    367     public void close() {
    368         isSimplePath = false;
    369         native_close(mNativePath);
    370     }
    371 
    372     /**
    373      * Specifies how closed shapes (e.g. rects, ovals) are oriented when they
    374      * are added to a path.
    375      */
    376     public enum Direction {
    377         /** clockwise */
    378         CW  (1),    // must match enum in SkPath.h
    379         /** counter-clockwise */
    380         CCW (2);    // must match enum in SkPath.h
    381 
    382         Direction(int ni) {
    383             nativeInt = ni;
    384         }
    385         final int nativeInt;
    386     }
    387 
    388     private void detectSimplePath(float left, float top, float right, float bottom, Direction dir) {
    389         if (mDetectSimplePaths) {
    390             if (mLastDirection == null) {
    391                 mLastDirection = dir;
    392             }
    393             if (mLastDirection != dir) {
    394                 isSimplePath = false;
    395             } else {
    396                 if (rects == null) rects = new Region();
    397                 rects.op((int) left, (int) top, (int) right, (int) bottom, Region.Op.UNION);
    398             }
    399         }
    400     }
    401 
    402     /**
    403      * Add a closed rectangle contour to the path
    404      *
    405      * @param rect The rectangle to add as a closed contour to the path
    406      * @param dir  The direction to wind the rectangle's contour
    407      */
    408     public void addRect(RectF rect, Direction dir) {
    409         if (rect == null) {
    410             throw new NullPointerException("need rect parameter");
    411         }
    412         detectSimplePath(rect.left, rect.top, rect.right, rect.bottom, dir);
    413         native_addRect(mNativePath, rect, dir.nativeInt);
    414     }
    415 
    416     /**
    417      * Add a closed rectangle contour to the path
    418      *
    419      * @param left   The left side of a rectangle to add to the path
    420      * @param top    The top of a rectangle to add to the path
    421      * @param right  The right side of a rectangle to add to the path
    422      * @param bottom The bottom of a rectangle to add to the path
    423      * @param dir    The direction to wind the rectangle's contour
    424      */
    425     public void addRect(float left, float top, float right, float bottom, Direction dir) {
    426         detectSimplePath(left, top, right, bottom, dir);
    427         native_addRect(mNativePath, left, top, right, bottom, dir.nativeInt);
    428     }
    429 
    430     /**
    431      * Add a closed oval contour to the path
    432      *
    433      * @param oval The bounds of the oval to add as a closed contour to the path
    434      * @param dir  The direction to wind the oval's contour
    435      */
    436     public void addOval(RectF oval, Direction dir) {
    437         if (oval == null) {
    438             throw new NullPointerException("need oval parameter");
    439         }
    440         isSimplePath = false;
    441         native_addOval(mNativePath, oval, dir.nativeInt);
    442     }
    443 
    444     /**
    445      * Add a closed circle contour to the path
    446      *
    447      * @param x   The x-coordinate of the center of a circle to add to the path
    448      * @param y   The y-coordinate of the center of a circle to add to the path
    449      * @param radius The radius of a circle to add to the path
    450      * @param dir    The direction to wind the circle's contour
    451      */
    452     public void addCircle(float x, float y, float radius, Direction dir) {
    453         isSimplePath = false;
    454         native_addCircle(mNativePath, x, y, radius, dir.nativeInt);
    455     }
    456 
    457     /**
    458      * Add the specified arc to the path as a new contour.
    459      *
    460      * @param oval The bounds of oval defining the shape and size of the arc
    461      * @param startAngle Starting angle (in degrees) where the arc begins
    462      * @param sweepAngle Sweep angle (in degrees) measured clockwise
    463      */
    464     public void addArc(RectF oval, float startAngle, float sweepAngle) {
    465         if (oval == null) {
    466             throw new NullPointerException("need oval parameter");
    467         }
    468         isSimplePath = false;
    469         native_addArc(mNativePath, oval, startAngle, sweepAngle);
    470     }
    471 
    472     /**
    473         * Add a closed round-rectangle contour to the path
    474      *
    475      * @param rect The bounds of a round-rectangle to add to the path
    476      * @param rx   The x-radius of the rounded corners on the round-rectangle
    477      * @param ry   The y-radius of the rounded corners on the round-rectangle
    478      * @param dir  The direction to wind the round-rectangle's contour
    479      */
    480     public void addRoundRect(RectF rect, float rx, float ry, Direction dir) {
    481         if (rect == null) {
    482             throw new NullPointerException("need rect parameter");
    483         }
    484         isSimplePath = false;
    485         native_addRoundRect(mNativePath, rect, rx, ry, dir.nativeInt);
    486     }
    487 
    488     /**
    489      * Add a closed round-rectangle contour to the path. Each corner receives
    490      * two radius values [X, Y]. The corners are ordered top-left, top-right,
    491      * bottom-right, bottom-left
    492      *
    493      * @param rect The bounds of a round-rectangle to add to the path
    494      * @param radii Array of 8 values, 4 pairs of [X,Y] radii
    495      * @param dir  The direction to wind the round-rectangle's contour
    496      */
    497     public void addRoundRect(RectF rect, float[] radii, Direction dir) {
    498         if (rect == null) {
    499             throw new NullPointerException("need rect parameter");
    500         }
    501         if (radii.length < 8) {
    502             throw new ArrayIndexOutOfBoundsException("radii[] needs 8 values");
    503         }
    504         isSimplePath = false;
    505         native_addRoundRect(mNativePath, rect, radii, dir.nativeInt);
    506     }
    507 
    508     /**
    509      * Add a copy of src to the path, offset by (dx,dy)
    510      *
    511      * @param src The path to add as a new contour
    512      * @param dx  The amount to translate the path in X as it is added
    513      */
    514     public void addPath(Path src, float dx, float dy) {
    515         isSimplePath = false;
    516         native_addPath(mNativePath, src.mNativePath, dx, dy);
    517     }
    518 
    519     /**
    520      * Add a copy of src to the path
    521      *
    522      * @param src The path that is appended to the current path
    523      */
    524     public void addPath(Path src) {
    525         isSimplePath = false;
    526         native_addPath(mNativePath, src.mNativePath);
    527     }
    528 
    529     /**
    530      * Add a copy of src to the path, transformed by matrix
    531      *
    532      * @param src The path to add as a new contour
    533      */
    534     public void addPath(Path src, Matrix matrix) {
    535         if (!src.isSimplePath) isSimplePath = false;
    536         native_addPath(mNativePath, src.mNativePath, matrix.native_instance);
    537     }
    538 
    539     /**
    540      * Offset the path by (dx,dy), returning true on success
    541      *
    542      * @param dx  The amount in the X direction to offset the entire path
    543      * @param dy  The amount in the Y direction to offset the entire path
    544      * @param dst The translated path is written here. If this is null, then
    545      *            the original path is modified.
    546      */
    547     public void offset(float dx, float dy, Path dst) {
    548         int dstNative = 0;
    549         if (dst != null) {
    550             dstNative = dst.mNativePath;
    551             dst.isSimplePath = false;
    552         }
    553         native_offset(mNativePath, dx, dy, dstNative);
    554     }
    555 
    556     /**
    557      * Offset the path by (dx,dy), returning true on success
    558      *
    559      * @param dx The amount in the X direction to offset the entire path
    560      * @param dy The amount in the Y direction to offset the entire path
    561      */
    562     public void offset(float dx, float dy) {
    563         isSimplePath = false;
    564         native_offset(mNativePath, dx, dy);
    565     }
    566 
    567     /**
    568      * Sets the last point of the path.
    569      *
    570      * @param dx The new X coordinate for the last point
    571      * @param dy The new Y coordinate for the last point
    572      */
    573     public void setLastPoint(float dx, float dy) {
    574         isSimplePath = false;
    575         native_setLastPoint(mNativePath, dx, dy);
    576     }
    577 
    578     /**
    579      * Transform the points in this path by matrix, and write the answer
    580      * into dst. If dst is null, then the the original path is modified.
    581      *
    582      * @param matrix The matrix to apply to the path
    583      * @param dst    The transformed path is written here. If dst is null,
    584      *               then the the original path is modified
    585      */
    586     public void transform(Matrix matrix, Path dst) {
    587         int dstNative = 0;
    588         if (dst != null) {
    589             dst.isSimplePath = false;
    590             dstNative = dst.mNativePath;
    591         }
    592         native_transform(mNativePath, matrix.native_instance, dstNative);
    593     }
    594 
    595     /**
    596      * Transform the points in this path by matrix.
    597      *
    598      * @param matrix The matrix to apply to the path
    599      */
    600     public void transform(Matrix matrix) {
    601         isSimplePath = false;
    602         native_transform(mNativePath, matrix.native_instance);
    603     }
    604 
    605     protected void finalize() throws Throwable {
    606         try {
    607             finalizer(mNativePath);
    608         } finally {
    609             super.finalize();
    610         }
    611     }
    612 
    613     final int ni() {
    614         return mNativePath;
    615     }
    616 
    617     private static native int init1();
    618     private static native int init2(int nPath);
    619     private static native void native_reset(int nPath);
    620     private static native void native_rewind(int nPath);
    621     private static native void native_set(int native_dst, int native_src);
    622     private static native int native_getFillType(int nPath);
    623     private static native void native_setFillType(int nPath, int ft);
    624     private static native boolean native_isEmpty(int nPath);
    625     private static native boolean native_isRect(int nPath, RectF rect);
    626     private static native void native_computeBounds(int nPath, RectF bounds);
    627     private static native void native_incReserve(int nPath, int extraPtCount);
    628     private static native void native_moveTo(int nPath, float x, float y);
    629     private static native void native_rMoveTo(int nPath, float dx, float dy);
    630     private static native void native_lineTo(int nPath, float x, float y);
    631     private static native void native_rLineTo(int nPath, float dx, float dy);
    632     private static native void native_quadTo(int nPath, float x1, float y1,
    633                                              float x2, float y2);
    634     private static native void native_rQuadTo(int nPath, float dx1, float dy1,
    635                                               float dx2, float dy2);
    636     private static native void native_cubicTo(int nPath, float x1, float y1,
    637                                         float x2, float y2, float x3, float y3);
    638     private static native void native_rCubicTo(int nPath, float x1, float y1,
    639                                         float x2, float y2, float x3, float y3);
    640     private static native void native_arcTo(int nPath, RectF oval,
    641                     float startAngle, float sweepAngle, boolean forceMoveTo);
    642     private static native void native_close(int nPath);
    643     private static native void native_addRect(int nPath, RectF rect, int dir);
    644     private static native void native_addRect(int nPath, float left, float top,
    645                                             float right, float bottom, int dir);
    646     private static native void native_addOval(int nPath, RectF oval, int dir);
    647     private static native void native_addCircle(int nPath, float x, float y,
    648                                                 float radius, int dir);
    649     private static native void native_addArc(int nPath, RectF oval,
    650                                             float startAngle, float sweepAngle);
    651     private static native void native_addRoundRect(int nPath, RectF rect,
    652                                                    float rx, float ry, int dir);
    653     private static native void native_addRoundRect(int nPath, RectF r,
    654                                                    float[] radii, int dir);
    655     private static native void native_addPath(int nPath, int src, float dx,
    656                                               float dy);
    657     private static native void native_addPath(int nPath, int src);
    658     private static native void native_addPath(int nPath, int src, int matrix);
    659     private static native void native_offset(int nPath, float dx, float dy,
    660                                              int dst_path);
    661     private static native void native_offset(int nPath, float dx, float dy);
    662     private static native void native_setLastPoint(int nPath, float dx, float dy);
    663     private static native void native_transform(int nPath, int matrix,
    664                                                 int dst_path);
    665     private static native void native_transform(int nPath, int matrix);
    666     private static native void finalizer(int nPath);
    667 }
    668