Home | History | Annotate | Download | only in RuntimeDyld
      1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Implementation of the MC-JIT runtime dynamic linker.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "dyld"
     15 #include "llvm/ExecutionEngine/RuntimeDyld.h"
     16 #include "ObjectImageCommon.h"
     17 #include "RuntimeDyldELF.h"
     18 #include "RuntimeDyldImpl.h"
     19 #include "RuntimeDyldMachO.h"
     20 #include "llvm/Support/MathExtras.h"
     21 #include "llvm/Support/Path.h"
     22 
     23 using namespace llvm;
     24 using namespace llvm::object;
     25 
     26 // Empty out-of-line virtual destructor as the key function.
     27 RTDyldMemoryManager::~RTDyldMemoryManager() {}
     28 RuntimeDyldImpl::~RuntimeDyldImpl() {}
     29 
     30 namespace llvm {
     31 
     32 // Resolve the relocations for all symbols we currently know about.
     33 void RuntimeDyldImpl::resolveRelocations() {
     34   // First, resolve relocations associated with external symbols.
     35   resolveExternalSymbols();
     36 
     37   // Just iterate over the sections we have and resolve all the relocations
     38   // in them. Gross overkill, but it gets the job done.
     39   for (int i = 0, e = Sections.size(); i != e; ++i) {
     40     uint64_t Addr = Sections[i].LoadAddress;
     41     DEBUG(dbgs() << "Resolving relocations Section #" << i
     42             << "\t" << format("%p", (uint8_t *)Addr)
     43             << "\n");
     44     resolveRelocationList(Relocations[i], Addr);
     45   }
     46 }
     47 
     48 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
     49                                         uint64_t TargetAddress) {
     50   for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
     51     if (Sections[i].Address == LocalAddress) {
     52       reassignSectionAddress(i, TargetAddress);
     53       return;
     54     }
     55   }
     56   llvm_unreachable("Attempting to remap address of unknown section!");
     57 }
     58 
     59 // Subclasses can implement this method to create specialized image instances.
     60 // The caller owns the pointer that is returned.
     61 ObjectImage *RuntimeDyldImpl::createObjectImage(ObjectBuffer *InputBuffer) {
     62   return new ObjectImageCommon(InputBuffer);
     63 }
     64 
     65 ObjectImage *RuntimeDyldImpl::loadObject(ObjectBuffer *InputBuffer) {
     66   OwningPtr<ObjectImage> obj(createObjectImage(InputBuffer));
     67   if (!obj)
     68     report_fatal_error("Unable to create object image from memory buffer!");
     69 
     70   Arch = (Triple::ArchType)obj->getArch();
     71 
     72   // Symbols found in this object
     73   StringMap<SymbolLoc> LocalSymbols;
     74   // Used sections from the object file
     75   ObjSectionToIDMap LocalSections;
     76 
     77   // Common symbols requiring allocation, with their sizes and alignments
     78   CommonSymbolMap CommonSymbols;
     79   // Maximum required total memory to allocate all common symbols
     80   uint64_t CommonSize = 0;
     81 
     82   error_code err;
     83   // Parse symbols
     84   DEBUG(dbgs() << "Parse symbols:\n");
     85   for (symbol_iterator i = obj->begin_symbols(), e = obj->end_symbols();
     86        i != e; i.increment(err)) {
     87     Check(err);
     88     object::SymbolRef::Type SymType;
     89     StringRef Name;
     90     Check(i->getType(SymType));
     91     Check(i->getName(Name));
     92 
     93     uint32_t flags;
     94     Check(i->getFlags(flags));
     95 
     96     bool isCommon = flags & SymbolRef::SF_Common;
     97     if (isCommon) {
     98       // Add the common symbols to a list.  We'll allocate them all below.
     99       uint64_t Align = getCommonSymbolAlignment(*i);
    100       uint64_t Size = 0;
    101       Check(i->getSize(Size));
    102       CommonSize += Size + Align;
    103       CommonSymbols[*i] = CommonSymbolInfo(Size, Align);
    104     } else {
    105       if (SymType == object::SymbolRef::ST_Function ||
    106           SymType == object::SymbolRef::ST_Data ||
    107           SymType == object::SymbolRef::ST_Unknown) {
    108         uint64_t FileOffset;
    109         StringRef SectionData;
    110         bool IsCode;
    111         section_iterator si = obj->end_sections();
    112         Check(i->getFileOffset(FileOffset));
    113         Check(i->getSection(si));
    114         if (si == obj->end_sections()) continue;
    115         Check(si->getContents(SectionData));
    116         Check(si->isText(IsCode));
    117         const uint8_t* SymPtr = (const uint8_t*)InputBuffer->getBufferStart() +
    118                                 (uintptr_t)FileOffset;
    119         uintptr_t SectOffset = (uintptr_t)(SymPtr -
    120                                            (const uint8_t*)SectionData.begin());
    121         unsigned SectionID = findOrEmitSection(*obj, *si, IsCode, LocalSections);
    122         LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset);
    123         DEBUG(dbgs() << "\tFileOffset: " << format("%p", (uintptr_t)FileOffset)
    124                      << " flags: " << flags
    125                      << " SID: " << SectionID
    126                      << " Offset: " << format("%p", SectOffset));
    127         GlobalSymbolTable[Name] = SymbolLoc(SectionID, SectOffset);
    128       }
    129     }
    130     DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << "\n");
    131   }
    132 
    133   // Allocate common symbols
    134   if (CommonSize != 0)
    135     emitCommonSymbols(*obj, CommonSymbols, CommonSize, LocalSymbols);
    136 
    137   // Parse and process relocations
    138   DEBUG(dbgs() << "Parse relocations:\n");
    139   for (section_iterator si = obj->begin_sections(),
    140        se = obj->end_sections(); si != se; si.increment(err)) {
    141     Check(err);
    142     bool isFirstRelocation = true;
    143     unsigned SectionID = 0;
    144     StubMap Stubs;
    145 
    146     for (relocation_iterator i = si->begin_relocations(),
    147          e = si->end_relocations(); i != e; i.increment(err)) {
    148       Check(err);
    149 
    150       // If it's the first relocation in this section, find its SectionID
    151       if (isFirstRelocation) {
    152         SectionID = findOrEmitSection(*obj, *si, true, LocalSections);
    153         DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
    154         isFirstRelocation = false;
    155       }
    156 
    157       ObjRelocationInfo RI;
    158       RI.SectionID = SectionID;
    159       Check(i->getAdditionalInfo(RI.AdditionalInfo));
    160       Check(i->getOffset(RI.Offset));
    161       Check(i->getSymbol(RI.Symbol));
    162       Check(i->getType(RI.Type));
    163 
    164       DEBUG(dbgs() << "\t\tAddend: " << RI.AdditionalInfo
    165                    << " Offset: " << format("%p", (uintptr_t)RI.Offset)
    166                    << " Type: " << (uint32_t)(RI.Type & 0xffffffffL)
    167                    << "\n");
    168       processRelocationRef(RI, *obj, LocalSections, LocalSymbols, Stubs);
    169     }
    170   }
    171 
    172   return obj.take();
    173 }
    174 
    175 void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
    176                                         const CommonSymbolMap &CommonSymbols,
    177                                         uint64_t TotalSize,
    178                                         SymbolTableMap &SymbolTable) {
    179   // Allocate memory for the section
    180   unsigned SectionID = Sections.size();
    181   uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, sizeof(void*),
    182                                               SectionID, false);
    183   if (!Addr)
    184     report_fatal_error("Unable to allocate memory for common symbols!");
    185   uint64_t Offset = 0;
    186   Sections.push_back(SectionEntry(StringRef(), Addr, TotalSize, TotalSize, 0));
    187   memset(Addr, 0, TotalSize);
    188 
    189   DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
    190                << " new addr: " << format("%p", Addr)
    191                << " DataSize: " << TotalSize
    192                << "\n");
    193 
    194   // Assign the address of each symbol
    195   for (CommonSymbolMap::const_iterator it = CommonSymbols.begin(),
    196        itEnd = CommonSymbols.end(); it != itEnd; it++) {
    197     uint64_t Size = it->second.first;
    198     uint64_t Align = it->second.second;
    199     StringRef Name;
    200     it->first.getName(Name);
    201     if (Align) {
    202       // This symbol has an alignment requirement.
    203       uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
    204       Addr += AlignOffset;
    205       Offset += AlignOffset;
    206       DEBUG(dbgs() << "Allocating common symbol " << Name << " address " <<
    207                       format("%p\n", Addr));
    208     }
    209     Obj.updateSymbolAddress(it->first, (uint64_t)Addr);
    210     SymbolTable[Name.data()] = SymbolLoc(SectionID, Offset);
    211     Offset += Size;
    212     Addr += Size;
    213   }
    214 }
    215 
    216 unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
    217                                       const SectionRef &Section,
    218                                       bool IsCode) {
    219 
    220   unsigned StubBufSize = 0,
    221            StubSize = getMaxStubSize();
    222   error_code err;
    223   if (StubSize > 0) {
    224     for (relocation_iterator i = Section.begin_relocations(),
    225          e = Section.end_relocations(); i != e; i.increment(err), Check(err))
    226       StubBufSize += StubSize;
    227   }
    228   StringRef data;
    229   uint64_t Alignment64;
    230   Check(Section.getContents(data));
    231   Check(Section.getAlignment(Alignment64));
    232 
    233   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
    234   bool IsRequired;
    235   bool IsVirtual;
    236   bool IsZeroInit;
    237   bool IsReadOnly;
    238   uint64_t DataSize;
    239   StringRef Name;
    240   Check(Section.isRequiredForExecution(IsRequired));
    241   Check(Section.isVirtual(IsVirtual));
    242   Check(Section.isZeroInit(IsZeroInit));
    243   Check(Section.isReadOnlyData(IsReadOnly));
    244   Check(Section.getSize(DataSize));
    245   Check(Section.getName(Name));
    246 
    247   unsigned Allocate;
    248   unsigned SectionID = Sections.size();
    249   uint8_t *Addr;
    250   const char *pData = 0;
    251 
    252   // Some sections, such as debug info, don't need to be loaded for execution.
    253   // Leave those where they are.
    254   if (IsRequired) {
    255     Allocate = DataSize + StubBufSize;
    256     Addr = IsCode
    257       ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID)
    258       : MemMgr->allocateDataSection(Allocate, Alignment, SectionID, IsReadOnly);
    259     if (!Addr)
    260       report_fatal_error("Unable to allocate section memory!");
    261 
    262     // Virtual sections have no data in the object image, so leave pData = 0
    263     if (!IsVirtual)
    264       pData = data.data();
    265 
    266     // Zero-initialize or copy the data from the image
    267     if (IsZeroInit || IsVirtual)
    268       memset(Addr, 0, DataSize);
    269     else
    270       memcpy(Addr, pData, DataSize);
    271 
    272     DEBUG(dbgs() << "emitSection SectionID: " << SectionID
    273                  << " Name: " << Name
    274                  << " obj addr: " << format("%p", pData)
    275                  << " new addr: " << format("%p", Addr)
    276                  << " DataSize: " << DataSize
    277                  << " StubBufSize: " << StubBufSize
    278                  << " Allocate: " << Allocate
    279                  << "\n");
    280     Obj.updateSectionAddress(Section, (uint64_t)Addr);
    281   }
    282   else {
    283     // Even if we didn't load the section, we need to record an entry for it
    284     // to handle later processing (and by 'handle' I mean don't do anything
    285     // with these sections).
    286     Allocate = 0;
    287     Addr = 0;
    288     DEBUG(dbgs() << "emitSection SectionID: " << SectionID
    289                  << " Name: " << Name
    290                  << " obj addr: " << format("%p", data.data())
    291                  << " new addr: 0"
    292                  << " DataSize: " << DataSize
    293                  << " StubBufSize: " << StubBufSize
    294                  << " Allocate: " << Allocate
    295                  << "\n");
    296   }
    297 
    298   Sections.push_back(SectionEntry(Name, Addr, Allocate, DataSize,
    299 				  (uintptr_t)pData));
    300   return SectionID;
    301 }
    302 
    303 unsigned RuntimeDyldImpl::findOrEmitSection(ObjectImage &Obj,
    304                                             const SectionRef &Section,
    305                                             bool IsCode,
    306                                             ObjSectionToIDMap &LocalSections) {
    307 
    308   unsigned SectionID = 0;
    309   ObjSectionToIDMap::iterator i = LocalSections.find(Section);
    310   if (i != LocalSections.end())
    311     SectionID = i->second;
    312   else {
    313     SectionID = emitSection(Obj, Section, IsCode);
    314     LocalSections[Section] = SectionID;
    315   }
    316   return SectionID;
    317 }
    318 
    319 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
    320                                               unsigned SectionID) {
    321   Relocations[SectionID].push_back(RE);
    322 }
    323 
    324 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
    325                                              StringRef SymbolName) {
    326   // Relocation by symbol.  If the symbol is found in the global symbol table,
    327   // create an appropriate section relocation.  Otherwise, add it to
    328   // ExternalSymbolRelocations.
    329   SymbolTableMap::const_iterator Loc =
    330       GlobalSymbolTable.find(SymbolName);
    331   if (Loc == GlobalSymbolTable.end()) {
    332     ExternalSymbolRelocations[SymbolName].push_back(RE);
    333   } else {
    334     // Copy the RE since we want to modify its addend.
    335     RelocationEntry RECopy = RE;
    336     RECopy.Addend += Loc->second.second;
    337     Relocations[Loc->second.first].push_back(RECopy);
    338   }
    339 }
    340 
    341 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
    342   if (Arch == Triple::arm) {
    343     // TODO: There is only ARM far stub now. We should add the Thumb stub,
    344     // and stubs for branches Thumb - ARM and ARM - Thumb.
    345     uint32_t *StubAddr = (uint32_t*)Addr;
    346     *StubAddr = 0xe51ff004; // ldr pc,<label>
    347     return (uint8_t*)++StubAddr;
    348   } else if (Arch == Triple::mipsel || Arch == Triple::mips) {
    349     uint32_t *StubAddr = (uint32_t*)Addr;
    350     // 0:   3c190000        lui     t9,%hi(addr).
    351     // 4:   27390000        addiu   t9,t9,%lo(addr).
    352     // 8:   03200008        jr      t9.
    353     // c:   00000000        nop.
    354     const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
    355     const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;
    356 
    357     *StubAddr = LuiT9Instr;
    358     StubAddr++;
    359     *StubAddr = AdduiT9Instr;
    360     StubAddr++;
    361     *StubAddr = JrT9Instr;
    362     StubAddr++;
    363     *StubAddr = NopInstr;
    364     return Addr;
    365   } else if (Arch == Triple::ppc64) {
    366     // PowerPC64 stub: the address points to a function descriptor
    367     // instead of the function itself. Load the function address
    368     // on r11 and sets it to control register. Also loads the function
    369     // TOC in r2 and environment pointer to r11.
    370     writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
    371     writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
    372     writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
    373     writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
    374     writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
    375     writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
    376     writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
    377     writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
    378     writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
    379     writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
    380     writeInt32BE(Addr+40, 0x4E800420); // bctr
    381 
    382     return Addr;
    383   }
    384   return Addr;
    385 }
    386 
    387 // Assign an address to a symbol name and resolve all the relocations
    388 // associated with it.
    389 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
    390                                              uint64_t Addr) {
    391   // The address to use for relocation resolution is not
    392   // the address of the local section buffer. We must be doing
    393   // a remote execution environment of some sort. Relocations can't
    394   // be applied until all the sections have been moved.  The client must
    395   // trigger this with a call to MCJIT::finalize() or
    396   // RuntimeDyld::resolveRelocations().
    397   //
    398   // Addr is a uint64_t because we can't assume the pointer width
    399   // of the target is the same as that of the host. Just use a generic
    400   // "big enough" type.
    401   Sections[SectionID].LoadAddress = Addr;
    402 }
    403 
    404 void RuntimeDyldImpl::resolveRelocationEntry(const RelocationEntry &RE,
    405                                              uint64_t Value) {
    406   // Ignore relocations for sections that were not loaded
    407   if (Sections[RE.SectionID].Address != 0) {
    408     DEBUG(dbgs() << "\tSectionID: " << RE.SectionID
    409           << " + " << RE.Offset << " ("
    410           << format("%p", Sections[RE.SectionID].Address + RE.Offset) << ")"
    411           << " RelType: " << RE.RelType
    412           << " Addend: " << RE.Addend
    413           << "\n");
    414 
    415     resolveRelocation(Sections[RE.SectionID], RE.Offset,
    416                       Value, RE.RelType, RE.Addend);
    417   }
    418 }
    419 
    420 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
    421                                             uint64_t Value) {
    422   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
    423     resolveRelocationEntry(Relocs[i], Value);
    424   }
    425 }
    426 
    427 void RuntimeDyldImpl::resolveExternalSymbols() {
    428   StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin(),
    429                                       e = ExternalSymbolRelocations.end();
    430   for (; i != e; i++) {
    431     StringRef Name = i->first();
    432     RelocationList &Relocs = i->second;
    433     SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(Name);
    434     if (Loc == GlobalSymbolTable.end()) {
    435       if (Name.size() == 0) {
    436         // This is an absolute symbol, use an address of zero.
    437         DEBUG(dbgs() << "Resolving absolute relocations." << "\n");
    438         resolveRelocationList(Relocs, 0);
    439       } else {
    440         // This is an external symbol, try to get its address from
    441         // MemoryManager.
    442         uint8_t *Addr = (uint8_t*) MemMgr->getPointerToNamedFunction(Name.data(),
    443                                                                    true);
    444         DEBUG(dbgs() << "Resolving relocations Name: " << Name
    445                 << "\t" << format("%p", Addr)
    446                 << "\n");
    447         resolveRelocationList(Relocs, (uintptr_t)Addr);
    448       }
    449     } else {
    450       report_fatal_error("Expected external symbol");
    451     }
    452   }
    453 }
    454 
    455 
    456 //===----------------------------------------------------------------------===//
    457 // RuntimeDyld class implementation
    458 RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {
    459   // FIXME: There's a potential issue lurking here if a single instance of
    460   // RuntimeDyld is used to load multiple objects.  The current implementation
    461   // associates a single memory manager with a RuntimeDyld instance.  Even
    462   // though the public class spawns a new 'impl' instance for each load,
    463   // they share a single memory manager.  This can become a problem when page
    464   // permissions are applied.
    465   Dyld = 0;
    466   MM = mm;
    467 }
    468 
    469 RuntimeDyld::~RuntimeDyld() {
    470   delete Dyld;
    471 }
    472 
    473 ObjectImage *RuntimeDyld::loadObject(ObjectBuffer *InputBuffer) {
    474   if (!Dyld) {
    475     sys::LLVMFileType type = sys::IdentifyFileType(
    476             InputBuffer->getBufferStart(),
    477             static_cast<unsigned>(InputBuffer->getBufferSize()));
    478     switch (type) {
    479       case sys::ELF_Relocatable_FileType:
    480       case sys::ELF_Executable_FileType:
    481       case sys::ELF_SharedObject_FileType:
    482       case sys::ELF_Core_FileType:
    483         Dyld = new RuntimeDyldELF(MM);
    484         break;
    485       case sys::Mach_O_Object_FileType:
    486       case sys::Mach_O_Executable_FileType:
    487       case sys::Mach_O_FixedVirtualMemorySharedLib_FileType:
    488       case sys::Mach_O_Core_FileType:
    489       case sys::Mach_O_PreloadExecutable_FileType:
    490       case sys::Mach_O_DynamicallyLinkedSharedLib_FileType:
    491       case sys::Mach_O_DynamicLinker_FileType:
    492       case sys::Mach_O_Bundle_FileType:
    493       case sys::Mach_O_DynamicallyLinkedSharedLibStub_FileType:
    494       case sys::Mach_O_DSYMCompanion_FileType:
    495         Dyld = new RuntimeDyldMachO(MM);
    496         break;
    497       case sys::Unknown_FileType:
    498       case sys::Bitcode_FileType:
    499       case sys::Archive_FileType:
    500       case sys::COFF_FileType:
    501         report_fatal_error("Incompatible object format!");
    502     }
    503   } else {
    504     if (!Dyld->isCompatibleFormat(InputBuffer))
    505       report_fatal_error("Incompatible object format!");
    506   }
    507 
    508   return Dyld->loadObject(InputBuffer);
    509 }
    510 
    511 void *RuntimeDyld::getSymbolAddress(StringRef Name) {
    512   return Dyld->getSymbolAddress(Name);
    513 }
    514 
    515 uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) {
    516   return Dyld->getSymbolLoadAddress(Name);
    517 }
    518 
    519 void RuntimeDyld::resolveRelocations() {
    520   Dyld->resolveRelocations();
    521 }
    522 
    523 void RuntimeDyld::reassignSectionAddress(unsigned SectionID,
    524                                          uint64_t Addr) {
    525   Dyld->reassignSectionAddress(SectionID, Addr);
    526 }
    527 
    528 void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
    529                                     uint64_t TargetAddress) {
    530   Dyld->mapSectionAddress(LocalAddress, TargetAddress);
    531 }
    532 
    533 StringRef RuntimeDyld::getErrorString() {
    534   return Dyld->getErrorString();
    535 }
    536 
    537 } // end namespace llvm
    538