Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: keir (at) google.com (Keir Mierle)
     30 //         sameeragarwal (at) google.com (Sameer Agarwal)
     31 //
     32 // Templated functions for manipulating rotations. The templated
     33 // functions are useful when implementing functors for automatic
     34 // differentiation.
     35 //
     36 // In the following, the Quaternions are laid out as 4-vectors, thus:
     37 //
     38 //   q[0]  scalar part.
     39 //   q[1]  coefficient of i.
     40 //   q[2]  coefficient of j.
     41 //   q[3]  coefficient of k.
     42 //
     43 // where: i*i = j*j = k*k = -1 and i*j = k, j*k = i, k*i = j.
     44 
     45 #ifndef CERES_PUBLIC_ROTATION_H_
     46 #define CERES_PUBLIC_ROTATION_H_
     47 
     48 #include <algorithm>
     49 #include <cmath>
     50 #include "glog/logging.h"
     51 
     52 namespace ceres {
     53 
     54 // Convert a value in combined axis-angle representation to a quaternion.
     55 // The value angle_axis is a triple whose norm is an angle in radians,
     56 // and whose direction is aligned with the axis of rotation,
     57 // and quaternion is a 4-tuple that will contain the resulting quaternion.
     58 // The implementation may be used with auto-differentiation up to the first
     59 // derivative, higher derivatives may have unexpected results near the origin.
     60 template<typename T>
     61 void AngleAxisToQuaternion(T const* angle_axis, T* quaternion);
     62 
     63 // Convert a quaternion to the equivalent combined axis-angle representation.
     64 // The value quaternion must be a unit quaternion - it is not normalized first,
     65 // and angle_axis will be filled with a value whose norm is the angle of
     66 // rotation in radians, and whose direction is the axis of rotation.
     67 // The implemention may be used with auto-differentiation up to the first
     68 // derivative, higher derivatives may have unexpected results near the origin.
     69 template<typename T>
     70 void QuaternionToAngleAxis(T const* quaternion, T* angle_axis);
     71 
     72 // Conversions between 3x3 rotation matrix (in column major order) and
     73 // axis-angle rotation representations.  Templated for use with
     74 // autodifferentiation.
     75 template <typename T>
     76 void RotationMatrixToAngleAxis(T const * R, T * angle_axis);
     77 template <typename T>
     78 void AngleAxisToRotationMatrix(T const * angle_axis, T * R);
     79 
     80 // Conversions between 3x3 rotation matrix (in row major order) and
     81 // Euler angle (in degrees) rotation representations.
     82 //
     83 // The {pitch,roll,yaw} Euler angles are rotations around the {x,y,z}
     84 // axes, respectively.  They are applied in that same order, so the
     85 // total rotation R is Rz * Ry * Rx.
     86 template <typename T>
     87 void EulerAnglesToRotationMatrix(const T* euler, int row_stride, T* R);
     88 
     89 // Convert a 4-vector to a 3x3 scaled rotation matrix.
     90 //
     91 // The choice of rotation is such that the quaternion [1 0 0 0] goes to an
     92 // identity matrix and for small a, b, c the quaternion [1 a b c] goes to
     93 // the matrix
     94 //
     95 //         [  0 -c  b ]
     96 //   I + 2 [  c  0 -a ] + higher order terms
     97 //         [ -b  a  0 ]
     98 //
     99 // which corresponds to a Rodrigues approximation, the last matrix being
    100 // the cross-product matrix of [a b c]. Together with the property that
    101 // R(q1 * q2) = R(q1) * R(q2) this uniquely defines the mapping from q to R.
    102 //
    103 // The rotation matrix is row-major.
    104 //
    105 // No normalization of the quaternion is performed, i.e.
    106 // R = ||q||^2 * Q, where Q is an orthonormal matrix
    107 // such that det(Q) = 1 and Q*Q' = I
    108 template <typename T> inline
    109 void QuaternionToScaledRotation(const T q[4], T R[3 * 3]);
    110 
    111 // Same as above except that the rotation matrix is normalized by the
    112 // Frobenius norm, so that R * R' = I (and det(R) = 1).
    113 template <typename T> inline
    114 void QuaternionToRotation(const T q[4], T R[3 * 3]);
    115 
    116 // Rotates a point pt by a quaternion q:
    117 //
    118 //   result = R(q) * pt
    119 //
    120 // Assumes the quaternion is unit norm. This assumption allows us to
    121 // write the transform as (something)*pt + pt, as is clear from the
    122 // formula below. If you pass in a quaternion with |q|^2 = 2 then you
    123 // WILL NOT get back 2 times the result you get for a unit quaternion.
    124 template <typename T> inline
    125 void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]);
    126 
    127 // With this function you do not need to assume that q has unit norm.
    128 // It does assume that the norm is non-zero.
    129 template <typename T> inline
    130 void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]);
    131 
    132 // zw = z * w, where * is the Quaternion product between 4 vectors.
    133 template<typename T> inline
    134 void QuaternionProduct(const T z[4], const T w[4], T zw[4]);
    135 
    136 // xy = x cross y;
    137 template<typename T> inline
    138 void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]);
    139 
    140 template<typename T> inline
    141 T DotProduct(const T x[3], const T y[3]);
    142 
    143 // y = R(angle_axis) * x;
    144 template<typename T> inline
    145 void AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3]);
    146 
    147 // --- IMPLEMENTATION
    148 
    149 template<typename T>
    150 inline void AngleAxisToQuaternion(const T* angle_axis, T* quaternion) {
    151   const T& a0 = angle_axis[0];
    152   const T& a1 = angle_axis[1];
    153   const T& a2 = angle_axis[2];
    154   const T theta_squared = a0 * a0 + a1 * a1 + a2 * a2;
    155 
    156   // For points not at the origin, the full conversion is numerically stable.
    157   if (theta_squared > T(0.0)) {
    158     const T theta = sqrt(theta_squared);
    159     const T half_theta = theta * T(0.5);
    160     const T k = sin(half_theta) / theta;
    161     quaternion[0] = cos(half_theta);
    162     quaternion[1] = a0 * k;
    163     quaternion[2] = a1 * k;
    164     quaternion[3] = a2 * k;
    165   } else {
    166     // At the origin, sqrt() will produce NaN in the derivative since
    167     // the argument is zero.  By approximating with a Taylor series,
    168     // and truncating at one term, the value and first derivatives will be
    169     // computed correctly when Jets are used.
    170     const T k(0.5);
    171     quaternion[0] = T(1.0);
    172     quaternion[1] = a0 * k;
    173     quaternion[2] = a1 * k;
    174     quaternion[3] = a2 * k;
    175   }
    176 }
    177 
    178 template<typename T>
    179 inline void QuaternionToAngleAxis(const T* quaternion, T* angle_axis) {
    180   const T& q1 = quaternion[1];
    181   const T& q2 = quaternion[2];
    182   const T& q3 = quaternion[3];
    183   const T sin_squared_theta = q1 * q1 + q2 * q2 + q3 * q3;
    184 
    185   // For quaternions representing non-zero rotation, the conversion
    186   // is numerically stable.
    187   if (sin_squared_theta > T(0.0)) {
    188     const T sin_theta = sqrt(sin_squared_theta);
    189     const T& cos_theta = quaternion[0];
    190 
    191     // If cos_theta is negative, theta is greater than pi/2, which
    192     // means that angle for the angle_axis vector which is 2 * theta
    193     // would be greater than pi.
    194     //
    195     // While this will result in the correct rotation, it does not
    196     // result in a normalized angle-axis vector.
    197     //
    198     // In that case we observe that 2 * theta ~ 2 * theta - 2 * pi,
    199     // which is equivalent saying
    200     //
    201     //   theta - pi = atan(sin(theta - pi), cos(theta - pi))
    202     //              = atan(-sin(theta), -cos(theta))
    203     //
    204     const T two_theta =
    205         T(2.0) * ((cos_theta < 0.0)
    206                   ? atan2(-sin_theta, -cos_theta)
    207                   : atan2(sin_theta, cos_theta));
    208     const T k = two_theta / sin_theta;
    209     angle_axis[0] = q1 * k;
    210     angle_axis[1] = q2 * k;
    211     angle_axis[2] = q3 * k;
    212   } else {
    213     // For zero rotation, sqrt() will produce NaN in the derivative since
    214     // the argument is zero.  By approximating with a Taylor series,
    215     // and truncating at one term, the value and first derivatives will be
    216     // computed correctly when Jets are used.
    217     const T k(2.0);
    218     angle_axis[0] = q1 * k;
    219     angle_axis[1] = q2 * k;
    220     angle_axis[2] = q3 * k;
    221   }
    222 }
    223 
    224 // The conversion of a rotation matrix to the angle-axis form is
    225 // numerically problematic when then rotation angle is close to zero
    226 // or to Pi. The following implementation detects when these two cases
    227 // occurs and deals with them by taking code paths that are guaranteed
    228 // to not perform division by a small number.
    229 template <typename T>
    230 inline void RotationMatrixToAngleAxis(const T * R, T * angle_axis) {
    231   // x = k * 2 * sin(theta), where k is the axis of rotation.
    232   angle_axis[0] = R[5] - R[7];
    233   angle_axis[1] = R[6] - R[2];
    234   angle_axis[2] = R[1] - R[3];
    235 
    236   static const T kOne = T(1.0);
    237   static const T kTwo = T(2.0);
    238 
    239   // Since the right hand side may give numbers just above 1.0 or
    240   // below -1.0 leading to atan misbehaving, we threshold.
    241   T costheta = std::min(std::max((R[0] + R[4] + R[8] - kOne) / kTwo,
    242                                  T(-1.0)),
    243                         kOne);
    244 
    245   // sqrt is guaranteed to give non-negative results, so we only
    246   // threshold above.
    247   T sintheta = std::min(sqrt(angle_axis[0] * angle_axis[0] +
    248                              angle_axis[1] * angle_axis[1] +
    249                              angle_axis[2] * angle_axis[2]) / kTwo,
    250                         kOne);
    251 
    252   // Use the arctan2 to get the right sign on theta
    253   const T theta = atan2(sintheta, costheta);
    254 
    255   // Case 1: sin(theta) is large enough, so dividing by it is not a
    256   // problem. We do not use abs here, because while jets.h imports
    257   // std::abs into the namespace, here in this file, abs resolves to
    258   // the int version of the function, which returns zero always.
    259   //
    260   // We use a threshold much larger then the machine epsilon, because
    261   // if sin(theta) is small, not only do we risk overflow but even if
    262   // that does not occur, just dividing by a small number will result
    263   // in numerical garbage. So we play it safe.
    264   static const double kThreshold = 1e-12;
    265   if ((sintheta > kThreshold) || (sintheta < -kThreshold)) {
    266     const T r = theta / (kTwo * sintheta);
    267     for (int i = 0; i < 3; ++i) {
    268       angle_axis[i] *= r;
    269     }
    270     return;
    271   }
    272 
    273   // Case 2: theta ~ 0, means sin(theta) ~ theta to a good
    274   // approximation.
    275   if (costheta > 0.0) {
    276     const T kHalf = T(0.5);
    277     for (int i = 0; i < 3; ++i) {
    278       angle_axis[i] *= kHalf;
    279     }
    280     return;
    281   }
    282 
    283   // Case 3: theta ~ pi, this is the hard case. Since theta is large,
    284   // and sin(theta) is small. Dividing by theta by sin(theta) will
    285   // either give an overflow or worse still numerically meaningless
    286   // results. Thus we use an alternate more complicated formula
    287   // here.
    288 
    289   // Since cos(theta) is negative, division by (1-cos(theta)) cannot
    290   // overflow.
    291   const T inv_one_minus_costheta = kOne / (kOne - costheta);
    292 
    293   // We now compute the absolute value of coordinates of the axis
    294   // vector using the diagonal entries of R. To resolve the sign of
    295   // these entries, we compare the sign of angle_axis[i]*sin(theta)
    296   // with the sign of sin(theta). If they are the same, then
    297   // angle_axis[i] should be positive, otherwise negative.
    298   for (int i = 0; i < 3; ++i) {
    299     angle_axis[i] = theta * sqrt((R[i*4] - costheta) * inv_one_minus_costheta);
    300     if (((sintheta < 0.0) && (angle_axis[i] > 0.0)) ||
    301         ((sintheta > 0.0) && (angle_axis[i] < 0.0))) {
    302       angle_axis[i] = -angle_axis[i];
    303     }
    304   }
    305 }
    306 
    307 template <typename T>
    308 inline void AngleAxisToRotationMatrix(const T * angle_axis, T * R) {
    309   static const T kOne = T(1.0);
    310   const T theta2 = DotProduct(angle_axis, angle_axis);
    311   if (theta2 > 0.0) {
    312     // We want to be careful to only evaluate the square root if the
    313     // norm of the angle_axis vector is greater than zero. Otherwise
    314     // we get a division by zero.
    315     const T theta = sqrt(theta2);
    316     const T wx = angle_axis[0] / theta;
    317     const T wy = angle_axis[1] / theta;
    318     const T wz = angle_axis[2] / theta;
    319 
    320     const T costheta = cos(theta);
    321     const T sintheta = sin(theta);
    322 
    323     R[0] =     costheta   + wx*wx*(kOne -    costheta);
    324     R[1] =  wz*sintheta   + wx*wy*(kOne -    costheta);
    325     R[2] = -wy*sintheta   + wx*wz*(kOne -    costheta);
    326     R[3] =  wx*wy*(kOne - costheta)     - wz*sintheta;
    327     R[4] =     costheta   + wy*wy*(kOne -    costheta);
    328     R[5] =  wx*sintheta   + wy*wz*(kOne -    costheta);
    329     R[6] =  wy*sintheta   + wx*wz*(kOne -    costheta);
    330     R[7] = -wx*sintheta   + wy*wz*(kOne -    costheta);
    331     R[8] =     costheta   + wz*wz*(kOne -    costheta);
    332   } else {
    333     // At zero, we switch to using the first order Taylor expansion.
    334     R[0] =  kOne;
    335     R[1] = -angle_axis[2];
    336     R[2] =  angle_axis[1];
    337     R[3] =  angle_axis[2];
    338     R[4] =  kOne;
    339     R[5] = -angle_axis[0];
    340     R[6] = -angle_axis[1];
    341     R[7] =  angle_axis[0];
    342     R[8] = kOne;
    343   }
    344 }
    345 
    346 template <typename T>
    347 inline void EulerAnglesToRotationMatrix(const T* euler,
    348                                         const int row_stride,
    349                                         T* R) {
    350   const double kPi = 3.14159265358979323846;
    351   const T degrees_to_radians(kPi / 180.0);
    352 
    353   const T pitch(euler[0] * degrees_to_radians);
    354   const T roll(euler[1] * degrees_to_radians);
    355   const T yaw(euler[2] * degrees_to_radians);
    356 
    357   const T c1 = cos(yaw);
    358   const T s1 = sin(yaw);
    359   const T c2 = cos(roll);
    360   const T s2 = sin(roll);
    361   const T c3 = cos(pitch);
    362   const T s3 = sin(pitch);
    363 
    364   // Rows of the rotation matrix.
    365   T* R1 = R;
    366   T* R2 = R1 + row_stride;
    367   T* R3 = R2 + row_stride;
    368 
    369   R1[0] = c1*c2;
    370   R1[1] = -s1*c3 + c1*s2*s3;
    371   R1[2] = s1*s3 + c1*s2*c3;
    372 
    373   R2[0] = s1*c2;
    374   R2[1] = c1*c3 + s1*s2*s3;
    375   R2[2] = -c1*s3 + s1*s2*c3;
    376 
    377   R3[0] = -s2;
    378   R3[1] = c2*s3;
    379   R3[2] = c2*c3;
    380 }
    381 
    382 template <typename T> inline
    383 void QuaternionToScaledRotation(const T q[4], T R[3 * 3]) {
    384   // Make convenient names for elements of q.
    385   T a = q[0];
    386   T b = q[1];
    387   T c = q[2];
    388   T d = q[3];
    389   // This is not to eliminate common sub-expression, but to
    390   // make the lines shorter so that they fit in 80 columns!
    391   T aa = a * a;
    392   T ab = a * b;
    393   T ac = a * c;
    394   T ad = a * d;
    395   T bb = b * b;
    396   T bc = b * c;
    397   T bd = b * d;
    398   T cc = c * c;
    399   T cd = c * d;
    400   T dd = d * d;
    401 
    402   R[0] =  aa + bb - cc - dd; R[1] = T(2) * (bc - ad); R[2] = T(2) * (ac + bd);  // NOLINT
    403   R[3] = T(2) * (ad + bc); R[4] =  aa - bb + cc - dd; R[5] = T(2) * (cd - ab);  // NOLINT
    404   R[6] = T(2) * (bd - ac); R[7] = T(2) * (ab + cd); R[8] =  aa - bb - cc + dd;  // NOLINT
    405 }
    406 
    407 template <typename T> inline
    408 void QuaternionToRotation(const T q[4], T R[3 * 3]) {
    409   QuaternionToScaledRotation(q, R);
    410 
    411   T normalizer = q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3];
    412   CHECK_NE(normalizer, T(0));
    413   normalizer = T(1) / normalizer;
    414 
    415   for (int i = 0; i < 9; ++i) {
    416     R[i] *= normalizer;
    417   }
    418 }
    419 
    420 template <typename T> inline
    421 void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) {
    422   const T t2 =  q[0] * q[1];
    423   const T t3 =  q[0] * q[2];
    424   const T t4 =  q[0] * q[3];
    425   const T t5 = -q[1] * q[1];
    426   const T t6 =  q[1] * q[2];
    427   const T t7 =  q[1] * q[3];
    428   const T t8 = -q[2] * q[2];
    429   const T t9 =  q[2] * q[3];
    430   const T t1 = -q[3] * q[3];
    431   result[0] = T(2) * ((t8 + t1) * pt[0] + (t6 - t4) * pt[1] + (t3 + t7) * pt[2]) + pt[0];  // NOLINT
    432   result[1] = T(2) * ((t4 + t6) * pt[0] + (t5 + t1) * pt[1] + (t9 - t2) * pt[2]) + pt[1];  // NOLINT
    433   result[2] = T(2) * ((t7 - t3) * pt[0] + (t2 + t9) * pt[1] + (t5 + t8) * pt[2]) + pt[2];  // NOLINT
    434 }
    435 
    436 
    437 template <typename T> inline
    438 void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) {
    439   // 'scale' is 1 / norm(q).
    440   const T scale = T(1) / sqrt(q[0] * q[0] +
    441                               q[1] * q[1] +
    442                               q[2] * q[2] +
    443                               q[3] * q[3]);
    444 
    445   // Make unit-norm version of q.
    446   const T unit[4] = {
    447     scale * q[0],
    448     scale * q[1],
    449     scale * q[2],
    450     scale * q[3],
    451   };
    452 
    453   UnitQuaternionRotatePoint(unit, pt, result);
    454 }
    455 
    456 template<typename T> inline
    457 void QuaternionProduct(const T z[4], const T w[4], T zw[4]) {
    458   zw[0] = z[0] * w[0] - z[1] * w[1] - z[2] * w[2] - z[3] * w[3];
    459   zw[1] = z[0] * w[1] + z[1] * w[0] + z[2] * w[3] - z[3] * w[2];
    460   zw[2] = z[0] * w[2] - z[1] * w[3] + z[2] * w[0] + z[3] * w[1];
    461   zw[3] = z[0] * w[3] + z[1] * w[2] - z[2] * w[1] + z[3] * w[0];
    462 }
    463 
    464 // xy = x cross y;
    465 template<typename T> inline
    466 void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]) {
    467   x_cross_y[0] = x[1] * y[2] - x[2] * y[1];
    468   x_cross_y[1] = x[2] * y[0] - x[0] * y[2];
    469   x_cross_y[2] = x[0] * y[1] - x[1] * y[0];
    470 }
    471 
    472 template<typename T> inline
    473 T DotProduct(const T x[3], const T y[3]) {
    474   return (x[0] * y[0] + x[1] * y[1] + x[2] * y[2]);
    475 }
    476 
    477 template<typename T> inline
    478 void AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3]) {
    479   T w[3];
    480   T sintheta;
    481   T costheta;
    482 
    483   const T theta2 = DotProduct(angle_axis, angle_axis);
    484   if (theta2 > 0.0) {
    485     // Away from zero, use the rodriguez formula
    486     //
    487     //   result = pt costheta +
    488     //            (w x pt) * sintheta +
    489     //            w (w . pt) (1 - costheta)
    490     //
    491     // We want to be careful to only evaluate the square root if the
    492     // norm of the angle_axis vector is greater than zero. Otherwise
    493     // we get a division by zero.
    494     //
    495     const T theta = sqrt(theta2);
    496     w[0] = angle_axis[0] / theta;
    497     w[1] = angle_axis[1] / theta;
    498     w[2] = angle_axis[2] / theta;
    499     costheta = cos(theta);
    500     sintheta = sin(theta);
    501     T w_cross_pt[3];
    502     CrossProduct(w, pt, w_cross_pt);
    503     T w_dot_pt = DotProduct(w, pt);
    504     for (int i = 0; i < 3; ++i) {
    505       result[i] = pt[i] * costheta +
    506           w_cross_pt[i] * sintheta +
    507           w[i] * (T(1.0) - costheta) * w_dot_pt;
    508     }
    509   } else {
    510     // Near zero, the first order Taylor approximation of the rotation
    511     // matrix R corresponding to a vector w and angle w is
    512     //
    513     //   R = I + hat(w) * sin(theta)
    514     //
    515     // But sintheta ~ theta and theta * w = angle_axis, which gives us
    516     //
    517     //  R = I + hat(w)
    518     //
    519     // and actually performing multiplication with the point pt, gives us
    520     // R * pt = pt + w x pt.
    521     //
    522     // Switching to the Taylor expansion at zero helps avoid all sorts
    523     // of numerical nastiness.
    524     T w_cross_pt[3];
    525     CrossProduct(angle_axis, pt, w_cross_pt);
    526     for (int i = 0; i < 3; ++i) {
    527       result[i] = pt[i] + w_cross_pt[i];
    528     }
    529   }
    530 }
    531 
    532 }  // namespace ceres
    533 
    534 #endif  // CERES_PUBLIC_ROTATION_H_
    535