Home | History | Annotate | Download | only in AST
      1 //===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the C++ related Decl classes.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/AST/DeclCXX.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/ASTMutationListener.h"
     17 #include "clang/AST/CXXInheritance.h"
     18 #include "clang/AST/DeclTemplate.h"
     19 #include "clang/AST/Expr.h"
     20 #include "clang/AST/ExprCXX.h"
     21 #include "clang/AST/TypeLoc.h"
     22 #include "clang/Basic/IdentifierTable.h"
     23 #include "llvm/ADT/STLExtras.h"
     24 #include "llvm/ADT/SmallPtrSet.h"
     25 using namespace clang;
     26 
     27 //===----------------------------------------------------------------------===//
     28 // Decl Allocation/Deallocation Method Implementations
     29 //===----------------------------------------------------------------------===//
     30 
     31 void AccessSpecDecl::anchor() { }
     32 
     33 AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
     34   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(AccessSpecDecl));
     35   return new (Mem) AccessSpecDecl(EmptyShell());
     36 }
     37 
     38 CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
     39   : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0),
     40     Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
     41     Abstract(false), IsStandardLayout(true), HasNoNonEmptyBases(true),
     42     HasPrivateFields(false), HasProtectedFields(false), HasPublicFields(false),
     43     HasMutableFields(false), HasOnlyCMembers(true),
     44     HasInClassInitializer(false), HasUninitializedReferenceMember(false),
     45     NeedOverloadResolutionForMoveConstructor(false),
     46     NeedOverloadResolutionForMoveAssignment(false),
     47     NeedOverloadResolutionForDestructor(false),
     48     DefaultedMoveConstructorIsDeleted(false),
     49     DefaultedMoveAssignmentIsDeleted(false),
     50     DefaultedDestructorIsDeleted(false),
     51     HasTrivialSpecialMembers(SMF_All),
     52     DeclaredNonTrivialSpecialMembers(0),
     53     HasIrrelevantDestructor(true),
     54     HasConstexprNonCopyMoveConstructor(false),
     55     DefaultedDefaultConstructorIsConstexpr(true),
     56     HasConstexprDefaultConstructor(false),
     57     HasNonLiteralTypeFieldsOrBases(false), ComputedVisibleConversions(false),
     58     UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0),
     59     ImplicitCopyConstructorHasConstParam(true),
     60     ImplicitCopyAssignmentHasConstParam(true),
     61     HasDeclaredCopyConstructorWithConstParam(false),
     62     HasDeclaredCopyAssignmentWithConstParam(false),
     63     FailedImplicitMoveConstructor(false), FailedImplicitMoveAssignment(false),
     64     IsLambda(false), NumBases(0), NumVBases(0), Bases(), VBases(),
     65     Definition(D), FirstFriend(0) {
     66 }
     67 
     68 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const {
     69   return Bases.get(Definition->getASTContext().getExternalSource());
     70 }
     71 
     72 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const {
     73   return VBases.get(Definition->getASTContext().getExternalSource());
     74 }
     75 
     76 CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC,
     77                              SourceLocation StartLoc, SourceLocation IdLoc,
     78                              IdentifierInfo *Id, CXXRecordDecl *PrevDecl)
     79   : RecordDecl(K, TK, DC, StartLoc, IdLoc, Id, PrevDecl),
     80     DefinitionData(PrevDecl ? PrevDecl->DefinitionData : 0),
     81     TemplateOrInstantiation() { }
     82 
     83 CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
     84                                      DeclContext *DC, SourceLocation StartLoc,
     85                                      SourceLocation IdLoc, IdentifierInfo *Id,
     86                                      CXXRecordDecl* PrevDecl,
     87                                      bool DelayTypeCreation) {
     88   CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TK, DC, StartLoc, IdLoc,
     89                                            Id, PrevDecl);
     90   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
     91 
     92   // FIXME: DelayTypeCreation seems like such a hack
     93   if (!DelayTypeCreation)
     94     C.getTypeDeclType(R, PrevDecl);
     95   return R;
     96 }
     97 
     98 CXXRecordDecl *CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC,
     99                                            TypeSourceInfo *Info, SourceLocation Loc,
    100                                            bool Dependent) {
    101   CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TTK_Class, DC, Loc, Loc,
    102                                            0, 0);
    103   R->IsBeingDefined = true;
    104   R->DefinitionData = new (C) struct LambdaDefinitionData(R, Info, Dependent);
    105   R->MayHaveOutOfDateDef = false;
    106   C.getTypeDeclType(R, /*PrevDecl=*/0);
    107   return R;
    108 }
    109 
    110 CXXRecordDecl *
    111 CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
    112   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXRecordDecl));
    113   CXXRecordDecl *R = new (Mem) CXXRecordDecl(CXXRecord, TTK_Struct, 0,
    114                                              SourceLocation(), SourceLocation(),
    115                                              0, 0);
    116   R->MayHaveOutOfDateDef = false;
    117   return R;
    118 }
    119 
    120 void
    121 CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
    122                         unsigned NumBases) {
    123   ASTContext &C = getASTContext();
    124 
    125   if (!data().Bases.isOffset() && data().NumBases > 0)
    126     C.Deallocate(data().getBases());
    127 
    128   if (NumBases) {
    129     // C++ [dcl.init.aggr]p1:
    130     //   An aggregate is [...] a class with [...] no base classes [...].
    131     data().Aggregate = false;
    132 
    133     // C++ [class]p4:
    134     //   A POD-struct is an aggregate class...
    135     data().PlainOldData = false;
    136   }
    137 
    138   // The set of seen virtual base types.
    139   llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
    140 
    141   // The virtual bases of this class.
    142   SmallVector<const CXXBaseSpecifier *, 8> VBases;
    143 
    144   data().Bases = new(C) CXXBaseSpecifier [NumBases];
    145   data().NumBases = NumBases;
    146   for (unsigned i = 0; i < NumBases; ++i) {
    147     data().getBases()[i] = *Bases[i];
    148     // Keep track of inherited vbases for this base class.
    149     const CXXBaseSpecifier *Base = Bases[i];
    150     QualType BaseType = Base->getType();
    151     // Skip dependent types; we can't do any checking on them now.
    152     if (BaseType->isDependentType())
    153       continue;
    154     CXXRecordDecl *BaseClassDecl
    155       = cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
    156 
    157     // A class with a non-empty base class is not empty.
    158     // FIXME: Standard ref?
    159     if (!BaseClassDecl->isEmpty()) {
    160       if (!data().Empty) {
    161         // C++0x [class]p7:
    162         //   A standard-layout class is a class that:
    163         //    [...]
    164         //    -- either has no non-static data members in the most derived
    165         //       class and at most one base class with non-static data members,
    166         //       or has no base classes with non-static data members, and
    167         // If this is the second non-empty base, then neither of these two
    168         // clauses can be true.
    169         data().IsStandardLayout = false;
    170       }
    171 
    172       data().Empty = false;
    173       data().HasNoNonEmptyBases = false;
    174     }
    175 
    176     // C++ [class.virtual]p1:
    177     //   A class that declares or inherits a virtual function is called a
    178     //   polymorphic class.
    179     if (BaseClassDecl->isPolymorphic())
    180       data().Polymorphic = true;
    181 
    182     // C++0x [class]p7:
    183     //   A standard-layout class is a class that: [...]
    184     //    -- has no non-standard-layout base classes
    185     if (!BaseClassDecl->isStandardLayout())
    186       data().IsStandardLayout = false;
    187 
    188     // Record if this base is the first non-literal field or base.
    189     if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType())
    190       data().HasNonLiteralTypeFieldsOrBases = true;
    191 
    192     // Now go through all virtual bases of this base and add them.
    193     for (CXXRecordDecl::base_class_iterator VBase =
    194           BaseClassDecl->vbases_begin(),
    195          E = BaseClassDecl->vbases_end(); VBase != E; ++VBase) {
    196       // Add this base if it's not already in the list.
    197       if (SeenVBaseTypes.insert(C.getCanonicalType(VBase->getType()))) {
    198         VBases.push_back(VBase);
    199 
    200         // C++11 [class.copy]p8:
    201         //   The implicitly-declared copy constructor for a class X will have
    202         //   the form 'X::X(const X&)' if each [...] virtual base class B of X
    203         //   has a copy constructor whose first parameter is of type
    204         //   'const B&' or 'const volatile B&' [...]
    205         if (CXXRecordDecl *VBaseDecl = VBase->getType()->getAsCXXRecordDecl())
    206           if (!VBaseDecl->hasCopyConstructorWithConstParam())
    207             data().ImplicitCopyConstructorHasConstParam = false;
    208       }
    209     }
    210 
    211     if (Base->isVirtual()) {
    212       // Add this base if it's not already in the list.
    213       if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)))
    214         VBases.push_back(Base);
    215 
    216       // C++0x [meta.unary.prop] is_empty:
    217       //    T is a class type, but not a union type, with ... no virtual base
    218       //    classes
    219       data().Empty = false;
    220 
    221       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
    222       //   A [default constructor, copy/move constructor, or copy/move assignment
    223       //   operator for a class X] is trivial [...] if:
    224       //    -- class X has [...] no virtual base classes
    225       data().HasTrivialSpecialMembers &= SMF_Destructor;
    226 
    227       // C++0x [class]p7:
    228       //   A standard-layout class is a class that: [...]
    229       //    -- has [...] no virtual base classes
    230       data().IsStandardLayout = false;
    231 
    232       // C++11 [dcl.constexpr]p4:
    233       //   In the definition of a constexpr constructor [...]
    234       //    -- the class shall not have any virtual base classes
    235       data().DefaultedDefaultConstructorIsConstexpr = false;
    236     } else {
    237       // C++ [class.ctor]p5:
    238       //   A default constructor is trivial [...] if:
    239       //    -- all the direct base classes of its class have trivial default
    240       //       constructors.
    241       if (!BaseClassDecl->hasTrivialDefaultConstructor())
    242         data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
    243 
    244       // C++0x [class.copy]p13:
    245       //   A copy/move constructor for class X is trivial if [...]
    246       //    [...]
    247       //    -- the constructor selected to copy/move each direct base class
    248       //       subobject is trivial, and
    249       if (!BaseClassDecl->hasTrivialCopyConstructor())
    250         data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
    251       // If the base class doesn't have a simple move constructor, we'll eagerly
    252       // declare it and perform overload resolution to determine which function
    253       // it actually calls. If it does have a simple move constructor, this
    254       // check is correct.
    255       if (!BaseClassDecl->hasTrivialMoveConstructor())
    256         data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
    257 
    258       // C++0x [class.copy]p27:
    259       //   A copy/move assignment operator for class X is trivial if [...]
    260       //    [...]
    261       //    -- the assignment operator selected to copy/move each direct base
    262       //       class subobject is trivial, and
    263       if (!BaseClassDecl->hasTrivialCopyAssignment())
    264         data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
    265       // If the base class doesn't have a simple move assignment, we'll eagerly
    266       // declare it and perform overload resolution to determine which function
    267       // it actually calls. If it does have a simple move assignment, this
    268       // check is correct.
    269       if (!BaseClassDecl->hasTrivialMoveAssignment())
    270         data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
    271 
    272       // C++11 [class.ctor]p6:
    273       //   If that user-written default constructor would satisfy the
    274       //   requirements of a constexpr constructor, the implicitly-defined
    275       //   default constructor is constexpr.
    276       if (!BaseClassDecl->hasConstexprDefaultConstructor())
    277         data().DefaultedDefaultConstructorIsConstexpr = false;
    278     }
    279 
    280     // C++ [class.ctor]p3:
    281     //   A destructor is trivial if all the direct base classes of its class
    282     //   have trivial destructors.
    283     if (!BaseClassDecl->hasTrivialDestructor())
    284       data().HasTrivialSpecialMembers &= ~SMF_Destructor;
    285 
    286     if (!BaseClassDecl->hasIrrelevantDestructor())
    287       data().HasIrrelevantDestructor = false;
    288 
    289     // C++11 [class.copy]p18:
    290     //   The implicitly-declared copy assignment oeprator for a class X will
    291     //   have the form 'X& X::operator=(const X&)' if each direct base class B
    292     //   of X has a copy assignment operator whose parameter is of type 'const
    293     //   B&', 'const volatile B&', or 'B' [...]
    294     if (!BaseClassDecl->hasCopyAssignmentWithConstParam())
    295       data().ImplicitCopyAssignmentHasConstParam = false;
    296 
    297     // C++11 [class.copy]p8:
    298     //   The implicitly-declared copy constructor for a class X will have
    299     //   the form 'X::X(const X&)' if each direct [...] base class B of X
    300     //   has a copy constructor whose first parameter is of type
    301     //   'const B&' or 'const volatile B&' [...]
    302     if (!BaseClassDecl->hasCopyConstructorWithConstParam())
    303       data().ImplicitCopyConstructorHasConstParam = false;
    304 
    305     // A class has an Objective-C object member if... or any of its bases
    306     // has an Objective-C object member.
    307     if (BaseClassDecl->hasObjectMember())
    308       setHasObjectMember(true);
    309 
    310     if (BaseClassDecl->hasVolatileMember())
    311       setHasVolatileMember(true);
    312 
    313     // Keep track of the presence of mutable fields.
    314     if (BaseClassDecl->hasMutableFields())
    315       data().HasMutableFields = true;
    316 
    317     if (BaseClassDecl->hasUninitializedReferenceMember())
    318       data().HasUninitializedReferenceMember = true;
    319 
    320     addedClassSubobject(BaseClassDecl);
    321   }
    322 
    323   if (VBases.empty())
    324     return;
    325 
    326   // Create base specifier for any direct or indirect virtual bases.
    327   data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
    328   data().NumVBases = VBases.size();
    329   for (int I = 0, E = VBases.size(); I != E; ++I) {
    330     QualType Type = VBases[I]->getType();
    331     if (!Type->isDependentType())
    332       addedClassSubobject(Type->getAsCXXRecordDecl());
    333     data().getVBases()[I] = *VBases[I];
    334   }
    335 }
    336 
    337 void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) {
    338   // C++11 [class.copy]p11:
    339   //   A defaulted copy/move constructor for a class X is defined as
    340   //   deleted if X has:
    341   //    -- a direct or virtual base class B that cannot be copied/moved [...]
    342   //    -- a non-static data member of class type M (or array thereof)
    343   //       that cannot be copied or moved [...]
    344   if (!Subobj->hasSimpleMoveConstructor())
    345     data().NeedOverloadResolutionForMoveConstructor = true;
    346 
    347   // C++11 [class.copy]p23:
    348   //   A defaulted copy/move assignment operator for a class X is defined as
    349   //   deleted if X has:
    350   //    -- a direct or virtual base class B that cannot be copied/moved [...]
    351   //    -- a non-static data member of class type M (or array thereof)
    352   //        that cannot be copied or moved [...]
    353   if (!Subobj->hasSimpleMoveAssignment())
    354     data().NeedOverloadResolutionForMoveAssignment = true;
    355 
    356   // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
    357   //   A defaulted [ctor or dtor] for a class X is defined as
    358   //   deleted if X has:
    359   //    -- any direct or virtual base class [...] has a type with a destructor
    360   //       that is deleted or inaccessible from the defaulted [ctor or dtor].
    361   //    -- any non-static data member has a type with a destructor
    362   //       that is deleted or inaccessible from the defaulted [ctor or dtor].
    363   if (!Subobj->hasSimpleDestructor()) {
    364     data().NeedOverloadResolutionForMoveConstructor = true;
    365     data().NeedOverloadResolutionForDestructor = true;
    366   }
    367 }
    368 
    369 /// Callback function for CXXRecordDecl::forallBases that acknowledges
    370 /// that it saw a base class.
    371 static bool SawBase(const CXXRecordDecl *, void *) {
    372   return true;
    373 }
    374 
    375 bool CXXRecordDecl::hasAnyDependentBases() const {
    376   if (!isDependentContext())
    377     return false;
    378 
    379   return !forallBases(SawBase, 0);
    380 }
    381 
    382 bool CXXRecordDecl::isTriviallyCopyable() const {
    383   // C++0x [class]p5:
    384   //   A trivially copyable class is a class that:
    385   //   -- has no non-trivial copy constructors,
    386   if (hasNonTrivialCopyConstructor()) return false;
    387   //   -- has no non-trivial move constructors,
    388   if (hasNonTrivialMoveConstructor()) return false;
    389   //   -- has no non-trivial copy assignment operators,
    390   if (hasNonTrivialCopyAssignment()) return false;
    391   //   -- has no non-trivial move assignment operators, and
    392   if (hasNonTrivialMoveAssignment()) return false;
    393   //   -- has a trivial destructor.
    394   if (!hasTrivialDestructor()) return false;
    395 
    396   return true;
    397 }
    398 
    399 void CXXRecordDecl::markedVirtualFunctionPure() {
    400   // C++ [class.abstract]p2:
    401   //   A class is abstract if it has at least one pure virtual function.
    402   data().Abstract = true;
    403 }
    404 
    405 void CXXRecordDecl::addedMember(Decl *D) {
    406   if (!D->isImplicit() &&
    407       !isa<FieldDecl>(D) &&
    408       !isa<IndirectFieldDecl>(D) &&
    409       (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class ||
    410         cast<TagDecl>(D)->getTagKind() == TTK_Interface))
    411     data().HasOnlyCMembers = false;
    412 
    413   // Ignore friends and invalid declarations.
    414   if (D->getFriendObjectKind() || D->isInvalidDecl())
    415     return;
    416 
    417   FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
    418   if (FunTmpl)
    419     D = FunTmpl->getTemplatedDecl();
    420 
    421   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
    422     if (Method->isVirtual()) {
    423       // C++ [dcl.init.aggr]p1:
    424       //   An aggregate is an array or a class with [...] no virtual functions.
    425       data().Aggregate = false;
    426 
    427       // C++ [class]p4:
    428       //   A POD-struct is an aggregate class...
    429       data().PlainOldData = false;
    430 
    431       // Virtual functions make the class non-empty.
    432       // FIXME: Standard ref?
    433       data().Empty = false;
    434 
    435       // C++ [class.virtual]p1:
    436       //   A class that declares or inherits a virtual function is called a
    437       //   polymorphic class.
    438       data().Polymorphic = true;
    439 
    440       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
    441       //   A [default constructor, copy/move constructor, or copy/move
    442       //   assignment operator for a class X] is trivial [...] if:
    443       //    -- class X has no virtual functions [...]
    444       data().HasTrivialSpecialMembers &= SMF_Destructor;
    445 
    446       // C++0x [class]p7:
    447       //   A standard-layout class is a class that: [...]
    448       //    -- has no virtual functions
    449       data().IsStandardLayout = false;
    450     }
    451   }
    452 
    453   // Notify the listener if an implicit member was added after the definition
    454   // was completed.
    455   if (!isBeingDefined() && D->isImplicit())
    456     if (ASTMutationListener *L = getASTMutationListener())
    457       L->AddedCXXImplicitMember(data().Definition, D);
    458 
    459   // The kind of special member this declaration is, if any.
    460   unsigned SMKind = 0;
    461 
    462   // Handle constructors.
    463   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
    464     if (!Constructor->isImplicit()) {
    465       // Note that we have a user-declared constructor.
    466       data().UserDeclaredConstructor = true;
    467 
    468       // C++ [class]p4:
    469       //   A POD-struct is an aggregate class [...]
    470       // Since the POD bit is meant to be C++03 POD-ness, clear it even if the
    471       // type is technically an aggregate in C++0x since it wouldn't be in 03.
    472       data().PlainOldData = false;
    473     }
    474 
    475     // Technically, "user-provided" is only defined for special member
    476     // functions, but the intent of the standard is clearly that it should apply
    477     // to all functions.
    478     bool UserProvided = Constructor->isUserProvided();
    479 
    480     if (Constructor->isDefaultConstructor()) {
    481       SMKind |= SMF_DefaultConstructor;
    482 
    483       if (UserProvided)
    484         data().UserProvidedDefaultConstructor = true;
    485       if (Constructor->isConstexpr())
    486         data().HasConstexprDefaultConstructor = true;
    487     }
    488 
    489     if (!FunTmpl) {
    490       unsigned Quals;
    491       if (Constructor->isCopyConstructor(Quals)) {
    492         SMKind |= SMF_CopyConstructor;
    493 
    494         if (Quals & Qualifiers::Const)
    495           data().HasDeclaredCopyConstructorWithConstParam = true;
    496       } else if (Constructor->isMoveConstructor())
    497         SMKind |= SMF_MoveConstructor;
    498     }
    499 
    500     // Record if we see any constexpr constructors which are neither copy
    501     // nor move constructors.
    502     if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor())
    503       data().HasConstexprNonCopyMoveConstructor = true;
    504 
    505     // C++ [dcl.init.aggr]p1:
    506     //   An aggregate is an array or a class with no user-declared
    507     //   constructors [...].
    508     // C++0x [dcl.init.aggr]p1:
    509     //   An aggregate is an array or a class with no user-provided
    510     //   constructors [...].
    511     if (getASTContext().getLangOpts().CPlusPlus11
    512           ? UserProvided : !Constructor->isImplicit())
    513       data().Aggregate = false;
    514   }
    515 
    516   // Handle destructors.
    517   if (CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) {
    518     SMKind |= SMF_Destructor;
    519 
    520     if (!DD->isImplicit())
    521       data().HasIrrelevantDestructor = false;
    522 
    523     // C++11 [class.dtor]p5:
    524     //   A destructor is trivial if [...] the destructor is not virtual.
    525     if (DD->isVirtual())
    526       data().HasTrivialSpecialMembers &= ~SMF_Destructor;
    527   }
    528 
    529   // Handle member functions.
    530   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
    531     if (Method->isCopyAssignmentOperator()) {
    532       SMKind |= SMF_CopyAssignment;
    533 
    534       const ReferenceType *ParamTy =
    535         Method->getParamDecl(0)->getType()->getAs<ReferenceType>();
    536       if (!ParamTy || ParamTy->getPointeeType().isConstQualified())
    537         data().HasDeclaredCopyAssignmentWithConstParam = true;
    538     }
    539 
    540     if (Method->isMoveAssignmentOperator())
    541       SMKind |= SMF_MoveAssignment;
    542 
    543     // Keep the list of conversion functions up-to-date.
    544     if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
    545       // FIXME: We intentionally don't use the decl's access here because it
    546       // hasn't been set yet.  That's really just a misdesign in Sema.
    547       if (Conversion->getPrimaryTemplate()) {
    548         // We don't record specializations.
    549       } else if (FunTmpl) {
    550         if (FunTmpl->getPreviousDecl())
    551           data().Conversions.replace(FunTmpl->getPreviousDecl(),
    552                                      FunTmpl);
    553         else
    554           data().Conversions.addDecl(getASTContext(), FunTmpl);
    555       } else {
    556         if (Conversion->getPreviousDecl())
    557           data().Conversions.replace(Conversion->getPreviousDecl(),
    558                                      Conversion);
    559         else
    560           data().Conversions.addDecl(getASTContext(), Conversion);
    561       }
    562     }
    563 
    564     if (SMKind) {
    565       // If this is the first declaration of a special member, we no longer have
    566       // an implicit trivial special member.
    567       data().HasTrivialSpecialMembers &=
    568         data().DeclaredSpecialMembers | ~SMKind;
    569 
    570       if (!Method->isImplicit() && !Method->isUserProvided()) {
    571         // This method is user-declared but not user-provided. We can't work out
    572         // whether it's trivial yet (not until we get to the end of the class).
    573         // We'll handle this method in finishedDefaultedOrDeletedMember.
    574       } else if (Method->isTrivial())
    575         data().HasTrivialSpecialMembers |= SMKind;
    576       else
    577         data().DeclaredNonTrivialSpecialMembers |= SMKind;
    578 
    579       // Note when we have declared a declared special member, and suppress the
    580       // implicit declaration of this special member.
    581       data().DeclaredSpecialMembers |= SMKind;
    582 
    583       if (!Method->isImplicit()) {
    584         data().UserDeclaredSpecialMembers |= SMKind;
    585 
    586         // C++03 [class]p4:
    587         //   A POD-struct is an aggregate class that has [...] no user-defined
    588         //   copy assignment operator and no user-defined destructor.
    589         //
    590         // Since the POD bit is meant to be C++03 POD-ness, and in C++03,
    591         // aggregates could not have any constructors, clear it even for an
    592         // explicitly defaulted or deleted constructor.
    593         // type is technically an aggregate in C++0x since it wouldn't be in 03.
    594         //
    595         // Also, a user-declared move assignment operator makes a class non-POD.
    596         // This is an extension in C++03.
    597         data().PlainOldData = false;
    598       }
    599     }
    600 
    601     return;
    602   }
    603 
    604   // Handle non-static data members.
    605   if (FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
    606     // C++ [class.bit]p2:
    607     //   A declaration for a bit-field that omits the identifier declares an
    608     //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
    609     //   initialized.
    610     if (Field->isUnnamedBitfield())
    611       return;
    612 
    613     // C++ [dcl.init.aggr]p1:
    614     //   An aggregate is an array or a class (clause 9) with [...] no
    615     //   private or protected non-static data members (clause 11).
    616     //
    617     // A POD must be an aggregate.
    618     if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
    619       data().Aggregate = false;
    620       data().PlainOldData = false;
    621     }
    622 
    623     // C++0x [class]p7:
    624     //   A standard-layout class is a class that:
    625     //    [...]
    626     //    -- has the same access control for all non-static data members,
    627     switch (D->getAccess()) {
    628     case AS_private:    data().HasPrivateFields = true;   break;
    629     case AS_protected:  data().HasProtectedFields = true; break;
    630     case AS_public:     data().HasPublicFields = true;    break;
    631     case AS_none:       llvm_unreachable("Invalid access specifier");
    632     };
    633     if ((data().HasPrivateFields + data().HasProtectedFields +
    634          data().HasPublicFields) > 1)
    635       data().IsStandardLayout = false;
    636 
    637     // Keep track of the presence of mutable fields.
    638     if (Field->isMutable())
    639       data().HasMutableFields = true;
    640 
    641     // C++0x [class]p9:
    642     //   A POD struct is a class that is both a trivial class and a
    643     //   standard-layout class, and has no non-static data members of type
    644     //   non-POD struct, non-POD union (or array of such types).
    645     //
    646     // Automatic Reference Counting: the presence of a member of Objective-C pointer type
    647     // that does not explicitly have no lifetime makes the class a non-POD.
    648     // However, we delay setting PlainOldData to false in this case so that
    649     // Sema has a chance to diagnostic causes where the same class will be
    650     // non-POD with Automatic Reference Counting but a POD without ARC.
    651     // In this case, the class will become a non-POD class when we complete
    652     // the definition.
    653     ASTContext &Context = getASTContext();
    654     QualType T = Context.getBaseElementType(Field->getType());
    655     if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
    656       if (!Context.getLangOpts().ObjCAutoRefCount ||
    657           T.getObjCLifetime() != Qualifiers::OCL_ExplicitNone)
    658         setHasObjectMember(true);
    659     } else if (!T.isPODType(Context))
    660       data().PlainOldData = false;
    661 
    662     if (T->isReferenceType()) {
    663       if (!Field->hasInClassInitializer())
    664         data().HasUninitializedReferenceMember = true;
    665 
    666       // C++0x [class]p7:
    667       //   A standard-layout class is a class that:
    668       //    -- has no non-static data members of type [...] reference,
    669       data().IsStandardLayout = false;
    670     }
    671 
    672     // Record if this field is the first non-literal or volatile field or base.
    673     if (!T->isLiteralType() || T.isVolatileQualified())
    674       data().HasNonLiteralTypeFieldsOrBases = true;
    675 
    676     if (Field->hasInClassInitializer()) {
    677       data().HasInClassInitializer = true;
    678 
    679       // C++11 [class]p5:
    680       //   A default constructor is trivial if [...] no non-static data member
    681       //   of its class has a brace-or-equal-initializer.
    682       data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
    683 
    684       // C++11 [dcl.init.aggr]p1:
    685       //   An aggregate is a [...] class with [...] no
    686       //   brace-or-equal-initializers for non-static data members.
    687       data().Aggregate = false;
    688 
    689       // C++11 [class]p10:
    690       //   A POD struct is [...] a trivial class.
    691       data().PlainOldData = false;
    692     }
    693 
    694     // C++11 [class.copy]p23:
    695     //   A defaulted copy/move assignment operator for a class X is defined
    696     //   as deleted if X has:
    697     //    -- a non-static data member of reference type
    698     if (T->isReferenceType())
    699       data().DefaultedMoveAssignmentIsDeleted = true;
    700 
    701     if (const RecordType *RecordTy = T->getAs<RecordType>()) {
    702       CXXRecordDecl* FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
    703       if (FieldRec->getDefinition()) {
    704         addedClassSubobject(FieldRec);
    705 
    706         // C++11 [class.ctor]p5, C++11 [class.copy]p11:
    707         //   A defaulted [special member] for a class X is defined as
    708         //   deleted if:
    709         //    -- X is a union-like class that has a variant member with a
    710         //       non-trivial [corresponding special member]
    711         if (isUnion()) {
    712           if (FieldRec->hasNonTrivialMoveConstructor())
    713             data().DefaultedMoveConstructorIsDeleted = true;
    714           if (FieldRec->hasNonTrivialMoveAssignment())
    715             data().DefaultedMoveAssignmentIsDeleted = true;
    716           if (FieldRec->hasNonTrivialDestructor())
    717             data().DefaultedDestructorIsDeleted = true;
    718         }
    719 
    720         // C++0x [class.ctor]p5:
    721         //   A default constructor is trivial [...] if:
    722         //    -- for all the non-static data members of its class that are of
    723         //       class type (or array thereof), each such class has a trivial
    724         //       default constructor.
    725         if (!FieldRec->hasTrivialDefaultConstructor())
    726           data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
    727 
    728         // C++0x [class.copy]p13:
    729         //   A copy/move constructor for class X is trivial if [...]
    730         //    [...]
    731         //    -- for each non-static data member of X that is of class type (or
    732         //       an array thereof), the constructor selected to copy/move that
    733         //       member is trivial;
    734         if (!FieldRec->hasTrivialCopyConstructor())
    735           data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
    736         // If the field doesn't have a simple move constructor, we'll eagerly
    737         // declare the move constructor for this class and we'll decide whether
    738         // it's trivial then.
    739         if (!FieldRec->hasTrivialMoveConstructor())
    740           data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
    741 
    742         // C++0x [class.copy]p27:
    743         //   A copy/move assignment operator for class X is trivial if [...]
    744         //    [...]
    745         //    -- for each non-static data member of X that is of class type (or
    746         //       an array thereof), the assignment operator selected to
    747         //       copy/move that member is trivial;
    748         if (!FieldRec->hasTrivialCopyAssignment())
    749           data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
    750         // If the field doesn't have a simple move assignment, we'll eagerly
    751         // declare the move assignment for this class and we'll decide whether
    752         // it's trivial then.
    753         if (!FieldRec->hasTrivialMoveAssignment())
    754           data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
    755 
    756         if (!FieldRec->hasTrivialDestructor())
    757           data().HasTrivialSpecialMembers &= ~SMF_Destructor;
    758         if (!FieldRec->hasIrrelevantDestructor())
    759           data().HasIrrelevantDestructor = false;
    760         if (FieldRec->hasObjectMember())
    761           setHasObjectMember(true);
    762         if (FieldRec->hasVolatileMember())
    763           setHasVolatileMember(true);
    764 
    765         // C++0x [class]p7:
    766         //   A standard-layout class is a class that:
    767         //    -- has no non-static data members of type non-standard-layout
    768         //       class (or array of such types) [...]
    769         if (!FieldRec->isStandardLayout())
    770           data().IsStandardLayout = false;
    771 
    772         // C++0x [class]p7:
    773         //   A standard-layout class is a class that:
    774         //    [...]
    775         //    -- has no base classes of the same type as the first non-static
    776         //       data member.
    777         // We don't want to expend bits in the state of the record decl
    778         // tracking whether this is the first non-static data member so we
    779         // cheat a bit and use some of the existing state: the empty bit.
    780         // Virtual bases and virtual methods make a class non-empty, but they
    781         // also make it non-standard-layout so we needn't check here.
    782         // A non-empty base class may leave the class standard-layout, but not
    783         // if we have arrived here, and have at least on non-static data
    784         // member. If IsStandardLayout remains true, then the first non-static
    785         // data member must come through here with Empty still true, and Empty
    786         // will subsequently be set to false below.
    787         if (data().IsStandardLayout && data().Empty) {
    788           for (CXXRecordDecl::base_class_const_iterator BI = bases_begin(),
    789                                                         BE = bases_end();
    790                BI != BE; ++BI) {
    791             if (Context.hasSameUnqualifiedType(BI->getType(), T)) {
    792               data().IsStandardLayout = false;
    793               break;
    794             }
    795           }
    796         }
    797 
    798         // Keep track of the presence of mutable fields.
    799         if (FieldRec->hasMutableFields())
    800           data().HasMutableFields = true;
    801 
    802         // C++11 [class.copy]p13:
    803         //   If the implicitly-defined constructor would satisfy the
    804         //   requirements of a constexpr constructor, the implicitly-defined
    805         //   constructor is constexpr.
    806         // C++11 [dcl.constexpr]p4:
    807         //    -- every constructor involved in initializing non-static data
    808         //       members [...] shall be a constexpr constructor
    809         if (!Field->hasInClassInitializer() &&
    810             !FieldRec->hasConstexprDefaultConstructor() && !isUnion())
    811           // The standard requires any in-class initializer to be a constant
    812           // expression. We consider this to be a defect.
    813           data().DefaultedDefaultConstructorIsConstexpr = false;
    814 
    815         // C++11 [class.copy]p8:
    816         //   The implicitly-declared copy constructor for a class X will have
    817         //   the form 'X::X(const X&)' if [...] for all the non-static data
    818         //   members of X that are of a class type M (or array thereof), each
    819         //   such class type has a copy constructor whose first parameter is
    820         //   of type 'const M&' or 'const volatile M&'.
    821         if (!FieldRec->hasCopyConstructorWithConstParam())
    822           data().ImplicitCopyConstructorHasConstParam = false;
    823 
    824         // C++11 [class.copy]p18:
    825         //   The implicitly-declared copy assignment oeprator for a class X will
    826         //   have the form 'X& X::operator=(const X&)' if [...] for all the
    827         //   non-static data members of X that are of a class type M (or array
    828         //   thereof), each such class type has a copy assignment operator whose
    829         //   parameter is of type 'const M&', 'const volatile M&' or 'M'.
    830         if (!FieldRec->hasCopyAssignmentWithConstParam())
    831           data().ImplicitCopyAssignmentHasConstParam = false;
    832 
    833         if (FieldRec->hasUninitializedReferenceMember() &&
    834             !Field->hasInClassInitializer())
    835           data().HasUninitializedReferenceMember = true;
    836       }
    837     } else {
    838       // Base element type of field is a non-class type.
    839       if (!T->isLiteralType() ||
    840           (!Field->hasInClassInitializer() && !isUnion()))
    841         data().DefaultedDefaultConstructorIsConstexpr = false;
    842 
    843       // C++11 [class.copy]p23:
    844       //   A defaulted copy/move assignment operator for a class X is defined
    845       //   as deleted if X has:
    846       //    -- a non-static data member of const non-class type (or array
    847       //       thereof)
    848       if (T.isConstQualified())
    849         data().DefaultedMoveAssignmentIsDeleted = true;
    850     }
    851 
    852     // C++0x [class]p7:
    853     //   A standard-layout class is a class that:
    854     //    [...]
    855     //    -- either has no non-static data members in the most derived
    856     //       class and at most one base class with non-static data members,
    857     //       or has no base classes with non-static data members, and
    858     // At this point we know that we have a non-static data member, so the last
    859     // clause holds.
    860     if (!data().HasNoNonEmptyBases)
    861       data().IsStandardLayout = false;
    862 
    863     // If this is not a zero-length bit-field, then the class is not empty.
    864     if (data().Empty) {
    865       if (!Field->isBitField() ||
    866           (!Field->getBitWidth()->isTypeDependent() &&
    867            !Field->getBitWidth()->isValueDependent() &&
    868            Field->getBitWidthValue(Context) != 0))
    869         data().Empty = false;
    870     }
    871   }
    872 
    873   // Handle using declarations of conversion functions.
    874   if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(D))
    875     if (Shadow->getDeclName().getNameKind()
    876           == DeclarationName::CXXConversionFunctionName)
    877       data().Conversions.addDecl(getASTContext(), Shadow, Shadow->getAccess());
    878 }
    879 
    880 void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) {
    881   assert(!D->isImplicit() && !D->isUserProvided());
    882 
    883   // The kind of special member this declaration is, if any.
    884   unsigned SMKind = 0;
    885 
    886   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
    887     if (Constructor->isDefaultConstructor()) {
    888       SMKind |= SMF_DefaultConstructor;
    889       if (Constructor->isConstexpr())
    890         data().HasConstexprDefaultConstructor = true;
    891     }
    892     if (Constructor->isCopyConstructor())
    893       SMKind |= SMF_CopyConstructor;
    894     else if (Constructor->isMoveConstructor())
    895       SMKind |= SMF_MoveConstructor;
    896     else if (Constructor->isConstexpr())
    897       // We may now know that the constructor is constexpr.
    898       data().HasConstexprNonCopyMoveConstructor = true;
    899   } else if (isa<CXXDestructorDecl>(D))
    900     SMKind |= SMF_Destructor;
    901   else if (D->isCopyAssignmentOperator())
    902     SMKind |= SMF_CopyAssignment;
    903   else if (D->isMoveAssignmentOperator())
    904     SMKind |= SMF_MoveAssignment;
    905 
    906   // Update which trivial / non-trivial special members we have.
    907   // addedMember will have skipped this step for this member.
    908   if (D->isTrivial())
    909     data().HasTrivialSpecialMembers |= SMKind;
    910   else
    911     data().DeclaredNonTrivialSpecialMembers |= SMKind;
    912 }
    913 
    914 bool CXXRecordDecl::isCLike() const {
    915   if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface ||
    916       !TemplateOrInstantiation.isNull())
    917     return false;
    918   if (!hasDefinition())
    919     return true;
    920 
    921   return isPOD() && data().HasOnlyCMembers;
    922 }
    923 
    924 void CXXRecordDecl::getCaptureFields(
    925        llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
    926        FieldDecl *&ThisCapture) const {
    927   Captures.clear();
    928   ThisCapture = 0;
    929 
    930   LambdaDefinitionData &Lambda = getLambdaData();
    931   RecordDecl::field_iterator Field = field_begin();
    932   for (LambdaExpr::Capture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures;
    933        C != CEnd; ++C, ++Field) {
    934     if (C->capturesThis()) {
    935       ThisCapture = *Field;
    936       continue;
    937     }
    938 
    939     Captures[C->getCapturedVar()] = *Field;
    940   }
    941 }
    942 
    943 
    944 static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
    945   QualType T;
    946   if (isa<UsingShadowDecl>(Conv))
    947     Conv = cast<UsingShadowDecl>(Conv)->getTargetDecl();
    948   if (FunctionTemplateDecl *ConvTemp = dyn_cast<FunctionTemplateDecl>(Conv))
    949     T = ConvTemp->getTemplatedDecl()->getResultType();
    950   else
    951     T = cast<CXXConversionDecl>(Conv)->getConversionType();
    952   return Context.getCanonicalType(T);
    953 }
    954 
    955 /// Collect the visible conversions of a base class.
    956 ///
    957 /// \param Record a base class of the class we're considering
    958 /// \param InVirtual whether this base class is a virtual base (or a base
    959 ///   of a virtual base)
    960 /// \param Access the access along the inheritance path to this base
    961 /// \param ParentHiddenTypes the conversions provided by the inheritors
    962 ///   of this base
    963 /// \param Output the set to which to add conversions from non-virtual bases
    964 /// \param VOutput the set to which to add conversions from virtual bases
    965 /// \param HiddenVBaseCs the set of conversions which were hidden in a
    966 ///   virtual base along some inheritance path
    967 static void CollectVisibleConversions(ASTContext &Context,
    968                                       CXXRecordDecl *Record,
    969                                       bool InVirtual,
    970                                       AccessSpecifier Access,
    971                   const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
    972                                       ASTUnresolvedSet &Output,
    973                                       UnresolvedSetImpl &VOutput,
    974                            llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) {
    975   // The set of types which have conversions in this class or its
    976   // subclasses.  As an optimization, we don't copy the derived set
    977   // unless it might change.
    978   const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
    979   llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
    980 
    981   // Collect the direct conversions and figure out which conversions
    982   // will be hidden in the subclasses.
    983   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
    984   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
    985   if (ConvI != ConvE) {
    986     HiddenTypesBuffer = ParentHiddenTypes;
    987     HiddenTypes = &HiddenTypesBuffer;
    988 
    989     for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) {
    990       CanQualType ConvType(GetConversionType(Context, I.getDecl()));
    991       bool Hidden = ParentHiddenTypes.count(ConvType);
    992       if (!Hidden)
    993         HiddenTypesBuffer.insert(ConvType);
    994 
    995       // If this conversion is hidden and we're in a virtual base,
    996       // remember that it's hidden along some inheritance path.
    997       if (Hidden && InVirtual)
    998         HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
    999 
   1000       // If this conversion isn't hidden, add it to the appropriate output.
   1001       else if (!Hidden) {
   1002         AccessSpecifier IAccess
   1003           = CXXRecordDecl::MergeAccess(Access, I.getAccess());
   1004 
   1005         if (InVirtual)
   1006           VOutput.addDecl(I.getDecl(), IAccess);
   1007         else
   1008           Output.addDecl(Context, I.getDecl(), IAccess);
   1009       }
   1010     }
   1011   }
   1012 
   1013   // Collect information recursively from any base classes.
   1014   for (CXXRecordDecl::base_class_iterator
   1015          I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
   1016     const RecordType *RT = I->getType()->getAs<RecordType>();
   1017     if (!RT) continue;
   1018 
   1019     AccessSpecifier BaseAccess
   1020       = CXXRecordDecl::MergeAccess(Access, I->getAccessSpecifier());
   1021     bool BaseInVirtual = InVirtual || I->isVirtual();
   1022 
   1023     CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
   1024     CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
   1025                               *HiddenTypes, Output, VOutput, HiddenVBaseCs);
   1026   }
   1027 }
   1028 
   1029 /// Collect the visible conversions of a class.
   1030 ///
   1031 /// This would be extremely straightforward if it weren't for virtual
   1032 /// bases.  It might be worth special-casing that, really.
   1033 static void CollectVisibleConversions(ASTContext &Context,
   1034                                       CXXRecordDecl *Record,
   1035                                       ASTUnresolvedSet &Output) {
   1036   // The collection of all conversions in virtual bases that we've
   1037   // found.  These will be added to the output as long as they don't
   1038   // appear in the hidden-conversions set.
   1039   UnresolvedSet<8> VBaseCs;
   1040 
   1041   // The set of conversions in virtual bases that we've determined to
   1042   // be hidden.
   1043   llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
   1044 
   1045   // The set of types hidden by classes derived from this one.
   1046   llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
   1047 
   1048   // Go ahead and collect the direct conversions and add them to the
   1049   // hidden-types set.
   1050   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
   1051   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
   1052   Output.append(Context, ConvI, ConvE);
   1053   for (; ConvI != ConvE; ++ConvI)
   1054     HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl()));
   1055 
   1056   // Recursively collect conversions from base classes.
   1057   for (CXXRecordDecl::base_class_iterator
   1058          I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
   1059     const RecordType *RT = I->getType()->getAs<RecordType>();
   1060     if (!RT) continue;
   1061 
   1062     CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
   1063                               I->isVirtual(), I->getAccessSpecifier(),
   1064                               HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
   1065   }
   1066 
   1067   // Add any unhidden conversions provided by virtual bases.
   1068   for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
   1069          I != E; ++I) {
   1070     if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
   1071       Output.addDecl(Context, I.getDecl(), I.getAccess());
   1072   }
   1073 }
   1074 
   1075 /// getVisibleConversionFunctions - get all conversion functions visible
   1076 /// in current class; including conversion function templates.
   1077 std::pair<CXXRecordDecl::conversion_iterator,CXXRecordDecl::conversion_iterator>
   1078 CXXRecordDecl::getVisibleConversionFunctions() {
   1079   // If root class, all conversions are visible.
   1080   if (bases_begin() == bases_end())
   1081     return std::make_pair(data().Conversions.begin(), data().Conversions.end());
   1082   // If visible conversion list is already evaluated, return it.
   1083   if (!data().ComputedVisibleConversions) {
   1084     CollectVisibleConversions(getASTContext(), this, data().VisibleConversions);
   1085     data().ComputedVisibleConversions = true;
   1086   }
   1087   return std::make_pair(data().VisibleConversions.begin(),
   1088                         data().VisibleConversions.end());
   1089 }
   1090 
   1091 void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
   1092   // This operation is O(N) but extremely rare.  Sema only uses it to
   1093   // remove UsingShadowDecls in a class that were followed by a direct
   1094   // declaration, e.g.:
   1095   //   class A : B {
   1096   //     using B::operator int;
   1097   //     operator int();
   1098   //   };
   1099   // This is uncommon by itself and even more uncommon in conjunction
   1100   // with sufficiently large numbers of directly-declared conversions
   1101   // that asymptotic behavior matters.
   1102 
   1103   ASTUnresolvedSet &Convs = data().Conversions;
   1104   for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
   1105     if (Convs[I].getDecl() == ConvDecl) {
   1106       Convs.erase(I);
   1107       assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end()
   1108              && "conversion was found multiple times in unresolved set");
   1109       return;
   1110     }
   1111   }
   1112 
   1113   llvm_unreachable("conversion not found in set!");
   1114 }
   1115 
   1116 CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
   1117   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
   1118     return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
   1119 
   1120   return 0;
   1121 }
   1122 
   1123 void
   1124 CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
   1125                                              TemplateSpecializationKind TSK) {
   1126   assert(TemplateOrInstantiation.isNull() &&
   1127          "Previous template or instantiation?");
   1128   assert(!isa<ClassTemplateSpecializationDecl>(this));
   1129   TemplateOrInstantiation
   1130     = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
   1131 }
   1132 
   1133 TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
   1134   if (const ClassTemplateSpecializationDecl *Spec
   1135         = dyn_cast<ClassTemplateSpecializationDecl>(this))
   1136     return Spec->getSpecializationKind();
   1137 
   1138   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
   1139     return MSInfo->getTemplateSpecializationKind();
   1140 
   1141   return TSK_Undeclared;
   1142 }
   1143 
   1144 void
   1145 CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
   1146   if (ClassTemplateSpecializationDecl *Spec
   1147       = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
   1148     Spec->setSpecializationKind(TSK);
   1149     return;
   1150   }
   1151 
   1152   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
   1153     MSInfo->setTemplateSpecializationKind(TSK);
   1154     return;
   1155   }
   1156 
   1157   llvm_unreachable("Not a class template or member class specialization");
   1158 }
   1159 
   1160 CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
   1161   ASTContext &Context = getASTContext();
   1162   QualType ClassType = Context.getTypeDeclType(this);
   1163 
   1164   DeclarationName Name
   1165     = Context.DeclarationNames.getCXXDestructorName(
   1166                                           Context.getCanonicalType(ClassType));
   1167 
   1168   DeclContext::lookup_const_result R = lookup(Name);
   1169   if (R.empty())
   1170     return 0;
   1171 
   1172   CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(R.front());
   1173   return Dtor;
   1174 }
   1175 
   1176 void CXXRecordDecl::completeDefinition() {
   1177   completeDefinition(0);
   1178 }
   1179 
   1180 void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
   1181   RecordDecl::completeDefinition();
   1182 
   1183   if (hasObjectMember() && getASTContext().getLangOpts().ObjCAutoRefCount) {
   1184     // Objective-C Automatic Reference Counting:
   1185     //   If a class has a non-static data member of Objective-C pointer
   1186     //   type (or array thereof), it is a non-POD type and its
   1187     //   default constructor (if any), copy constructor, move constructor,
   1188     //   copy assignment operator, move assignment operator, and destructor are
   1189     //   non-trivial.
   1190     struct DefinitionData &Data = data();
   1191     Data.PlainOldData = false;
   1192     Data.HasTrivialSpecialMembers = 0;
   1193     Data.HasIrrelevantDestructor = false;
   1194   }
   1195 
   1196   // If the class may be abstract (but hasn't been marked as such), check for
   1197   // any pure final overriders.
   1198   if (mayBeAbstract()) {
   1199     CXXFinalOverriderMap MyFinalOverriders;
   1200     if (!FinalOverriders) {
   1201       getFinalOverriders(MyFinalOverriders);
   1202       FinalOverriders = &MyFinalOverriders;
   1203     }
   1204 
   1205     bool Done = false;
   1206     for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
   1207                                      MEnd = FinalOverriders->end();
   1208          M != MEnd && !Done; ++M) {
   1209       for (OverridingMethods::iterator SO = M->second.begin(),
   1210                                     SOEnd = M->second.end();
   1211            SO != SOEnd && !Done; ++SO) {
   1212         assert(SO->second.size() > 0 &&
   1213                "All virtual functions have overridding virtual functions");
   1214 
   1215         // C++ [class.abstract]p4:
   1216         //   A class is abstract if it contains or inherits at least one
   1217         //   pure virtual function for which the final overrider is pure
   1218         //   virtual.
   1219         if (SO->second.front().Method->isPure()) {
   1220           data().Abstract = true;
   1221           Done = true;
   1222           break;
   1223         }
   1224       }
   1225     }
   1226   }
   1227 
   1228   // Set access bits correctly on the directly-declared conversions.
   1229   for (UnresolvedSetIterator I = data().Conversions.begin(),
   1230                              E = data().Conversions.end();
   1231        I != E; ++I)
   1232     I.setAccess((*I)->getAccess());
   1233 }
   1234 
   1235 bool CXXRecordDecl::mayBeAbstract() const {
   1236   if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
   1237       isDependentContext())
   1238     return false;
   1239 
   1240   for (CXXRecordDecl::base_class_const_iterator B = bases_begin(),
   1241                                              BEnd = bases_end();
   1242        B != BEnd; ++B) {
   1243     CXXRecordDecl *BaseDecl
   1244       = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
   1245     if (BaseDecl->isAbstract())
   1246       return true;
   1247   }
   1248 
   1249   return false;
   1250 }
   1251 
   1252 void CXXMethodDecl::anchor() { }
   1253 
   1254 static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD,
   1255                                  const CXXMethodDecl *BaseMD) {
   1256   for (CXXMethodDecl::method_iterator I = DerivedMD->begin_overridden_methods(),
   1257          E = DerivedMD->end_overridden_methods(); I != E; ++I) {
   1258     const CXXMethodDecl *MD = *I;
   1259     if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl())
   1260       return true;
   1261     if (recursivelyOverrides(MD, BaseMD))
   1262       return true;
   1263   }
   1264   return false;
   1265 }
   1266 
   1267 CXXMethodDecl *
   1268 CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD,
   1269                                              bool MayBeBase) {
   1270   if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl())
   1271     return this;
   1272 
   1273   // Lookup doesn't work for destructors, so handle them separately.
   1274   if (isa<CXXDestructorDecl>(this)) {
   1275     CXXMethodDecl *MD = RD->getDestructor();
   1276     if (MD) {
   1277       if (recursivelyOverrides(MD, this))
   1278         return MD;
   1279       if (MayBeBase && recursivelyOverrides(this, MD))
   1280         return MD;
   1281     }
   1282     return NULL;
   1283   }
   1284 
   1285   lookup_const_result Candidates = RD->lookup(getDeclName());
   1286   for (NamedDecl * const * I = Candidates.begin(); I != Candidates.end(); ++I) {
   1287     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*I);
   1288     if (!MD)
   1289       continue;
   1290     if (recursivelyOverrides(MD, this))
   1291       return MD;
   1292     if (MayBeBase && recursivelyOverrides(this, MD))
   1293       return MD;
   1294   }
   1295 
   1296   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
   1297          E = RD->bases_end(); I != E; ++I) {
   1298     const RecordType *RT = I->getType()->getAs<RecordType>();
   1299     if (!RT)
   1300       continue;
   1301     const CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
   1302     CXXMethodDecl *T = this->getCorrespondingMethodInClass(Base);
   1303     if (T)
   1304       return T;
   1305   }
   1306 
   1307   return NULL;
   1308 }
   1309 
   1310 CXXMethodDecl *
   1311 CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
   1312                       SourceLocation StartLoc,
   1313                       const DeclarationNameInfo &NameInfo,
   1314                       QualType T, TypeSourceInfo *TInfo,
   1315                       bool isStatic, StorageClass SCAsWritten, bool isInline,
   1316                       bool isConstexpr, SourceLocation EndLocation) {
   1317   return new (C) CXXMethodDecl(CXXMethod, RD, StartLoc, NameInfo, T, TInfo,
   1318                                isStatic, SCAsWritten, isInline, isConstexpr,
   1319                                EndLocation);
   1320 }
   1321 
   1322 CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   1323   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXMethodDecl));
   1324   return new (Mem) CXXMethodDecl(CXXMethod, 0, SourceLocation(),
   1325                                  DeclarationNameInfo(), QualType(),
   1326                                  0, false, SC_None, false, false,
   1327                                  SourceLocation());
   1328 }
   1329 
   1330 bool CXXMethodDecl::isUsualDeallocationFunction() const {
   1331   if (getOverloadedOperator() != OO_Delete &&
   1332       getOverloadedOperator() != OO_Array_Delete)
   1333     return false;
   1334 
   1335   // C++ [basic.stc.dynamic.deallocation]p2:
   1336   //   A template instance is never a usual deallocation function,
   1337   //   regardless of its signature.
   1338   if (getPrimaryTemplate())
   1339     return false;
   1340 
   1341   // C++ [basic.stc.dynamic.deallocation]p2:
   1342   //   If a class T has a member deallocation function named operator delete
   1343   //   with exactly one parameter, then that function is a usual (non-placement)
   1344   //   deallocation function. [...]
   1345   if (getNumParams() == 1)
   1346     return true;
   1347 
   1348   // C++ [basic.stc.dynamic.deallocation]p2:
   1349   //   [...] If class T does not declare such an operator delete but does
   1350   //   declare a member deallocation function named operator delete with
   1351   //   exactly two parameters, the second of which has type std::size_t (18.1),
   1352   //   then this function is a usual deallocation function.
   1353   ASTContext &Context = getASTContext();
   1354   if (getNumParams() != 2 ||
   1355       !Context.hasSameUnqualifiedType(getParamDecl(1)->getType(),
   1356                                       Context.getSizeType()))
   1357     return false;
   1358 
   1359   // This function is a usual deallocation function if there are no
   1360   // single-parameter deallocation functions of the same kind.
   1361   DeclContext::lookup_const_result R = getDeclContext()->lookup(getDeclName());
   1362   for (DeclContext::lookup_const_result::iterator I = R.begin(), E = R.end();
   1363        I != E; ++I) {
   1364     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I))
   1365       if (FD->getNumParams() == 1)
   1366         return false;
   1367   }
   1368 
   1369   return true;
   1370 }
   1371 
   1372 bool CXXMethodDecl::isCopyAssignmentOperator() const {
   1373   // C++0x [class.copy]p17:
   1374   //  A user-declared copy assignment operator X::operator= is a non-static
   1375   //  non-template member function of class X with exactly one parameter of
   1376   //  type X, X&, const X&, volatile X& or const volatile X&.
   1377   if (/*operator=*/getOverloadedOperator() != OO_Equal ||
   1378       /*non-static*/ isStatic() ||
   1379       /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate())
   1380     return false;
   1381 
   1382   QualType ParamType = getParamDecl(0)->getType();
   1383   if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>())
   1384     ParamType = Ref->getPointeeType();
   1385 
   1386   ASTContext &Context = getASTContext();
   1387   QualType ClassType
   1388     = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
   1389   return Context.hasSameUnqualifiedType(ClassType, ParamType);
   1390 }
   1391 
   1392 bool CXXMethodDecl::isMoveAssignmentOperator() const {
   1393   // C++0x [class.copy]p19:
   1394   //  A user-declared move assignment operator X::operator= is a non-static
   1395   //  non-template member function of class X with exactly one parameter of type
   1396   //  X&&, const X&&, volatile X&&, or const volatile X&&.
   1397   if (getOverloadedOperator() != OO_Equal || isStatic() ||
   1398       getPrimaryTemplate() || getDescribedFunctionTemplate())
   1399     return false;
   1400 
   1401   QualType ParamType = getParamDecl(0)->getType();
   1402   if (!isa<RValueReferenceType>(ParamType))
   1403     return false;
   1404   ParamType = ParamType->getPointeeType();
   1405 
   1406   ASTContext &Context = getASTContext();
   1407   QualType ClassType
   1408     = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
   1409   return Context.hasSameUnqualifiedType(ClassType, ParamType);
   1410 }
   1411 
   1412 void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
   1413   assert(MD->isCanonicalDecl() && "Method is not canonical!");
   1414   assert(!MD->getParent()->isDependentContext() &&
   1415          "Can't add an overridden method to a class template!");
   1416   assert(MD->isVirtual() && "Method is not virtual!");
   1417 
   1418   getASTContext().addOverriddenMethod(this, MD);
   1419 }
   1420 
   1421 CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
   1422   if (isa<CXXConstructorDecl>(this)) return 0;
   1423   return getASTContext().overridden_methods_begin(this);
   1424 }
   1425 
   1426 CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
   1427   if (isa<CXXConstructorDecl>(this)) return 0;
   1428   return getASTContext().overridden_methods_end(this);
   1429 }
   1430 
   1431 unsigned CXXMethodDecl::size_overridden_methods() const {
   1432   if (isa<CXXConstructorDecl>(this)) return 0;
   1433   return getASTContext().overridden_methods_size(this);
   1434 }
   1435 
   1436 QualType CXXMethodDecl::getThisType(ASTContext &C) const {
   1437   // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
   1438   // If the member function is declared const, the type of this is const X*,
   1439   // if the member function is declared volatile, the type of this is
   1440   // volatile X*, and if the member function is declared const volatile,
   1441   // the type of this is const volatile X*.
   1442 
   1443   assert(isInstance() && "No 'this' for static methods!");
   1444 
   1445   QualType ClassTy = C.getTypeDeclType(getParent());
   1446   ClassTy = C.getQualifiedType(ClassTy,
   1447                                Qualifiers::fromCVRMask(getTypeQualifiers()));
   1448   return C.getPointerType(ClassTy);
   1449 }
   1450 
   1451 bool CXXMethodDecl::hasInlineBody() const {
   1452   // If this function is a template instantiation, look at the template from
   1453   // which it was instantiated.
   1454   const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
   1455   if (!CheckFn)
   1456     CheckFn = this;
   1457 
   1458   const FunctionDecl *fn;
   1459   return CheckFn->hasBody(fn) && !fn->isOutOfLine();
   1460 }
   1461 
   1462 bool CXXMethodDecl::isLambdaStaticInvoker() const {
   1463   return getParent()->isLambda() &&
   1464          getIdentifier() && getIdentifier()->getName() == "__invoke";
   1465 }
   1466 
   1467 
   1468 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
   1469                                        TypeSourceInfo *TInfo, bool IsVirtual,
   1470                                        SourceLocation L, Expr *Init,
   1471                                        SourceLocation R,
   1472                                        SourceLocation EllipsisLoc)
   1473   : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init),
   1474     LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual),
   1475     IsWritten(false), SourceOrderOrNumArrayIndices(0)
   1476 {
   1477 }
   1478 
   1479 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
   1480                                        FieldDecl *Member,
   1481                                        SourceLocation MemberLoc,
   1482                                        SourceLocation L, Expr *Init,
   1483                                        SourceLocation R)
   1484   : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
   1485     LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
   1486     IsWritten(false), SourceOrderOrNumArrayIndices(0)
   1487 {
   1488 }
   1489 
   1490 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
   1491                                        IndirectFieldDecl *Member,
   1492                                        SourceLocation MemberLoc,
   1493                                        SourceLocation L, Expr *Init,
   1494                                        SourceLocation R)
   1495   : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
   1496     LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
   1497     IsWritten(false), SourceOrderOrNumArrayIndices(0)
   1498 {
   1499 }
   1500 
   1501 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
   1502                                        TypeSourceInfo *TInfo,
   1503                                        SourceLocation L, Expr *Init,
   1504                                        SourceLocation R)
   1505   : Initializee(TInfo), MemberOrEllipsisLocation(), Init(Init),
   1506     LParenLoc(L), RParenLoc(R), IsDelegating(true), IsVirtual(false),
   1507     IsWritten(false), SourceOrderOrNumArrayIndices(0)
   1508 {
   1509 }
   1510 
   1511 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
   1512                                        FieldDecl *Member,
   1513                                        SourceLocation MemberLoc,
   1514                                        SourceLocation L, Expr *Init,
   1515                                        SourceLocation R,
   1516                                        VarDecl **Indices,
   1517                                        unsigned NumIndices)
   1518   : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
   1519     LParenLoc(L), RParenLoc(R), IsVirtual(false),
   1520     IsWritten(false), SourceOrderOrNumArrayIndices(NumIndices)
   1521 {
   1522   VarDecl **MyIndices = reinterpret_cast<VarDecl **> (this + 1);
   1523   memcpy(MyIndices, Indices, NumIndices * sizeof(VarDecl *));
   1524 }
   1525 
   1526 CXXCtorInitializer *CXXCtorInitializer::Create(ASTContext &Context,
   1527                                                FieldDecl *Member,
   1528                                                SourceLocation MemberLoc,
   1529                                                SourceLocation L, Expr *Init,
   1530                                                SourceLocation R,
   1531                                                VarDecl **Indices,
   1532                                                unsigned NumIndices) {
   1533   void *Mem = Context.Allocate(sizeof(CXXCtorInitializer) +
   1534                                sizeof(VarDecl *) * NumIndices,
   1535                                llvm::alignOf<CXXCtorInitializer>());
   1536   return new (Mem) CXXCtorInitializer(Context, Member, MemberLoc, L, Init, R,
   1537                                       Indices, NumIndices);
   1538 }
   1539 
   1540 TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
   1541   if (isBaseInitializer())
   1542     return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
   1543   else
   1544     return TypeLoc();
   1545 }
   1546 
   1547 const Type *CXXCtorInitializer::getBaseClass() const {
   1548   if (isBaseInitializer())
   1549     return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
   1550   else
   1551     return 0;
   1552 }
   1553 
   1554 SourceLocation CXXCtorInitializer::getSourceLocation() const {
   1555   if (isAnyMemberInitializer())
   1556     return getMemberLocation();
   1557 
   1558   if (isInClassMemberInitializer())
   1559     return getAnyMember()->getLocation();
   1560 
   1561   if (TypeSourceInfo *TSInfo = Initializee.get<TypeSourceInfo*>())
   1562     return TSInfo->getTypeLoc().getLocalSourceRange().getBegin();
   1563 
   1564   return SourceLocation();
   1565 }
   1566 
   1567 SourceRange CXXCtorInitializer::getSourceRange() const {
   1568   if (isInClassMemberInitializer()) {
   1569     FieldDecl *D = getAnyMember();
   1570     if (Expr *I = D->getInClassInitializer())
   1571       return I->getSourceRange();
   1572     return SourceRange();
   1573   }
   1574 
   1575   return SourceRange(getSourceLocation(), getRParenLoc());
   1576 }
   1577 
   1578 void CXXConstructorDecl::anchor() { }
   1579 
   1580 CXXConstructorDecl *
   1581 CXXConstructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   1582   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXConstructorDecl));
   1583   return new (Mem) CXXConstructorDecl(0, SourceLocation(),DeclarationNameInfo(),
   1584                                       QualType(), 0, false, false, false,false);
   1585 }
   1586 
   1587 CXXConstructorDecl *
   1588 CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
   1589                            SourceLocation StartLoc,
   1590                            const DeclarationNameInfo &NameInfo,
   1591                            QualType T, TypeSourceInfo *TInfo,
   1592                            bool isExplicit, bool isInline,
   1593                            bool isImplicitlyDeclared, bool isConstexpr) {
   1594   assert(NameInfo.getName().getNameKind()
   1595          == DeclarationName::CXXConstructorName &&
   1596          "Name must refer to a constructor");
   1597   return new (C) CXXConstructorDecl(RD, StartLoc, NameInfo, T, TInfo,
   1598                                     isExplicit, isInline, isImplicitlyDeclared,
   1599                                     isConstexpr);
   1600 }
   1601 
   1602 CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const {
   1603   assert(isDelegatingConstructor() && "Not a delegating constructor!");
   1604   Expr *E = (*init_begin())->getInit()->IgnoreImplicit();
   1605   if (CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(E))
   1606     return Construct->getConstructor();
   1607 
   1608   return 0;
   1609 }
   1610 
   1611 bool CXXConstructorDecl::isDefaultConstructor() const {
   1612   // C++ [class.ctor]p5:
   1613   //   A default constructor for a class X is a constructor of class
   1614   //   X that can be called without an argument.
   1615   return (getNumParams() == 0) ||
   1616          (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
   1617 }
   1618 
   1619 bool
   1620 CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
   1621   return isCopyOrMoveConstructor(TypeQuals) &&
   1622          getParamDecl(0)->getType()->isLValueReferenceType();
   1623 }
   1624 
   1625 bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
   1626   return isCopyOrMoveConstructor(TypeQuals) &&
   1627     getParamDecl(0)->getType()->isRValueReferenceType();
   1628 }
   1629 
   1630 /// \brief Determine whether this is a copy or move constructor.
   1631 bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
   1632   // C++ [class.copy]p2:
   1633   //   A non-template constructor for class X is a copy constructor
   1634   //   if its first parameter is of type X&, const X&, volatile X& or
   1635   //   const volatile X&, and either there are no other parameters
   1636   //   or else all other parameters have default arguments (8.3.6).
   1637   // C++0x [class.copy]p3:
   1638   //   A non-template constructor for class X is a move constructor if its
   1639   //   first parameter is of type X&&, const X&&, volatile X&&, or
   1640   //   const volatile X&&, and either there are no other parameters or else
   1641   //   all other parameters have default arguments.
   1642   if ((getNumParams() < 1) ||
   1643       (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
   1644       (getPrimaryTemplate() != 0) ||
   1645       (getDescribedFunctionTemplate() != 0))
   1646     return false;
   1647 
   1648   const ParmVarDecl *Param = getParamDecl(0);
   1649 
   1650   // Do we have a reference type?
   1651   const ReferenceType *ParamRefType = Param->getType()->getAs<ReferenceType>();
   1652   if (!ParamRefType)
   1653     return false;
   1654 
   1655   // Is it a reference to our class type?
   1656   ASTContext &Context = getASTContext();
   1657 
   1658   CanQualType PointeeType
   1659     = Context.getCanonicalType(ParamRefType->getPointeeType());
   1660   CanQualType ClassTy
   1661     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
   1662   if (PointeeType.getUnqualifiedType() != ClassTy)
   1663     return false;
   1664 
   1665   // FIXME: other qualifiers?
   1666 
   1667   // We have a copy or move constructor.
   1668   TypeQuals = PointeeType.getCVRQualifiers();
   1669   return true;
   1670 }
   1671 
   1672 bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
   1673   // C++ [class.conv.ctor]p1:
   1674   //   A constructor declared without the function-specifier explicit
   1675   //   that can be called with a single parameter specifies a
   1676   //   conversion from the type of its first parameter to the type of
   1677   //   its class. Such a constructor is called a converting
   1678   //   constructor.
   1679   if (isExplicit() && !AllowExplicit)
   1680     return false;
   1681 
   1682   return (getNumParams() == 0 &&
   1683           getType()->getAs<FunctionProtoType>()->isVariadic()) ||
   1684          (getNumParams() == 1) ||
   1685          (getNumParams() > 1 &&
   1686           (getParamDecl(1)->hasDefaultArg() ||
   1687            getParamDecl(1)->isParameterPack()));
   1688 }
   1689 
   1690 bool CXXConstructorDecl::isSpecializationCopyingObject() const {
   1691   if ((getNumParams() < 1) ||
   1692       (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
   1693       (getPrimaryTemplate() == 0) ||
   1694       (getDescribedFunctionTemplate() != 0))
   1695     return false;
   1696 
   1697   const ParmVarDecl *Param = getParamDecl(0);
   1698 
   1699   ASTContext &Context = getASTContext();
   1700   CanQualType ParamType = Context.getCanonicalType(Param->getType());
   1701 
   1702   // Is it the same as our our class type?
   1703   CanQualType ClassTy
   1704     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
   1705   if (ParamType.getUnqualifiedType() != ClassTy)
   1706     return false;
   1707 
   1708   return true;
   1709 }
   1710 
   1711 const CXXConstructorDecl *CXXConstructorDecl::getInheritedConstructor() const {
   1712   // Hack: we store the inherited constructor in the overridden method table
   1713   method_iterator It = getASTContext().overridden_methods_begin(this);
   1714   if (It == getASTContext().overridden_methods_end(this))
   1715     return 0;
   1716 
   1717   return cast<CXXConstructorDecl>(*It);
   1718 }
   1719 
   1720 void
   1721 CXXConstructorDecl::setInheritedConstructor(const CXXConstructorDecl *BaseCtor){
   1722   // Hack: we store the inherited constructor in the overridden method table
   1723   assert(getASTContext().overridden_methods_size(this) == 0 &&
   1724          "Base ctor already set.");
   1725   getASTContext().addOverriddenMethod(this, BaseCtor);
   1726 }
   1727 
   1728 void CXXDestructorDecl::anchor() { }
   1729 
   1730 CXXDestructorDecl *
   1731 CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   1732   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXDestructorDecl));
   1733   return new (Mem) CXXDestructorDecl(0, SourceLocation(), DeclarationNameInfo(),
   1734                                    QualType(), 0, false, false);
   1735 }
   1736 
   1737 CXXDestructorDecl *
   1738 CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
   1739                           SourceLocation StartLoc,
   1740                           const DeclarationNameInfo &NameInfo,
   1741                           QualType T, TypeSourceInfo *TInfo,
   1742                           bool isInline, bool isImplicitlyDeclared) {
   1743   assert(NameInfo.getName().getNameKind()
   1744          == DeclarationName::CXXDestructorName &&
   1745          "Name must refer to a destructor");
   1746   return new (C) CXXDestructorDecl(RD, StartLoc, NameInfo, T, TInfo, isInline,
   1747                                    isImplicitlyDeclared);
   1748 }
   1749 
   1750 void CXXConversionDecl::anchor() { }
   1751 
   1752 CXXConversionDecl *
   1753 CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   1754   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXConversionDecl));
   1755   return new (Mem) CXXConversionDecl(0, SourceLocation(), DeclarationNameInfo(),
   1756                                      QualType(), 0, false, false, false,
   1757                                      SourceLocation());
   1758 }
   1759 
   1760 CXXConversionDecl *
   1761 CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
   1762                           SourceLocation StartLoc,
   1763                           const DeclarationNameInfo &NameInfo,
   1764                           QualType T, TypeSourceInfo *TInfo,
   1765                           bool isInline, bool isExplicit,
   1766                           bool isConstexpr, SourceLocation EndLocation) {
   1767   assert(NameInfo.getName().getNameKind()
   1768          == DeclarationName::CXXConversionFunctionName &&
   1769          "Name must refer to a conversion function");
   1770   return new (C) CXXConversionDecl(RD, StartLoc, NameInfo, T, TInfo,
   1771                                    isInline, isExplicit, isConstexpr,
   1772                                    EndLocation);
   1773 }
   1774 
   1775 bool CXXConversionDecl::isLambdaToBlockPointerConversion() const {
   1776   return isImplicit() && getParent()->isLambda() &&
   1777          getConversionType()->isBlockPointerType();
   1778 }
   1779 
   1780 void LinkageSpecDecl::anchor() { }
   1781 
   1782 LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
   1783                                          DeclContext *DC,
   1784                                          SourceLocation ExternLoc,
   1785                                          SourceLocation LangLoc,
   1786                                          LanguageIDs Lang,
   1787                                          SourceLocation RBraceLoc) {
   1788   return new (C) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, RBraceLoc);
   1789 }
   1790 
   1791 LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   1792   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(LinkageSpecDecl));
   1793   return new (Mem) LinkageSpecDecl(0, SourceLocation(), SourceLocation(),
   1794                                    lang_c, SourceLocation());
   1795 }
   1796 
   1797 void UsingDirectiveDecl::anchor() { }
   1798 
   1799 UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
   1800                                                SourceLocation L,
   1801                                                SourceLocation NamespaceLoc,
   1802                                            NestedNameSpecifierLoc QualifierLoc,
   1803                                                SourceLocation IdentLoc,
   1804                                                NamedDecl *Used,
   1805                                                DeclContext *CommonAncestor) {
   1806   if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used))
   1807     Used = NS->getOriginalNamespace();
   1808   return new (C) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
   1809                                     IdentLoc, Used, CommonAncestor);
   1810 }
   1811 
   1812 UsingDirectiveDecl *
   1813 UsingDirectiveDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   1814   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UsingDirectiveDecl));
   1815   return new (Mem) UsingDirectiveDecl(0, SourceLocation(), SourceLocation(),
   1816                                       NestedNameSpecifierLoc(),
   1817                                       SourceLocation(), 0, 0);
   1818 }
   1819 
   1820 NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
   1821   if (NamespaceAliasDecl *NA =
   1822         dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
   1823     return NA->getNamespace();
   1824   return cast_or_null<NamespaceDecl>(NominatedNamespace);
   1825 }
   1826 
   1827 void NamespaceDecl::anchor() { }
   1828 
   1829 NamespaceDecl::NamespaceDecl(DeclContext *DC, bool Inline,
   1830                              SourceLocation StartLoc,
   1831                              SourceLocation IdLoc, IdentifierInfo *Id,
   1832                              NamespaceDecl *PrevDecl)
   1833   : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace),
   1834     LocStart(StartLoc), RBraceLoc(), AnonOrFirstNamespaceAndInline(0, Inline)
   1835 {
   1836   setPreviousDeclaration(PrevDecl);
   1837 
   1838   if (PrevDecl)
   1839     AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace());
   1840 }
   1841 
   1842 NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
   1843                                      bool Inline, SourceLocation StartLoc,
   1844                                      SourceLocation IdLoc, IdentifierInfo *Id,
   1845                                      NamespaceDecl *PrevDecl) {
   1846   return new (C) NamespaceDecl(DC, Inline, StartLoc, IdLoc, Id, PrevDecl);
   1847 }
   1848 
   1849 NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   1850   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(NamespaceDecl));
   1851   return new (Mem) NamespaceDecl(0, false, SourceLocation(), SourceLocation(),
   1852                                  0, 0);
   1853 }
   1854 
   1855 void NamespaceAliasDecl::anchor() { }
   1856 
   1857 NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
   1858                                                SourceLocation UsingLoc,
   1859                                                SourceLocation AliasLoc,
   1860                                                IdentifierInfo *Alias,
   1861                                            NestedNameSpecifierLoc QualifierLoc,
   1862                                                SourceLocation IdentLoc,
   1863                                                NamedDecl *Namespace) {
   1864   if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
   1865     Namespace = NS->getOriginalNamespace();
   1866   return new (C) NamespaceAliasDecl(DC, UsingLoc, AliasLoc, Alias,
   1867                                     QualifierLoc, IdentLoc, Namespace);
   1868 }
   1869 
   1870 NamespaceAliasDecl *
   1871 NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   1872   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(NamespaceAliasDecl));
   1873   return new (Mem) NamespaceAliasDecl(0, SourceLocation(), SourceLocation(), 0,
   1874                                       NestedNameSpecifierLoc(),
   1875                                       SourceLocation(), 0);
   1876 }
   1877 
   1878 void UsingShadowDecl::anchor() { }
   1879 
   1880 UsingShadowDecl *
   1881 UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   1882   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UsingShadowDecl));
   1883   return new (Mem) UsingShadowDecl(0, SourceLocation(), 0, 0);
   1884 }
   1885 
   1886 UsingDecl *UsingShadowDecl::getUsingDecl() const {
   1887   const UsingShadowDecl *Shadow = this;
   1888   while (const UsingShadowDecl *NextShadow =
   1889          dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
   1890     Shadow = NextShadow;
   1891   return cast<UsingDecl>(Shadow->UsingOrNextShadow);
   1892 }
   1893 
   1894 void UsingDecl::anchor() { }
   1895 
   1896 void UsingDecl::addShadowDecl(UsingShadowDecl *S) {
   1897   assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() &&
   1898          "declaration already in set");
   1899   assert(S->getUsingDecl() == this);
   1900 
   1901   if (FirstUsingShadow.getPointer())
   1902     S->UsingOrNextShadow = FirstUsingShadow.getPointer();
   1903   FirstUsingShadow.setPointer(S);
   1904 }
   1905 
   1906 void UsingDecl::removeShadowDecl(UsingShadowDecl *S) {
   1907   assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() &&
   1908          "declaration not in set");
   1909   assert(S->getUsingDecl() == this);
   1910 
   1911   // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
   1912 
   1913   if (FirstUsingShadow.getPointer() == S) {
   1914     FirstUsingShadow.setPointer(
   1915       dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow));
   1916     S->UsingOrNextShadow = this;
   1917     return;
   1918   }
   1919 
   1920   UsingShadowDecl *Prev = FirstUsingShadow.getPointer();
   1921   while (Prev->UsingOrNextShadow != S)
   1922     Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
   1923   Prev->UsingOrNextShadow = S->UsingOrNextShadow;
   1924   S->UsingOrNextShadow = this;
   1925 }
   1926 
   1927 UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
   1928                              NestedNameSpecifierLoc QualifierLoc,
   1929                              const DeclarationNameInfo &NameInfo,
   1930                              bool IsTypeNameArg) {
   1931   return new (C) UsingDecl(DC, UL, QualifierLoc, NameInfo, IsTypeNameArg);
   1932 }
   1933 
   1934 UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   1935   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UsingDecl));
   1936   return new (Mem) UsingDecl(0, SourceLocation(), NestedNameSpecifierLoc(),
   1937                              DeclarationNameInfo(), false);
   1938 }
   1939 
   1940 void UnresolvedUsingValueDecl::anchor() { }
   1941 
   1942 UnresolvedUsingValueDecl *
   1943 UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
   1944                                  SourceLocation UsingLoc,
   1945                                  NestedNameSpecifierLoc QualifierLoc,
   1946                                  const DeclarationNameInfo &NameInfo) {
   1947   return new (C) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
   1948                                           QualifierLoc, NameInfo);
   1949 }
   1950 
   1951 UnresolvedUsingValueDecl *
   1952 UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   1953   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UnresolvedUsingValueDecl));
   1954   return new (Mem) UnresolvedUsingValueDecl(0, QualType(), SourceLocation(),
   1955                                             NestedNameSpecifierLoc(),
   1956                                             DeclarationNameInfo());
   1957 }
   1958 
   1959 void UnresolvedUsingTypenameDecl::anchor() { }
   1960 
   1961 UnresolvedUsingTypenameDecl *
   1962 UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
   1963                                     SourceLocation UsingLoc,
   1964                                     SourceLocation TypenameLoc,
   1965                                     NestedNameSpecifierLoc QualifierLoc,
   1966                                     SourceLocation TargetNameLoc,
   1967                                     DeclarationName TargetName) {
   1968   return new (C) UnresolvedUsingTypenameDecl(DC, UsingLoc, TypenameLoc,
   1969                                              QualifierLoc, TargetNameLoc,
   1970                                              TargetName.getAsIdentifierInfo());
   1971 }
   1972 
   1973 UnresolvedUsingTypenameDecl *
   1974 UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   1975   void *Mem = AllocateDeserializedDecl(C, ID,
   1976                                        sizeof(UnresolvedUsingTypenameDecl));
   1977   return new (Mem) UnresolvedUsingTypenameDecl(0, SourceLocation(),
   1978                                                SourceLocation(),
   1979                                                NestedNameSpecifierLoc(),
   1980                                                SourceLocation(),
   1981                                                0);
   1982 }
   1983 
   1984 void StaticAssertDecl::anchor() { }
   1985 
   1986 StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
   1987                                            SourceLocation StaticAssertLoc,
   1988                                            Expr *AssertExpr,
   1989                                            StringLiteral *Message,
   1990                                            SourceLocation RParenLoc,
   1991                                            bool Failed) {
   1992   return new (C) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
   1993                                   RParenLoc, Failed);
   1994 }
   1995 
   1996 StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C,
   1997                                                        unsigned ID) {
   1998   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(StaticAssertDecl));
   1999   return new (Mem) StaticAssertDecl(0, SourceLocation(), 0, 0,
   2000                                     SourceLocation(), false);
   2001 }
   2002 
   2003 static const char *getAccessName(AccessSpecifier AS) {
   2004   switch (AS) {
   2005     case AS_none:
   2006       llvm_unreachable("Invalid access specifier!");
   2007     case AS_public:
   2008       return "public";
   2009     case AS_private:
   2010       return "private";
   2011     case AS_protected:
   2012       return "protected";
   2013   }
   2014   llvm_unreachable("Invalid access specifier!");
   2015 }
   2016 
   2017 const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
   2018                                            AccessSpecifier AS) {
   2019   return DB << getAccessName(AS);
   2020 }
   2021 
   2022 const PartialDiagnostic &clang::operator<<(const PartialDiagnostic &DB,
   2023                                            AccessSpecifier AS) {
   2024   return DB << getAccessName(AS);
   2025 }
   2026