Home | History | Annotate | Download | only in core
      1 
      2 /*
      3  * Copyright 2011 Google Inc.
      4  *
      5  * Use of this source code is governed by a BSD-style license that can be
      6  * found in the LICENSE file.
      7  */
      8 #include "SkClipStack.h"
      9 #include "SkPath.h"
     10 #include "SkThread.h"
     11 
     12 #include <new>
     13 
     14 
     15 // 0-2 are reserved for invalid, empty & wide-open
     16 static const int32_t kFirstUnreservedGenID = 3;
     17 int32_t SkClipStack::gGenID = kFirstUnreservedGenID;
     18 
     19 void SkClipStack::Element::invertShapeFillType() {
     20     switch (fType) {
     21         case kRect_Type:
     22             fPath.reset();
     23             fPath.addRect(fRect);
     24             fPath.setFillType(SkPath::kInverseWinding_FillType);
     25             fType = kPath_Type;
     26             break;
     27         case kPath_Type:
     28             fPath.toggleInverseFillType();
     29         case kEmpty_Type:
     30             break;
     31     }
     32 }
     33 
     34 void SkClipStack::Element::checkEmpty() const {
     35     SkASSERT(fFiniteBound.isEmpty());
     36     SkASSERT(kNormal_BoundsType == fFiniteBoundType);
     37     SkASSERT(!fIsIntersectionOfRects);
     38     SkASSERT(kEmptyGenID == fGenID);
     39     SkASSERT(fPath.isEmpty());
     40 }
     41 
     42 bool SkClipStack::Element::canBeIntersectedInPlace(int saveCount, SkRegion::Op op) const {
     43     if (kEmpty_Type == fType &&
     44         (SkRegion::kDifference_Op == op || SkRegion::kIntersect_Op == op)) {
     45         return true;
     46     }
     47     // Only clips within the same save/restore frame (as captured by
     48     // the save count) can be merged
     49     return  fSaveCount == saveCount &&
     50             SkRegion::kIntersect_Op == op &&
     51             (SkRegion::kIntersect_Op == fOp || SkRegion::kReplace_Op == fOp);
     52 }
     53 
     54 bool SkClipStack::Element::rectRectIntersectAllowed(const SkRect& newR, bool newAA) const {
     55     SkASSERT(kRect_Type == fType);
     56 
     57     if (fDoAA == newAA) {
     58         // if the AA setting is the same there is no issue
     59         return true;
     60     }
     61 
     62     if (!SkRect::Intersects(fRect, newR)) {
     63         // The calling code will correctly set the result to the empty clip
     64         return true;
     65     }
     66 
     67     if (fRect.contains(newR)) {
     68         // if the new rect carves out a portion of the old one there is no
     69         // issue
     70         return true;
     71     }
     72 
     73     // So either the two overlap in some complex manner or newR contains oldR.
     74     // In the first, case the edges will require different AA. In the second,
     75     // the AA setting that would be carried forward is incorrect (e.g., oldR
     76     // is AA while newR is BW but since newR contains oldR, oldR will be
     77     // drawn BW) since the new AA setting will predominate.
     78     return false;
     79 }
     80 
     81 // a mirror of combineBoundsRevDiff
     82 void SkClipStack::Element::combineBoundsDiff(FillCombo combination, const SkRect& prevFinite) {
     83     switch (combination) {
     84         case kInvPrev_InvCur_FillCombo:
     85             // In this case the only pixels that can remain set
     86             // are inside the current clip rect since the extensions
     87             // to infinity of both clips cancel out and whatever
     88             // is outside of the current clip is removed
     89             fFiniteBoundType = kNormal_BoundsType;
     90             break;
     91         case kInvPrev_Cur_FillCombo:
     92             // In this case the current op is finite so the only pixels
     93             // that aren't set are whatever isn't set in the previous
     94             // clip and whatever this clip carves out
     95             fFiniteBound.join(prevFinite);
     96             fFiniteBoundType = kInsideOut_BoundsType;
     97             break;
     98         case kPrev_InvCur_FillCombo:
     99             // In this case everything outside of this clip's bound
    100             // is erased, so the only pixels that can remain set
    101             // occur w/in the intersection of the two finite bounds
    102             if (!fFiniteBound.intersect(prevFinite)) {
    103                 fFiniteBound.setEmpty();
    104                 fGenID = kEmptyGenID;
    105             }
    106             fFiniteBoundType = kNormal_BoundsType;
    107             break;
    108         case kPrev_Cur_FillCombo:
    109             // The most conservative result bound is that of the
    110             // prior clip. This could be wildly incorrect if the
    111             // second clip either exactly matches the first clip
    112             // (which should yield the empty set) or reduces the
    113             // size of the prior bound (e.g., if the second clip
    114             // exactly matched the bottom half of the prior clip).
    115             // We ignore these two possibilities.
    116             fFiniteBound = prevFinite;
    117             break;
    118         default:
    119             SkDEBUGFAIL("SkClipStack::Element::combineBoundsDiff Invalid fill combination");
    120             break;
    121     }
    122 }
    123 
    124 void SkClipStack::Element::combineBoundsXOR(int combination, const SkRect& prevFinite) {
    125 
    126     switch (combination) {
    127         case kInvPrev_Cur_FillCombo:       // fall through
    128         case kPrev_InvCur_FillCombo:
    129             // With only one of the clips inverted the result will always
    130             // extend to infinity. The only pixels that may be un-writeable
    131             // lie within the union of the two finite bounds
    132             fFiniteBound.join(prevFinite);
    133             fFiniteBoundType = kInsideOut_BoundsType;
    134             break;
    135         case kInvPrev_InvCur_FillCombo:
    136             // The only pixels that can survive are within the
    137             // union of the two bounding boxes since the extensions
    138             // to infinity of both clips cancel out
    139             // fall through!
    140         case kPrev_Cur_FillCombo:
    141             // The most conservative bound for xor is the
    142             // union of the two bounds. If the two clips exactly overlapped
    143             // the xor could yield the empty set. Similarly the xor
    144             // could reduce the size of the original clip's bound (e.g.,
    145             // if the second clip exactly matched the bottom half of the
    146             // first clip). We ignore these two cases.
    147             fFiniteBound.join(prevFinite);
    148             fFiniteBoundType = kNormal_BoundsType;
    149             break;
    150         default:
    151             SkDEBUGFAIL("SkClipStack::Element::combineBoundsXOR Invalid fill combination");
    152             break;
    153     }
    154 }
    155 
    156 // a mirror of combineBoundsIntersection
    157 void SkClipStack::Element::combineBoundsUnion(int combination, const SkRect& prevFinite) {
    158 
    159     switch (combination) {
    160         case kInvPrev_InvCur_FillCombo:
    161             if (!fFiniteBound.intersect(prevFinite)) {
    162                 fFiniteBound.setEmpty();
    163                 fGenID = kWideOpenGenID;
    164             }
    165             fFiniteBoundType = kInsideOut_BoundsType;
    166             break;
    167         case kInvPrev_Cur_FillCombo:
    168             // The only pixels that won't be drawable are inside
    169             // the prior clip's finite bound
    170             fFiniteBound = prevFinite;
    171             fFiniteBoundType = kInsideOut_BoundsType;
    172             break;
    173         case kPrev_InvCur_FillCombo:
    174             // The only pixels that won't be drawable are inside
    175             // this clip's finite bound
    176             break;
    177         case kPrev_Cur_FillCombo:
    178             fFiniteBound.join(prevFinite);
    179             break;
    180         default:
    181             SkDEBUGFAIL("SkClipStack::Element::combineBoundsUnion Invalid fill combination");
    182             break;
    183     }
    184 }
    185 
    186 // a mirror of combineBoundsUnion
    187 void SkClipStack::Element::combineBoundsIntersection(int combination, const SkRect& prevFinite) {
    188 
    189     switch (combination) {
    190         case kInvPrev_InvCur_FillCombo:
    191             // The only pixels that aren't writable in this case
    192             // occur in the union of the two finite bounds
    193             fFiniteBound.join(prevFinite);
    194             fFiniteBoundType = kInsideOut_BoundsType;
    195             break;
    196         case kInvPrev_Cur_FillCombo:
    197             // In this case the only pixels that will remain writeable
    198             // are within the current clip
    199             break;
    200         case kPrev_InvCur_FillCombo:
    201             // In this case the only pixels that will remain writeable
    202             // are with the previous clip
    203             fFiniteBound = prevFinite;
    204             fFiniteBoundType = kNormal_BoundsType;
    205             break;
    206         case kPrev_Cur_FillCombo:
    207             if (!fFiniteBound.intersect(prevFinite)) {
    208                 fFiniteBound.setEmpty();
    209                 fGenID = kEmptyGenID;
    210             }
    211             break;
    212         default:
    213             SkDEBUGFAIL("SkClipStack::Element::combineBoundsIntersection Invalid fill combination");
    214             break;
    215     }
    216 }
    217 
    218 // a mirror of combineBoundsDiff
    219 void SkClipStack::Element::combineBoundsRevDiff(int combination, const SkRect& prevFinite) {
    220 
    221     switch (combination) {
    222         case kInvPrev_InvCur_FillCombo:
    223             // The only pixels that can survive are in the
    224             // previous bound since the extensions to infinity in
    225             // both clips cancel out
    226             fFiniteBound = prevFinite;
    227             fFiniteBoundType = kNormal_BoundsType;
    228             break;
    229         case kInvPrev_Cur_FillCombo:
    230             if (!fFiniteBound.intersect(prevFinite)) {
    231                 fFiniteBound.setEmpty();
    232                 fGenID = kEmptyGenID;
    233             }
    234             fFiniteBoundType = kNormal_BoundsType;
    235             break;
    236         case kPrev_InvCur_FillCombo:
    237             fFiniteBound.join(prevFinite);
    238             fFiniteBoundType = kInsideOut_BoundsType;
    239             break;
    240         case kPrev_Cur_FillCombo:
    241             // Fall through - as with the kDifference_Op case, the
    242             // most conservative result bound is the bound of the
    243             // current clip. The prior clip could reduce the size of this
    244             // bound (as in the kDifference_Op case) but we are ignoring
    245             // those cases.
    246             break;
    247         default:
    248             SkDEBUGFAIL("SkClipStack::Element::combineBoundsRevDiff Invalid fill combination");
    249             break;
    250     }
    251 }
    252 
    253 void SkClipStack::Element::updateBoundAndGenID(const Element* prior) {
    254     // We set this first here but we may overwrite it later if we determine that the clip is
    255     // either wide-open or empty.
    256     fGenID = GetNextGenID();
    257 
    258     // First, optimistically update the current Element's bound information
    259     // with the current clip's bound
    260     fIsIntersectionOfRects = false;
    261     if (kRect_Type == fType) {
    262         fFiniteBound = fRect;
    263         fFiniteBoundType = kNormal_BoundsType;
    264 
    265         if (SkRegion::kReplace_Op == fOp ||
    266             (SkRegion::kIntersect_Op == fOp && NULL == prior) ||
    267             (SkRegion::kIntersect_Op == fOp && prior->fIsIntersectionOfRects &&
    268                 prior->rectRectIntersectAllowed(fRect, fDoAA))) {
    269             fIsIntersectionOfRects = true;
    270         }
    271 
    272     } else {
    273         SkASSERT(kPath_Type == fType);
    274 
    275         fFiniteBound = fPath.getBounds();
    276 
    277         if (fPath.isInverseFillType()) {
    278             fFiniteBoundType = kInsideOut_BoundsType;
    279         } else {
    280             fFiniteBoundType = kNormal_BoundsType;
    281         }
    282     }
    283 
    284     if (!fDoAA) {
    285         // Here we mimic a non-anti-aliased scanline system. If there is
    286         // no anti-aliasing we can integerize the bounding box to exclude
    287         // fractional parts that won't be rendered.
    288         // Note: the left edge is handled slightly differently below. We
    289         // are a bit more generous in the rounding since we don't want to
    290         // risk missing the left pixels when fLeft is very close to .5
    291         fFiniteBound.set(SkIntToScalar(SkScalarFloorToInt(fFiniteBound.fLeft+0.45f)),
    292                          SkIntToScalar(SkScalarRound(fFiniteBound.fTop)),
    293                          SkIntToScalar(SkScalarRound(fFiniteBound.fRight)),
    294                          SkIntToScalar(SkScalarRound(fFiniteBound.fBottom)));
    295     }
    296 
    297     // Now determine the previous Element's bound information taking into
    298     // account that there may be no previous clip
    299     SkRect prevFinite;
    300     SkClipStack::BoundsType prevType;
    301 
    302     if (NULL == prior) {
    303         // no prior clip means the entire plane is writable
    304         prevFinite.setEmpty();   // there are no pixels that cannot be drawn to
    305         prevType = kInsideOut_BoundsType;
    306     } else {
    307         prevFinite = prior->fFiniteBound;
    308         prevType = prior->fFiniteBoundType;
    309     }
    310 
    311     FillCombo combination = kPrev_Cur_FillCombo;
    312     if (kInsideOut_BoundsType == fFiniteBoundType) {
    313         combination = (FillCombo) (combination | 0x01);
    314     }
    315     if (kInsideOut_BoundsType == prevType) {
    316         combination = (FillCombo) (combination | 0x02);
    317     }
    318 
    319     SkASSERT(kInvPrev_InvCur_FillCombo == combination ||
    320                 kInvPrev_Cur_FillCombo == combination ||
    321                 kPrev_InvCur_FillCombo == combination ||
    322                 kPrev_Cur_FillCombo == combination);
    323 
    324     // Now integrate with clip with the prior clips
    325     switch (fOp) {
    326         case SkRegion::kDifference_Op:
    327             this->combineBoundsDiff(combination, prevFinite);
    328             break;
    329         case SkRegion::kXOR_Op:
    330             this->combineBoundsXOR(combination, prevFinite);
    331             break;
    332         case SkRegion::kUnion_Op:
    333             this->combineBoundsUnion(combination, prevFinite);
    334             break;
    335         case SkRegion::kIntersect_Op:
    336             this->combineBoundsIntersection(combination, prevFinite);
    337             break;
    338         case SkRegion::kReverseDifference_Op:
    339             this->combineBoundsRevDiff(combination, prevFinite);
    340             break;
    341         case SkRegion::kReplace_Op:
    342             // Replace just ignores everything prior
    343             // The current clip's bound information is already filled in
    344             // so nothing to do
    345             break;
    346         default:
    347             SkDebugf("SkRegion::Op error/n");
    348             SkASSERT(0);
    349             break;
    350     }
    351 }
    352 
    353 // This constant determines how many Element's are allocated together as a block in
    354 // the deque. As such it needs to balance allocating too much memory vs.
    355 // incurring allocation/deallocation thrashing. It should roughly correspond to
    356 // the deepest save/restore stack we expect to see.
    357 static const int kDefaultElementAllocCnt = 8;
    358 
    359 SkClipStack::SkClipStack()
    360     : fDeque(sizeof(Element), kDefaultElementAllocCnt)
    361     , fSaveCount(0) {
    362 }
    363 
    364 SkClipStack::SkClipStack(const SkClipStack& b)
    365     : fDeque(sizeof(Element), kDefaultElementAllocCnt) {
    366     *this = b;
    367 }
    368 
    369 SkClipStack::SkClipStack(const SkRect& r)
    370     : fDeque(sizeof(Element), kDefaultElementAllocCnt)
    371     , fSaveCount(0) {
    372     if (!r.isEmpty()) {
    373         this->clipDevRect(r, SkRegion::kReplace_Op, false);
    374     }
    375 }
    376 
    377 SkClipStack::SkClipStack(const SkIRect& r)
    378     : fDeque(sizeof(Element), kDefaultElementAllocCnt)
    379     , fSaveCount(0) {
    380     if (!r.isEmpty()) {
    381         SkRect temp;
    382         temp.set(r);
    383         this->clipDevRect(temp, SkRegion::kReplace_Op, false);
    384     }
    385 }
    386 
    387 SkClipStack::~SkClipStack() {
    388     reset();
    389 }
    390 
    391 SkClipStack& SkClipStack::operator=(const SkClipStack& b) {
    392     if (this == &b) {
    393         return *this;
    394     }
    395     reset();
    396 
    397     fSaveCount = b.fSaveCount;
    398     SkDeque::F2BIter recIter(b.fDeque);
    399     for (const Element* element = (const Element*)recIter.next();
    400          element != NULL;
    401          element = (const Element*)recIter.next()) {
    402         new (fDeque.push_back()) Element(*element);
    403     }
    404 
    405     return *this;
    406 }
    407 
    408 bool SkClipStack::operator==(const SkClipStack& b) const {
    409     if (fSaveCount != b.fSaveCount ||
    410         fDeque.count() != b.fDeque.count()) {
    411         return false;
    412     }
    413     SkDeque::F2BIter myIter(fDeque);
    414     SkDeque::F2BIter bIter(b.fDeque);
    415     const Element* myElement = (const Element*)myIter.next();
    416     const Element* bElement = (const Element*)bIter.next();
    417 
    418     while (myElement != NULL && bElement != NULL) {
    419         if (*myElement != *bElement) {
    420             return false;
    421         }
    422         myElement = (const Element*)myIter.next();
    423         bElement = (const Element*)bIter.next();
    424     }
    425     return myElement == NULL && bElement == NULL;
    426 }
    427 
    428 void SkClipStack::reset() {
    429     // We used a placement new for each object in fDeque, so we're responsible
    430     // for calling the destructor on each of them as well.
    431     while (!fDeque.empty()) {
    432         Element* element = (Element*)fDeque.back();
    433         element->~Element();
    434         fDeque.pop_back();
    435     }
    436 
    437     fSaveCount = 0;
    438 }
    439 
    440 void SkClipStack::save() {
    441     fSaveCount += 1;
    442 }
    443 
    444 void SkClipStack::restore() {
    445     fSaveCount -= 1;
    446     while (!fDeque.empty()) {
    447         Element* element = (Element*)fDeque.back();
    448         if (element->fSaveCount <= fSaveCount) {
    449             break;
    450         }
    451         this->purgeClip(element);
    452         element->~Element();
    453         fDeque.pop_back();
    454     }
    455 }
    456 
    457 void SkClipStack::getBounds(SkRect* canvFiniteBound,
    458                             BoundsType* boundType,
    459                             bool* isIntersectionOfRects) const {
    460     SkASSERT(NULL != canvFiniteBound && NULL != boundType);
    461 
    462     Element* element = (Element*)fDeque.back();
    463 
    464     if (NULL == element) {
    465         // the clip is wide open - the infinite plane w/ no pixels un-writeable
    466         canvFiniteBound->setEmpty();
    467         *boundType = kInsideOut_BoundsType;
    468         if (NULL != isIntersectionOfRects) {
    469             *isIntersectionOfRects = false;
    470         }
    471         return;
    472     }
    473 
    474     *canvFiniteBound = element->fFiniteBound;
    475     *boundType = element->fFiniteBoundType;
    476     if (NULL != isIntersectionOfRects) {
    477         *isIntersectionOfRects = element->fIsIntersectionOfRects;
    478     }
    479 }
    480 
    481 bool SkClipStack::intersectRectWithClip(SkRect* rect) const {
    482     SkASSERT(NULL != rect);
    483 
    484     SkRect bounds;
    485     SkClipStack::BoundsType bt;
    486     this->getBounds(&bounds, &bt);
    487     if (bt == SkClipStack::kInsideOut_BoundsType) {
    488         if (bounds.contains(*rect)) {
    489             return false;
    490         } else {
    491             // If rect's x values are both within bound's x range we
    492             // could clip here. Same for y. But we don't bother to check.
    493             return true;
    494         }
    495     } else {
    496         return rect->intersect(bounds);
    497     }
    498 }
    499 
    500 bool SkClipStack::quickContains(const SkRect& rect) const {
    501 
    502     Iter iter(*this, Iter::kTop_IterStart);
    503     const Element* element = iter.prev();
    504     while (element != NULL) {
    505         if (SkRegion::kIntersect_Op != element->getOp() && SkRegion::kReplace_Op != element->getOp())
    506             return false;
    507         if (element->isInverseFilled()) {
    508             // Part of 'rect' could be trimmed off by the inverse-filled clip element
    509             if (SkRect::Intersects(element->getBounds(), rect)) {
    510                 return false;
    511             }
    512         } else {
    513             if (!element->contains(rect)) {
    514                 return false;
    515             }
    516         }
    517         if (SkRegion::kReplace_Op == element->getOp()) {
    518             break;
    519         }
    520         element = iter.prev();
    521     }
    522     return true;
    523 }
    524 
    525 void SkClipStack::clipDevRect(const SkRect& rect, SkRegion::Op op, bool doAA) {
    526 
    527     // Use reverse iterator instead of back because Rect path may need previous
    528     SkDeque::Iter iter(fDeque, SkDeque::Iter::kBack_IterStart);
    529     Element* element = (Element*) iter.prev();
    530 
    531     if (element && element->canBeIntersectedInPlace(fSaveCount, op)) {
    532         switch (element->fType) {
    533             case Element::kEmpty_Type:
    534                 element->checkEmpty();
    535                 return;
    536             case Element::kRect_Type:
    537                 if (element->rectRectIntersectAllowed(rect, doAA)) {
    538                     this->purgeClip(element);
    539                     if (!element->fRect.intersect(rect)) {
    540                         element->setEmpty();
    541                         return;
    542                     }
    543 
    544                     element->fDoAA = doAA;
    545                     Element* prev = (Element*) iter.prev();
    546                     element->updateBoundAndGenID(prev);
    547                     return;
    548                 }
    549                 break;
    550             case Element::kPath_Type:
    551                 if (!SkRect::Intersects(element->fPath.getBounds(), rect)) {
    552                     this->purgeClip(element);
    553                     element->setEmpty();
    554                     return;
    555                 }
    556                 break;
    557         }
    558     }
    559     new (fDeque.push_back()) Element(fSaveCount, rect, op, doAA);
    560     ((Element*) fDeque.back())->updateBoundAndGenID(element);
    561 
    562     if (element && element->fSaveCount == fSaveCount) {
    563         this->purgeClip(element);
    564     }
    565 }
    566 
    567 void SkClipStack::clipDevPath(const SkPath& path, SkRegion::Op op, bool doAA) {
    568     SkRect alt;
    569     if (path.isRect(&alt) && !path.isInverseFillType()) {
    570         return this->clipDevRect(alt, op, doAA);
    571     }
    572 
    573     Element* element = (Element*)fDeque.back();
    574     if (element && element->canBeIntersectedInPlace(fSaveCount, op)) {
    575         const SkRect& pathBounds = path.getBounds();
    576         switch (element->fType) {
    577             case Element::kEmpty_Type:
    578                 element->checkEmpty();
    579                 return;
    580             case Element::kRect_Type:
    581                 if (!SkRect::Intersects(element->fRect, pathBounds)) {
    582                     this->purgeClip(element);
    583                     element->setEmpty();
    584                     return;
    585                 }
    586                 break;
    587             case Element::kPath_Type:
    588                 if (!SkRect::Intersects(element->fPath.getBounds(), pathBounds)) {
    589                     this->purgeClip(element);
    590                     element->setEmpty();
    591                     return;
    592                 }
    593                 break;
    594         }
    595     }
    596     new (fDeque.push_back()) Element(fSaveCount, path, op, doAA);
    597     ((Element*) fDeque.back())->updateBoundAndGenID(element);
    598 
    599     if (element && element->fSaveCount == fSaveCount) {
    600         this->purgeClip(element);
    601     }
    602 }
    603 
    604 void SkClipStack::clipEmpty() {
    605 
    606     Element* element = (Element*) fDeque.back();
    607 
    608     if (element && element->canBeIntersectedInPlace(fSaveCount, SkRegion::kIntersect_Op)) {
    609         switch (element->fType) {
    610             case Element::kEmpty_Type:
    611                 element->checkEmpty();
    612                 return;
    613             case Element::kRect_Type:
    614             case Element::kPath_Type:
    615                 this->purgeClip(element);
    616                 element->setEmpty();
    617                 return;
    618         }
    619     }
    620     new (fDeque.push_back()) Element(fSaveCount);
    621 
    622     if (element && element->fSaveCount == fSaveCount) {
    623         this->purgeClip(element);
    624     }
    625     ((Element*)fDeque.back())->fGenID = kEmptyGenID;
    626 }
    627 
    628 bool SkClipStack::isWideOpen() const {
    629     if (0 == fDeque.count()) {
    630         return true;
    631     }
    632 
    633     const Element* back = (const Element*) fDeque.back();
    634     return kWideOpenGenID == back->fGenID ||
    635            (kInsideOut_BoundsType == back->fFiniteBoundType && back->fFiniteBound.isEmpty());
    636 }
    637 
    638 ///////////////////////////////////////////////////////////////////////////////
    639 
    640 SkClipStack::Iter::Iter() : fStack(NULL) {
    641 }
    642 
    643 SkClipStack::Iter::Iter(const SkClipStack& stack, IterStart startLoc)
    644     : fStack(&stack) {
    645     this->reset(stack, startLoc);
    646 }
    647 
    648 const SkClipStack::Element* SkClipStack::Iter::next() {
    649     return (const SkClipStack::Element*)fIter.next();
    650 }
    651 
    652 const SkClipStack::Element* SkClipStack::Iter::prev() {
    653     return (const SkClipStack::Element*)fIter.prev();
    654 }
    655 
    656 const SkClipStack::Element* SkClipStack::Iter::skipToTopmost(SkRegion::Op op) {
    657 
    658     if (NULL == fStack) {
    659         return NULL;
    660     }
    661 
    662     fIter.reset(fStack->fDeque, SkDeque::Iter::kBack_IterStart);
    663 
    664     const SkClipStack::Element* element = NULL;
    665 
    666     for (element = (const SkClipStack::Element*) fIter.prev();
    667          NULL != element;
    668          element = (const SkClipStack::Element*) fIter.prev()) {
    669 
    670         if (op == element->fOp) {
    671             // The Deque's iterator is actually one pace ahead of the
    672             // returned value. So while "element" is the element we want to
    673             // return, the iterator is actually pointing at (and will
    674             // return on the next "next" or "prev" call) the element
    675             // in front of it in the deque. Bump the iterator forward a
    676             // step so we get the expected result.
    677             if (NULL == fIter.next()) {
    678                 // The reverse iterator has run off the front of the deque
    679                 // (i.e., the "op" clip is the first clip) and can't
    680                 // recover. Reset the iterator to start at the front.
    681                 fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart);
    682             }
    683             break;
    684         }
    685     }
    686 
    687     if (NULL == element) {
    688         // There were no "op" clips
    689         fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart);
    690     }
    691 
    692     return this->next();
    693 }
    694 
    695 void SkClipStack::Iter::reset(const SkClipStack& stack, IterStart startLoc) {
    696     fStack = &stack;
    697     fIter.reset(stack.fDeque, static_cast<SkDeque::Iter::IterStart>(startLoc));
    698 }
    699 
    700 // helper method
    701 void SkClipStack::getConservativeBounds(int offsetX,
    702                                         int offsetY,
    703                                         int maxWidth,
    704                                         int maxHeight,
    705                                         SkRect* devBounds,
    706                                         bool* isIntersectionOfRects) const {
    707     SkASSERT(NULL != devBounds);
    708 
    709     devBounds->setLTRB(0, 0,
    710                        SkIntToScalar(maxWidth), SkIntToScalar(maxHeight));
    711 
    712     SkRect temp;
    713     SkClipStack::BoundsType boundType;
    714 
    715     // temp starts off in canvas space here
    716     this->getBounds(&temp, &boundType, isIntersectionOfRects);
    717     if (SkClipStack::kInsideOut_BoundsType == boundType) {
    718         return;
    719     }
    720 
    721     // but is converted to device space here
    722     temp.offset(SkIntToScalar(offsetX), SkIntToScalar(offsetY));
    723 
    724     if (!devBounds->intersect(temp)) {
    725         devBounds->setEmpty();
    726     }
    727 }
    728 
    729 void SkClipStack::addPurgeClipCallback(PFPurgeClipCB callback, void* data) const {
    730     ClipCallbackData temp = { callback, data };
    731     fCallbackData.append(1, &temp);
    732 }
    733 
    734 void SkClipStack::removePurgeClipCallback(PFPurgeClipCB callback, void* data) const {
    735     ClipCallbackData temp = { callback, data };
    736     int index = fCallbackData.find(temp);
    737     if (index >= 0) {
    738         fCallbackData.removeShuffle(index);
    739     }
    740 }
    741 
    742 // The clip state represented by 'element' will never be used again. Purge it.
    743 void SkClipStack::purgeClip(Element* element) {
    744     SkASSERT(NULL != element);
    745     if (element->fGenID >= 0 && element->fGenID < kFirstUnreservedGenID) {
    746         return;
    747     }
    748 
    749     for (int i = 0; i < fCallbackData.count(); ++i) {
    750         (*fCallbackData[i].fCallback)(element->fGenID, fCallbackData[i].fData);
    751     }
    752 
    753     // Invalidate element's gen ID so handlers can detect already handled records
    754     element->fGenID = kInvalidGenID;
    755 }
    756 
    757 int32_t SkClipStack::GetNextGenID() {
    758     // TODO: handle overflow.
    759     return sk_atomic_inc(&gGenID);
    760 }
    761 
    762 int32_t SkClipStack::getTopmostGenID() const {
    763 
    764     if (fDeque.empty()) {
    765         return kInvalidGenID;
    766     }
    767 
    768     Element* element = (Element*)fDeque.back();
    769     return element->fGenID;
    770 }
    771