Home | History | Annotate | Download | only in Support
      1 //===-- llvm/Support/CFG.h - Process LLVM structures as graphs --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines specializations of GraphTraits that allow Function and
     11 // BasicBlock graphs to be treated as proper graphs for generic algorithms.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_SUPPORT_CFG_H
     16 #define LLVM_SUPPORT_CFG_H
     17 
     18 #include "llvm/ADT/GraphTraits.h"
     19 #include "llvm/IR/Function.h"
     20 #include "llvm/IR/InstrTypes.h"
     21 
     22 namespace llvm {
     23 
     24 //===----------------------------------------------------------------------===//
     25 // BasicBlock pred_iterator definition
     26 //===----------------------------------------------------------------------===//
     27 
     28 template <class Ptr, class USE_iterator> // Predecessor Iterator
     29 class PredIterator : public std::iterator<std::forward_iterator_tag,
     30                                           Ptr, ptrdiff_t> {
     31   typedef std::iterator<std::forward_iterator_tag, Ptr, ptrdiff_t> super;
     32   typedef PredIterator<Ptr, USE_iterator> Self;
     33   USE_iterator It;
     34 
     35   inline void advancePastNonTerminators() {
     36     // Loop to ignore non terminator uses (for example BlockAddresses).
     37     while (!It.atEnd() && !isa<TerminatorInst>(*It))
     38       ++It;
     39   }
     40 
     41 public:
     42   typedef typename super::pointer pointer;
     43 
     44   PredIterator() {}
     45   explicit inline PredIterator(Ptr *bb) : It(bb->use_begin()) {
     46     advancePastNonTerminators();
     47   }
     48   inline PredIterator(Ptr *bb, bool) : It(bb->use_end()) {}
     49 
     50   inline bool operator==(const Self& x) const { return It == x.It; }
     51   inline bool operator!=(const Self& x) const { return !operator==(x); }
     52 
     53   inline pointer operator*() const {
     54     assert(!It.atEnd() && "pred_iterator out of range!");
     55     return cast<TerminatorInst>(*It)->getParent();
     56   }
     57   inline pointer *operator->() const { return &operator*(); }
     58 
     59   inline Self& operator++() {   // Preincrement
     60     assert(!It.atEnd() && "pred_iterator out of range!");
     61     ++It; advancePastNonTerminators();
     62     return *this;
     63   }
     64 
     65   inline Self operator++(int) { // Postincrement
     66     Self tmp = *this; ++*this; return tmp;
     67   }
     68 
     69   /// getOperandNo - Return the operand number in the predecessor's
     70   /// terminator of the successor.
     71   unsigned getOperandNo() const {
     72     return It.getOperandNo();
     73   }
     74 
     75   /// getUse - Return the operand Use in the predecessor's terminator
     76   /// of the successor.
     77   Use &getUse() const {
     78     return It.getUse();
     79   }
     80 };
     81 
     82 typedef PredIterator<BasicBlock, Value::use_iterator> pred_iterator;
     83 typedef PredIterator<const BasicBlock,
     84                      Value::const_use_iterator> const_pred_iterator;
     85 
     86 inline pred_iterator pred_begin(BasicBlock *BB) { return pred_iterator(BB); }
     87 inline const_pred_iterator pred_begin(const BasicBlock *BB) {
     88   return const_pred_iterator(BB);
     89 }
     90 inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);}
     91 inline const_pred_iterator pred_end(const BasicBlock *BB) {
     92   return const_pred_iterator(BB, true);
     93 }
     94 
     95 
     96 
     97 //===----------------------------------------------------------------------===//
     98 // BasicBlock succ_iterator definition
     99 //===----------------------------------------------------------------------===//
    100 
    101 template <class Term_, class BB_>           // Successor Iterator
    102 class SuccIterator : public std::iterator<std::bidirectional_iterator_tag,
    103                                           BB_, ptrdiff_t> {
    104   const Term_ Term;
    105   unsigned idx;
    106   typedef std::iterator<std::bidirectional_iterator_tag, BB_, ptrdiff_t> super;
    107   typedef SuccIterator<Term_, BB_> Self;
    108 
    109   inline bool index_is_valid(int idx) {
    110     return idx >= 0 && (unsigned) idx < Term->getNumSuccessors();
    111   }
    112 
    113 public:
    114   typedef typename super::pointer pointer;
    115   // TODO: This can be random access iterator, only operator[] missing.
    116 
    117   explicit inline SuccIterator(Term_ T) : Term(T), idx(0) {// begin iterator
    118   }
    119   inline SuccIterator(Term_ T, bool)                       // end iterator
    120     : Term(T) {
    121     if (Term)
    122       idx = Term->getNumSuccessors();
    123     else
    124       // Term == NULL happens, if a basic block is not fully constructed and
    125       // consequently getTerminator() returns NULL. In this case we construct a
    126       // SuccIterator which describes a basic block that has zero successors.
    127       // Defining SuccIterator for incomplete and malformed CFGs is especially
    128       // useful for debugging.
    129       idx = 0;
    130   }
    131 
    132   inline const Self &operator=(const Self &I) {
    133     assert(Term == I.Term &&"Cannot assign iterators to two different blocks!");
    134     idx = I.idx;
    135     return *this;
    136   }
    137 
    138   /// getSuccessorIndex - This is used to interface between code that wants to
    139   /// operate on terminator instructions directly.
    140   unsigned getSuccessorIndex() const { return idx; }
    141 
    142   inline bool operator==(const Self& x) const { return idx == x.idx; }
    143   inline bool operator!=(const Self& x) const { return !operator==(x); }
    144 
    145   inline pointer operator*() const { return Term->getSuccessor(idx); }
    146   inline pointer operator->() const { return operator*(); }
    147 
    148   inline Self& operator++() { ++idx; return *this; } // Preincrement
    149 
    150   inline Self operator++(int) { // Postincrement
    151     Self tmp = *this; ++*this; return tmp;
    152   }
    153 
    154   inline Self& operator--() { --idx; return *this; }  // Predecrement
    155   inline Self operator--(int) { // Postdecrement
    156     Self tmp = *this; --*this; return tmp;
    157   }
    158 
    159   inline bool operator<(const Self& x) const {
    160     assert(Term == x.Term && "Cannot compare iterators of different blocks!");
    161     return idx < x.idx;
    162   }
    163 
    164   inline bool operator<=(const Self& x) const {
    165     assert(Term == x.Term && "Cannot compare iterators of different blocks!");
    166     return idx <= x.idx;
    167   }
    168   inline bool operator>=(const Self& x) const {
    169     assert(Term == x.Term && "Cannot compare iterators of different blocks!");
    170     return idx >= x.idx;
    171   }
    172 
    173   inline bool operator>(const Self& x) const {
    174     assert(Term == x.Term && "Cannot compare iterators of different blocks!");
    175     return idx > x.idx;
    176   }
    177 
    178   inline Self& operator+=(int Right) {
    179     unsigned new_idx = idx + Right;
    180     assert(index_is_valid(new_idx) && "Iterator index out of bound");
    181     idx = new_idx;
    182     return *this;
    183   }
    184 
    185   inline Self operator+(int Right) {
    186     Self tmp = *this;
    187     tmp += Right;
    188     return tmp;
    189   }
    190 
    191   inline Self& operator-=(int Right) {
    192     return operator+=(-Right);
    193   }
    194 
    195   inline Self operator-(int Right) {
    196     return operator+(-Right);
    197   }
    198 
    199   inline int operator-(const Self& x) {
    200     assert(Term == x.Term && "Cannot work on iterators of different blocks!");
    201     int distance = idx - x.idx;
    202     return distance;
    203   }
    204 
    205   // This works for read access, however write access is difficult as changes
    206   // to Term are only possible with Term->setSuccessor(idx). Pointers that can
    207   // be modified are not available.
    208   //
    209   // inline pointer operator[](int offset) {
    210   //  Self tmp = *this;
    211   //  tmp += offset;
    212   //  return tmp.operator*();
    213   // }
    214 
    215   /// Get the source BB of this iterator.
    216   inline BB_ *getSource() {
    217     assert(Term && "Source not available, if basic block was malformed");
    218     return Term->getParent();
    219   }
    220 };
    221 
    222 typedef SuccIterator<TerminatorInst*, BasicBlock> succ_iterator;
    223 typedef SuccIterator<const TerminatorInst*,
    224                      const BasicBlock> succ_const_iterator;
    225 
    226 inline succ_iterator succ_begin(BasicBlock *BB) {
    227   return succ_iterator(BB->getTerminator());
    228 }
    229 inline succ_const_iterator succ_begin(const BasicBlock *BB) {
    230   return succ_const_iterator(BB->getTerminator());
    231 }
    232 inline succ_iterator succ_end(BasicBlock *BB) {
    233   return succ_iterator(BB->getTerminator(), true);
    234 }
    235 inline succ_const_iterator succ_end(const BasicBlock *BB) {
    236   return succ_const_iterator(BB->getTerminator(), true);
    237 }
    238 
    239 
    240 
    241 //===--------------------------------------------------------------------===//
    242 // GraphTraits specializations for basic block graphs (CFGs)
    243 //===--------------------------------------------------------------------===//
    244 
    245 // Provide specializations of GraphTraits to be able to treat a function as a
    246 // graph of basic blocks...
    247 
    248 template <> struct GraphTraits<BasicBlock*> {
    249   typedef BasicBlock NodeType;
    250   typedef succ_iterator ChildIteratorType;
    251 
    252   static NodeType *getEntryNode(BasicBlock *BB) { return BB; }
    253   static inline ChildIteratorType child_begin(NodeType *N) {
    254     return succ_begin(N);
    255   }
    256   static inline ChildIteratorType child_end(NodeType *N) {
    257     return succ_end(N);
    258   }
    259 };
    260 
    261 template <> struct GraphTraits<const BasicBlock*> {
    262   typedef const BasicBlock NodeType;
    263   typedef succ_const_iterator ChildIteratorType;
    264 
    265   static NodeType *getEntryNode(const BasicBlock *BB) { return BB; }
    266 
    267   static inline ChildIteratorType child_begin(NodeType *N) {
    268     return succ_begin(N);
    269   }
    270   static inline ChildIteratorType child_end(NodeType *N) {
    271     return succ_end(N);
    272   }
    273 };
    274 
    275 // Provide specializations of GraphTraits to be able to treat a function as a
    276 // graph of basic blocks... and to walk it in inverse order.  Inverse order for
    277 // a function is considered to be when traversing the predecessor edges of a BB
    278 // instead of the successor edges.
    279 //
    280 template <> struct GraphTraits<Inverse<BasicBlock*> > {
    281   typedef BasicBlock NodeType;
    282   typedef pred_iterator ChildIteratorType;
    283   static NodeType *getEntryNode(Inverse<BasicBlock *> G) { return G.Graph; }
    284   static inline ChildIteratorType child_begin(NodeType *N) {
    285     return pred_begin(N);
    286   }
    287   static inline ChildIteratorType child_end(NodeType *N) {
    288     return pred_end(N);
    289   }
    290 };
    291 
    292 template <> struct GraphTraits<Inverse<const BasicBlock*> > {
    293   typedef const BasicBlock NodeType;
    294   typedef const_pred_iterator ChildIteratorType;
    295   static NodeType *getEntryNode(Inverse<const BasicBlock*> G) {
    296     return G.Graph;
    297   }
    298   static inline ChildIteratorType child_begin(NodeType *N) {
    299     return pred_begin(N);
    300   }
    301   static inline ChildIteratorType child_end(NodeType *N) {
    302     return pred_end(N);
    303   }
    304 };
    305 
    306 
    307 
    308 //===--------------------------------------------------------------------===//
    309 // GraphTraits specializations for function basic block graphs (CFGs)
    310 //===--------------------------------------------------------------------===//
    311 
    312 // Provide specializations of GraphTraits to be able to treat a function as a
    313 // graph of basic blocks... these are the same as the basic block iterators,
    314 // except that the root node is implicitly the first node of the function.
    315 //
    316 template <> struct GraphTraits<Function*> : public GraphTraits<BasicBlock*> {
    317   static NodeType *getEntryNode(Function *F) { return &F->getEntryBlock(); }
    318 
    319   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
    320   typedef Function::iterator nodes_iterator;
    321   static nodes_iterator nodes_begin(Function *F) { return F->begin(); }
    322   static nodes_iterator nodes_end  (Function *F) { return F->end(); }
    323   static unsigned       size       (Function *F) { return F->size(); }
    324 };
    325 template <> struct GraphTraits<const Function*> :
    326   public GraphTraits<const BasicBlock*> {
    327   static NodeType *getEntryNode(const Function *F) {return &F->getEntryBlock();}
    328 
    329   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
    330   typedef Function::const_iterator nodes_iterator;
    331   static nodes_iterator nodes_begin(const Function *F) { return F->begin(); }
    332   static nodes_iterator nodes_end  (const Function *F) { return F->end(); }
    333   static unsigned       size       (const Function *F) { return F->size(); }
    334 };
    335 
    336 
    337 // Provide specializations of GraphTraits to be able to treat a function as a
    338 // graph of basic blocks... and to walk it in inverse order.  Inverse order for
    339 // a function is considered to be when traversing the predecessor edges of a BB
    340 // instead of the successor edges.
    341 //
    342 template <> struct GraphTraits<Inverse<Function*> > :
    343   public GraphTraits<Inverse<BasicBlock*> > {
    344   static NodeType *getEntryNode(Inverse<Function*> G) {
    345     return &G.Graph->getEntryBlock();
    346   }
    347 };
    348 template <> struct GraphTraits<Inverse<const Function*> > :
    349   public GraphTraits<Inverse<const BasicBlock*> > {
    350   static NodeType *getEntryNode(Inverse<const Function *> G) {
    351     return &G.Graph->getEntryBlock();
    352   }
    353 };
    354 
    355 } // End llvm namespace
    356 
    357 #endif
    358