Home | History | Annotate | Download | only in src

Lines Matching refs:exp

29  *   2. Approximation of exp(r) by a special rational function on
32 * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
43 * The computation of exp(r) thus becomes
45 * exp(r) = 1 + -------
54 * 3. Scale back to obtain exp(x):
56 * exp(x) = 2^k * exp(r)
59 * exp(INF) is INF, exp(NaN) is NaN;
60 * exp(-INF) is 0, and
61 * for finite argument, only exp(0)=1 is exact.
69 * if x > 7.09782712893383973096e+02 then exp(x) overflow
70 * if x < -7.45133219101941108420e+02 then exp(x) underflow
105 __ieee754_exp(double x) /* default IEEE double exp */
122 else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
163 __weak_reference(exp, expl);