Home | History | Annotate | Download | only in Utils
      1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file promotes memory references to be register references.  It promotes
     11 // alloca instructions which only have loads and stores as uses.  An alloca is
     12 // transformed by using iterated dominator frontiers to place PHI nodes, then
     13 // traversing the function in depth-first order to rewrite loads and stores as
     14 // appropriate.
     15 //
     16 // The algorithm used here is based on:
     17 //
     18 //   Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
     19 //   In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
     20 //   Programming Languages
     21 //   POPL '95. ACM, New York, NY, 62-73.
     22 //
     23 // It has been modified to not explicitly use the DJ graph data structure and to
     24 // directly compute pruned SSA using per-variable liveness information.
     25 //
     26 //===----------------------------------------------------------------------===//
     27 
     28 #define DEBUG_TYPE "mem2reg"
     29 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
     30 #include "llvm/ADT/ArrayRef.h"
     31 #include "llvm/ADT/DenseMap.h"
     32 #include "llvm/ADT/STLExtras.h"
     33 #include "llvm/ADT/SetVector.h"
     34 #include "llvm/ADT/SmallPtrSet.h"
     35 #include "llvm/ADT/SmallVector.h"
     36 #include "llvm/ADT/Statistic.h"
     37 #include "llvm/Analysis/AliasSetTracker.h"
     38 #include "llvm/Analysis/Dominators.h"
     39 #include "llvm/Analysis/InstructionSimplify.h"
     40 #include "llvm/Analysis/ValueTracking.h"
     41 #include "llvm/DIBuilder.h"
     42 #include "llvm/DebugInfo.h"
     43 #include "llvm/IR/Constants.h"
     44 #include "llvm/IR/DerivedTypes.h"
     45 #include "llvm/IR/Function.h"
     46 #include "llvm/IR/Instructions.h"
     47 #include "llvm/IR/IntrinsicInst.h"
     48 #include "llvm/IR/Metadata.h"
     49 #include "llvm/InstVisitor.h"
     50 #include "llvm/Support/CFG.h"
     51 #include "llvm/Transforms/Utils/Local.h"
     52 #include <algorithm>
     53 #include <queue>
     54 using namespace llvm;
     55 
     56 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
     57 STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
     58 STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
     59 STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
     60 
     61 namespace {
     62 
     63 struct AllocaInfo : private InstVisitor<AllocaInfo, bool> {
     64   const DataLayout *DL;
     65 
     66   SmallVector<BasicBlock *, 32> DefiningBlocks;
     67   SmallVector<BasicBlock *, 32> UsingBlocks;
     68   SmallVector<Instruction *, 8> DeadInsts;
     69 
     70   Type *AllocaTy;
     71   StoreInst *OnlyStore;
     72   BasicBlock *OnlyBlock;
     73   bool OnlyUsedInOneBlock;
     74 
     75   Value *AllocaPointerVal;
     76   DbgDeclareInst *DbgDeclare;
     77 
     78   AllocaInfo(const DataLayout *DL) : DL(DL) {}
     79 
     80   void clear() {
     81     DefiningBlocks.clear();
     82     UsingBlocks.clear();
     83     DeadInsts.clear();
     84     AllocaTy = 0;
     85     OnlyStore = 0;
     86     OnlyBlock = 0;
     87     OnlyUsedInOneBlock = true;
     88     AllocaPointerVal = 0;
     89     DbgDeclare = 0;
     90   }
     91 
     92   /// Scan the uses of the specified alloca, filling in the AllocaInfo used
     93   /// by the rest of the pass to reason about the uses of this alloca.
     94   bool analyzeAlloca(AllocaInst &AI) {
     95     clear();
     96 
     97     AllocaTy = AI.getAllocatedType();
     98     enqueueUsers(AI);
     99 
    100     // Walk queued up uses in the worklist to handle nested uses.
    101     while (!UseWorklist.empty()) {
    102       U = UseWorklist.pop_back_val();
    103       Instruction &I = *cast<Instruction>(U->getUser());
    104       if (!visit(I))
    105         return false; // Propagate failure to promote up.
    106 
    107       if (OnlyUsedInOneBlock) {
    108         if (OnlyBlock == 0)
    109           OnlyBlock = I.getParent();
    110         else if (OnlyBlock != I.getParent())
    111           OnlyUsedInOneBlock = false;
    112       }
    113     }
    114 
    115     DbgDeclare = FindAllocaDbgDeclare(&AI);
    116     return true;
    117   }
    118 
    119 private:
    120   // Befriend the base class so it can call through private visitor methods.
    121   friend class InstVisitor<AllocaInfo, bool>;
    122 
    123   /// \brief A use pointer that is non-null when visiting uses.
    124   Use *U;
    125 
    126   /// \brief A worklist for recursively visiting all uses of an alloca.
    127   SmallVector<Use *, 8> UseWorklist;
    128 
    129   /// \brief A set for preventing cyclic visitation.
    130   SmallPtrSet<Use *, 8> VisitedUses;
    131 
    132   void enqueueUsers(Instruction &I) {
    133     for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;
    134          ++UI)
    135       if (VisitedUses.insert(&UI.getUse()))
    136         UseWorklist.push_back(&UI.getUse());
    137   }
    138 
    139   bool visitLoadInst(LoadInst &LI) {
    140     if (LI.isVolatile() || LI.getType() != AllocaTy)
    141       return false;
    142 
    143     // Keep track of variable reads.
    144     UsingBlocks.push_back(LI.getParent());
    145     AllocaPointerVal = &LI;
    146     return true;
    147   }
    148 
    149   bool visitStoreInst(StoreInst &SI) {
    150     if (SI.isVolatile() || SI.getValueOperand() == U->get() ||
    151         SI.getValueOperand()->getType() != AllocaTy)
    152       return false;
    153 
    154     // Remember the basic blocks which define new values for the alloca
    155     DefiningBlocks.push_back(SI.getParent());
    156     AllocaPointerVal = SI.getOperand(0);
    157     OnlyStore = &SI;
    158     return true;
    159   }
    160 
    161   bool visitBitCastInst(BitCastInst &BC) {
    162     if (BC.use_empty())
    163       DeadInsts.push_back(&BC);
    164     else
    165       enqueueUsers(BC);
    166     return true;
    167   }
    168 
    169   bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
    170     if (GEPI.use_empty()) {
    171       DeadInsts.push_back(&GEPI);
    172       return true;
    173     }
    174 
    175     enqueueUsers(GEPI);
    176 
    177     return GEPI.hasAllZeroIndices();
    178   }
    179 
    180   // We can promote through debug info intrinsics as they don't alter the
    181   // value stored in memory.
    182   bool visitDbgInfoIntrinsic(DbgInfoIntrinsic &I) {
    183     DeadInsts.push_back(&I);
    184     return true;
    185   }
    186 
    187   bool visitIntrinsicInst(IntrinsicInst &II) {
    188     switch (II.getIntrinsicID()) {
    189     default:
    190       return false;
    191 
    192       // Lifetime intrinsics don't preclude promoting the memory to a register.
    193       // FIXME: We should use these to promote to undef when outside of a valid
    194       // lifetime.
    195     case Intrinsic::lifetime_start:
    196     case Intrinsic::lifetime_end:
    197       DeadInsts.push_back(&II);
    198       return true;
    199     }
    200   }
    201 
    202   // The fallback is that the alloca cannot be promoted.
    203   bool visitInstruction(Instruction &I) { return false; }
    204 };
    205 
    206 // Data package used by RenamePass()
    207 class RenamePassData {
    208 public:
    209   typedef std::vector<Value *> ValVector;
    210 
    211   RenamePassData() : BB(NULL), Pred(NULL), Values() {}
    212   RenamePassData(BasicBlock *B, BasicBlock *P, const ValVector &V)
    213       : BB(B), Pred(P), Values(V) {}
    214   BasicBlock *BB;
    215   BasicBlock *Pred;
    216   ValVector Values;
    217 
    218   void swap(RenamePassData &RHS) {
    219     std::swap(BB, RHS.BB);
    220     std::swap(Pred, RHS.Pred);
    221     Values.swap(RHS.Values);
    222   }
    223 };
    224 
    225 /// \brief This assigns and keeps a per-bb relative ordering of load/store
    226 /// instructions in the block that directly load or store an alloca.
    227 ///
    228 /// This functionality is important because it avoids scanning large basic
    229 /// blocks multiple times when promoting many allocas in the same block.
    230 class LargeBlockInfo {
    231   /// \brief For each instruction that we track, keep the index of the
    232   /// instruction.
    233   ///
    234   /// The index starts out as the number of the instruction from the start of
    235   /// the block.
    236   DenseMap<const Instruction *, unsigned> InstNumbers;
    237 
    238 public:
    239 
    240   /// This code only looks at accesses to allocas.
    241   static bool isInterestingInstruction(const Instruction *I) {
    242     return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
    243            (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
    244   }
    245 
    246   /// Get or calculate the index of the specified instruction.
    247   unsigned getInstructionIndex(const Instruction *I) {
    248     assert(isInterestingInstruction(I) &&
    249            "Not a load/store to/from an alloca?");
    250 
    251     // If we already have this instruction number, return it.
    252     DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
    253     if (It != InstNumbers.end())
    254       return It->second;
    255 
    256     // Scan the whole block to get the instruction.  This accumulates
    257     // information for every interesting instruction in the block, in order to
    258     // avoid gratuitus rescans.
    259     const BasicBlock *BB = I->getParent();
    260     unsigned InstNo = 0;
    261     for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end(); BBI != E;
    262          ++BBI)
    263       if (isInterestingInstruction(BBI))
    264         InstNumbers[BBI] = InstNo++;
    265     It = InstNumbers.find(I);
    266 
    267     assert(It != InstNumbers.end() && "Didn't insert instruction?");
    268     return It->second;
    269   }
    270 
    271   void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
    272 
    273   void clear() { InstNumbers.clear(); }
    274 };
    275 
    276 struct PromoteMem2Reg {
    277   /// The alloca instructions being promoted.
    278   std::vector<AllocaInst *> Allocas;
    279   DominatorTree &DT;
    280   DIBuilder DIB;
    281   const DataLayout *DL;
    282 
    283   /// An AliasSetTracker object to update.  If null, don't update it.
    284   AliasSetTracker *AST;
    285 
    286   /// Reverse mapping of Allocas.
    287   DenseMap<AllocaInst *, unsigned> AllocaLookup;
    288 
    289   /// \brief The PhiNodes we're adding.
    290   ///
    291   /// That map is used to simplify some Phi nodes as we iterate over it, so
    292   /// it should have deterministic iterators.  We could use a MapVector, but
    293   /// since we already maintain a map from BasicBlock* to a stable numbering
    294   /// (BBNumbers), the DenseMap is more efficient (also supports removal).
    295   DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;
    296 
    297   /// For each PHI node, keep track of which entry in Allocas it corresponds
    298   /// to.
    299   DenseMap<PHINode *, unsigned> PhiToAllocaMap;
    300 
    301   /// If we are updating an AliasSetTracker, then for each alloca that is of
    302   /// pointer type, we keep track of what to copyValue to the inserted PHI
    303   /// nodes here.
    304   std::vector<Value *> PointerAllocaValues;
    305 
    306   /// For each alloca, we keep track of the dbg.declare intrinsic that
    307   /// describes it, if any, so that we can convert it to a dbg.value
    308   /// intrinsic if the alloca gets promoted.
    309   SmallVector<DbgDeclareInst *, 8> AllocaDbgDeclares;
    310 
    311   /// The set of basic blocks the renamer has already visited.
    312   ///
    313   SmallPtrSet<BasicBlock *, 16> Visited;
    314 
    315   /// Contains a stable numbering of basic blocks to avoid non-determinstic
    316   /// behavior.
    317   DenseMap<BasicBlock *, unsigned> BBNumbers;
    318 
    319   /// Maps DomTreeNodes to their level in the dominator tree.
    320   DenseMap<DomTreeNode *, unsigned> DomLevels;
    321 
    322   /// Lazily compute the number of predecessors a block has.
    323   DenseMap<const BasicBlock *, unsigned> BBNumPreds;
    324 
    325 public:
    326   PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
    327                  const DataLayout *DL, AliasSetTracker *AST)
    328       : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
    329         DIB(*DT.getRoot()->getParent()->getParent()), DL(DL), AST(AST) {}
    330 
    331   void run();
    332 
    333 private:
    334   void RemoveFromAllocasList(unsigned &AllocaIdx) {
    335     Allocas[AllocaIdx] = Allocas.back();
    336     Allocas.pop_back();
    337     --AllocaIdx;
    338   }
    339 
    340   unsigned getNumPreds(const BasicBlock *BB) {
    341     unsigned &NP = BBNumPreds[BB];
    342     if (NP == 0)
    343       NP = std::distance(pred_begin(BB), pred_end(BB)) + 1;
    344     return NP - 1;
    345   }
    346 
    347   void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
    348                                AllocaInfo &Info);
    349   void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
    350                            const SmallPtrSet<BasicBlock *, 32> &DefBlocks,
    351                            SmallPtrSet<BasicBlock *, 32> &LiveInBlocks);
    352   void RenamePass(BasicBlock *BB, BasicBlock *Pred,
    353                   RenamePassData::ValVector &IncVals,
    354                   std::vector<RenamePassData> &Worklist);
    355   bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
    356 };
    357 
    358 } // end of anonymous namespace
    359 
    360 /// \brief Walk a small vector of dead instructions and recursively remove them
    361 /// and subsequently dead instructions.
    362 ///
    363 /// This is only valid to call on dead instructions using an alloca which is
    364 /// promotable, as we leverage that assumption to delete them faster.
    365 static void removeDeadInstructions(AllocaInst *AI,
    366                                    SmallVectorImpl<Instruction *> &DeadInsts) {
    367   while (!DeadInsts.empty()) {
    368     Instruction *I = DeadInsts.pop_back_val();
    369 
    370     // Don't delete the alloca itself.
    371     if (I == AI)
    372       continue;
    373 
    374     // Note that we open code the deletion algorithm here because we know
    375     // apriori that all of the instructions using an alloca that reaches here
    376     // are trivially dead when their use list becomes empty (The only risk are
    377     // lifetime markers which we specifically want to nuke). By coding it here
    378     // we can skip the triviality test and be more efficient.
    379     //
    380     // Null out all of the instruction's operands to see if any operand becomes
    381     // dead as we go.
    382     for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE;
    383          ++OI) {
    384       Instruction *Op = dyn_cast<Instruction>(*OI);
    385       if (!Op)
    386         continue;
    387 
    388       OI->set(0);
    389       if (!Op->use_empty())
    390         continue;
    391 
    392       DeadInsts.push_back(Op);
    393     }
    394     I->eraseFromParent();
    395   }
    396 }
    397 
    398 /// \brief Rewrite as many loads as possible given a single store.
    399 ///
    400 /// When there is only a single store, we can use the domtree to trivially
    401 /// replace all of the dominated loads with the stored value. Do so, and return
    402 /// true if this has successfully promoted the alloca entirely. If this returns
    403 /// false there were some loads which were not dominated by the single store
    404 /// and thus must be phi-ed with undef. We fall back to the standard alloca
    405 /// promotion algorithm in that case.
    406 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
    407                                      LargeBlockInfo &LBI,
    408                                      DominatorTree &DT,
    409                                      AliasSetTracker *AST) {
    410   StoreInst *OnlyStore = Info.OnlyStore;
    411   bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
    412   BasicBlock *StoreBB = OnlyStore->getParent();
    413   int StoreIndex = -1;
    414 
    415   // Clear out UsingBlocks.  We will reconstruct it here if needed.
    416   Info.UsingBlocks.clear();
    417 
    418   for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
    419     Instruction *UserInst = cast<Instruction>(*UI++);
    420     if (!isa<LoadInst>(UserInst)) {
    421       assert(UserInst == OnlyStore && "Should only have load/stores");
    422       continue;
    423     }
    424     LoadInst *LI = cast<LoadInst>(UserInst);
    425 
    426     // Okay, if we have a load from the alloca, we want to replace it with the
    427     // only value stored to the alloca.  We can do this if the value is
    428     // dominated by the store.  If not, we use the rest of the mem2reg machinery
    429     // to insert the phi nodes as needed.
    430     if (!StoringGlobalVal) { // Non-instructions are always dominated.
    431       if (LI->getParent() == StoreBB) {
    432         // If we have a use that is in the same block as the store, compare the
    433         // indices of the two instructions to see which one came first.  If the
    434         // load came before the store, we can't handle it.
    435         if (StoreIndex == -1)
    436           StoreIndex = LBI.getInstructionIndex(OnlyStore);
    437 
    438         if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
    439           // Can't handle this load, bail out.
    440           Info.UsingBlocks.push_back(StoreBB);
    441           continue;
    442         }
    443 
    444       } else if (LI->getParent() != StoreBB &&
    445                  !DT.dominates(StoreBB, LI->getParent())) {
    446         // If the load and store are in different blocks, use BB dominance to
    447         // check their relationships.  If the store doesn't dom the use, bail
    448         // out.
    449         Info.UsingBlocks.push_back(LI->getParent());
    450         continue;
    451       }
    452     }
    453 
    454     // Otherwise, we *can* safely rewrite this load.
    455     Value *ReplVal = OnlyStore->getOperand(0);
    456     // If the replacement value is the load, this must occur in unreachable
    457     // code.
    458     if (ReplVal == LI)
    459       ReplVal = UndefValue::get(LI->getType());
    460     LI->replaceAllUsesWith(ReplVal);
    461     if (AST && LI->getType()->isPointerTy())
    462       AST->deleteValue(LI);
    463     LI->eraseFromParent();
    464     LBI.deleteValue(LI);
    465   }
    466 
    467   // Finally, after the scan, check to see if the store is all that is left.
    468   if (!Info.UsingBlocks.empty())
    469     return false; // If not, we'll have to fall back for the remainder.
    470 
    471   // Record debuginfo for the store and remove the declaration's
    472   // debuginfo.
    473   if (DbgDeclareInst *DDI = Info.DbgDeclare) {
    474     DIBuilder DIB(*AI->getParent()->getParent()->getParent());
    475     ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, DIB);
    476     DDI->eraseFromParent();
    477   }
    478   // Remove the (now dead) store and alloca.
    479   Info.OnlyStore->eraseFromParent();
    480   LBI.deleteValue(Info.OnlyStore);
    481 
    482   if (AST)
    483     AST->deleteValue(AI);
    484   AI->eraseFromParent();
    485   LBI.deleteValue(AI);
    486   return true;
    487 }
    488 
    489 namespace {
    490 /// This is a helper predicate used to search by the first element of a pair.
    491 struct StoreIndexSearchPredicate {
    492   bool operator()(const std::pair<unsigned, StoreInst *> &LHS,
    493                   const std::pair<unsigned, StoreInst *> &RHS) {
    494     return LHS.first < RHS.first;
    495   }
    496 };
    497 }
    498 
    499 /// Many allocas are only used within a single basic block.  If this is the
    500 /// case, avoid traversing the CFG and inserting a lot of potentially useless
    501 /// PHI nodes by just performing a single linear pass over the basic block
    502 /// using the Alloca.
    503 ///
    504 /// If we cannot promote this alloca (because it is read before it is written),
    505 /// return true.  This is necessary in cases where, due to control flow, the
    506 /// alloca is potentially undefined on some control flow paths.  e.g. code like
    507 /// this is potentially correct:
    508 ///
    509 ///   for (...) { if (c) { A = undef; undef = B; } }
    510 ///
    511 /// ... so long as A is not used before undef is set.
    512 static void promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
    513                                      LargeBlockInfo &LBI,
    514                                      AliasSetTracker *AST) {
    515   // The trickiest case to handle is when we have large blocks. Because of this,
    516   // this code is optimized assuming that large blocks happen.  This does not
    517   // significantly pessimize the small block case.  This uses LargeBlockInfo to
    518   // make it efficient to get the index of various operations in the block.
    519 
    520   // Walk the use-def list of the alloca, getting the locations of all stores.
    521   typedef SmallVector<std::pair<unsigned, StoreInst *>, 64> StoresByIndexTy;
    522   StoresByIndexTy StoresByIndex;
    523 
    524   for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;
    525        ++UI)
    526     if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
    527       StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
    528 
    529   // Sort the stores by their index, making it efficient to do a lookup with a
    530   // binary search.
    531   std::sort(StoresByIndex.begin(), StoresByIndex.end(),
    532             StoreIndexSearchPredicate());
    533 
    534   // Walk all of the loads from this alloca, replacing them with the nearest
    535   // store above them, if any.
    536   for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
    537     LoadInst *LI = dyn_cast<LoadInst>(*UI++);
    538     if (!LI)
    539       continue;
    540 
    541     unsigned LoadIdx = LBI.getInstructionIndex(LI);
    542 
    543     // Find the nearest store that has a lower index than this load.
    544     StoresByIndexTy::iterator I =
    545         std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
    546                          std::make_pair(LoadIdx, static_cast<StoreInst *>(0)),
    547                          StoreIndexSearchPredicate());
    548 
    549     if (I == StoresByIndex.begin())
    550       // If there is no store before this load, the load takes the undef value.
    551       LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
    552     else
    553       // Otherwise, there was a store before this load, the load takes its value.
    554       LI->replaceAllUsesWith(llvm::prior(I)->second->getOperand(0));
    555 
    556     if (AST && LI->getType()->isPointerTy())
    557       AST->deleteValue(LI);
    558     LI->eraseFromParent();
    559     LBI.deleteValue(LI);
    560   }
    561 
    562   // Remove the (now dead) stores and alloca.
    563   while (!AI->use_empty()) {
    564     StoreInst *SI = cast<StoreInst>(AI->use_back());
    565     // Record debuginfo for the store before removing it.
    566     if (DbgDeclareInst *DDI = Info.DbgDeclare) {
    567       DIBuilder DIB(*AI->getParent()->getParent()->getParent());
    568       ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
    569     }
    570     SI->eraseFromParent();
    571     LBI.deleteValue(SI);
    572   }
    573 
    574   if (AST)
    575     AST->deleteValue(AI);
    576   AI->eraseFromParent();
    577   LBI.deleteValue(AI);
    578 
    579   // The alloca's debuginfo can be removed as well.
    580   if (DbgDeclareInst *DDI = Info.DbgDeclare)
    581     DDI->eraseFromParent();
    582 
    583   ++NumLocalPromoted;
    584 }
    585 
    586 void PromoteMem2Reg::run() {
    587   Function &F = *DT.getRoot()->getParent();
    588 
    589   if (AST)
    590     PointerAllocaValues.resize(Allocas.size());
    591   AllocaDbgDeclares.resize(Allocas.size());
    592 
    593   AllocaInfo Info(DL);
    594   LargeBlockInfo LBI;
    595 
    596   for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
    597     AllocaInst *AI = Allocas[AllocaNum];
    598 
    599     assert(AI->getParent()->getParent() == &F &&
    600            "All allocas should be in the same function, which is same as DF!");
    601 
    602     // Calculate the set of read and write-locations for each alloca.  This is
    603     // analogous to finding the 'uses' and 'definitions' of each variable.
    604     bool Good = Info.analyzeAlloca(*AI);
    605     (void)Good;
    606     assert(Good && "Cannot promote non-promotable alloca!");
    607 
    608     // Nuke all of the dead instructions.
    609     removeDeadInstructions(AI, Info.DeadInsts);
    610 
    611     if (AI->use_empty()) {
    612       // If there are no uses of the alloca, just delete it now.
    613       if (AST)
    614         AST->deleteValue(AI);
    615       AI->eraseFromParent();
    616 
    617       // Remove the alloca from the Allocas list, since it has been processed
    618       RemoveFromAllocasList(AllocaNum);
    619       ++NumDeadAlloca;
    620       continue;
    621     }
    622 
    623     // If there is only a single store to this value, replace any loads of
    624     // it that are directly dominated by the definition with the value stored.
    625     if (Info.DefiningBlocks.size() == 1) {
    626       if (rewriteSingleStoreAlloca(AI, Info, LBI, DT, AST)) {
    627         // The alloca has been processed, move on.
    628         RemoveFromAllocasList(AllocaNum);
    629         ++NumSingleStore;
    630         continue;
    631       }
    632     }
    633 
    634     // If the alloca is only read and written in one basic block, just perform a
    635     // linear sweep over the block to eliminate it.
    636     if (Info.OnlyUsedInOneBlock) {
    637       promoteSingleBlockAlloca(AI, Info, LBI, AST);
    638 
    639       // The alloca has been processed, move on.
    640       RemoveFromAllocasList(AllocaNum);
    641       continue;
    642     }
    643 
    644     // If we haven't computed dominator tree levels, do so now.
    645     if (DomLevels.empty()) {
    646       SmallVector<DomTreeNode *, 32> Worklist;
    647 
    648       DomTreeNode *Root = DT.getRootNode();
    649       DomLevels[Root] = 0;
    650       Worklist.push_back(Root);
    651 
    652       while (!Worklist.empty()) {
    653         DomTreeNode *Node = Worklist.pop_back_val();
    654         unsigned ChildLevel = DomLevels[Node] + 1;
    655         for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end();
    656              CI != CE; ++CI) {
    657           DomLevels[*CI] = ChildLevel;
    658           Worklist.push_back(*CI);
    659         }
    660       }
    661     }
    662 
    663     // If we haven't computed a numbering for the BB's in the function, do so
    664     // now.
    665     if (BBNumbers.empty()) {
    666       unsigned ID = 0;
    667       for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
    668         BBNumbers[I] = ID++;
    669     }
    670 
    671     // If we have an AST to keep updated, remember some pointer value that is
    672     // stored into the alloca.
    673     if (AST)
    674       PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
    675 
    676     // Remember the dbg.declare intrinsic describing this alloca, if any.
    677     if (Info.DbgDeclare)
    678       AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare;
    679 
    680     // Keep the reverse mapping of the 'Allocas' array for the rename pass.
    681     AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
    682 
    683     // At this point, we're committed to promoting the alloca using IDF's, and
    684     // the standard SSA construction algorithm.  Determine which blocks need PHI
    685     // nodes and see if we can optimize out some work by avoiding insertion of
    686     // dead phi nodes.
    687     DetermineInsertionPoint(AI, AllocaNum, Info);
    688   }
    689 
    690   if (Allocas.empty())
    691     return; // All of the allocas must have been trivial!
    692 
    693   LBI.clear();
    694 
    695   // Set the incoming values for the basic block to be null values for all of
    696   // the alloca's.  We do this in case there is a load of a value that has not
    697   // been stored yet.  In this case, it will get this null value.
    698   //
    699   RenamePassData::ValVector Values(Allocas.size());
    700   for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
    701     Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
    702 
    703   // Walks all basic blocks in the function performing the SSA rename algorithm
    704   // and inserting the phi nodes we marked as necessary
    705   //
    706   std::vector<RenamePassData> RenamePassWorkList;
    707   RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values));
    708   do {
    709     RenamePassData RPD;
    710     RPD.swap(RenamePassWorkList.back());
    711     RenamePassWorkList.pop_back();
    712     // RenamePass may add new worklist entries.
    713     RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
    714   } while (!RenamePassWorkList.empty());
    715 
    716   // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
    717   Visited.clear();
    718 
    719   // Remove the allocas themselves from the function.
    720   for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
    721     Instruction *A = Allocas[i];
    722 
    723     // If there are any uses of the alloca instructions left, they must be in
    724     // unreachable basic blocks that were not processed by walking the dominator
    725     // tree. Just delete the users now.
    726     if (!A->use_empty())
    727       A->replaceAllUsesWith(UndefValue::get(A->getType()));
    728     if (AST)
    729       AST->deleteValue(A);
    730     A->eraseFromParent();
    731   }
    732 
    733   // Remove alloca's dbg.declare instrinsics from the function.
    734   for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i)
    735     if (DbgDeclareInst *DDI = AllocaDbgDeclares[i])
    736       DDI->eraseFromParent();
    737 
    738   // Loop over all of the PHI nodes and see if there are any that we can get
    739   // rid of because they merge all of the same incoming values.  This can
    740   // happen due to undef values coming into the PHI nodes.  This process is
    741   // iterative, because eliminating one PHI node can cause others to be removed.
    742   bool EliminatedAPHI = true;
    743   while (EliminatedAPHI) {
    744     EliminatedAPHI = false;
    745 
    746     // Iterating over NewPhiNodes is deterministic, so it is safe to try to
    747     // simplify and RAUW them as we go.  If it was not, we could add uses to
    748     // the values we replace with in a non deterministic order, thus creating
    749     // non deterministic def->use chains.
    750     for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
    751              I = NewPhiNodes.begin(),
    752              E = NewPhiNodes.end();
    753          I != E;) {
    754       PHINode *PN = I->second;
    755 
    756       // If this PHI node merges one value and/or undefs, get the value.
    757       if (Value *V = SimplifyInstruction(PN, 0, 0, &DT)) {
    758         if (AST && PN->getType()->isPointerTy())
    759           AST->deleteValue(PN);
    760         PN->replaceAllUsesWith(V);
    761         PN->eraseFromParent();
    762         NewPhiNodes.erase(I++);
    763         EliminatedAPHI = true;
    764         continue;
    765       }
    766       ++I;
    767     }
    768   }
    769 
    770   // At this point, the renamer has added entries to PHI nodes for all reachable
    771   // code.  Unfortunately, there may be unreachable blocks which the renamer
    772   // hasn't traversed.  If this is the case, the PHI nodes may not
    773   // have incoming values for all predecessors.  Loop over all PHI nodes we have
    774   // created, inserting undef values if they are missing any incoming values.
    775   //
    776   for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
    777            I = NewPhiNodes.begin(),
    778            E = NewPhiNodes.end();
    779        I != E; ++I) {
    780     // We want to do this once per basic block.  As such, only process a block
    781     // when we find the PHI that is the first entry in the block.
    782     PHINode *SomePHI = I->second;
    783     BasicBlock *BB = SomePHI->getParent();
    784     if (&BB->front() != SomePHI)
    785       continue;
    786 
    787     // Only do work here if there the PHI nodes are missing incoming values.  We
    788     // know that all PHI nodes that were inserted in a block will have the same
    789     // number of incoming values, so we can just check any of them.
    790     if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
    791       continue;
    792 
    793     // Get the preds for BB.
    794     SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
    795 
    796     // Ok, now we know that all of the PHI nodes are missing entries for some
    797     // basic blocks.  Start by sorting the incoming predecessors for efficient
    798     // access.
    799     std::sort(Preds.begin(), Preds.end());
    800 
    801     // Now we loop through all BB's which have entries in SomePHI and remove
    802     // them from the Preds list.
    803     for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
    804       // Do a log(n) search of the Preds list for the entry we want.
    805       SmallVectorImpl<BasicBlock *>::iterator EntIt = std::lower_bound(
    806           Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i));
    807       assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
    808              "PHI node has entry for a block which is not a predecessor!");
    809 
    810       // Remove the entry
    811       Preds.erase(EntIt);
    812     }
    813 
    814     // At this point, the blocks left in the preds list must have dummy
    815     // entries inserted into every PHI nodes for the block.  Update all the phi
    816     // nodes in this block that we are inserting (there could be phis before
    817     // mem2reg runs).
    818     unsigned NumBadPreds = SomePHI->getNumIncomingValues();
    819     BasicBlock::iterator BBI = BB->begin();
    820     while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
    821            SomePHI->getNumIncomingValues() == NumBadPreds) {
    822       Value *UndefVal = UndefValue::get(SomePHI->getType());
    823       for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
    824         SomePHI->addIncoming(UndefVal, Preds[pred]);
    825     }
    826   }
    827 
    828   NewPhiNodes.clear();
    829 }
    830 
    831 /// \brief Determine which blocks the value is live in.
    832 ///
    833 /// These are blocks which lead to uses.  Knowing this allows us to avoid
    834 /// inserting PHI nodes into blocks which don't lead to uses (thus, the
    835 /// inserted phi nodes would be dead).
    836 void PromoteMem2Reg::ComputeLiveInBlocks(
    837     AllocaInst *AI, AllocaInfo &Info,
    838     const SmallPtrSet<BasicBlock *, 32> &DefBlocks,
    839     SmallPtrSet<BasicBlock *, 32> &LiveInBlocks) {
    840 
    841   // To determine liveness, we must iterate through the predecessors of blocks
    842   // where the def is live.  Blocks are added to the worklist if we need to
    843   // check their predecessors.  Start with all the using blocks.
    844   SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
    845                                                     Info.UsingBlocks.end());
    846 
    847   // If any of the using blocks is also a definition block, check to see if the
    848   // definition occurs before or after the use.  If it happens before the use,
    849   // the value isn't really live-in.
    850   for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
    851     BasicBlock *BB = LiveInBlockWorklist[i];
    852     if (!DefBlocks.count(BB))
    853       continue;
    854 
    855     // Okay, this is a block that both uses and defines the value.  If the first
    856     // reference to the alloca is a def (store), then we know it isn't live-in.
    857     for (BasicBlock::iterator I = BB->begin();; ++I) {
    858       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    859         if (SI->getOperand(1) != AI)
    860           continue;
    861 
    862         // We found a store to the alloca before a load.  The alloca is not
    863         // actually live-in here.
    864         LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
    865         LiveInBlockWorklist.pop_back();
    866         --i, --e;
    867         break;
    868       }
    869 
    870       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    871         if (LI->getOperand(0) != AI)
    872           continue;
    873 
    874         // Okay, we found a load before a store to the alloca.  It is actually
    875         // live into this block.
    876         break;
    877       }
    878     }
    879   }
    880 
    881   // Now that we have a set of blocks where the phi is live-in, recursively add
    882   // their predecessors until we find the full region the value is live.
    883   while (!LiveInBlockWorklist.empty()) {
    884     BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
    885 
    886     // The block really is live in here, insert it into the set.  If already in
    887     // the set, then it has already been processed.
    888     if (!LiveInBlocks.insert(BB))
    889       continue;
    890 
    891     // Since the value is live into BB, it is either defined in a predecessor or
    892     // live into it to.  Add the preds to the worklist unless they are a
    893     // defining block.
    894     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    895       BasicBlock *P = *PI;
    896 
    897       // The value is not live into a predecessor if it defines the value.
    898       if (DefBlocks.count(P))
    899         continue;
    900 
    901       // Otherwise it is, add to the worklist.
    902       LiveInBlockWorklist.push_back(P);
    903     }
    904   }
    905 }
    906 
    907 namespace {
    908 typedef std::pair<DomTreeNode *, unsigned> DomTreeNodePair;
    909 
    910 struct DomTreeNodeCompare {
    911   bool operator()(const DomTreeNodePair &LHS, const DomTreeNodePair &RHS) {
    912     return LHS.second < RHS.second;
    913   }
    914 };
    915 } // end anonymous namespace
    916 
    917 /// At this point, we're committed to promoting the alloca using IDF's, and the
    918 /// standard SSA construction algorithm.  Determine which blocks need phi nodes
    919 /// and see if we can optimize out some work by avoiding insertion of dead phi
    920 /// nodes.
    921 void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
    922                                              AllocaInfo &Info) {
    923   // Unique the set of defining blocks for efficient lookup.
    924   SmallPtrSet<BasicBlock *, 32> DefBlocks;
    925   DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
    926 
    927   // Determine which blocks the value is live in.  These are blocks which lead
    928   // to uses.
    929   SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
    930   ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
    931 
    932   // Use a priority queue keyed on dominator tree level so that inserted nodes
    933   // are handled from the bottom of the dominator tree upwards.
    934   typedef std::priority_queue<DomTreeNodePair,
    935                               SmallVector<DomTreeNodePair, 32>,
    936                               DomTreeNodeCompare> IDFPriorityQueue;
    937   IDFPriorityQueue PQ;
    938 
    939   for (SmallPtrSet<BasicBlock *, 32>::const_iterator I = DefBlocks.begin(),
    940                                                      E = DefBlocks.end();
    941        I != E; ++I) {
    942     if (DomTreeNode *Node = DT.getNode(*I))
    943       PQ.push(std::make_pair(Node, DomLevels[Node]));
    944   }
    945 
    946   SmallVector<std::pair<unsigned, BasicBlock *>, 32> DFBlocks;
    947   SmallPtrSet<DomTreeNode *, 32> Visited;
    948   SmallVector<DomTreeNode *, 32> Worklist;
    949   while (!PQ.empty()) {
    950     DomTreeNodePair RootPair = PQ.top();
    951     PQ.pop();
    952     DomTreeNode *Root = RootPair.first;
    953     unsigned RootLevel = RootPair.second;
    954 
    955     // Walk all dominator tree children of Root, inspecting their CFG edges with
    956     // targets elsewhere on the dominator tree. Only targets whose level is at
    957     // most Root's level are added to the iterated dominance frontier of the
    958     // definition set.
    959 
    960     Worklist.clear();
    961     Worklist.push_back(Root);
    962 
    963     while (!Worklist.empty()) {
    964       DomTreeNode *Node = Worklist.pop_back_val();
    965       BasicBlock *BB = Node->getBlock();
    966 
    967       for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE;
    968            ++SI) {
    969         DomTreeNode *SuccNode = DT.getNode(*SI);
    970 
    971         // Quickly skip all CFG edges that are also dominator tree edges instead
    972         // of catching them below.
    973         if (SuccNode->getIDom() == Node)
    974           continue;
    975 
    976         unsigned SuccLevel = DomLevels[SuccNode];
    977         if (SuccLevel > RootLevel)
    978           continue;
    979 
    980         if (!Visited.insert(SuccNode))
    981           continue;
    982 
    983         BasicBlock *SuccBB = SuccNode->getBlock();
    984         if (!LiveInBlocks.count(SuccBB))
    985           continue;
    986 
    987         DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB));
    988         if (!DefBlocks.count(SuccBB))
    989           PQ.push(std::make_pair(SuccNode, SuccLevel));
    990       }
    991 
    992       for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE;
    993            ++CI) {
    994         if (!Visited.count(*CI))
    995           Worklist.push_back(*CI);
    996       }
    997     }
    998   }
    999 
   1000   if (DFBlocks.size() > 1)
   1001     std::sort(DFBlocks.begin(), DFBlocks.end());
   1002 
   1003   unsigned CurrentVersion = 0;
   1004   for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i)
   1005     QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion);
   1006 }
   1007 
   1008 /// \brief Queue a phi-node to be added to a basic-block for a specific Alloca.
   1009 ///
   1010 /// Returns true if there wasn't already a phi-node for that variable
   1011 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
   1012                                   unsigned &Version) {
   1013   // Look up the basic-block in question.
   1014   PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
   1015 
   1016   // If the BB already has a phi node added for the i'th alloca then we're done!
   1017   if (PN)
   1018     return false;
   1019 
   1020   // Create a PhiNode using the dereferenced type... and add the phi-node to the
   1021   // BasicBlock.
   1022   PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
   1023                        Allocas[AllocaNo]->getName() + "." + Twine(Version++),
   1024                        BB->begin());
   1025   ++NumPHIInsert;
   1026   PhiToAllocaMap[PN] = AllocaNo;
   1027 
   1028   if (AST && PN->getType()->isPointerTy())
   1029     AST->copyValue(PointerAllocaValues[AllocaNo], PN);
   1030 
   1031   return true;
   1032 }
   1033 
   1034 /// \brief Recursively traverse the CFG of the function, renaming loads and
   1035 /// stores to the allocas which we are promoting.
   1036 ///
   1037 /// IncomingVals indicates what value each Alloca contains on exit from the
   1038 /// predecessor block Pred.
   1039 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
   1040                                 RenamePassData::ValVector &IncomingVals,
   1041                                 std::vector<RenamePassData> &Worklist) {
   1042 NextIteration:
   1043   // If we are inserting any phi nodes into this BB, they will already be in the
   1044   // block.
   1045   if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
   1046     // If we have PHI nodes to update, compute the number of edges from Pred to
   1047     // BB.
   1048     if (PhiToAllocaMap.count(APN)) {
   1049       // We want to be able to distinguish between PHI nodes being inserted by
   1050       // this invocation of mem2reg from those phi nodes that already existed in
   1051       // the IR before mem2reg was run.  We determine that APN is being inserted
   1052       // because it is missing incoming edges.  All other PHI nodes being
   1053       // inserted by this pass of mem2reg will have the same number of incoming
   1054       // operands so far.  Remember this count.
   1055       unsigned NewPHINumOperands = APN->getNumOperands();
   1056 
   1057       unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB);
   1058       assert(NumEdges && "Must be at least one edge from Pred to BB!");
   1059 
   1060       // Add entries for all the phis.
   1061       BasicBlock::iterator PNI = BB->begin();
   1062       do {
   1063         unsigned AllocaNo = PhiToAllocaMap[APN];
   1064 
   1065         // Add N incoming values to the PHI node.
   1066         for (unsigned i = 0; i != NumEdges; ++i)
   1067           APN->addIncoming(IncomingVals[AllocaNo], Pred);
   1068 
   1069         // The currently active variable for this block is now the PHI.
   1070         IncomingVals[AllocaNo] = APN;
   1071 
   1072         // Get the next phi node.
   1073         ++PNI;
   1074         APN = dyn_cast<PHINode>(PNI);
   1075         if (APN == 0)
   1076           break;
   1077 
   1078         // Verify that it is missing entries.  If not, it is not being inserted
   1079         // by this mem2reg invocation so we want to ignore it.
   1080       } while (APN->getNumOperands() == NewPHINumOperands);
   1081     }
   1082   }
   1083 
   1084   // Don't revisit blocks.
   1085   if (!Visited.insert(BB))
   1086     return;
   1087 
   1088   for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II);) {
   1089     Instruction *I = II++; // get the instruction, increment iterator
   1090 
   1091     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
   1092       AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
   1093       if (!Src)
   1094         continue;
   1095 
   1096       DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
   1097       if (AI == AllocaLookup.end())
   1098         continue;
   1099 
   1100       Value *V = IncomingVals[AI->second];
   1101 
   1102       // Anything using the load now uses the current value.
   1103       LI->replaceAllUsesWith(V);
   1104       if (AST && LI->getType()->isPointerTy())
   1105         AST->deleteValue(LI);
   1106       BB->getInstList().erase(LI);
   1107     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
   1108       // Delete this instruction and mark the name as the current holder of the
   1109       // value
   1110       AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
   1111       if (!Dest)
   1112         continue;
   1113 
   1114       DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
   1115       if (ai == AllocaLookup.end())
   1116         continue;
   1117 
   1118       // what value were we writing?
   1119       IncomingVals[ai->second] = SI->getOperand(0);
   1120       // Record debuginfo for the store before removing it.
   1121       if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second])
   1122         ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
   1123       BB->getInstList().erase(SI);
   1124     }
   1125   }
   1126 
   1127   // 'Recurse' to our successors.
   1128   succ_iterator I = succ_begin(BB), E = succ_end(BB);
   1129   if (I == E)
   1130     return;
   1131 
   1132   // Keep track of the successors so we don't visit the same successor twice
   1133   SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
   1134 
   1135   // Handle the first successor without using the worklist.
   1136   VisitedSuccs.insert(*I);
   1137   Pred = BB;
   1138   BB = *I;
   1139   ++I;
   1140 
   1141   for (; I != E; ++I)
   1142     if (VisitedSuccs.insert(*I))
   1143       Worklist.push_back(RenamePassData(*I, Pred, IncomingVals));
   1144 
   1145   goto NextIteration;
   1146 }
   1147 
   1148 bool llvm::isAllocaPromotable(const AllocaInst *AI, const DataLayout *DL) {
   1149   // We cast away constness because we re-use the non-const analysis that the
   1150   // actual promotion routine uses. While it is non-const, it doesn't actually
   1151   // mutate anything at this phase, and we discard the non-const results that
   1152   // promotion uses to mutate the alloca.
   1153   return AllocaInfo(DL).analyzeAlloca(*const_cast<AllocaInst *>(AI));
   1154 }
   1155 
   1156 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
   1157                            const DataLayout *DL, AliasSetTracker *AST) {
   1158   // If there is nothing to do, bail out...
   1159   if (Allocas.empty())
   1160     return;
   1161 
   1162   PromoteMem2Reg(Allocas, DT, DL, AST).run();
   1163 }
   1164