1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/CodeExtractor.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Analysis/Dominators.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/RegionInfo.h" 23 #include "llvm/Analysis/RegionIterator.h" 24 #include "llvm/Analysis/Verifier.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/Pass.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include <algorithm> 38 #include <set> 39 using namespace llvm; 40 41 // Provide a command-line option to aggregate function arguments into a struct 42 // for functions produced by the code extractor. This is useful when converting 43 // extracted functions to pthread-based code, as only one argument (void*) can 44 // be passed in to pthread_create(). 45 static cl::opt<bool> 46 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 47 cl::desc("Aggregate arguments to code-extracted functions")); 48 49 /// \brief Test whether a block is valid for extraction. 50 static bool isBlockValidForExtraction(const BasicBlock &BB) { 51 // Landing pads must be in the function where they were inserted for cleanup. 52 if (BB.isLandingPad()) 53 return false; 54 55 // Don't hoist code containing allocas, invokes, or vastarts. 56 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 57 if (isa<AllocaInst>(I) || isa<InvokeInst>(I)) 58 return false; 59 if (const CallInst *CI = dyn_cast<CallInst>(I)) 60 if (const Function *F = CI->getCalledFunction()) 61 if (F->getIntrinsicID() == Intrinsic::vastart) 62 return false; 63 } 64 65 return true; 66 } 67 68 /// \brief Build a set of blocks to extract if the input blocks are viable. 69 template <typename IteratorT> 70 static SetVector<BasicBlock *> buildExtractionBlockSet(IteratorT BBBegin, 71 IteratorT BBEnd) { 72 SetVector<BasicBlock *> Result; 73 74 assert(BBBegin != BBEnd); 75 76 // Loop over the blocks, adding them to our set-vector, and aborting with an 77 // empty set if we encounter invalid blocks. 78 for (IteratorT I = BBBegin, E = BBEnd; I != E; ++I) { 79 if (!Result.insert(*I)) 80 llvm_unreachable("Repeated basic blocks in extraction input"); 81 82 if (!isBlockValidForExtraction(**I)) { 83 Result.clear(); 84 return Result; 85 } 86 } 87 88 #ifndef NDEBUG 89 for (SetVector<BasicBlock *>::iterator I = llvm::next(Result.begin()), 90 E = Result.end(); 91 I != E; ++I) 92 for (pred_iterator PI = pred_begin(*I), PE = pred_end(*I); 93 PI != PE; ++PI) 94 assert(Result.count(*PI) && 95 "No blocks in this region may have entries from outside the region" 96 " except for the first block!"); 97 #endif 98 99 return Result; 100 } 101 102 /// \brief Helper to call buildExtractionBlockSet with an ArrayRef. 103 static SetVector<BasicBlock *> 104 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs) { 105 return buildExtractionBlockSet(BBs.begin(), BBs.end()); 106 } 107 108 /// \brief Helper to call buildExtractionBlockSet with a RegionNode. 109 static SetVector<BasicBlock *> 110 buildExtractionBlockSet(const RegionNode &RN) { 111 if (!RN.isSubRegion()) 112 // Just a single BasicBlock. 113 return buildExtractionBlockSet(RN.getNodeAs<BasicBlock>()); 114 115 const Region &R = *RN.getNodeAs<Region>(); 116 117 return buildExtractionBlockSet(R.block_begin(), R.block_end()); 118 } 119 120 CodeExtractor::CodeExtractor(BasicBlock *BB, bool AggregateArgs) 121 : DT(0), AggregateArgs(AggregateArgs||AggregateArgsOpt), 122 Blocks(buildExtractionBlockSet(BB)), NumExitBlocks(~0U) {} 123 124 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 125 bool AggregateArgs) 126 : DT(DT), AggregateArgs(AggregateArgs||AggregateArgsOpt), 127 Blocks(buildExtractionBlockSet(BBs)), NumExitBlocks(~0U) {} 128 129 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs) 130 : DT(&DT), AggregateArgs(AggregateArgs||AggregateArgsOpt), 131 Blocks(buildExtractionBlockSet(L.getBlocks())), NumExitBlocks(~0U) {} 132 133 CodeExtractor::CodeExtractor(DominatorTree &DT, const RegionNode &RN, 134 bool AggregateArgs) 135 : DT(&DT), AggregateArgs(AggregateArgs||AggregateArgsOpt), 136 Blocks(buildExtractionBlockSet(RN)), NumExitBlocks(~0U) {} 137 138 /// definedInRegion - Return true if the specified value is defined in the 139 /// extracted region. 140 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 141 if (Instruction *I = dyn_cast<Instruction>(V)) 142 if (Blocks.count(I->getParent())) 143 return true; 144 return false; 145 } 146 147 /// definedInCaller - Return true if the specified value is defined in the 148 /// function being code extracted, but not in the region being extracted. 149 /// These values must be passed in as live-ins to the function. 150 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 151 if (isa<Argument>(V)) return true; 152 if (Instruction *I = dyn_cast<Instruction>(V)) 153 if (!Blocks.count(I->getParent())) 154 return true; 155 return false; 156 } 157 158 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, 159 ValueSet &Outputs) const { 160 for (SetVector<BasicBlock *>::const_iterator I = Blocks.begin(), 161 E = Blocks.end(); 162 I != E; ++I) { 163 BasicBlock *BB = *I; 164 165 // If a used value is defined outside the region, it's an input. If an 166 // instruction is used outside the region, it's an output. 167 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); 168 II != IE; ++II) { 169 for (User::op_iterator OI = II->op_begin(), OE = II->op_end(); 170 OI != OE; ++OI) 171 if (definedInCaller(Blocks, *OI)) 172 Inputs.insert(*OI); 173 174 for (Value::use_iterator UI = II->use_begin(), UE = II->use_end(); 175 UI != UE; ++UI) 176 if (!definedInRegion(Blocks, *UI)) { 177 Outputs.insert(II); 178 break; 179 } 180 } 181 } 182 } 183 184 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 185 /// region, we need to split the entry block of the region so that the PHI node 186 /// is easier to deal with. 187 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 188 unsigned NumPredsFromRegion = 0; 189 unsigned NumPredsOutsideRegion = 0; 190 191 if (Header != &Header->getParent()->getEntryBlock()) { 192 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 193 if (!PN) return; // No PHI nodes. 194 195 // If the header node contains any PHI nodes, check to see if there is more 196 // than one entry from outside the region. If so, we need to sever the 197 // header block into two. 198 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 199 if (Blocks.count(PN->getIncomingBlock(i))) 200 ++NumPredsFromRegion; 201 else 202 ++NumPredsOutsideRegion; 203 204 // If there is one (or fewer) predecessor from outside the region, we don't 205 // need to do anything special. 206 if (NumPredsOutsideRegion <= 1) return; 207 } 208 209 // Otherwise, we need to split the header block into two pieces: one 210 // containing PHI nodes merging values from outside of the region, and a 211 // second that contains all of the code for the block and merges back any 212 // incoming values from inside of the region. 213 BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI(); 214 BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs, 215 Header->getName()+".ce"); 216 217 // We only want to code extract the second block now, and it becomes the new 218 // header of the region. 219 BasicBlock *OldPred = Header; 220 Blocks.remove(OldPred); 221 Blocks.insert(NewBB); 222 Header = NewBB; 223 224 // Okay, update dominator sets. The blocks that dominate the new one are the 225 // blocks that dominate TIBB plus the new block itself. 226 if (DT) 227 DT->splitBlock(NewBB); 228 229 // Okay, now we need to adjust the PHI nodes and any branches from within the 230 // region to go to the new header block instead of the old header block. 231 if (NumPredsFromRegion) { 232 PHINode *PN = cast<PHINode>(OldPred->begin()); 233 // Loop over all of the predecessors of OldPred that are in the region, 234 // changing them to branch to NewBB instead. 235 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 236 if (Blocks.count(PN->getIncomingBlock(i))) { 237 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); 238 TI->replaceUsesOfWith(OldPred, NewBB); 239 } 240 241 // Okay, everything within the region is now branching to the right block, we 242 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 243 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 244 PHINode *PN = cast<PHINode>(AfterPHIs); 245 // Create a new PHI node in the new region, which has an incoming value 246 // from OldPred of PN. 247 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 248 PN->getName()+".ce", NewBB->begin()); 249 NewPN->addIncoming(PN, OldPred); 250 251 // Loop over all of the incoming value in PN, moving them to NewPN if they 252 // are from the extracted region. 253 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 254 if (Blocks.count(PN->getIncomingBlock(i))) { 255 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 256 PN->removeIncomingValue(i); 257 --i; 258 } 259 } 260 } 261 } 262 } 263 264 void CodeExtractor::splitReturnBlocks() { 265 for (SetVector<BasicBlock *>::iterator I = Blocks.begin(), E = Blocks.end(); 266 I != E; ++I) 267 if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) { 268 BasicBlock *New = (*I)->splitBasicBlock(RI, (*I)->getName()+".ret"); 269 if (DT) { 270 // Old dominates New. New node dominates all other nodes dominated 271 // by Old. 272 DomTreeNode *OldNode = DT->getNode(*I); 273 SmallVector<DomTreeNode*, 8> Children; 274 for (DomTreeNode::iterator DI = OldNode->begin(), DE = OldNode->end(); 275 DI != DE; ++DI) 276 Children.push_back(*DI); 277 278 DomTreeNode *NewNode = DT->addNewBlock(New, *I); 279 280 for (SmallVectorImpl<DomTreeNode *>::iterator I = Children.begin(), 281 E = Children.end(); I != E; ++I) 282 DT->changeImmediateDominator(*I, NewNode); 283 } 284 } 285 } 286 287 /// constructFunction - make a function based on inputs and outputs, as follows: 288 /// f(in0, ..., inN, out0, ..., outN) 289 /// 290 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 291 const ValueSet &outputs, 292 BasicBlock *header, 293 BasicBlock *newRootNode, 294 BasicBlock *newHeader, 295 Function *oldFunction, 296 Module *M) { 297 DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 298 DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 299 300 // This function returns unsigned, outputs will go back by reference. 301 switch (NumExitBlocks) { 302 case 0: 303 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 304 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 305 default: RetTy = Type::getInt16Ty(header->getContext()); break; 306 } 307 308 std::vector<Type*> paramTy; 309 310 // Add the types of the input values to the function's argument list 311 for (ValueSet::const_iterator i = inputs.begin(), e = inputs.end(); 312 i != e; ++i) { 313 const Value *value = *i; 314 DEBUG(dbgs() << "value used in func: " << *value << "\n"); 315 paramTy.push_back(value->getType()); 316 } 317 318 // Add the types of the output values to the function's argument list. 319 for (ValueSet::const_iterator I = outputs.begin(), E = outputs.end(); 320 I != E; ++I) { 321 DEBUG(dbgs() << "instr used in func: " << **I << "\n"); 322 if (AggregateArgs) 323 paramTy.push_back((*I)->getType()); 324 else 325 paramTy.push_back(PointerType::getUnqual((*I)->getType())); 326 } 327 328 DEBUG(dbgs() << "Function type: " << *RetTy << " f("); 329 for (std::vector<Type*>::iterator i = paramTy.begin(), 330 e = paramTy.end(); i != e; ++i) 331 DEBUG(dbgs() << **i << ", "); 332 DEBUG(dbgs() << ")\n"); 333 334 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 335 PointerType *StructPtr = 336 PointerType::getUnqual(StructType::get(M->getContext(), paramTy)); 337 paramTy.clear(); 338 paramTy.push_back(StructPtr); 339 } 340 FunctionType *funcType = 341 FunctionType::get(RetTy, paramTy, false); 342 343 // Create the new function 344 Function *newFunction = Function::Create(funcType, 345 GlobalValue::InternalLinkage, 346 oldFunction->getName() + "_" + 347 header->getName(), M); 348 // If the old function is no-throw, so is the new one. 349 if (oldFunction->doesNotThrow()) 350 newFunction->setDoesNotThrow(); 351 352 newFunction->getBasicBlockList().push_back(newRootNode); 353 354 // Create an iterator to name all of the arguments we inserted. 355 Function::arg_iterator AI = newFunction->arg_begin(); 356 357 // Rewrite all users of the inputs in the extracted region to use the 358 // arguments (or appropriate addressing into struct) instead. 359 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 360 Value *RewriteVal; 361 if (AggregateArgs) { 362 Value *Idx[2]; 363 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 364 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); 365 TerminatorInst *TI = newFunction->begin()->getTerminator(); 366 GetElementPtrInst *GEP = 367 GetElementPtrInst::Create(AI, Idx, "gep_" + inputs[i]->getName(), TI); 368 RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI); 369 } else 370 RewriteVal = AI++; 371 372 std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end()); 373 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end(); 374 use != useE; ++use) 375 if (Instruction* inst = dyn_cast<Instruction>(*use)) 376 if (Blocks.count(inst->getParent())) 377 inst->replaceUsesOfWith(inputs[i], RewriteVal); 378 } 379 380 // Set names for input and output arguments. 381 if (!AggregateArgs) { 382 AI = newFunction->arg_begin(); 383 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 384 AI->setName(inputs[i]->getName()); 385 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 386 AI->setName(outputs[i]->getName()+".out"); 387 } 388 389 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 390 // within the new function. This must be done before we lose track of which 391 // blocks were originally in the code region. 392 std::vector<User*> Users(header->use_begin(), header->use_end()); 393 for (unsigned i = 0, e = Users.size(); i != e; ++i) 394 // The BasicBlock which contains the branch is not in the region 395 // modify the branch target to a new block 396 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 397 if (!Blocks.count(TI->getParent()) && 398 TI->getParent()->getParent() == oldFunction) 399 TI->replaceUsesOfWith(header, newHeader); 400 401 return newFunction; 402 } 403 404 /// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI 405 /// that uses the value within the basic block, and return the predecessor 406 /// block associated with that use, or return 0 if none is found. 407 static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) { 408 for (Value::use_iterator UI = Used->use_begin(), 409 UE = Used->use_end(); UI != UE; ++UI) { 410 PHINode *P = dyn_cast<PHINode>(*UI); 411 if (P && P->getParent() == BB) 412 return P->getIncomingBlock(UI); 413 } 414 415 return 0; 416 } 417 418 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 419 /// the call instruction, splitting any PHI nodes in the header block as 420 /// necessary. 421 void CodeExtractor:: 422 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 423 ValueSet &inputs, ValueSet &outputs) { 424 // Emit a call to the new function, passing in: *pointer to struct (if 425 // aggregating parameters), or plan inputs and allocated memory for outputs 426 std::vector<Value*> params, StructValues, ReloadOutputs, Reloads; 427 428 LLVMContext &Context = newFunction->getContext(); 429 430 // Add inputs as params, or to be filled into the struct 431 for (ValueSet::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i) 432 if (AggregateArgs) 433 StructValues.push_back(*i); 434 else 435 params.push_back(*i); 436 437 // Create allocas for the outputs 438 for (ValueSet::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) { 439 if (AggregateArgs) { 440 StructValues.push_back(*i); 441 } else { 442 AllocaInst *alloca = 443 new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc", 444 codeReplacer->getParent()->begin()->begin()); 445 ReloadOutputs.push_back(alloca); 446 params.push_back(alloca); 447 } 448 } 449 450 AllocaInst *Struct = 0; 451 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 452 std::vector<Type*> ArgTypes; 453 for (ValueSet::iterator v = StructValues.begin(), 454 ve = StructValues.end(); v != ve; ++v) 455 ArgTypes.push_back((*v)->getType()); 456 457 // Allocate a struct at the beginning of this function 458 Type *StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 459 Struct = 460 new AllocaInst(StructArgTy, 0, "structArg", 461 codeReplacer->getParent()->begin()->begin()); 462 params.push_back(Struct); 463 464 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 465 Value *Idx[2]; 466 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 467 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 468 GetElementPtrInst *GEP = 469 GetElementPtrInst::Create(Struct, Idx, 470 "gep_" + StructValues[i]->getName()); 471 codeReplacer->getInstList().push_back(GEP); 472 StoreInst *SI = new StoreInst(StructValues[i], GEP); 473 codeReplacer->getInstList().push_back(SI); 474 } 475 } 476 477 // Emit the call to the function 478 CallInst *call = CallInst::Create(newFunction, params, 479 NumExitBlocks > 1 ? "targetBlock" : ""); 480 codeReplacer->getInstList().push_back(call); 481 482 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 483 unsigned FirstOut = inputs.size(); 484 if (!AggregateArgs) 485 std::advance(OutputArgBegin, inputs.size()); 486 487 // Reload the outputs passed in by reference 488 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 489 Value *Output = 0; 490 if (AggregateArgs) { 491 Value *Idx[2]; 492 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 493 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 494 GetElementPtrInst *GEP 495 = GetElementPtrInst::Create(Struct, Idx, 496 "gep_reload_" + outputs[i]->getName()); 497 codeReplacer->getInstList().push_back(GEP); 498 Output = GEP; 499 } else { 500 Output = ReloadOutputs[i]; 501 } 502 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 503 Reloads.push_back(load); 504 codeReplacer->getInstList().push_back(load); 505 std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end()); 506 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 507 Instruction *inst = cast<Instruction>(Users[u]); 508 if (!Blocks.count(inst->getParent())) 509 inst->replaceUsesOfWith(outputs[i], load); 510 } 511 } 512 513 // Now we can emit a switch statement using the call as a value. 514 SwitchInst *TheSwitch = 515 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 516 codeReplacer, 0, codeReplacer); 517 518 // Since there may be multiple exits from the original region, make the new 519 // function return an unsigned, switch on that number. This loop iterates 520 // over all of the blocks in the extracted region, updating any terminator 521 // instructions in the to-be-extracted region that branch to blocks that are 522 // not in the region to be extracted. 523 std::map<BasicBlock*, BasicBlock*> ExitBlockMap; 524 525 unsigned switchVal = 0; 526 for (SetVector<BasicBlock*>::const_iterator i = Blocks.begin(), 527 e = Blocks.end(); i != e; ++i) { 528 TerminatorInst *TI = (*i)->getTerminator(); 529 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 530 if (!Blocks.count(TI->getSuccessor(i))) { 531 BasicBlock *OldTarget = TI->getSuccessor(i); 532 // add a new basic block which returns the appropriate value 533 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 534 if (!NewTarget) { 535 // If we don't already have an exit stub for this non-extracted 536 // destination, create one now! 537 NewTarget = BasicBlock::Create(Context, 538 OldTarget->getName() + ".exitStub", 539 newFunction); 540 unsigned SuccNum = switchVal++; 541 542 Value *brVal = 0; 543 switch (NumExitBlocks) { 544 case 0: 545 case 1: break; // No value needed. 546 case 2: // Conditional branch, return a bool 547 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 548 break; 549 default: 550 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 551 break; 552 } 553 554 ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget); 555 556 // Update the switch instruction. 557 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 558 SuccNum), 559 OldTarget); 560 561 // Restore values just before we exit 562 Function::arg_iterator OAI = OutputArgBegin; 563 for (unsigned out = 0, e = outputs.size(); out != e; ++out) { 564 // For an invoke, the normal destination is the only one that is 565 // dominated by the result of the invocation 566 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); 567 568 bool DominatesDef = true; 569 570 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) { 571 DefBlock = Invoke->getNormalDest(); 572 573 // Make sure we are looking at the original successor block, not 574 // at a newly inserted exit block, which won't be in the dominator 575 // info. 576 for (std::map<BasicBlock*, BasicBlock*>::iterator I = 577 ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I) 578 if (DefBlock == I->second) { 579 DefBlock = I->first; 580 break; 581 } 582 583 // In the extract block case, if the block we are extracting ends 584 // with an invoke instruction, make sure that we don't emit a 585 // store of the invoke value for the unwind block. 586 if (!DT && DefBlock != OldTarget) 587 DominatesDef = false; 588 } 589 590 if (DT) { 591 DominatesDef = DT->dominates(DefBlock, OldTarget); 592 593 // If the output value is used by a phi in the target block, 594 // then we need to test for dominance of the phi's predecessor 595 // instead. Unfortunately, this a little complicated since we 596 // have already rewritten uses of the value to uses of the reload. 597 BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out], 598 OldTarget); 599 if (pred && DT && DT->dominates(DefBlock, pred)) 600 DominatesDef = true; 601 } 602 603 if (DominatesDef) { 604 if (AggregateArgs) { 605 Value *Idx[2]; 606 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 607 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), 608 FirstOut+out); 609 GetElementPtrInst *GEP = 610 GetElementPtrInst::Create(OAI, Idx, 611 "gep_" + outputs[out]->getName(), 612 NTRet); 613 new StoreInst(outputs[out], GEP, NTRet); 614 } else { 615 new StoreInst(outputs[out], OAI, NTRet); 616 } 617 } 618 // Advance output iterator even if we don't emit a store 619 if (!AggregateArgs) ++OAI; 620 } 621 } 622 623 // rewrite the original branch instruction with this new target 624 TI->setSuccessor(i, NewTarget); 625 } 626 } 627 628 // Now that we've done the deed, simplify the switch instruction. 629 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 630 switch (NumExitBlocks) { 631 case 0: 632 // There are no successors (the block containing the switch itself), which 633 // means that previously this was the last part of the function, and hence 634 // this should be rewritten as a `ret' 635 636 // Check if the function should return a value 637 if (OldFnRetTy->isVoidTy()) { 638 ReturnInst::Create(Context, 0, TheSwitch); // Return void 639 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 640 // return what we have 641 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 642 } else { 643 // Otherwise we must have code extracted an unwind or something, just 644 // return whatever we want. 645 ReturnInst::Create(Context, 646 Constant::getNullValue(OldFnRetTy), TheSwitch); 647 } 648 649 TheSwitch->eraseFromParent(); 650 break; 651 case 1: 652 // Only a single destination, change the switch into an unconditional 653 // branch. 654 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 655 TheSwitch->eraseFromParent(); 656 break; 657 case 2: 658 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 659 call, TheSwitch); 660 TheSwitch->eraseFromParent(); 661 break; 662 default: 663 // Otherwise, make the default destination of the switch instruction be one 664 // of the other successors. 665 TheSwitch->setCondition(call); 666 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 667 // Remove redundant case 668 SwitchInst::CaseIt ToBeRemoved(TheSwitch, NumExitBlocks-1); 669 TheSwitch->removeCase(ToBeRemoved); 670 break; 671 } 672 } 673 674 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 675 Function *oldFunc = (*Blocks.begin())->getParent(); 676 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 677 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 678 679 for (SetVector<BasicBlock*>::const_iterator i = Blocks.begin(), 680 e = Blocks.end(); i != e; ++i) { 681 // Delete the basic block from the old function, and the list of blocks 682 oldBlocks.remove(*i); 683 684 // Insert this basic block into the new function 685 newBlocks.push_back(*i); 686 } 687 } 688 689 Function *CodeExtractor::extractCodeRegion() { 690 if (!isEligible()) 691 return 0; 692 693 ValueSet inputs, outputs; 694 695 // Assumption: this is a single-entry code region, and the header is the first 696 // block in the region. 697 BasicBlock *header = *Blocks.begin(); 698 699 // If we have to split PHI nodes or the entry block, do so now. 700 severSplitPHINodes(header); 701 702 // If we have any return instructions in the region, split those blocks so 703 // that the return is not in the region. 704 splitReturnBlocks(); 705 706 Function *oldFunction = header->getParent(); 707 708 // This takes place of the original loop 709 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 710 "codeRepl", oldFunction, 711 header); 712 713 // The new function needs a root node because other nodes can branch to the 714 // head of the region, but the entry node of a function cannot have preds. 715 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 716 "newFuncRoot"); 717 newFuncRoot->getInstList().push_back(BranchInst::Create(header)); 718 719 // Find inputs to, outputs from the code region. 720 findInputsOutputs(inputs, outputs); 721 722 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 723 for (SetVector<BasicBlock *>::iterator I = Blocks.begin(), E = Blocks.end(); 724 I != E; ++I) 725 for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI) 726 if (!Blocks.count(*SI)) 727 ExitBlocks.insert(*SI); 728 NumExitBlocks = ExitBlocks.size(); 729 730 // Construct new function based on inputs/outputs & add allocas for all defs. 731 Function *newFunction = constructFunction(inputs, outputs, header, 732 newFuncRoot, 733 codeReplacer, oldFunction, 734 oldFunction->getParent()); 735 736 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 737 738 moveCodeToFunction(newFunction); 739 740 // Loop over all of the PHI nodes in the header block, and change any 741 // references to the old incoming edge to be the new incoming edge. 742 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 743 PHINode *PN = cast<PHINode>(I); 744 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 745 if (!Blocks.count(PN->getIncomingBlock(i))) 746 PN->setIncomingBlock(i, newFuncRoot); 747 } 748 749 // Look at all successors of the codeReplacer block. If any of these blocks 750 // had PHI nodes in them, we need to update the "from" block to be the code 751 // replacer, not the original block in the extracted region. 752 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), 753 succ_end(codeReplacer)); 754 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 755 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { 756 PHINode *PN = cast<PHINode>(I); 757 std::set<BasicBlock*> ProcessedPreds; 758 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 759 if (Blocks.count(PN->getIncomingBlock(i))) { 760 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) 761 PN->setIncomingBlock(i, codeReplacer); 762 else { 763 // There were multiple entries in the PHI for this block, now there 764 // is only one, so remove the duplicated entries. 765 PN->removeIncomingValue(i, false); 766 --i; --e; 767 } 768 } 769 } 770 771 //cerr << "NEW FUNCTION: " << *newFunction; 772 // verifyFunction(*newFunction); 773 774 // cerr << "OLD FUNCTION: " << *oldFunction; 775 // verifyFunction(*oldFunction); 776 777 DEBUG(if (verifyFunction(*newFunction)) 778 report_fatal_error("verifyFunction failed!")); 779 return newFunction; 780 } 781