Home | History | Annotate | Download | only in Sema
      1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for declarations.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "TypeLocBuilder.h"
     16 #include "clang/AST/ASTConsumer.h"
     17 #include "clang/AST/ASTContext.h"
     18 #include "clang/AST/CXXInheritance.h"
     19 #include "clang/AST/CharUnits.h"
     20 #include "clang/AST/CommentDiagnostic.h"
     21 #include "clang/AST/DeclCXX.h"
     22 #include "clang/AST/DeclObjC.h"
     23 #include "clang/AST/DeclTemplate.h"
     24 #include "clang/AST/EvaluatedExprVisitor.h"
     25 #include "clang/AST/ExprCXX.h"
     26 #include "clang/AST/StmtCXX.h"
     27 #include "clang/Basic/PartialDiagnostic.h"
     28 #include "clang/Basic/SourceManager.h"
     29 #include "clang/Basic/TargetInfo.h"
     30 #include "clang/Lex/HeaderSearch.h" // FIXME: Sema shouldn't depend on Lex
     31 #include "clang/Lex/ModuleLoader.h" // FIXME: Sema shouldn't depend on Lex
     32 #include "clang/Lex/Preprocessor.h" // FIXME: Sema shouldn't depend on Lex
     33 #include "clang/Parse/ParseDiagnostic.h"
     34 #include "clang/Sema/CXXFieldCollector.h"
     35 #include "clang/Sema/DeclSpec.h"
     36 #include "clang/Sema/DelayedDiagnostic.h"
     37 #include "clang/Sema/Initialization.h"
     38 #include "clang/Sema/Lookup.h"
     39 #include "clang/Sema/ParsedTemplate.h"
     40 #include "clang/Sema/Scope.h"
     41 #include "clang/Sema/ScopeInfo.h"
     42 #include "llvm/ADT/SmallString.h"
     43 #include "llvm/ADT/Triple.h"
     44 #include <algorithm>
     45 #include <cstring>
     46 #include <functional>
     47 using namespace clang;
     48 using namespace sema;
     49 
     50 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
     51   if (OwnedType) {
     52     Decl *Group[2] = { OwnedType, Ptr };
     53     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
     54   }
     55 
     56   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
     57 }
     58 
     59 namespace {
     60 
     61 class TypeNameValidatorCCC : public CorrectionCandidateCallback {
     62  public:
     63   TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
     64       : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
     65     WantExpressionKeywords = false;
     66     WantCXXNamedCasts = false;
     67     WantRemainingKeywords = false;
     68   }
     69 
     70   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
     71     if (NamedDecl *ND = candidate.getCorrectionDecl())
     72       return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
     73           (AllowInvalidDecl || !ND->isInvalidDecl());
     74     else
     75       return !WantClassName && candidate.isKeyword();
     76   }
     77 
     78  private:
     79   bool AllowInvalidDecl;
     80   bool WantClassName;
     81 };
     82 
     83 }
     84 
     85 /// \brief Determine whether the token kind starts a simple-type-specifier.
     86 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
     87   switch (Kind) {
     88   // FIXME: Take into account the current language when deciding whether a
     89   // token kind is a valid type specifier
     90   case tok::kw_short:
     91   case tok::kw_long:
     92   case tok::kw___int64:
     93   case tok::kw___int128:
     94   case tok::kw_signed:
     95   case tok::kw_unsigned:
     96   case tok::kw_void:
     97   case tok::kw_char:
     98   case tok::kw_int:
     99   case tok::kw_half:
    100   case tok::kw_float:
    101   case tok::kw_double:
    102   case tok::kw_wchar_t:
    103   case tok::kw_bool:
    104   case tok::kw___underlying_type:
    105     return true;
    106 
    107   case tok::annot_typename:
    108   case tok::kw_char16_t:
    109   case tok::kw_char32_t:
    110   case tok::kw_typeof:
    111   case tok::kw_decltype:
    112     return getLangOpts().CPlusPlus;
    113 
    114   default:
    115     break;
    116   }
    117 
    118   return false;
    119 }
    120 
    121 /// \brief If the identifier refers to a type name within this scope,
    122 /// return the declaration of that type.
    123 ///
    124 /// This routine performs ordinary name lookup of the identifier II
    125 /// within the given scope, with optional C++ scope specifier SS, to
    126 /// determine whether the name refers to a type. If so, returns an
    127 /// opaque pointer (actually a QualType) corresponding to that
    128 /// type. Otherwise, returns NULL.
    129 ///
    130 /// If name lookup results in an ambiguity, this routine will complain
    131 /// and then return NULL.
    132 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
    133                              Scope *S, CXXScopeSpec *SS,
    134                              bool isClassName, bool HasTrailingDot,
    135                              ParsedType ObjectTypePtr,
    136                              bool IsCtorOrDtorName,
    137                              bool WantNontrivialTypeSourceInfo,
    138                              IdentifierInfo **CorrectedII) {
    139   // Determine where we will perform name lookup.
    140   DeclContext *LookupCtx = 0;
    141   if (ObjectTypePtr) {
    142     QualType ObjectType = ObjectTypePtr.get();
    143     if (ObjectType->isRecordType())
    144       LookupCtx = computeDeclContext(ObjectType);
    145   } else if (SS && SS->isNotEmpty()) {
    146     LookupCtx = computeDeclContext(*SS, false);
    147 
    148     if (!LookupCtx) {
    149       if (isDependentScopeSpecifier(*SS)) {
    150         // C++ [temp.res]p3:
    151         //   A qualified-id that refers to a type and in which the
    152         //   nested-name-specifier depends on a template-parameter (14.6.2)
    153         //   shall be prefixed by the keyword typename to indicate that the
    154         //   qualified-id denotes a type, forming an
    155         //   elaborated-type-specifier (7.1.5.3).
    156         //
    157         // We therefore do not perform any name lookup if the result would
    158         // refer to a member of an unknown specialization.
    159         if (!isClassName && !IsCtorOrDtorName)
    160           return ParsedType();
    161 
    162         // We know from the grammar that this name refers to a type,
    163         // so build a dependent node to describe the type.
    164         if (WantNontrivialTypeSourceInfo)
    165           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
    166 
    167         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
    168         QualType T =
    169           CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
    170                             II, NameLoc);
    171 
    172           return ParsedType::make(T);
    173       }
    174 
    175       return ParsedType();
    176     }
    177 
    178     if (!LookupCtx->isDependentContext() &&
    179         RequireCompleteDeclContext(*SS, LookupCtx))
    180       return ParsedType();
    181   }
    182 
    183   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
    184   // lookup for class-names.
    185   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
    186                                       LookupOrdinaryName;
    187   LookupResult Result(*this, &II, NameLoc, Kind);
    188   if (LookupCtx) {
    189     // Perform "qualified" name lookup into the declaration context we
    190     // computed, which is either the type of the base of a member access
    191     // expression or the declaration context associated with a prior
    192     // nested-name-specifier.
    193     LookupQualifiedName(Result, LookupCtx);
    194 
    195     if (ObjectTypePtr && Result.empty()) {
    196       // C++ [basic.lookup.classref]p3:
    197       //   If the unqualified-id is ~type-name, the type-name is looked up
    198       //   in the context of the entire postfix-expression. If the type T of
    199       //   the object expression is of a class type C, the type-name is also
    200       //   looked up in the scope of class C. At least one of the lookups shall
    201       //   find a name that refers to (possibly cv-qualified) T.
    202       LookupName(Result, S);
    203     }
    204   } else {
    205     // Perform unqualified name lookup.
    206     LookupName(Result, S);
    207   }
    208 
    209   NamedDecl *IIDecl = 0;
    210   switch (Result.getResultKind()) {
    211   case LookupResult::NotFound:
    212   case LookupResult::NotFoundInCurrentInstantiation:
    213     if (CorrectedII) {
    214       TypeNameValidatorCCC Validator(true, isClassName);
    215       TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
    216                                               Kind, S, SS, Validator);
    217       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
    218       TemplateTy Template;
    219       bool MemberOfUnknownSpecialization;
    220       UnqualifiedId TemplateName;
    221       TemplateName.setIdentifier(NewII, NameLoc);
    222       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
    223       CXXScopeSpec NewSS, *NewSSPtr = SS;
    224       if (SS && NNS) {
    225         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
    226         NewSSPtr = &NewSS;
    227       }
    228       if (Correction && (NNS || NewII != &II) &&
    229           // Ignore a correction to a template type as the to-be-corrected
    230           // identifier is not a template (typo correction for template names
    231           // is handled elsewhere).
    232           !(getLangOpts().CPlusPlus && NewSSPtr &&
    233             isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
    234                            false, Template, MemberOfUnknownSpecialization))) {
    235         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
    236                                     isClassName, HasTrailingDot, ObjectTypePtr,
    237                                     IsCtorOrDtorName,
    238                                     WantNontrivialTypeSourceInfo);
    239         if (Ty) {
    240           std::string CorrectedStr(Correction.getAsString(getLangOpts()));
    241           std::string CorrectedQuotedStr(
    242               Correction.getQuoted(getLangOpts()));
    243           Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
    244               << Result.getLookupName() << CorrectedQuotedStr << isClassName
    245               << FixItHint::CreateReplacement(SourceRange(NameLoc),
    246                                               CorrectedStr);
    247           if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
    248             Diag(FirstDecl->getLocation(), diag::note_previous_decl)
    249               << CorrectedQuotedStr;
    250 
    251           if (SS && NNS)
    252             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
    253           *CorrectedII = NewII;
    254           return Ty;
    255         }
    256       }
    257     }
    258     // If typo correction failed or was not performed, fall through
    259   case LookupResult::FoundOverloaded:
    260   case LookupResult::FoundUnresolvedValue:
    261     Result.suppressDiagnostics();
    262     return ParsedType();
    263 
    264   case LookupResult::Ambiguous:
    265     // Recover from type-hiding ambiguities by hiding the type.  We'll
    266     // do the lookup again when looking for an object, and we can
    267     // diagnose the error then.  If we don't do this, then the error
    268     // about hiding the type will be immediately followed by an error
    269     // that only makes sense if the identifier was treated like a type.
    270     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
    271       Result.suppressDiagnostics();
    272       return ParsedType();
    273     }
    274 
    275     // Look to see if we have a type anywhere in the list of results.
    276     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
    277          Res != ResEnd; ++Res) {
    278       if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
    279         if (!IIDecl ||
    280             (*Res)->getLocation().getRawEncoding() <
    281               IIDecl->getLocation().getRawEncoding())
    282           IIDecl = *Res;
    283       }
    284     }
    285 
    286     if (!IIDecl) {
    287       // None of the entities we found is a type, so there is no way
    288       // to even assume that the result is a type. In this case, don't
    289       // complain about the ambiguity. The parser will either try to
    290       // perform this lookup again (e.g., as an object name), which
    291       // will produce the ambiguity, or will complain that it expected
    292       // a type name.
    293       Result.suppressDiagnostics();
    294       return ParsedType();
    295     }
    296 
    297     // We found a type within the ambiguous lookup; diagnose the
    298     // ambiguity and then return that type. This might be the right
    299     // answer, or it might not be, but it suppresses any attempt to
    300     // perform the name lookup again.
    301     break;
    302 
    303   case LookupResult::Found:
    304     IIDecl = Result.getFoundDecl();
    305     break;
    306   }
    307 
    308   assert(IIDecl && "Didn't find decl");
    309 
    310   QualType T;
    311   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
    312     DiagnoseUseOfDecl(IIDecl, NameLoc);
    313 
    314     if (T.isNull())
    315       T = Context.getTypeDeclType(TD);
    316 
    317     // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
    318     // constructor or destructor name (in such a case, the scope specifier
    319     // will be attached to the enclosing Expr or Decl node).
    320     if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
    321       if (WantNontrivialTypeSourceInfo) {
    322         // Construct a type with type-source information.
    323         TypeLocBuilder Builder;
    324         Builder.pushTypeSpec(T).setNameLoc(NameLoc);
    325 
    326         T = getElaboratedType(ETK_None, *SS, T);
    327         ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
    328         ElabTL.setElaboratedKeywordLoc(SourceLocation());
    329         ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
    330         return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
    331       } else {
    332         T = getElaboratedType(ETK_None, *SS, T);
    333       }
    334     }
    335   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
    336     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
    337     if (!HasTrailingDot)
    338       T = Context.getObjCInterfaceType(IDecl);
    339   }
    340 
    341   if (T.isNull()) {
    342     // If it's not plausibly a type, suppress diagnostics.
    343     Result.suppressDiagnostics();
    344     return ParsedType();
    345   }
    346   return ParsedType::make(T);
    347 }
    348 
    349 /// isTagName() - This method is called *for error recovery purposes only*
    350 /// to determine if the specified name is a valid tag name ("struct foo").  If
    351 /// so, this returns the TST for the tag corresponding to it (TST_enum,
    352 /// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
    353 /// cases in C where the user forgot to specify the tag.
    354 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
    355   // Do a tag name lookup in this scope.
    356   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
    357   LookupName(R, S, false);
    358   R.suppressDiagnostics();
    359   if (R.getResultKind() == LookupResult::Found)
    360     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
    361       switch (TD->getTagKind()) {
    362       case TTK_Struct: return DeclSpec::TST_struct;
    363       case TTK_Interface: return DeclSpec::TST_interface;
    364       case TTK_Union:  return DeclSpec::TST_union;
    365       case TTK_Class:  return DeclSpec::TST_class;
    366       case TTK_Enum:   return DeclSpec::TST_enum;
    367       }
    368     }
    369 
    370   return DeclSpec::TST_unspecified;
    371 }
    372 
    373 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
    374 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
    375 /// then downgrade the missing typename error to a warning.
    376 /// This is needed for MSVC compatibility; Example:
    377 /// @code
    378 /// template<class T> class A {
    379 /// public:
    380 ///   typedef int TYPE;
    381 /// };
    382 /// template<class T> class B : public A<T> {
    383 /// public:
    384 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
    385 /// };
    386 /// @endcode
    387 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
    388   if (CurContext->isRecord()) {
    389     const Type *Ty = SS->getScopeRep()->getAsType();
    390 
    391     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
    392     for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
    393           BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
    394       if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
    395         return true;
    396     return S->isFunctionPrototypeScope();
    397   }
    398   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
    399 }
    400 
    401 bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
    402                                    SourceLocation IILoc,
    403                                    Scope *S,
    404                                    CXXScopeSpec *SS,
    405                                    ParsedType &SuggestedType) {
    406   // We don't have anything to suggest (yet).
    407   SuggestedType = ParsedType();
    408 
    409   // There may have been a typo in the name of the type. Look up typo
    410   // results, in case we have something that we can suggest.
    411   TypeNameValidatorCCC Validator(false);
    412   if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
    413                                              LookupOrdinaryName, S, SS,
    414                                              Validator)) {
    415     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
    416     std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
    417 
    418     if (Corrected.isKeyword()) {
    419       // We corrected to a keyword.
    420       IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
    421       if (!isSimpleTypeSpecifier(NewII->getTokenID()))
    422         CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
    423       Diag(IILoc, diag::err_unknown_typename_suggest)
    424         << II << CorrectedQuotedStr
    425         << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
    426                                         CorrectedStr);
    427       II = NewII;
    428     } else {
    429       NamedDecl *Result = Corrected.getCorrectionDecl();
    430       // We found a similarly-named type or interface; suggest that.
    431       if (!SS || !SS->isSet()) {
    432         Diag(IILoc, diag::err_unknown_typename_suggest)
    433           << II << CorrectedQuotedStr
    434           << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
    435                                           CorrectedStr);
    436       } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
    437         bool droppedSpecifier = Corrected.WillReplaceSpecifier() &&
    438                                 II->getName().equals(CorrectedStr);
    439         Diag(IILoc, diag::err_unknown_nested_typename_suggest)
    440             << II << DC << droppedSpecifier << CorrectedQuotedStr
    441             << SS->getRange()
    442             << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
    443                                             CorrectedStr);
    444       }
    445       else {
    446         llvm_unreachable("could not have corrected a typo here");
    447       }
    448 
    449       Diag(Result->getLocation(), diag::note_previous_decl)
    450         << CorrectedQuotedStr;
    451 
    452       SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
    453                                   false, false, ParsedType(),
    454                                   /*IsCtorOrDtorName=*/false,
    455                                   /*NonTrivialTypeSourceInfo=*/true);
    456     }
    457     return true;
    458   }
    459 
    460   if (getLangOpts().CPlusPlus) {
    461     // See if II is a class template that the user forgot to pass arguments to.
    462     UnqualifiedId Name;
    463     Name.setIdentifier(II, IILoc);
    464     CXXScopeSpec EmptySS;
    465     TemplateTy TemplateResult;
    466     bool MemberOfUnknownSpecialization;
    467     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
    468                        Name, ParsedType(), true, TemplateResult,
    469                        MemberOfUnknownSpecialization) == TNK_Type_template) {
    470       TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
    471       Diag(IILoc, diag::err_template_missing_args) << TplName;
    472       if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
    473         Diag(TplDecl->getLocation(), diag::note_template_decl_here)
    474           << TplDecl->getTemplateParameters()->getSourceRange();
    475       }
    476       return true;
    477     }
    478   }
    479 
    480   // FIXME: Should we move the logic that tries to recover from a missing tag
    481   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
    482 
    483   if (!SS || (!SS->isSet() && !SS->isInvalid()))
    484     Diag(IILoc, diag::err_unknown_typename) << II;
    485   else if (DeclContext *DC = computeDeclContext(*SS, false))
    486     Diag(IILoc, diag::err_typename_nested_not_found)
    487       << II << DC << SS->getRange();
    488   else if (isDependentScopeSpecifier(*SS)) {
    489     unsigned DiagID = diag::err_typename_missing;
    490     if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
    491       DiagID = diag::warn_typename_missing;
    492 
    493     Diag(SS->getRange().getBegin(), DiagID)
    494       << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
    495       << SourceRange(SS->getRange().getBegin(), IILoc)
    496       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
    497     SuggestedType = ActOnTypenameType(S, SourceLocation(),
    498                                       *SS, *II, IILoc).get();
    499   } else {
    500     assert(SS && SS->isInvalid() &&
    501            "Invalid scope specifier has already been diagnosed");
    502   }
    503 
    504   return true;
    505 }
    506 
    507 /// \brief Determine whether the given result set contains either a type name
    508 /// or
    509 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
    510   bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
    511                        NextToken.is(tok::less);
    512 
    513   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
    514     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
    515       return true;
    516 
    517     if (CheckTemplate && isa<TemplateDecl>(*I))
    518       return true;
    519   }
    520 
    521   return false;
    522 }
    523 
    524 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
    525                                     Scope *S, CXXScopeSpec &SS,
    526                                     IdentifierInfo *&Name,
    527                                     SourceLocation NameLoc) {
    528   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
    529   SemaRef.LookupParsedName(R, S, &SS);
    530   if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
    531     const char *TagName = 0;
    532     const char *FixItTagName = 0;
    533     switch (Tag->getTagKind()) {
    534       case TTK_Class:
    535         TagName = "class";
    536         FixItTagName = "class ";
    537         break;
    538 
    539       case TTK_Enum:
    540         TagName = "enum";
    541         FixItTagName = "enum ";
    542         break;
    543 
    544       case TTK_Struct:
    545         TagName = "struct";
    546         FixItTagName = "struct ";
    547         break;
    548 
    549       case TTK_Interface:
    550         TagName = "__interface";
    551         FixItTagName = "__interface ";
    552         break;
    553 
    554       case TTK_Union:
    555         TagName = "union";
    556         FixItTagName = "union ";
    557         break;
    558     }
    559 
    560     SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
    561       << Name << TagName << SemaRef.getLangOpts().CPlusPlus
    562       << FixItHint::CreateInsertion(NameLoc, FixItTagName);
    563 
    564     for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
    565          I != IEnd; ++I)
    566       SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
    567         << Name << TagName;
    568 
    569     // Replace lookup results with just the tag decl.
    570     Result.clear(Sema::LookupTagName);
    571     SemaRef.LookupParsedName(Result, S, &SS);
    572     return true;
    573   }
    574 
    575   return false;
    576 }
    577 
    578 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
    579 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
    580                                   QualType T, SourceLocation NameLoc) {
    581   ASTContext &Context = S.Context;
    582 
    583   TypeLocBuilder Builder;
    584   Builder.pushTypeSpec(T).setNameLoc(NameLoc);
    585 
    586   T = S.getElaboratedType(ETK_None, SS, T);
    587   ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
    588   ElabTL.setElaboratedKeywordLoc(SourceLocation());
    589   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
    590   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
    591 }
    592 
    593 Sema::NameClassification Sema::ClassifyName(Scope *S,
    594                                             CXXScopeSpec &SS,
    595                                             IdentifierInfo *&Name,
    596                                             SourceLocation NameLoc,
    597                                             const Token &NextToken,
    598                                             bool IsAddressOfOperand,
    599                                             CorrectionCandidateCallback *CCC) {
    600   DeclarationNameInfo NameInfo(Name, NameLoc);
    601   ObjCMethodDecl *CurMethod = getCurMethodDecl();
    602 
    603   if (NextToken.is(tok::coloncolon)) {
    604     BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
    605                                 QualType(), false, SS, 0, false);
    606 
    607   }
    608 
    609   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
    610   LookupParsedName(Result, S, &SS, !CurMethod);
    611 
    612   // Perform lookup for Objective-C instance variables (including automatically
    613   // synthesized instance variables), if we're in an Objective-C method.
    614   // FIXME: This lookup really, really needs to be folded in to the normal
    615   // unqualified lookup mechanism.
    616   if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
    617     ExprResult E = LookupInObjCMethod(Result, S, Name, true);
    618     if (E.get() || E.isInvalid())
    619       return E;
    620   }
    621 
    622   bool SecondTry = false;
    623   bool IsFilteredTemplateName = false;
    624 
    625 Corrected:
    626   switch (Result.getResultKind()) {
    627   case LookupResult::NotFound:
    628     // If an unqualified-id is followed by a '(', then we have a function
    629     // call.
    630     if (!SS.isSet() && NextToken.is(tok::l_paren)) {
    631       // In C++, this is an ADL-only call.
    632       // FIXME: Reference?
    633       if (getLangOpts().CPlusPlus)
    634         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
    635 
    636       // C90 6.3.2.2:
    637       //   If the expression that precedes the parenthesized argument list in a
    638       //   function call consists solely of an identifier, and if no
    639       //   declaration is visible for this identifier, the identifier is
    640       //   implicitly declared exactly as if, in the innermost block containing
    641       //   the function call, the declaration
    642       //
    643       //     extern int identifier ();
    644       //
    645       //   appeared.
    646       //
    647       // We also allow this in C99 as an extension.
    648       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
    649         Result.addDecl(D);
    650         Result.resolveKind();
    651         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
    652       }
    653     }
    654 
    655     // In C, we first see whether there is a tag type by the same name, in
    656     // which case it's likely that the user just forget to write "enum",
    657     // "struct", or "union".
    658     if (!getLangOpts().CPlusPlus && !SecondTry &&
    659         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
    660       break;
    661     }
    662 
    663     // Perform typo correction to determine if there is another name that is
    664     // close to this name.
    665     if (!SecondTry && CCC) {
    666       SecondTry = true;
    667       if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
    668                                                  Result.getLookupKind(), S,
    669                                                  &SS, *CCC)) {
    670         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
    671         unsigned QualifiedDiag = diag::err_no_member_suggest;
    672         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
    673         std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
    674 
    675         NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
    676         NamedDecl *UnderlyingFirstDecl
    677           = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
    678         if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
    679             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
    680           UnqualifiedDiag = diag::err_no_template_suggest;
    681           QualifiedDiag = diag::err_no_member_template_suggest;
    682         } else if (UnderlyingFirstDecl &&
    683                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
    684                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
    685                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
    686           UnqualifiedDiag = diag::err_unknown_typename_suggest;
    687           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
    688         }
    689 
    690         if (SS.isEmpty()) {
    691           Diag(NameLoc, UnqualifiedDiag)
    692             << Name << CorrectedQuotedStr
    693             << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
    694         } else {// FIXME: is this even reachable? Test it.
    695           bool droppedSpecifier = Corrected.WillReplaceSpecifier() &&
    696                                   Name->getName().equals(CorrectedStr);
    697           Diag(NameLoc, QualifiedDiag)
    698             << Name << computeDeclContext(SS, false) << droppedSpecifier
    699             << CorrectedQuotedStr << SS.getRange()
    700             << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
    701                                             CorrectedStr);
    702         }
    703 
    704         // Update the name, so that the caller has the new name.
    705         Name = Corrected.getCorrectionAsIdentifierInfo();
    706 
    707         // Typo correction corrected to a keyword.
    708         if (Corrected.isKeyword())
    709           return Corrected.getCorrectionAsIdentifierInfo();
    710 
    711         // Also update the LookupResult...
    712         // FIXME: This should probably go away at some point
    713         Result.clear();
    714         Result.setLookupName(Corrected.getCorrection());
    715         if (FirstDecl) {
    716           Result.addDecl(FirstDecl);
    717           Diag(FirstDecl->getLocation(), diag::note_previous_decl)
    718             << CorrectedQuotedStr;
    719         }
    720 
    721         // If we found an Objective-C instance variable, let
    722         // LookupInObjCMethod build the appropriate expression to
    723         // reference the ivar.
    724         // FIXME: This is a gross hack.
    725         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
    726           Result.clear();
    727           ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
    728           return E;
    729         }
    730 
    731         goto Corrected;
    732       }
    733     }
    734 
    735     // We failed to correct; just fall through and let the parser deal with it.
    736     Result.suppressDiagnostics();
    737     return NameClassification::Unknown();
    738 
    739   case LookupResult::NotFoundInCurrentInstantiation: {
    740     // We performed name lookup into the current instantiation, and there were
    741     // dependent bases, so we treat this result the same way as any other
    742     // dependent nested-name-specifier.
    743 
    744     // C++ [temp.res]p2:
    745     //   A name used in a template declaration or definition and that is
    746     //   dependent on a template-parameter is assumed not to name a type
    747     //   unless the applicable name lookup finds a type name or the name is
    748     //   qualified by the keyword typename.
    749     //
    750     // FIXME: If the next token is '<', we might want to ask the parser to
    751     // perform some heroics to see if we actually have a
    752     // template-argument-list, which would indicate a missing 'template'
    753     // keyword here.
    754     return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
    755                                       NameInfo, IsAddressOfOperand,
    756                                       /*TemplateArgs=*/0);
    757   }
    758 
    759   case LookupResult::Found:
    760   case LookupResult::FoundOverloaded:
    761   case LookupResult::FoundUnresolvedValue:
    762     break;
    763 
    764   case LookupResult::Ambiguous:
    765     if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
    766         hasAnyAcceptableTemplateNames(Result)) {
    767       // C++ [temp.local]p3:
    768       //   A lookup that finds an injected-class-name (10.2) can result in an
    769       //   ambiguity in certain cases (for example, if it is found in more than
    770       //   one base class). If all of the injected-class-names that are found
    771       //   refer to specializations of the same class template, and if the name
    772       //   is followed by a template-argument-list, the reference refers to the
    773       //   class template itself and not a specialization thereof, and is not
    774       //   ambiguous.
    775       //
    776       // This filtering can make an ambiguous result into an unambiguous one,
    777       // so try again after filtering out template names.
    778       FilterAcceptableTemplateNames(Result);
    779       if (!Result.isAmbiguous()) {
    780         IsFilteredTemplateName = true;
    781         break;
    782       }
    783     }
    784 
    785     // Diagnose the ambiguity and return an error.
    786     return NameClassification::Error();
    787   }
    788 
    789   if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
    790       (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
    791     // C++ [temp.names]p3:
    792     //   After name lookup (3.4) finds that a name is a template-name or that
    793     //   an operator-function-id or a literal- operator-id refers to a set of
    794     //   overloaded functions any member of which is a function template if
    795     //   this is followed by a <, the < is always taken as the delimiter of a
    796     //   template-argument-list and never as the less-than operator.
    797     if (!IsFilteredTemplateName)
    798       FilterAcceptableTemplateNames(Result);
    799 
    800     if (!Result.empty()) {
    801       bool IsFunctionTemplate;
    802       bool IsVarTemplate;
    803       TemplateName Template;
    804       if (Result.end() - Result.begin() > 1) {
    805         IsFunctionTemplate = true;
    806         Template = Context.getOverloadedTemplateName(Result.begin(),
    807                                                      Result.end());
    808       } else {
    809         TemplateDecl *TD
    810           = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
    811         IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
    812         IsVarTemplate = isa<VarTemplateDecl>(TD);
    813 
    814         if (SS.isSet() && !SS.isInvalid())
    815           Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
    816                                                     /*TemplateKeyword=*/false,
    817                                                       TD);
    818         else
    819           Template = TemplateName(TD);
    820       }
    821 
    822       if (IsFunctionTemplate) {
    823         // Function templates always go through overload resolution, at which
    824         // point we'll perform the various checks (e.g., accessibility) we need
    825         // to based on which function we selected.
    826         Result.suppressDiagnostics();
    827 
    828         return NameClassification::FunctionTemplate(Template);
    829       }
    830 
    831       return IsVarTemplate ? NameClassification::VarTemplate(Template)
    832                            : NameClassification::TypeTemplate(Template);
    833     }
    834   }
    835 
    836   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
    837   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
    838     DiagnoseUseOfDecl(Type, NameLoc);
    839     QualType T = Context.getTypeDeclType(Type);
    840     if (SS.isNotEmpty())
    841       return buildNestedType(*this, SS, T, NameLoc);
    842     return ParsedType::make(T);
    843   }
    844 
    845   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
    846   if (!Class) {
    847     // FIXME: It's unfortunate that we don't have a Type node for handling this.
    848     if (ObjCCompatibleAliasDecl *Alias
    849                                 = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
    850       Class = Alias->getClassInterface();
    851   }
    852 
    853   if (Class) {
    854     DiagnoseUseOfDecl(Class, NameLoc);
    855 
    856     if (NextToken.is(tok::period)) {
    857       // Interface. <something> is parsed as a property reference expression.
    858       // Just return "unknown" as a fall-through for now.
    859       Result.suppressDiagnostics();
    860       return NameClassification::Unknown();
    861     }
    862 
    863     QualType T = Context.getObjCInterfaceType(Class);
    864     return ParsedType::make(T);
    865   }
    866 
    867   // We can have a type template here if we're classifying a template argument.
    868   if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
    869     return NameClassification::TypeTemplate(
    870         TemplateName(cast<TemplateDecl>(FirstDecl)));
    871 
    872   // Check for a tag type hidden by a non-type decl in a few cases where it
    873   // seems likely a type is wanted instead of the non-type that was found.
    874   bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
    875   if ((NextToken.is(tok::identifier) ||
    876        (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
    877       isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
    878     TypeDecl *Type = Result.getAsSingle<TypeDecl>();
    879     DiagnoseUseOfDecl(Type, NameLoc);
    880     QualType T = Context.getTypeDeclType(Type);
    881     if (SS.isNotEmpty())
    882       return buildNestedType(*this, SS, T, NameLoc);
    883     return ParsedType::make(T);
    884   }
    885 
    886   if (FirstDecl->isCXXClassMember())
    887     return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
    888 
    889   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
    890   return BuildDeclarationNameExpr(SS, Result, ADL);
    891 }
    892 
    893 // Determines the context to return to after temporarily entering a
    894 // context.  This depends in an unnecessarily complicated way on the
    895 // exact ordering of callbacks from the parser.
    896 DeclContext *Sema::getContainingDC(DeclContext *DC) {
    897 
    898   // Functions defined inline within classes aren't parsed until we've
    899   // finished parsing the top-level class, so the top-level class is
    900   // the context we'll need to return to.
    901   if (isa<FunctionDecl>(DC)) {
    902     DC = DC->getLexicalParent();
    903 
    904     // A function not defined within a class will always return to its
    905     // lexical context.
    906     if (!isa<CXXRecordDecl>(DC))
    907       return DC;
    908 
    909     // A C++ inline method/friend is parsed *after* the topmost class
    910     // it was declared in is fully parsed ("complete");  the topmost
    911     // class is the context we need to return to.
    912     while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
    913       DC = RD;
    914 
    915     // Return the declaration context of the topmost class the inline method is
    916     // declared in.
    917     return DC;
    918   }
    919 
    920   return DC->getLexicalParent();
    921 }
    922 
    923 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
    924   assert(getContainingDC(DC) == CurContext &&
    925       "The next DeclContext should be lexically contained in the current one.");
    926   CurContext = DC;
    927   S->setEntity(DC);
    928 }
    929 
    930 void Sema::PopDeclContext() {
    931   assert(CurContext && "DeclContext imbalance!");
    932 
    933   CurContext = getContainingDC(CurContext);
    934   assert(CurContext && "Popped translation unit!");
    935 }
    936 
    937 /// EnterDeclaratorContext - Used when we must lookup names in the context
    938 /// of a declarator's nested name specifier.
    939 ///
    940 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
    941   // C++0x [basic.lookup.unqual]p13:
    942   //   A name used in the definition of a static data member of class
    943   //   X (after the qualified-id of the static member) is looked up as
    944   //   if the name was used in a member function of X.
    945   // C++0x [basic.lookup.unqual]p14:
    946   //   If a variable member of a namespace is defined outside of the
    947   //   scope of its namespace then any name used in the definition of
    948   //   the variable member (after the declarator-id) is looked up as
    949   //   if the definition of the variable member occurred in its
    950   //   namespace.
    951   // Both of these imply that we should push a scope whose context
    952   // is the semantic context of the declaration.  We can't use
    953   // PushDeclContext here because that context is not necessarily
    954   // lexically contained in the current context.  Fortunately,
    955   // the containing scope should have the appropriate information.
    956 
    957   assert(!S->getEntity() && "scope already has entity");
    958 
    959 #ifndef NDEBUG
    960   Scope *Ancestor = S->getParent();
    961   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
    962   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
    963 #endif
    964 
    965   CurContext = DC;
    966   S->setEntity(DC);
    967 }
    968 
    969 void Sema::ExitDeclaratorContext(Scope *S) {
    970   assert(S->getEntity() == CurContext && "Context imbalance!");
    971 
    972   // Switch back to the lexical context.  The safety of this is
    973   // enforced by an assert in EnterDeclaratorContext.
    974   Scope *Ancestor = S->getParent();
    975   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
    976   CurContext = (DeclContext*) Ancestor->getEntity();
    977 
    978   // We don't need to do anything with the scope, which is going to
    979   // disappear.
    980 }
    981 
    982 
    983 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
    984   FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
    985   if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
    986     // We assume that the caller has already called
    987     // ActOnReenterTemplateScope
    988     FD = TFD->getTemplatedDecl();
    989   }
    990   if (!FD)
    991     return;
    992 
    993   // Same implementation as PushDeclContext, but enters the context
    994   // from the lexical parent, rather than the top-level class.
    995   assert(CurContext == FD->getLexicalParent() &&
    996     "The next DeclContext should be lexically contained in the current one.");
    997   CurContext = FD;
    998   S->setEntity(CurContext);
    999 
   1000   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
   1001     ParmVarDecl *Param = FD->getParamDecl(P);
   1002     // If the parameter has an identifier, then add it to the scope
   1003     if (Param->getIdentifier()) {
   1004       S->AddDecl(Param);
   1005       IdResolver.AddDecl(Param);
   1006     }
   1007   }
   1008 }
   1009 
   1010 
   1011 void Sema::ActOnExitFunctionContext() {
   1012   // Same implementation as PopDeclContext, but returns to the lexical parent,
   1013   // rather than the top-level class.
   1014   assert(CurContext && "DeclContext imbalance!");
   1015   CurContext = CurContext->getLexicalParent();
   1016   assert(CurContext && "Popped translation unit!");
   1017 }
   1018 
   1019 
   1020 /// \brief Determine whether we allow overloading of the function
   1021 /// PrevDecl with another declaration.
   1022 ///
   1023 /// This routine determines whether overloading is possible, not
   1024 /// whether some new function is actually an overload. It will return
   1025 /// true in C++ (where we can always provide overloads) or, as an
   1026 /// extension, in C when the previous function is already an
   1027 /// overloaded function declaration or has the "overloadable"
   1028 /// attribute.
   1029 static bool AllowOverloadingOfFunction(LookupResult &Previous,
   1030                                        ASTContext &Context) {
   1031   if (Context.getLangOpts().CPlusPlus)
   1032     return true;
   1033 
   1034   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
   1035     return true;
   1036 
   1037   return (Previous.getResultKind() == LookupResult::Found
   1038           && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
   1039 }
   1040 
   1041 /// Add this decl to the scope shadowed decl chains.
   1042 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
   1043   // Move up the scope chain until we find the nearest enclosing
   1044   // non-transparent context. The declaration will be introduced into this
   1045   // scope.
   1046   while (S->getEntity() &&
   1047          ((DeclContext *)S->getEntity())->isTransparentContext())
   1048     S = S->getParent();
   1049 
   1050   // Add scoped declarations into their context, so that they can be
   1051   // found later. Declarations without a context won't be inserted
   1052   // into any context.
   1053   if (AddToContext)
   1054     CurContext->addDecl(D);
   1055 
   1056   // Out-of-line definitions shouldn't be pushed into scope in C++.
   1057   // Out-of-line variable and function definitions shouldn't even in C.
   1058   if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
   1059       D->isOutOfLine() &&
   1060       !D->getDeclContext()->getRedeclContext()->Equals(
   1061         D->getLexicalDeclContext()->getRedeclContext()))
   1062     return;
   1063 
   1064   // Template instantiations should also not be pushed into scope.
   1065   if (isa<FunctionDecl>(D) &&
   1066       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
   1067     return;
   1068 
   1069   // If this replaces anything in the current scope,
   1070   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
   1071                                IEnd = IdResolver.end();
   1072   for (; I != IEnd; ++I) {
   1073     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
   1074       S->RemoveDecl(*I);
   1075       IdResolver.RemoveDecl(*I);
   1076 
   1077       // Should only need to replace one decl.
   1078       break;
   1079     }
   1080   }
   1081 
   1082   S->AddDecl(D);
   1083 
   1084   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
   1085     // Implicitly-generated labels may end up getting generated in an order that
   1086     // isn't strictly lexical, which breaks name lookup. Be careful to insert
   1087     // the label at the appropriate place in the identifier chain.
   1088     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
   1089       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
   1090       if (IDC == CurContext) {
   1091         if (!S->isDeclScope(*I))
   1092           continue;
   1093       } else if (IDC->Encloses(CurContext))
   1094         break;
   1095     }
   1096 
   1097     IdResolver.InsertDeclAfter(I, D);
   1098   } else {
   1099     IdResolver.AddDecl(D);
   1100   }
   1101 }
   1102 
   1103 void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
   1104   if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
   1105     TUScope->AddDecl(D);
   1106 }
   1107 
   1108 bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
   1109                          bool ExplicitInstantiationOrSpecialization) {
   1110   return IdResolver.isDeclInScope(D, Ctx, S,
   1111                                   ExplicitInstantiationOrSpecialization);
   1112 }
   1113 
   1114 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
   1115   DeclContext *TargetDC = DC->getPrimaryContext();
   1116   do {
   1117     if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
   1118       if (ScopeDC->getPrimaryContext() == TargetDC)
   1119         return S;
   1120   } while ((S = S->getParent()));
   1121 
   1122   return 0;
   1123 }
   1124 
   1125 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
   1126                                             DeclContext*,
   1127                                             ASTContext&);
   1128 
   1129 /// Filters out lookup results that don't fall within the given scope
   1130 /// as determined by isDeclInScope.
   1131 void Sema::FilterLookupForScope(LookupResult &R,
   1132                                 DeclContext *Ctx, Scope *S,
   1133                                 bool ConsiderLinkage,
   1134                                 bool ExplicitInstantiationOrSpecialization) {
   1135   LookupResult::Filter F = R.makeFilter();
   1136   while (F.hasNext()) {
   1137     NamedDecl *D = F.next();
   1138 
   1139     if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
   1140       continue;
   1141 
   1142     if (ConsiderLinkage &&
   1143         isOutOfScopePreviousDeclaration(D, Ctx, Context))
   1144       continue;
   1145 
   1146     F.erase();
   1147   }
   1148 
   1149   F.done();
   1150 }
   1151 
   1152 static bool isUsingDecl(NamedDecl *D) {
   1153   return isa<UsingShadowDecl>(D) ||
   1154          isa<UnresolvedUsingTypenameDecl>(D) ||
   1155          isa<UnresolvedUsingValueDecl>(D);
   1156 }
   1157 
   1158 /// Removes using shadow declarations from the lookup results.
   1159 static void RemoveUsingDecls(LookupResult &R) {
   1160   LookupResult::Filter F = R.makeFilter();
   1161   while (F.hasNext())
   1162     if (isUsingDecl(F.next()))
   1163       F.erase();
   1164 
   1165   F.done();
   1166 }
   1167 
   1168 /// \brief Check for this common pattern:
   1169 /// @code
   1170 /// class S {
   1171 ///   S(const S&); // DO NOT IMPLEMENT
   1172 ///   void operator=(const S&); // DO NOT IMPLEMENT
   1173 /// };
   1174 /// @endcode
   1175 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
   1176   // FIXME: Should check for private access too but access is set after we get
   1177   // the decl here.
   1178   if (D->doesThisDeclarationHaveABody())
   1179     return false;
   1180 
   1181   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
   1182     return CD->isCopyConstructor();
   1183   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
   1184     return Method->isCopyAssignmentOperator();
   1185   return false;
   1186 }
   1187 
   1188 // We need this to handle
   1189 //
   1190 // typedef struct {
   1191 //   void *foo() { return 0; }
   1192 // } A;
   1193 //
   1194 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
   1195 // for example. If 'A', foo will have external linkage. If we have '*A',
   1196 // foo will have no linkage. Since we can't know untill we get to the end
   1197 // of the typedef, this function finds out if D might have non external linkage.
   1198 // Callers should verify at the end of the TU if it D has external linkage or
   1199 // not.
   1200 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
   1201   const DeclContext *DC = D->getDeclContext();
   1202   while (!DC->isTranslationUnit()) {
   1203     if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
   1204       if (!RD->hasNameForLinkage())
   1205         return true;
   1206     }
   1207     DC = DC->getParent();
   1208   }
   1209 
   1210   return !D->isExternallyVisible();
   1211 }
   1212 
   1213 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
   1214   assert(D);
   1215 
   1216   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
   1217     return false;
   1218 
   1219   // Ignore class templates.
   1220   if (D->getDeclContext()->isDependentContext() ||
   1221       D->getLexicalDeclContext()->isDependentContext())
   1222     return false;
   1223 
   1224   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   1225     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
   1226       return false;
   1227 
   1228     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
   1229       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
   1230         return false;
   1231     } else {
   1232       // 'static inline' functions are used in headers; don't warn.
   1233       // Make sure we get the storage class from the canonical declaration,
   1234       // since otherwise we will get spurious warnings on specialized
   1235       // static template functions.
   1236       if (FD->getCanonicalDecl()->getStorageClass() == SC_Static &&
   1237           FD->isInlineSpecified())
   1238         return false;
   1239     }
   1240 
   1241     if (FD->doesThisDeclarationHaveABody() &&
   1242         Context.DeclMustBeEmitted(FD))
   1243       return false;
   1244   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   1245     // Don't warn on variables of const-qualified or reference type, since their
   1246     // values can be used even if though they're not odr-used, and because const
   1247     // qualified variables can appear in headers in contexts where they're not
   1248     // intended to be used.
   1249     // FIXME: Use more principled rules for these exemptions.
   1250     if (!VD->isFileVarDecl() ||
   1251         VD->getType().isConstQualified() ||
   1252         VD->getType()->isReferenceType() ||
   1253         Context.DeclMustBeEmitted(VD))
   1254       return false;
   1255 
   1256     if (VD->isStaticDataMember() &&
   1257         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
   1258       return false;
   1259 
   1260   } else {
   1261     return false;
   1262   }
   1263 
   1264   // Only warn for unused decls internal to the translation unit.
   1265   return mightHaveNonExternalLinkage(D);
   1266 }
   1267 
   1268 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
   1269   if (!D)
   1270     return;
   1271 
   1272   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   1273     const FunctionDecl *First = FD->getFirstDeclaration();
   1274     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
   1275       return; // First should already be in the vector.
   1276   }
   1277 
   1278   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   1279     const VarDecl *First = VD->getFirstDeclaration();
   1280     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
   1281       return; // First should already be in the vector.
   1282   }
   1283 
   1284   if (ShouldWarnIfUnusedFileScopedDecl(D))
   1285     UnusedFileScopedDecls.push_back(D);
   1286 }
   1287 
   1288 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
   1289   if (D->isInvalidDecl())
   1290     return false;
   1291 
   1292   if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
   1293     return false;
   1294 
   1295   if (isa<LabelDecl>(D))
   1296     return true;
   1297 
   1298   // White-list anything that isn't a local variable.
   1299   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
   1300       !D->getDeclContext()->isFunctionOrMethod())
   1301     return false;
   1302 
   1303   // Types of valid local variables should be complete, so this should succeed.
   1304   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   1305 
   1306     // White-list anything with an __attribute__((unused)) type.
   1307     QualType Ty = VD->getType();
   1308 
   1309     // Only look at the outermost level of typedef.
   1310     if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
   1311       if (TT->getDecl()->hasAttr<UnusedAttr>())
   1312         return false;
   1313     }
   1314 
   1315     // If we failed to complete the type for some reason, or if the type is
   1316     // dependent, don't diagnose the variable.
   1317     if (Ty->isIncompleteType() || Ty->isDependentType())
   1318       return false;
   1319 
   1320     if (const TagType *TT = Ty->getAs<TagType>()) {
   1321       const TagDecl *Tag = TT->getDecl();
   1322       if (Tag->hasAttr<UnusedAttr>())
   1323         return false;
   1324 
   1325       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
   1326         if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
   1327           return false;
   1328 
   1329         if (const Expr *Init = VD->getInit()) {
   1330           if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
   1331             Init = Cleanups->getSubExpr();
   1332           const CXXConstructExpr *Construct =
   1333             dyn_cast<CXXConstructExpr>(Init);
   1334           if (Construct && !Construct->isElidable()) {
   1335             CXXConstructorDecl *CD = Construct->getConstructor();
   1336             if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>())
   1337               return false;
   1338           }
   1339         }
   1340       }
   1341     }
   1342 
   1343     // TODO: __attribute__((unused)) templates?
   1344   }
   1345 
   1346   return true;
   1347 }
   1348 
   1349 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
   1350                                      FixItHint &Hint) {
   1351   if (isa<LabelDecl>(D)) {
   1352     SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
   1353                 tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
   1354     if (AfterColon.isInvalid())
   1355       return;
   1356     Hint = FixItHint::CreateRemoval(CharSourceRange::
   1357                                     getCharRange(D->getLocStart(), AfterColon));
   1358   }
   1359   return;
   1360 }
   1361 
   1362 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
   1363 /// unless they are marked attr(unused).
   1364 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
   1365   FixItHint Hint;
   1366   if (!ShouldDiagnoseUnusedDecl(D))
   1367     return;
   1368 
   1369   GenerateFixForUnusedDecl(D, Context, Hint);
   1370 
   1371   unsigned DiagID;
   1372   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
   1373     DiagID = diag::warn_unused_exception_param;
   1374   else if (isa<LabelDecl>(D))
   1375     DiagID = diag::warn_unused_label;
   1376   else
   1377     DiagID = diag::warn_unused_variable;
   1378 
   1379   Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
   1380 }
   1381 
   1382 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
   1383   // Verify that we have no forward references left.  If so, there was a goto
   1384   // or address of a label taken, but no definition of it.  Label fwd
   1385   // definitions are indicated with a null substmt.
   1386   if (L->getStmt() == 0)
   1387     S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
   1388 }
   1389 
   1390 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
   1391   if (S->decl_empty()) return;
   1392   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
   1393          "Scope shouldn't contain decls!");
   1394 
   1395   for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
   1396        I != E; ++I) {
   1397     Decl *TmpD = (*I);
   1398     assert(TmpD && "This decl didn't get pushed??");
   1399 
   1400     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
   1401     NamedDecl *D = cast<NamedDecl>(TmpD);
   1402 
   1403     if (!D->getDeclName()) continue;
   1404 
   1405     // Diagnose unused variables in this scope.
   1406     if (!S->hasUnrecoverableErrorOccurred())
   1407       DiagnoseUnusedDecl(D);
   1408 
   1409     // If this was a forward reference to a label, verify it was defined.
   1410     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
   1411       CheckPoppedLabel(LD, *this);
   1412 
   1413     // Remove this name from our lexical scope.
   1414     IdResolver.RemoveDecl(D);
   1415   }
   1416 }
   1417 
   1418 void Sema::ActOnStartFunctionDeclarator() {
   1419   ++InFunctionDeclarator;
   1420 }
   1421 
   1422 void Sema::ActOnEndFunctionDeclarator() {
   1423   assert(InFunctionDeclarator);
   1424   --InFunctionDeclarator;
   1425 }
   1426 
   1427 /// \brief Look for an Objective-C class in the translation unit.
   1428 ///
   1429 /// \param Id The name of the Objective-C class we're looking for. If
   1430 /// typo-correction fixes this name, the Id will be updated
   1431 /// to the fixed name.
   1432 ///
   1433 /// \param IdLoc The location of the name in the translation unit.
   1434 ///
   1435 /// \param DoTypoCorrection If true, this routine will attempt typo correction
   1436 /// if there is no class with the given name.
   1437 ///
   1438 /// \returns The declaration of the named Objective-C class, or NULL if the
   1439 /// class could not be found.
   1440 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
   1441                                               SourceLocation IdLoc,
   1442                                               bool DoTypoCorrection) {
   1443   // The third "scope" argument is 0 since we aren't enabling lazy built-in
   1444   // creation from this context.
   1445   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
   1446 
   1447   if (!IDecl && DoTypoCorrection) {
   1448     // Perform typo correction at the given location, but only if we
   1449     // find an Objective-C class name.
   1450     DeclFilterCCC<ObjCInterfaceDecl> Validator;
   1451     if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
   1452                                        LookupOrdinaryName, TUScope, NULL,
   1453                                        Validator)) {
   1454       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
   1455       Diag(IdLoc, diag::err_undef_interface_suggest)
   1456         << Id << IDecl->getDeclName()
   1457         << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
   1458       Diag(IDecl->getLocation(), diag::note_previous_decl)
   1459         << IDecl->getDeclName();
   1460 
   1461       Id = IDecl->getIdentifier();
   1462     }
   1463   }
   1464   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
   1465   // This routine must always return a class definition, if any.
   1466   if (Def && Def->getDefinition())
   1467       Def = Def->getDefinition();
   1468   return Def;
   1469 }
   1470 
   1471 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
   1472 /// from S, where a non-field would be declared. This routine copes
   1473 /// with the difference between C and C++ scoping rules in structs and
   1474 /// unions. For example, the following code is well-formed in C but
   1475 /// ill-formed in C++:
   1476 /// @code
   1477 /// struct S6 {
   1478 ///   enum { BAR } e;
   1479 /// };
   1480 ///
   1481 /// void test_S6() {
   1482 ///   struct S6 a;
   1483 ///   a.e = BAR;
   1484 /// }
   1485 /// @endcode
   1486 /// For the declaration of BAR, this routine will return a different
   1487 /// scope. The scope S will be the scope of the unnamed enumeration
   1488 /// within S6. In C++, this routine will return the scope associated
   1489 /// with S6, because the enumeration's scope is a transparent
   1490 /// context but structures can contain non-field names. In C, this
   1491 /// routine will return the translation unit scope, since the
   1492 /// enumeration's scope is a transparent context and structures cannot
   1493 /// contain non-field names.
   1494 Scope *Sema::getNonFieldDeclScope(Scope *S) {
   1495   while (((S->getFlags() & Scope::DeclScope) == 0) ||
   1496          (S->getEntity() &&
   1497           ((DeclContext *)S->getEntity())->isTransparentContext()) ||
   1498          (S->isClassScope() && !getLangOpts().CPlusPlus))
   1499     S = S->getParent();
   1500   return S;
   1501 }
   1502 
   1503 /// \brief Looks up the declaration of "struct objc_super" and
   1504 /// saves it for later use in building builtin declaration of
   1505 /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
   1506 /// pre-existing declaration exists no action takes place.
   1507 static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
   1508                                         IdentifierInfo *II) {
   1509   if (!II->isStr("objc_msgSendSuper"))
   1510     return;
   1511   ASTContext &Context = ThisSema.Context;
   1512 
   1513   LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
   1514                       SourceLocation(), Sema::LookupTagName);
   1515   ThisSema.LookupName(Result, S);
   1516   if (Result.getResultKind() == LookupResult::Found)
   1517     if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
   1518       Context.setObjCSuperType(Context.getTagDeclType(TD));
   1519 }
   1520 
   1521 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
   1522 /// file scope.  lazily create a decl for it. ForRedeclaration is true
   1523 /// if we're creating this built-in in anticipation of redeclaring the
   1524 /// built-in.
   1525 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
   1526                                      Scope *S, bool ForRedeclaration,
   1527                                      SourceLocation Loc) {
   1528   LookupPredefedObjCSuperType(*this, S, II);
   1529 
   1530   Builtin::ID BID = (Builtin::ID)bid;
   1531 
   1532   ASTContext::GetBuiltinTypeError Error;
   1533   QualType R = Context.GetBuiltinType(BID, Error);
   1534   switch (Error) {
   1535   case ASTContext::GE_None:
   1536     // Okay
   1537     break;
   1538 
   1539   case ASTContext::GE_Missing_stdio:
   1540     if (ForRedeclaration)
   1541       Diag(Loc, diag::warn_implicit_decl_requires_stdio)
   1542         << Context.BuiltinInfo.GetName(BID);
   1543     return 0;
   1544 
   1545   case ASTContext::GE_Missing_setjmp:
   1546     if (ForRedeclaration)
   1547       Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
   1548         << Context.BuiltinInfo.GetName(BID);
   1549     return 0;
   1550 
   1551   case ASTContext::GE_Missing_ucontext:
   1552     if (ForRedeclaration)
   1553       Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
   1554         << Context.BuiltinInfo.GetName(BID);
   1555     return 0;
   1556   }
   1557 
   1558   if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
   1559     Diag(Loc, diag::ext_implicit_lib_function_decl)
   1560       << Context.BuiltinInfo.GetName(BID)
   1561       << R;
   1562     if (Context.BuiltinInfo.getHeaderName(BID) &&
   1563         Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
   1564           != DiagnosticsEngine::Ignored)
   1565       Diag(Loc, diag::note_please_include_header)
   1566         << Context.BuiltinInfo.getHeaderName(BID)
   1567         << Context.BuiltinInfo.GetName(BID);
   1568   }
   1569 
   1570   FunctionDecl *New = FunctionDecl::Create(Context,
   1571                                            Context.getTranslationUnitDecl(),
   1572                                            Loc, Loc, II, R, /*TInfo=*/0,
   1573                                            SC_Extern,
   1574                                            false,
   1575                                            /*hasPrototype=*/true);
   1576   New->setImplicit();
   1577 
   1578   // Create Decl objects for each parameter, adding them to the
   1579   // FunctionDecl.
   1580   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
   1581     SmallVector<ParmVarDecl*, 16> Params;
   1582     for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
   1583       ParmVarDecl *parm =
   1584         ParmVarDecl::Create(Context, New, SourceLocation(),
   1585                             SourceLocation(), 0,
   1586                             FT->getArgType(i), /*TInfo=*/0,
   1587                             SC_None, 0);
   1588       parm->setScopeInfo(0, i);
   1589       Params.push_back(parm);
   1590     }
   1591     New->setParams(Params);
   1592   }
   1593 
   1594   AddKnownFunctionAttributes(New);
   1595 
   1596   // TUScope is the translation-unit scope to insert this function into.
   1597   // FIXME: This is hideous. We need to teach PushOnScopeChains to
   1598   // relate Scopes to DeclContexts, and probably eliminate CurContext
   1599   // entirely, but we're not there yet.
   1600   DeclContext *SavedContext = CurContext;
   1601   CurContext = Context.getTranslationUnitDecl();
   1602   PushOnScopeChains(New, TUScope);
   1603   CurContext = SavedContext;
   1604   return New;
   1605 }
   1606 
   1607 /// \brief Filter out any previous declarations that the given declaration
   1608 /// should not consider because they are not permitted to conflict, e.g.,
   1609 /// because they come from hidden sub-modules and do not refer to the same
   1610 /// entity.
   1611 static void filterNonConflictingPreviousDecls(ASTContext &context,
   1612                                               NamedDecl *decl,
   1613                                               LookupResult &previous){
   1614   // This is only interesting when modules are enabled.
   1615   if (!context.getLangOpts().Modules)
   1616     return;
   1617 
   1618   // Empty sets are uninteresting.
   1619   if (previous.empty())
   1620     return;
   1621 
   1622   LookupResult::Filter filter = previous.makeFilter();
   1623   while (filter.hasNext()) {
   1624     NamedDecl *old = filter.next();
   1625 
   1626     // Non-hidden declarations are never ignored.
   1627     if (!old->isHidden())
   1628       continue;
   1629 
   1630     if (!old->isExternallyVisible())
   1631       filter.erase();
   1632   }
   1633 
   1634   filter.done();
   1635 }
   1636 
   1637 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
   1638   QualType OldType;
   1639   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
   1640     OldType = OldTypedef->getUnderlyingType();
   1641   else
   1642     OldType = Context.getTypeDeclType(Old);
   1643   QualType NewType = New->getUnderlyingType();
   1644 
   1645   if (NewType->isVariablyModifiedType()) {
   1646     // Must not redefine a typedef with a variably-modified type.
   1647     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
   1648     Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
   1649       << Kind << NewType;
   1650     if (Old->getLocation().isValid())
   1651       Diag(Old->getLocation(), diag::note_previous_definition);
   1652     New->setInvalidDecl();
   1653     return true;
   1654   }
   1655 
   1656   if (OldType != NewType &&
   1657       !OldType->isDependentType() &&
   1658       !NewType->isDependentType() &&
   1659       !Context.hasSameType(OldType, NewType)) {
   1660     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
   1661     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
   1662       << Kind << NewType << OldType;
   1663     if (Old->getLocation().isValid())
   1664       Diag(Old->getLocation(), diag::note_previous_definition);
   1665     New->setInvalidDecl();
   1666     return true;
   1667   }
   1668   return false;
   1669 }
   1670 
   1671 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
   1672 /// same name and scope as a previous declaration 'Old'.  Figure out
   1673 /// how to resolve this situation, merging decls or emitting
   1674 /// diagnostics as appropriate. If there was an error, set New to be invalid.
   1675 ///
   1676 void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
   1677   // If the new decl is known invalid already, don't bother doing any
   1678   // merging checks.
   1679   if (New->isInvalidDecl()) return;
   1680 
   1681   // Allow multiple definitions for ObjC built-in typedefs.
   1682   // FIXME: Verify the underlying types are equivalent!
   1683   if (getLangOpts().ObjC1) {
   1684     const IdentifierInfo *TypeID = New->getIdentifier();
   1685     switch (TypeID->getLength()) {
   1686     default: break;
   1687     case 2:
   1688       {
   1689         if (!TypeID->isStr("id"))
   1690           break;
   1691         QualType T = New->getUnderlyingType();
   1692         if (!T->isPointerType())
   1693           break;
   1694         if (!T->isVoidPointerType()) {
   1695           QualType PT = T->getAs<PointerType>()->getPointeeType();
   1696           if (!PT->isStructureType())
   1697             break;
   1698         }
   1699         Context.setObjCIdRedefinitionType(T);
   1700         // Install the built-in type for 'id', ignoring the current definition.
   1701         New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
   1702         return;
   1703       }
   1704     case 5:
   1705       if (!TypeID->isStr("Class"))
   1706         break;
   1707       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
   1708       // Install the built-in type for 'Class', ignoring the current definition.
   1709       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
   1710       return;
   1711     case 3:
   1712       if (!TypeID->isStr("SEL"))
   1713         break;
   1714       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
   1715       // Install the built-in type for 'SEL', ignoring the current definition.
   1716       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
   1717       return;
   1718     }
   1719     // Fall through - the typedef name was not a builtin type.
   1720   }
   1721 
   1722   // Verify the old decl was also a type.
   1723   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
   1724   if (!Old) {
   1725     Diag(New->getLocation(), diag::err_redefinition_different_kind)
   1726       << New->getDeclName();
   1727 
   1728     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
   1729     if (OldD->getLocation().isValid())
   1730       Diag(OldD->getLocation(), diag::note_previous_definition);
   1731 
   1732     return New->setInvalidDecl();
   1733   }
   1734 
   1735   // If the old declaration is invalid, just give up here.
   1736   if (Old->isInvalidDecl())
   1737     return New->setInvalidDecl();
   1738 
   1739   // If the typedef types are not identical, reject them in all languages and
   1740   // with any extensions enabled.
   1741   if (isIncompatibleTypedef(Old, New))
   1742     return;
   1743 
   1744   // The types match.  Link up the redeclaration chain if the old
   1745   // declaration was a typedef.
   1746   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
   1747     New->setPreviousDeclaration(Typedef);
   1748 
   1749   mergeDeclAttributes(New, Old);
   1750 
   1751   if (getLangOpts().MicrosoftExt)
   1752     return;
   1753 
   1754   if (getLangOpts().CPlusPlus) {
   1755     // C++ [dcl.typedef]p2:
   1756     //   In a given non-class scope, a typedef specifier can be used to
   1757     //   redefine the name of any type declared in that scope to refer
   1758     //   to the type to which it already refers.
   1759     if (!isa<CXXRecordDecl>(CurContext))
   1760       return;
   1761 
   1762     // C++0x [dcl.typedef]p4:
   1763     //   In a given class scope, a typedef specifier can be used to redefine
   1764     //   any class-name declared in that scope that is not also a typedef-name
   1765     //   to refer to the type to which it already refers.
   1766     //
   1767     // This wording came in via DR424, which was a correction to the
   1768     // wording in DR56, which accidentally banned code like:
   1769     //
   1770     //   struct S {
   1771     //     typedef struct A { } A;
   1772     //   };
   1773     //
   1774     // in the C++03 standard. We implement the C++0x semantics, which
   1775     // allow the above but disallow
   1776     //
   1777     //   struct S {
   1778     //     typedef int I;
   1779     //     typedef int I;
   1780     //   };
   1781     //
   1782     // since that was the intent of DR56.
   1783     if (!isa<TypedefNameDecl>(Old))
   1784       return;
   1785 
   1786     Diag(New->getLocation(), diag::err_redefinition)
   1787       << New->getDeclName();
   1788     Diag(Old->getLocation(), diag::note_previous_definition);
   1789     return New->setInvalidDecl();
   1790   }
   1791 
   1792   // Modules always permit redefinition of typedefs, as does C11.
   1793   if (getLangOpts().Modules || getLangOpts().C11)
   1794     return;
   1795 
   1796   // If we have a redefinition of a typedef in C, emit a warning.  This warning
   1797   // is normally mapped to an error, but can be controlled with
   1798   // -Wtypedef-redefinition.  If either the original or the redefinition is
   1799   // in a system header, don't emit this for compatibility with GCC.
   1800   if (getDiagnostics().getSuppressSystemWarnings() &&
   1801       (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
   1802        Context.getSourceManager().isInSystemHeader(New->getLocation())))
   1803     return;
   1804 
   1805   Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
   1806     << New->getDeclName();
   1807   Diag(Old->getLocation(), diag::note_previous_definition);
   1808   return;
   1809 }
   1810 
   1811 /// DeclhasAttr - returns true if decl Declaration already has the target
   1812 /// attribute.
   1813 static bool
   1814 DeclHasAttr(const Decl *D, const Attr *A) {
   1815   // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
   1816   // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
   1817   // responsible for making sure they are consistent.
   1818   const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
   1819   if (AA)
   1820     return false;
   1821 
   1822   // The following thread safety attributes can also be duplicated.
   1823   switch (A->getKind()) {
   1824     case attr::ExclusiveLocksRequired:
   1825     case attr::SharedLocksRequired:
   1826     case attr::LocksExcluded:
   1827     case attr::ExclusiveLockFunction:
   1828     case attr::SharedLockFunction:
   1829     case attr::UnlockFunction:
   1830     case attr::ExclusiveTrylockFunction:
   1831     case attr::SharedTrylockFunction:
   1832     case attr::GuardedBy:
   1833     case attr::PtGuardedBy:
   1834     case attr::AcquiredBefore:
   1835     case attr::AcquiredAfter:
   1836       return false;
   1837     default:
   1838       ;
   1839   }
   1840 
   1841   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
   1842   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
   1843   for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
   1844     if ((*i)->getKind() == A->getKind()) {
   1845       if (Ann) {
   1846         if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
   1847           return true;
   1848         continue;
   1849       }
   1850       // FIXME: Don't hardcode this check
   1851       if (OA && isa<OwnershipAttr>(*i))
   1852         return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
   1853       return true;
   1854     }
   1855 
   1856   return false;
   1857 }
   1858 
   1859 static bool isAttributeTargetADefinition(Decl *D) {
   1860   if (VarDecl *VD = dyn_cast<VarDecl>(D))
   1861     return VD->isThisDeclarationADefinition();
   1862   if (TagDecl *TD = dyn_cast<TagDecl>(D))
   1863     return TD->isCompleteDefinition() || TD->isBeingDefined();
   1864   return true;
   1865 }
   1866 
   1867 /// Merge alignment attributes from \p Old to \p New, taking into account the
   1868 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
   1869 ///
   1870 /// \return \c true if any attributes were added to \p New.
   1871 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
   1872   // Look for alignas attributes on Old, and pick out whichever attribute
   1873   // specifies the strictest alignment requirement.
   1874   AlignedAttr *OldAlignasAttr = 0;
   1875   AlignedAttr *OldStrictestAlignAttr = 0;
   1876   unsigned OldAlign = 0;
   1877   for (specific_attr_iterator<AlignedAttr>
   1878          I = Old->specific_attr_begin<AlignedAttr>(),
   1879          E = Old->specific_attr_end<AlignedAttr>(); I != E; ++I) {
   1880     // FIXME: We have no way of representing inherited dependent alignments
   1881     // in a case like:
   1882     //   template<int A, int B> struct alignas(A) X;
   1883     //   template<int A, int B> struct alignas(B) X {};
   1884     // For now, we just ignore any alignas attributes which are not on the
   1885     // definition in such a case.
   1886     if (I->isAlignmentDependent())
   1887       return false;
   1888 
   1889     if (I->isAlignas())
   1890       OldAlignasAttr = *I;
   1891 
   1892     unsigned Align = I->getAlignment(S.Context);
   1893     if (Align > OldAlign) {
   1894       OldAlign = Align;
   1895       OldStrictestAlignAttr = *I;
   1896     }
   1897   }
   1898 
   1899   // Look for alignas attributes on New.
   1900   AlignedAttr *NewAlignasAttr = 0;
   1901   unsigned NewAlign = 0;
   1902   for (specific_attr_iterator<AlignedAttr>
   1903          I = New->specific_attr_begin<AlignedAttr>(),
   1904          E = New->specific_attr_end<AlignedAttr>(); I != E; ++I) {
   1905     if (I->isAlignmentDependent())
   1906       return false;
   1907 
   1908     if (I->isAlignas())
   1909       NewAlignasAttr = *I;
   1910 
   1911     unsigned Align = I->getAlignment(S.Context);
   1912     if (Align > NewAlign)
   1913       NewAlign = Align;
   1914   }
   1915 
   1916   if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
   1917     // Both declarations have 'alignas' attributes. We require them to match.
   1918     // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
   1919     // fall short. (If two declarations both have alignas, they must both match
   1920     // every definition, and so must match each other if there is a definition.)
   1921 
   1922     // If either declaration only contains 'alignas(0)' specifiers, then it
   1923     // specifies the natural alignment for the type.
   1924     if (OldAlign == 0 || NewAlign == 0) {
   1925       QualType Ty;
   1926       if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
   1927         Ty = VD->getType();
   1928       else
   1929         Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
   1930 
   1931       if (OldAlign == 0)
   1932         OldAlign = S.Context.getTypeAlign(Ty);
   1933       if (NewAlign == 0)
   1934         NewAlign = S.Context.getTypeAlign(Ty);
   1935     }
   1936 
   1937     if (OldAlign != NewAlign) {
   1938       S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
   1939         << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
   1940         << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
   1941       S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
   1942     }
   1943   }
   1944 
   1945   if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
   1946     // C++11 [dcl.align]p6:
   1947     //   if any declaration of an entity has an alignment-specifier,
   1948     //   every defining declaration of that entity shall specify an
   1949     //   equivalent alignment.
   1950     // C11 6.7.5/7:
   1951     //   If the definition of an object does not have an alignment
   1952     //   specifier, any other declaration of that object shall also
   1953     //   have no alignment specifier.
   1954     S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
   1955       << OldAlignasAttr->isC11();
   1956     S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
   1957       << OldAlignasAttr->isC11();
   1958   }
   1959 
   1960   bool AnyAdded = false;
   1961 
   1962   // Ensure we have an attribute representing the strictest alignment.
   1963   if (OldAlign > NewAlign) {
   1964     AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
   1965     Clone->setInherited(true);
   1966     New->addAttr(Clone);
   1967     AnyAdded = true;
   1968   }
   1969 
   1970   // Ensure we have an alignas attribute if the old declaration had one.
   1971   if (OldAlignasAttr && !NewAlignasAttr &&
   1972       !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
   1973     AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
   1974     Clone->setInherited(true);
   1975     New->addAttr(Clone);
   1976     AnyAdded = true;
   1977   }
   1978 
   1979   return AnyAdded;
   1980 }
   1981 
   1982 static bool mergeDeclAttribute(Sema &S, NamedDecl *D, InheritableAttr *Attr,
   1983                                bool Override) {
   1984   InheritableAttr *NewAttr = NULL;
   1985   unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
   1986   if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
   1987     NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
   1988                                       AA->getIntroduced(), AA->getDeprecated(),
   1989                                       AA->getObsoleted(), AA->getUnavailable(),
   1990                                       AA->getMessage(), Override,
   1991                                       AttrSpellingListIndex);
   1992   else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
   1993     NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
   1994                                     AttrSpellingListIndex);
   1995   else if (TypeVisibilityAttr *VA = dyn_cast<TypeVisibilityAttr>(Attr))
   1996     NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
   1997                                         AttrSpellingListIndex);
   1998   else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
   1999     NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
   2000                                    AttrSpellingListIndex);
   2001   else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
   2002     NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
   2003                                    AttrSpellingListIndex);
   2004   else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
   2005     NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
   2006                                 FA->getFormatIdx(), FA->getFirstArg(),
   2007                                 AttrSpellingListIndex);
   2008   else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
   2009     NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
   2010                                  AttrSpellingListIndex);
   2011   else if (isa<AlignedAttr>(Attr))
   2012     // AlignedAttrs are handled separately, because we need to handle all
   2013     // such attributes on a declaration at the same time.
   2014     NewAttr = 0;
   2015   else if (!DeclHasAttr(D, Attr))
   2016     NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
   2017 
   2018   if (NewAttr) {
   2019     NewAttr->setInherited(true);
   2020     D->addAttr(NewAttr);
   2021     return true;
   2022   }
   2023 
   2024   return false;
   2025 }
   2026 
   2027 static const Decl *getDefinition(const Decl *D) {
   2028   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
   2029     return TD->getDefinition();
   2030   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
   2031     return VD->getDefinition();
   2032   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   2033     const FunctionDecl* Def;
   2034     if (FD->hasBody(Def))
   2035       return Def;
   2036   }
   2037   return NULL;
   2038 }
   2039 
   2040 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
   2041   for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
   2042        I != E; ++I) {
   2043     Attr *Attribute = *I;
   2044     if (Attribute->getKind() == Kind)
   2045       return true;
   2046   }
   2047   return false;
   2048 }
   2049 
   2050 /// checkNewAttributesAfterDef - If we already have a definition, check that
   2051 /// there are no new attributes in this declaration.
   2052 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
   2053   if (!New->hasAttrs())
   2054     return;
   2055 
   2056   const Decl *Def = getDefinition(Old);
   2057   if (!Def || Def == New)
   2058     return;
   2059 
   2060   AttrVec &NewAttributes = New->getAttrs();
   2061   for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
   2062     const Attr *NewAttribute = NewAttributes[I];
   2063     if (hasAttribute(Def, NewAttribute->getKind())) {
   2064       ++I;
   2065       continue; // regular attr merging will take care of validating this.
   2066     }
   2067 
   2068     if (isa<C11NoReturnAttr>(NewAttribute)) {
   2069       // C's _Noreturn is allowed to be added to a function after it is defined.
   2070       ++I;
   2071       continue;
   2072     } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
   2073       if (AA->isAlignas()) {
   2074         // C++11 [dcl.align]p6:
   2075         //   if any declaration of an entity has an alignment-specifier,
   2076         //   every defining declaration of that entity shall specify an
   2077         //   equivalent alignment.
   2078         // C11 6.7.5/7:
   2079         //   If the definition of an object does not have an alignment
   2080         //   specifier, any other declaration of that object shall also
   2081         //   have no alignment specifier.
   2082         S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
   2083           << AA->isC11();
   2084         S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
   2085           << AA->isC11();
   2086         NewAttributes.erase(NewAttributes.begin() + I);
   2087         --E;
   2088         continue;
   2089       }
   2090     }
   2091 
   2092     S.Diag(NewAttribute->getLocation(),
   2093            diag::warn_attribute_precede_definition);
   2094     S.Diag(Def->getLocation(), diag::note_previous_definition);
   2095     NewAttributes.erase(NewAttributes.begin() + I);
   2096     --E;
   2097   }
   2098 }
   2099 
   2100 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
   2101 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
   2102                                AvailabilityMergeKind AMK) {
   2103   if (!Old->hasAttrs() && !New->hasAttrs())
   2104     return;
   2105 
   2106   // attributes declared post-definition are currently ignored
   2107   checkNewAttributesAfterDef(*this, New, Old);
   2108 
   2109   if (!Old->hasAttrs())
   2110     return;
   2111 
   2112   bool foundAny = New->hasAttrs();
   2113 
   2114   // Ensure that any moving of objects within the allocated map is done before
   2115   // we process them.
   2116   if (!foundAny) New->setAttrs(AttrVec());
   2117 
   2118   for (specific_attr_iterator<InheritableAttr>
   2119          i = Old->specific_attr_begin<InheritableAttr>(),
   2120          e = Old->specific_attr_end<InheritableAttr>();
   2121        i != e; ++i) {
   2122     bool Override = false;
   2123     // Ignore deprecated/unavailable/availability attributes if requested.
   2124     if (isa<DeprecatedAttr>(*i) ||
   2125         isa<UnavailableAttr>(*i) ||
   2126         isa<AvailabilityAttr>(*i)) {
   2127       switch (AMK) {
   2128       case AMK_None:
   2129         continue;
   2130 
   2131       case AMK_Redeclaration:
   2132         break;
   2133 
   2134       case AMK_Override:
   2135         Override = true;
   2136         break;
   2137       }
   2138     }
   2139 
   2140     if (mergeDeclAttribute(*this, New, *i, Override))
   2141       foundAny = true;
   2142   }
   2143 
   2144   if (mergeAlignedAttrs(*this, New, Old))
   2145     foundAny = true;
   2146 
   2147   if (!foundAny) New->dropAttrs();
   2148 }
   2149 
   2150 /// mergeParamDeclAttributes - Copy attributes from the old parameter
   2151 /// to the new one.
   2152 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
   2153                                      const ParmVarDecl *oldDecl,
   2154                                      Sema &S) {
   2155   // C++11 [dcl.attr.depend]p2:
   2156   //   The first declaration of a function shall specify the
   2157   //   carries_dependency attribute for its declarator-id if any declaration
   2158   //   of the function specifies the carries_dependency attribute.
   2159   if (newDecl->hasAttr<CarriesDependencyAttr>() &&
   2160       !oldDecl->hasAttr<CarriesDependencyAttr>()) {
   2161     S.Diag(newDecl->getAttr<CarriesDependencyAttr>()->getLocation(),
   2162            diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
   2163     // Find the first declaration of the parameter.
   2164     // FIXME: Should we build redeclaration chains for function parameters?
   2165     const FunctionDecl *FirstFD =
   2166       cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDeclaration();
   2167     const ParmVarDecl *FirstVD =
   2168       FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
   2169     S.Diag(FirstVD->getLocation(),
   2170            diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
   2171   }
   2172 
   2173   if (!oldDecl->hasAttrs())
   2174     return;
   2175 
   2176   bool foundAny = newDecl->hasAttrs();
   2177 
   2178   // Ensure that any moving of objects within the allocated map is
   2179   // done before we process them.
   2180   if (!foundAny) newDecl->setAttrs(AttrVec());
   2181 
   2182   for (specific_attr_iterator<InheritableParamAttr>
   2183        i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
   2184        e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
   2185     if (!DeclHasAttr(newDecl, *i)) {
   2186       InheritableAttr *newAttr =
   2187         cast<InheritableParamAttr>((*i)->clone(S.Context));
   2188       newAttr->setInherited(true);
   2189       newDecl->addAttr(newAttr);
   2190       foundAny = true;
   2191     }
   2192   }
   2193 
   2194   if (!foundAny) newDecl->dropAttrs();
   2195 }
   2196 
   2197 namespace {
   2198 
   2199 /// Used in MergeFunctionDecl to keep track of function parameters in
   2200 /// C.
   2201 struct GNUCompatibleParamWarning {
   2202   ParmVarDecl *OldParm;
   2203   ParmVarDecl *NewParm;
   2204   QualType PromotedType;
   2205 };
   2206 
   2207 }
   2208 
   2209 /// getSpecialMember - get the special member enum for a method.
   2210 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
   2211   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
   2212     if (Ctor->isDefaultConstructor())
   2213       return Sema::CXXDefaultConstructor;
   2214 
   2215     if (Ctor->isCopyConstructor())
   2216       return Sema::CXXCopyConstructor;
   2217 
   2218     if (Ctor->isMoveConstructor())
   2219       return Sema::CXXMoveConstructor;
   2220   } else if (isa<CXXDestructorDecl>(MD)) {
   2221     return Sema::CXXDestructor;
   2222   } else if (MD->isCopyAssignmentOperator()) {
   2223     return Sema::CXXCopyAssignment;
   2224   } else if (MD->isMoveAssignmentOperator()) {
   2225     return Sema::CXXMoveAssignment;
   2226   }
   2227 
   2228   return Sema::CXXInvalid;
   2229 }
   2230 
   2231 /// canRedefineFunction - checks if a function can be redefined. Currently,
   2232 /// only extern inline functions can be redefined, and even then only in
   2233 /// GNU89 mode.
   2234 static bool canRedefineFunction(const FunctionDecl *FD,
   2235                                 const LangOptions& LangOpts) {
   2236   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
   2237           !LangOpts.CPlusPlus &&
   2238           FD->isInlineSpecified() &&
   2239           FD->getStorageClass() == SC_Extern);
   2240 }
   2241 
   2242 /// Is the given calling convention the ABI default for the given
   2243 /// declaration?
   2244 static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
   2245   CallingConv ABIDefaultCC;
   2246   if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
   2247     ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
   2248   } else {
   2249     // Free C function or a static method.
   2250     ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
   2251   }
   2252   return ABIDefaultCC == CC;
   2253 }
   2254 
   2255 template <typename T>
   2256 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
   2257   const DeclContext *DC = Old->getDeclContext();
   2258   if (DC->isRecord())
   2259     return false;
   2260 
   2261   LanguageLinkage OldLinkage = Old->getLanguageLinkage();
   2262   if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
   2263     return true;
   2264   if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
   2265     return true;
   2266   return false;
   2267 }
   2268 
   2269 /// MergeFunctionDecl - We just parsed a function 'New' from
   2270 /// declarator D which has the same name and scope as a previous
   2271 /// declaration 'Old'.  Figure out how to resolve this situation,
   2272 /// merging decls or emitting diagnostics as appropriate.
   2273 ///
   2274 /// In C++, New and Old must be declarations that are not
   2275 /// overloaded. Use IsOverload to determine whether New and Old are
   2276 /// overloaded, and to select the Old declaration that New should be
   2277 /// merged with.
   2278 ///
   2279 /// Returns true if there was an error, false otherwise.
   2280 bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
   2281   // Verify the old decl was also a function.
   2282   FunctionDecl *Old = 0;
   2283   if (FunctionTemplateDecl *OldFunctionTemplate
   2284         = dyn_cast<FunctionTemplateDecl>(OldD))
   2285     Old = OldFunctionTemplate->getTemplatedDecl();
   2286   else
   2287     Old = dyn_cast<FunctionDecl>(OldD);
   2288   if (!Old) {
   2289     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
   2290       if (New->getFriendObjectKind()) {
   2291         Diag(New->getLocation(), diag::err_using_decl_friend);
   2292         Diag(Shadow->getTargetDecl()->getLocation(),
   2293              diag::note_using_decl_target);
   2294         Diag(Shadow->getUsingDecl()->getLocation(),
   2295              diag::note_using_decl) << 0;
   2296         return true;
   2297       }
   2298 
   2299       Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
   2300       Diag(Shadow->getTargetDecl()->getLocation(),
   2301            diag::note_using_decl_target);
   2302       Diag(Shadow->getUsingDecl()->getLocation(),
   2303            diag::note_using_decl) << 0;
   2304       return true;
   2305     }
   2306 
   2307     Diag(New->getLocation(), diag::err_redefinition_different_kind)
   2308       << New->getDeclName();
   2309     Diag(OldD->getLocation(), diag::note_previous_definition);
   2310     return true;
   2311   }
   2312 
   2313   // If the old declaration is invalid, just give up here.
   2314   if (Old->isInvalidDecl())
   2315     return true;
   2316 
   2317   // Determine whether the previous declaration was a definition,
   2318   // implicit declaration, or a declaration.
   2319   diag::kind PrevDiag;
   2320   if (Old->isThisDeclarationADefinition())
   2321     PrevDiag = diag::note_previous_definition;
   2322   else if (Old->isImplicit())
   2323     PrevDiag = diag::note_previous_implicit_declaration;
   2324   else
   2325     PrevDiag = diag::note_previous_declaration;
   2326 
   2327   QualType OldQType = Context.getCanonicalType(Old->getType());
   2328   QualType NewQType = Context.getCanonicalType(New->getType());
   2329 
   2330   // Don't complain about this if we're in GNU89 mode and the old function
   2331   // is an extern inline function.
   2332   // Don't complain about specializations. They are not supposed to have
   2333   // storage classes.
   2334   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
   2335       New->getStorageClass() == SC_Static &&
   2336       Old->hasExternalFormalLinkage() &&
   2337       !New->getTemplateSpecializationInfo() &&
   2338       !canRedefineFunction(Old, getLangOpts())) {
   2339     if (getLangOpts().MicrosoftExt) {
   2340       Diag(New->getLocation(), diag::warn_static_non_static) << New;
   2341       Diag(Old->getLocation(), PrevDiag);
   2342     } else {
   2343       Diag(New->getLocation(), diag::err_static_non_static) << New;
   2344       Diag(Old->getLocation(), PrevDiag);
   2345       return true;
   2346     }
   2347   }
   2348 
   2349   // If a function is first declared with a calling convention, but is
   2350   // later declared or defined without one, the second decl assumes the
   2351   // calling convention of the first.
   2352   //
   2353   // It's OK if a function is first declared without a calling convention,
   2354   // but is later declared or defined with the default calling convention.
   2355   //
   2356   // For the new decl, we have to look at the NON-canonical type to tell the
   2357   // difference between a function that really doesn't have a calling
   2358   // convention and one that is declared cdecl. That's because in
   2359   // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
   2360   // because it is the default calling convention.
   2361   //
   2362   // Note also that we DO NOT return at this point, because we still have
   2363   // other tests to run.
   2364   const FunctionType *OldType = cast<FunctionType>(OldQType);
   2365   const FunctionType *NewType = New->getType()->getAs<FunctionType>();
   2366   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
   2367   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
   2368   bool RequiresAdjustment = false;
   2369   if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
   2370     // Fast path: nothing to do.
   2371 
   2372   // Inherit the CC from the previous declaration if it was specified
   2373   // there but not here.
   2374   } else if (NewTypeInfo.getCC() == CC_Default) {
   2375     NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
   2376     RequiresAdjustment = true;
   2377 
   2378   // Don't complain about mismatches when the default CC is
   2379   // effectively the same as the explict one. Only Old decl contains correct
   2380   // information about storage class of CXXMethod.
   2381   } else if (OldTypeInfo.getCC() == CC_Default &&
   2382              isABIDefaultCC(*this, NewTypeInfo.getCC(), Old)) {
   2383     NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
   2384     RequiresAdjustment = true;
   2385 
   2386   } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
   2387                                      NewTypeInfo.getCC())) {
   2388     // Calling conventions really aren't compatible, so complain.
   2389     Diag(New->getLocation(), diag::err_cconv_change)
   2390       << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
   2391       << (OldTypeInfo.getCC() == CC_Default)
   2392       << (OldTypeInfo.getCC() == CC_Default ? "" :
   2393           FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
   2394     Diag(Old->getLocation(), diag::note_previous_declaration);
   2395     return true;
   2396   }
   2397 
   2398   // FIXME: diagnose the other way around?
   2399   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
   2400     NewTypeInfo = NewTypeInfo.withNoReturn(true);
   2401     RequiresAdjustment = true;
   2402   }
   2403 
   2404   // Merge regparm attribute.
   2405   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
   2406       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
   2407     if (NewTypeInfo.getHasRegParm()) {
   2408       Diag(New->getLocation(), diag::err_regparm_mismatch)
   2409         << NewType->getRegParmType()
   2410         << OldType->getRegParmType();
   2411       Diag(Old->getLocation(), diag::note_previous_declaration);
   2412       return true;
   2413     }
   2414 
   2415     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
   2416     RequiresAdjustment = true;
   2417   }
   2418 
   2419   // Merge ns_returns_retained attribute.
   2420   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
   2421     if (NewTypeInfo.getProducesResult()) {
   2422       Diag(New->getLocation(), diag::err_returns_retained_mismatch);
   2423       Diag(Old->getLocation(), diag::note_previous_declaration);
   2424       return true;
   2425     }
   2426 
   2427     NewTypeInfo = NewTypeInfo.withProducesResult(true);
   2428     RequiresAdjustment = true;
   2429   }
   2430 
   2431   if (RequiresAdjustment) {
   2432     NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
   2433     New->setType(QualType(NewType, 0));
   2434     NewQType = Context.getCanonicalType(New->getType());
   2435   }
   2436 
   2437   // If this redeclaration makes the function inline, we may need to add it to
   2438   // UndefinedButUsed.
   2439   if (!Old->isInlined() && New->isInlined() &&
   2440       !New->hasAttr<GNUInlineAttr>() &&
   2441       (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
   2442       Old->isUsed(false) &&
   2443       !Old->isDefined() && !New->isThisDeclarationADefinition())
   2444     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
   2445                                            SourceLocation()));
   2446 
   2447   // If this redeclaration makes it newly gnu_inline, we don't want to warn
   2448   // about it.
   2449   if (New->hasAttr<GNUInlineAttr>() &&
   2450       Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
   2451     UndefinedButUsed.erase(Old->getCanonicalDecl());
   2452   }
   2453 
   2454   if (getLangOpts().CPlusPlus) {
   2455     // (C++98 13.1p2):
   2456     //   Certain function declarations cannot be overloaded:
   2457     //     -- Function declarations that differ only in the return type
   2458     //        cannot be overloaded.
   2459 
   2460     // Go back to the type source info to compare the declared return types,
   2461     // per C++1y [dcl.type.auto]p??:
   2462     //   Redeclarations or specializations of a function or function template
   2463     //   with a declared return type that uses a placeholder type shall also
   2464     //   use that placeholder, not a deduced type.
   2465     QualType OldDeclaredReturnType = (Old->getTypeSourceInfo()
   2466       ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
   2467       : OldType)->getResultType();
   2468     QualType NewDeclaredReturnType = (New->getTypeSourceInfo()
   2469       ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
   2470       : NewType)->getResultType();
   2471     QualType ResQT;
   2472     if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType)) {
   2473       if (NewDeclaredReturnType->isObjCObjectPointerType() &&
   2474           OldDeclaredReturnType->isObjCObjectPointerType())
   2475         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
   2476       if (ResQT.isNull()) {
   2477         if (New->isCXXClassMember() && New->isOutOfLine())
   2478           Diag(New->getLocation(),
   2479                diag::err_member_def_does_not_match_ret_type) << New;
   2480         else
   2481           Diag(New->getLocation(), diag::err_ovl_diff_return_type);
   2482         Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
   2483         return true;
   2484       }
   2485       else
   2486         NewQType = ResQT;
   2487     }
   2488 
   2489     QualType OldReturnType = OldType->getResultType();
   2490     QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
   2491     if (OldReturnType != NewReturnType) {
   2492       // If this function has a deduced return type and has already been
   2493       // defined, copy the deduced value from the old declaration.
   2494       AutoType *OldAT = Old->getResultType()->getContainedAutoType();
   2495       if (OldAT && OldAT->isDeduced()) {
   2496         New->setType(SubstAutoType(New->getType(), OldAT->getDeducedType()));
   2497         NewQType = Context.getCanonicalType(
   2498             SubstAutoType(NewQType, OldAT->getDeducedType()));
   2499       }
   2500     }
   2501 
   2502     const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
   2503     CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
   2504     if (OldMethod && NewMethod) {
   2505       // Preserve triviality.
   2506       NewMethod->setTrivial(OldMethod->isTrivial());
   2507 
   2508       // MSVC allows explicit template specialization at class scope:
   2509       // 2 CXMethodDecls referring to the same function will be injected.
   2510       // We don't want a redeclartion error.
   2511       bool IsClassScopeExplicitSpecialization =
   2512                               OldMethod->isFunctionTemplateSpecialization() &&
   2513                               NewMethod->isFunctionTemplateSpecialization();
   2514       bool isFriend = NewMethod->getFriendObjectKind();
   2515 
   2516       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
   2517           !IsClassScopeExplicitSpecialization) {
   2518         //    -- Member function declarations with the same name and the
   2519         //       same parameter types cannot be overloaded if any of them
   2520         //       is a static member function declaration.
   2521         if (OldMethod->isStatic() != NewMethod->isStatic()) {
   2522           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
   2523           Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
   2524           return true;
   2525         }
   2526 
   2527         // C++ [class.mem]p1:
   2528         //   [...] A member shall not be declared twice in the
   2529         //   member-specification, except that a nested class or member
   2530         //   class template can be declared and then later defined.
   2531         if (ActiveTemplateInstantiations.empty()) {
   2532           unsigned NewDiag;
   2533           if (isa<CXXConstructorDecl>(OldMethod))
   2534             NewDiag = diag::err_constructor_redeclared;
   2535           else if (isa<CXXDestructorDecl>(NewMethod))
   2536             NewDiag = diag::err_destructor_redeclared;
   2537           else if (isa<CXXConversionDecl>(NewMethod))
   2538             NewDiag = diag::err_conv_function_redeclared;
   2539           else
   2540             NewDiag = diag::err_member_redeclared;
   2541 
   2542           Diag(New->getLocation(), NewDiag);
   2543         } else {
   2544           Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
   2545             << New << New->getType();
   2546         }
   2547         Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
   2548 
   2549       // Complain if this is an explicit declaration of a special
   2550       // member that was initially declared implicitly.
   2551       //
   2552       // As an exception, it's okay to befriend such methods in order
   2553       // to permit the implicit constructor/destructor/operator calls.
   2554       } else if (OldMethod->isImplicit()) {
   2555         if (isFriend) {
   2556           NewMethod->setImplicit();
   2557         } else {
   2558           Diag(NewMethod->getLocation(),
   2559                diag::err_definition_of_implicitly_declared_member)
   2560             << New << getSpecialMember(OldMethod);
   2561           return true;
   2562         }
   2563       } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
   2564         Diag(NewMethod->getLocation(),
   2565              diag::err_definition_of_explicitly_defaulted_member)
   2566           << getSpecialMember(OldMethod);
   2567         return true;
   2568       }
   2569     }
   2570 
   2571     // C++11 [dcl.attr.noreturn]p1:
   2572     //   The first declaration of a function shall specify the noreturn
   2573     //   attribute if any declaration of that function specifies the noreturn
   2574     //   attribute.
   2575     if (New->hasAttr<CXX11NoReturnAttr>() &&
   2576         !Old->hasAttr<CXX11NoReturnAttr>()) {
   2577       Diag(New->getAttr<CXX11NoReturnAttr>()->getLocation(),
   2578            diag::err_noreturn_missing_on_first_decl);
   2579       Diag(Old->getFirstDeclaration()->getLocation(),
   2580            diag::note_noreturn_missing_first_decl);
   2581     }
   2582 
   2583     // C++11 [dcl.attr.depend]p2:
   2584     //   The first declaration of a function shall specify the
   2585     //   carries_dependency attribute for its declarator-id if any declaration
   2586     //   of the function specifies the carries_dependency attribute.
   2587     if (New->hasAttr<CarriesDependencyAttr>() &&
   2588         !Old->hasAttr<CarriesDependencyAttr>()) {
   2589       Diag(New->getAttr<CarriesDependencyAttr>()->getLocation(),
   2590            diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
   2591       Diag(Old->getFirstDeclaration()->getLocation(),
   2592            diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
   2593     }
   2594 
   2595     // (C++98 8.3.5p3):
   2596     //   All declarations for a function shall agree exactly in both the
   2597     //   return type and the parameter-type-list.
   2598     // We also want to respect all the extended bits except noreturn.
   2599 
   2600     // noreturn should now match unless the old type info didn't have it.
   2601     QualType OldQTypeForComparison = OldQType;
   2602     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
   2603       assert(OldQType == QualType(OldType, 0));
   2604       const FunctionType *OldTypeForComparison
   2605         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
   2606       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
   2607       assert(OldQTypeForComparison.isCanonical());
   2608     }
   2609 
   2610     if (haveIncompatibleLanguageLinkages(Old, New)) {
   2611       Diag(New->getLocation(), diag::err_different_language_linkage) << New;
   2612       Diag(Old->getLocation(), PrevDiag);
   2613       return true;
   2614     }
   2615 
   2616     if (OldQTypeForComparison == NewQType)
   2617       return MergeCompatibleFunctionDecls(New, Old, S);
   2618 
   2619     // Fall through for conflicting redeclarations and redefinitions.
   2620   }
   2621 
   2622   // C: Function types need to be compatible, not identical. This handles
   2623   // duplicate function decls like "void f(int); void f(enum X);" properly.
   2624   if (!getLangOpts().CPlusPlus &&
   2625       Context.typesAreCompatible(OldQType, NewQType)) {
   2626     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
   2627     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
   2628     const FunctionProtoType *OldProto = 0;
   2629     if (isa<FunctionNoProtoType>(NewFuncType) &&
   2630         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
   2631       // The old declaration provided a function prototype, but the
   2632       // new declaration does not. Merge in the prototype.
   2633       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
   2634       SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
   2635                                                  OldProto->arg_type_end());
   2636       NewQType = Context.getFunctionType(NewFuncType->getResultType(),
   2637                                          ParamTypes,
   2638                                          OldProto->getExtProtoInfo());
   2639       New->setType(NewQType);
   2640       New->setHasInheritedPrototype();
   2641 
   2642       // Synthesize a parameter for each argument type.
   2643       SmallVector<ParmVarDecl*, 16> Params;
   2644       for (FunctionProtoType::arg_type_iterator
   2645              ParamType = OldProto->arg_type_begin(),
   2646              ParamEnd = OldProto->arg_type_end();
   2647            ParamType != ParamEnd; ++ParamType) {
   2648         ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
   2649                                                  SourceLocation(),
   2650                                                  SourceLocation(), 0,
   2651                                                  *ParamType, /*TInfo=*/0,
   2652                                                  SC_None,
   2653                                                  0);
   2654         Param->setScopeInfo(0, Params.size());
   2655         Param->setImplicit();
   2656         Params.push_back(Param);
   2657       }
   2658 
   2659       New->setParams(Params);
   2660     }
   2661 
   2662     return MergeCompatibleFunctionDecls(New, Old, S);
   2663   }
   2664 
   2665   // GNU C permits a K&R definition to follow a prototype declaration
   2666   // if the declared types of the parameters in the K&R definition
   2667   // match the types in the prototype declaration, even when the
   2668   // promoted types of the parameters from the K&R definition differ
   2669   // from the types in the prototype. GCC then keeps the types from
   2670   // the prototype.
   2671   //
   2672   // If a variadic prototype is followed by a non-variadic K&R definition,
   2673   // the K&R definition becomes variadic.  This is sort of an edge case, but
   2674   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
   2675   // C99 6.9.1p8.
   2676   if (!getLangOpts().CPlusPlus &&
   2677       Old->hasPrototype() && !New->hasPrototype() &&
   2678       New->getType()->getAs<FunctionProtoType>() &&
   2679       Old->getNumParams() == New->getNumParams()) {
   2680     SmallVector<QualType, 16> ArgTypes;
   2681     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
   2682     const FunctionProtoType *OldProto
   2683       = Old->getType()->getAs<FunctionProtoType>();
   2684     const FunctionProtoType *NewProto
   2685       = New->getType()->getAs<FunctionProtoType>();
   2686 
   2687     // Determine whether this is the GNU C extension.
   2688     QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
   2689                                                NewProto->getResultType());
   2690     bool LooseCompatible = !MergedReturn.isNull();
   2691     for (unsigned Idx = 0, End = Old->getNumParams();
   2692          LooseCompatible && Idx != End; ++Idx) {
   2693       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
   2694       ParmVarDecl *NewParm = New->getParamDecl(Idx);
   2695       if (Context.typesAreCompatible(OldParm->getType(),
   2696                                      NewProto->getArgType(Idx))) {
   2697         ArgTypes.push_back(NewParm->getType());
   2698       } else if (Context.typesAreCompatible(OldParm->getType(),
   2699                                             NewParm->getType(),
   2700                                             /*CompareUnqualified=*/true)) {
   2701         GNUCompatibleParamWarning Warn
   2702           = { OldParm, NewParm, NewProto->getArgType(Idx) };
   2703         Warnings.push_back(Warn);
   2704         ArgTypes.push_back(NewParm->getType());
   2705       } else
   2706         LooseCompatible = false;
   2707     }
   2708 
   2709     if (LooseCompatible) {
   2710       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
   2711         Diag(Warnings[Warn].NewParm->getLocation(),
   2712              diag::ext_param_promoted_not_compatible_with_prototype)
   2713           << Warnings[Warn].PromotedType
   2714           << Warnings[Warn].OldParm->getType();
   2715         if (Warnings[Warn].OldParm->getLocation().isValid())
   2716           Diag(Warnings[Warn].OldParm->getLocation(),
   2717                diag::note_previous_declaration);
   2718       }
   2719 
   2720       New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
   2721                                            OldProto->getExtProtoInfo()));
   2722       return MergeCompatibleFunctionDecls(New, Old, S);
   2723     }
   2724 
   2725     // Fall through to diagnose conflicting types.
   2726   }
   2727 
   2728   // A function that has already been declared has been redeclared or
   2729   // defined with a different type; show an appropriate diagnostic.
   2730 
   2731   // If the previous declaration was an implicitly-generated builtin
   2732   // declaration, then at the very least we should use a specialized note.
   2733   unsigned BuiltinID;
   2734   if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
   2735     // If it's actually a library-defined builtin function like 'malloc'
   2736     // or 'printf', just warn about the incompatible redeclaration.
   2737     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
   2738       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
   2739       Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
   2740         << Old << Old->getType();
   2741 
   2742       // If this is a global redeclaration, just forget hereafter
   2743       // about the "builtin-ness" of the function.
   2744       //
   2745       // Doing this for local extern declarations is problematic.  If
   2746       // the builtin declaration remains visible, a second invalid
   2747       // local declaration will produce a hard error; if it doesn't
   2748       // remain visible, a single bogus local redeclaration (which is
   2749       // actually only a warning) could break all the downstream code.
   2750       if (!New->getDeclContext()->isFunctionOrMethod())
   2751         New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
   2752 
   2753       return false;
   2754     }
   2755 
   2756     PrevDiag = diag::note_previous_builtin_declaration;
   2757   }
   2758 
   2759   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
   2760   Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
   2761   return true;
   2762 }
   2763 
   2764 /// \brief Completes the merge of two function declarations that are
   2765 /// known to be compatible.
   2766 ///
   2767 /// This routine handles the merging of attributes and other
   2768 /// properties of function declarations form the old declaration to
   2769 /// the new declaration, once we know that New is in fact a
   2770 /// redeclaration of Old.
   2771 ///
   2772 /// \returns false
   2773 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
   2774                                         Scope *S) {
   2775   // Merge the attributes
   2776   mergeDeclAttributes(New, Old);
   2777 
   2778   // Merge "pure" flag.
   2779   if (Old->isPure())
   2780     New->setPure();
   2781 
   2782   // Merge "used" flag.
   2783   if (Old->isUsed(false))
   2784     New->setUsed();
   2785 
   2786   // Merge attributes from the parameters.  These can mismatch with K&R
   2787   // declarations.
   2788   if (New->getNumParams() == Old->getNumParams())
   2789     for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
   2790       mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
   2791                                *this);
   2792 
   2793   if (getLangOpts().CPlusPlus)
   2794     return MergeCXXFunctionDecl(New, Old, S);
   2795 
   2796   // Merge the function types so the we get the composite types for the return
   2797   // and argument types.
   2798   QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
   2799   if (!Merged.isNull())
   2800     New->setType(Merged);
   2801 
   2802   return false;
   2803 }
   2804 
   2805 
   2806 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
   2807                                 ObjCMethodDecl *oldMethod) {
   2808 
   2809   // Merge the attributes, including deprecated/unavailable
   2810   AvailabilityMergeKind MergeKind =
   2811     isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
   2812                                                    : AMK_Override;
   2813   mergeDeclAttributes(newMethod, oldMethod, MergeKind);
   2814 
   2815   // Merge attributes from the parameters.
   2816   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
   2817                                        oe = oldMethod->param_end();
   2818   for (ObjCMethodDecl::param_iterator
   2819          ni = newMethod->param_begin(), ne = newMethod->param_end();
   2820        ni != ne && oi != oe; ++ni, ++oi)
   2821     mergeParamDeclAttributes(*ni, *oi, *this);
   2822 
   2823   CheckObjCMethodOverride(newMethod, oldMethod);
   2824 }
   2825 
   2826 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
   2827 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
   2828 /// emitting diagnostics as appropriate.
   2829 ///
   2830 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
   2831 /// to here in AddInitializerToDecl. We can't check them before the initializer
   2832 /// is attached.
   2833 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool OldWasHidden) {
   2834   if (New->isInvalidDecl() || Old->isInvalidDecl())
   2835     return;
   2836 
   2837   QualType MergedT;
   2838   if (getLangOpts().CPlusPlus) {
   2839     if (New->getType()->isUndeducedType()) {
   2840       // We don't know what the new type is until the initializer is attached.
   2841       return;
   2842     } else if (Context.hasSameType(New->getType(), Old->getType())) {
   2843       // These could still be something that needs exception specs checked.
   2844       return MergeVarDeclExceptionSpecs(New, Old);
   2845     }
   2846     // C++ [basic.link]p10:
   2847     //   [...] the types specified by all declarations referring to a given
   2848     //   object or function shall be identical, except that declarations for an
   2849     //   array object can specify array types that differ by the presence or
   2850     //   absence of a major array bound (8.3.4).
   2851     else if (Old->getType()->isIncompleteArrayType() &&
   2852              New->getType()->isArrayType()) {
   2853       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
   2854       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
   2855       if (Context.hasSameType(OldArray->getElementType(),
   2856                               NewArray->getElementType()))
   2857         MergedT = New->getType();
   2858     } else if (Old->getType()->isArrayType() &&
   2859              New->getType()->isIncompleteArrayType()) {
   2860       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
   2861       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
   2862       if (Context.hasSameType(OldArray->getElementType(),
   2863                               NewArray->getElementType()))
   2864         MergedT = Old->getType();
   2865     } else if (New->getType()->isObjCObjectPointerType()
   2866                && Old->getType()->isObjCObjectPointerType()) {
   2867         MergedT = Context.mergeObjCGCQualifiers(New->getType(),
   2868                                                         Old->getType());
   2869     }
   2870   } else {
   2871     MergedT = Context.mergeTypes(New->getType(), Old->getType());
   2872   }
   2873   if (MergedT.isNull()) {
   2874     Diag(New->getLocation(), diag::err_redefinition_different_type)
   2875       << New->getDeclName() << New->getType() << Old->getType();
   2876     Diag(Old->getLocation(), diag::note_previous_definition);
   2877     return New->setInvalidDecl();
   2878   }
   2879 
   2880   // Don't actually update the type on the new declaration if the old
   2881   // declaration was a extern declaration in a different scope.
   2882   if (!OldWasHidden)
   2883     New->setType(MergedT);
   2884 }
   2885 
   2886 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
   2887 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
   2888 /// situation, merging decls or emitting diagnostics as appropriate.
   2889 ///
   2890 /// Tentative definition rules (C99 6.9.2p2) are checked by
   2891 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
   2892 /// definitions here, since the initializer hasn't been attached.
   2893 ///
   2894 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous,
   2895                         bool PreviousWasHidden) {
   2896   // If the new decl is already invalid, don't do any other checking.
   2897   if (New->isInvalidDecl())
   2898     return;
   2899 
   2900   // Verify the old decl was also a variable.
   2901   VarDecl *Old = 0;
   2902   if (!Previous.isSingleResult() ||
   2903       !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
   2904     Diag(New->getLocation(), diag::err_redefinition_different_kind)
   2905       << New->getDeclName();
   2906     Diag(Previous.getRepresentativeDecl()->getLocation(),
   2907          diag::note_previous_definition);
   2908     return New->setInvalidDecl();
   2909   }
   2910 
   2911   if (!shouldLinkPossiblyHiddenDecl(Old, New))
   2912     return;
   2913 
   2914   // C++ [class.mem]p1:
   2915   //   A member shall not be declared twice in the member-specification [...]
   2916   //
   2917   // Here, we need only consider static data members.
   2918   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
   2919     Diag(New->getLocation(), diag::err_duplicate_member)
   2920       << New->getIdentifier();
   2921     Diag(Old->getLocation(), diag::note_previous_declaration);
   2922     New->setInvalidDecl();
   2923   }
   2924 
   2925   mergeDeclAttributes(New, Old);
   2926   // Warn if an already-declared variable is made a weak_import in a subsequent
   2927   // declaration
   2928   if (New->getAttr<WeakImportAttr>() &&
   2929       Old->getStorageClass() == SC_None &&
   2930       !Old->getAttr<WeakImportAttr>()) {
   2931     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
   2932     Diag(Old->getLocation(), diag::note_previous_definition);
   2933     // Remove weak_import attribute on new declaration.
   2934     New->dropAttr<WeakImportAttr>();
   2935   }
   2936 
   2937   // Merge the types.
   2938   MergeVarDeclTypes(New, Old, PreviousWasHidden);
   2939   if (New->isInvalidDecl())
   2940     return;
   2941 
   2942   // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
   2943   if (New->getStorageClass() == SC_Static &&
   2944       !New->isStaticDataMember() &&
   2945       Old->hasExternalFormalLinkage()) {
   2946     Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
   2947     Diag(Old->getLocation(), diag::note_previous_definition);
   2948     return New->setInvalidDecl();
   2949   }
   2950   // C99 6.2.2p4:
   2951   //   For an identifier declared with the storage-class specifier
   2952   //   extern in a scope in which a prior declaration of that
   2953   //   identifier is visible,23) if the prior declaration specifies
   2954   //   internal or external linkage, the linkage of the identifier at
   2955   //   the later declaration is the same as the linkage specified at
   2956   //   the prior declaration. If no prior declaration is visible, or
   2957   //   if the prior declaration specifies no linkage, then the
   2958   //   identifier has external linkage.
   2959   if (New->hasExternalStorage() && Old->hasLinkage())
   2960     /* Okay */;
   2961   else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
   2962            !New->isStaticDataMember() &&
   2963            Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
   2964     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
   2965     Diag(Old->getLocation(), diag::note_previous_definition);
   2966     return New->setInvalidDecl();
   2967   }
   2968 
   2969   // Check if extern is followed by non-extern and vice-versa.
   2970   if (New->hasExternalStorage() &&
   2971       !Old->hasLinkage() && Old->isLocalVarDecl()) {
   2972     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
   2973     Diag(Old->getLocation(), diag::note_previous_definition);
   2974     return New->setInvalidDecl();
   2975   }
   2976   if (Old->hasLinkage() && New->isLocalVarDecl() &&
   2977       !New->hasExternalStorage()) {
   2978     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
   2979     Diag(Old->getLocation(), diag::note_previous_definition);
   2980     return New->setInvalidDecl();
   2981   }
   2982 
   2983   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
   2984 
   2985   // FIXME: The test for external storage here seems wrong? We still
   2986   // need to check for mismatches.
   2987   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
   2988       // Don't complain about out-of-line definitions of static members.
   2989       !(Old->getLexicalDeclContext()->isRecord() &&
   2990         !New->getLexicalDeclContext()->isRecord())) {
   2991     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
   2992     Diag(Old->getLocation(), diag::note_previous_definition);
   2993     return New->setInvalidDecl();
   2994   }
   2995 
   2996   if (New->getTLSKind() != Old->getTLSKind()) {
   2997     if (!Old->getTLSKind()) {
   2998       Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
   2999       Diag(Old->getLocation(), diag::note_previous_declaration);
   3000     } else if (!New->getTLSKind()) {
   3001       Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
   3002       Diag(Old->getLocation(), diag::note_previous_declaration);
   3003     } else {
   3004       // Do not allow redeclaration to change the variable between requiring
   3005       // static and dynamic initialization.
   3006       // FIXME: GCC allows this, but uses the TLS keyword on the first
   3007       // declaration to determine the kind. Do we need to be compatible here?
   3008       Diag(New->getLocation(), diag::err_thread_thread_different_kind)
   3009         << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
   3010       Diag(Old->getLocation(), diag::note_previous_declaration);
   3011     }
   3012   }
   3013 
   3014   // C++ doesn't have tentative definitions, so go right ahead and check here.
   3015   const VarDecl *Def;
   3016   if (getLangOpts().CPlusPlus &&
   3017       New->isThisDeclarationADefinition() == VarDecl::Definition &&
   3018       (Def = Old->getDefinition())) {
   3019     Diag(New->getLocation(), diag::err_redefinition) << New;
   3020     Diag(Def->getLocation(), diag::note_previous_definition);
   3021     New->setInvalidDecl();
   3022     return;
   3023   }
   3024 
   3025   if (haveIncompatibleLanguageLinkages(Old, New)) {
   3026     Diag(New->getLocation(), diag::err_different_language_linkage) << New;
   3027     Diag(Old->getLocation(), diag::note_previous_definition);
   3028     New->setInvalidDecl();
   3029     return;
   3030   }
   3031 
   3032   // Merge "used" flag.
   3033   if (Old->isUsed(false))
   3034     New->setUsed();
   3035 
   3036   // Keep a chain of previous declarations.
   3037   New->setPreviousDeclaration(Old);
   3038 
   3039   // Inherit access appropriately.
   3040   New->setAccess(Old->getAccess());
   3041 }
   3042 
   3043 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
   3044 /// no declarator (e.g. "struct foo;") is parsed.
   3045 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
   3046                                        DeclSpec &DS) {
   3047   return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
   3048 }
   3049 
   3050 static void HandleTagNumbering(Sema &S, const TagDecl *Tag) {
   3051   if (isa<CXXRecordDecl>(Tag->getParent())) {
   3052     // If this tag is the direct child of a class, number it if
   3053     // it is anonymous.
   3054     if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
   3055       return;
   3056     MangleNumberingContext &MCtx =
   3057         S.Context.getManglingNumberContext(Tag->getParent());
   3058     S.Context.setManglingNumber(Tag, MCtx.getManglingNumber(Tag));
   3059     return;
   3060   }
   3061 
   3062   // If this tag isn't a direct child of a class, number it if it is local.
   3063   Decl *ManglingContextDecl;
   3064   if (MangleNumberingContext *MCtx =
   3065           S.getCurrentMangleNumberContext(Tag->getDeclContext(),
   3066                                           ManglingContextDecl)) {
   3067     S.Context.setManglingNumber(Tag, MCtx->getManglingNumber(Tag));
   3068   }
   3069 }
   3070 
   3071 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
   3072 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
   3073 /// parameters to cope with template friend declarations.
   3074 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
   3075                                        DeclSpec &DS,
   3076                                        MultiTemplateParamsArg TemplateParams,
   3077                                        bool IsExplicitInstantiation) {
   3078   Decl *TagD = 0;
   3079   TagDecl *Tag = 0;
   3080   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
   3081       DS.getTypeSpecType() == DeclSpec::TST_struct ||
   3082       DS.getTypeSpecType() == DeclSpec::TST_interface ||
   3083       DS.getTypeSpecType() == DeclSpec::TST_union ||
   3084       DS.getTypeSpecType() == DeclSpec::TST_enum) {
   3085     TagD = DS.getRepAsDecl();
   3086 
   3087     if (!TagD) // We probably had an error
   3088       return 0;
   3089 
   3090     // Note that the above type specs guarantee that the
   3091     // type rep is a Decl, whereas in many of the others
   3092     // it's a Type.
   3093     if (isa<TagDecl>(TagD))
   3094       Tag = cast<TagDecl>(TagD);
   3095     else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
   3096       Tag = CTD->getTemplatedDecl();
   3097   }
   3098 
   3099   if (Tag) {
   3100     HandleTagNumbering(*this, Tag);
   3101     Tag->setFreeStanding();
   3102     if (Tag->isInvalidDecl())
   3103       return Tag;
   3104   }
   3105 
   3106   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
   3107     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
   3108     // or incomplete types shall not be restrict-qualified."
   3109     if (TypeQuals & DeclSpec::TQ_restrict)
   3110       Diag(DS.getRestrictSpecLoc(),
   3111            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
   3112            << DS.getSourceRange();
   3113   }
   3114 
   3115   if (DS.isConstexprSpecified()) {
   3116     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
   3117     // and definitions of functions and variables.
   3118     if (Tag)
   3119       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
   3120         << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
   3121             DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
   3122             DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
   3123             DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
   3124     else
   3125       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
   3126     // Don't emit warnings after this error.
   3127     return TagD;
   3128   }
   3129 
   3130   DiagnoseFunctionSpecifiers(DS);
   3131 
   3132   if (DS.isFriendSpecified()) {
   3133     // If we're dealing with a decl but not a TagDecl, assume that
   3134     // whatever routines created it handled the friendship aspect.
   3135     if (TagD && !Tag)
   3136       return 0;
   3137     return ActOnFriendTypeDecl(S, DS, TemplateParams);
   3138   }
   3139 
   3140   CXXScopeSpec &SS = DS.getTypeSpecScope();
   3141   bool IsExplicitSpecialization =
   3142     !TemplateParams.empty() && TemplateParams.back()->size() == 0;
   3143   if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
   3144       !IsExplicitInstantiation && !IsExplicitSpecialization) {
   3145     // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
   3146     // nested-name-specifier unless it is an explicit instantiation
   3147     // or an explicit specialization.
   3148     // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
   3149     Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
   3150       << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
   3151           DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
   3152           DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
   3153           DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4)
   3154       << SS.getRange();
   3155     return 0;
   3156   }
   3157 
   3158   // Track whether this decl-specifier declares anything.
   3159   bool DeclaresAnything = true;
   3160 
   3161   // Handle anonymous struct definitions.
   3162   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
   3163     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
   3164         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
   3165       if (getLangOpts().CPlusPlus ||
   3166           Record->getDeclContext()->isRecord())
   3167         return BuildAnonymousStructOrUnion(S, DS, AS, Record);
   3168 
   3169       DeclaresAnything = false;
   3170     }
   3171   }
   3172 
   3173   // Check for Microsoft C extension: anonymous struct member.
   3174   if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
   3175       CurContext->isRecord() &&
   3176       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
   3177     // Handle 2 kinds of anonymous struct:
   3178     //   struct STRUCT;
   3179     // and
   3180     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
   3181     RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
   3182     if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
   3183         (DS.getTypeSpecType() == DeclSpec::TST_typename &&
   3184          DS.getRepAsType().get()->isStructureType())) {
   3185       Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
   3186         << DS.getSourceRange();
   3187       return BuildMicrosoftCAnonymousStruct(S, DS, Record);
   3188     }
   3189   }
   3190 
   3191   // Skip all the checks below if we have a type error.
   3192   if (DS.getTypeSpecType() == DeclSpec::TST_error ||
   3193       (TagD && TagD->isInvalidDecl()))
   3194     return TagD;
   3195 
   3196   if (getLangOpts().CPlusPlus &&
   3197       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
   3198     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
   3199       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
   3200           !Enum->getIdentifier() && !Enum->isInvalidDecl())
   3201         DeclaresAnything = false;
   3202 
   3203   if (!DS.isMissingDeclaratorOk()) {
   3204     // Customize diagnostic for a typedef missing a name.
   3205     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
   3206       Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
   3207         << DS.getSourceRange();
   3208     else
   3209       DeclaresAnything = false;
   3210   }
   3211 
   3212   if (DS.isModulePrivateSpecified() &&
   3213       Tag && Tag->getDeclContext()->isFunctionOrMethod())
   3214     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
   3215       << Tag->getTagKind()
   3216       << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
   3217 
   3218   ActOnDocumentableDecl(TagD);
   3219 
   3220   // C 6.7/2:
   3221   //   A declaration [...] shall declare at least a declarator [...], a tag,
   3222   //   or the members of an enumeration.
   3223   // C++ [dcl.dcl]p3:
   3224   //   [If there are no declarators], and except for the declaration of an
   3225   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
   3226   //   names into the program, or shall redeclare a name introduced by a
   3227   //   previous declaration.
   3228   if (!DeclaresAnything) {
   3229     // In C, we allow this as a (popular) extension / bug. Don't bother
   3230     // producing further diagnostics for redundant qualifiers after this.
   3231     Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
   3232     return TagD;
   3233   }
   3234 
   3235   // C++ [dcl.stc]p1:
   3236   //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
   3237   //   init-declarator-list of the declaration shall not be empty.
   3238   // C++ [dcl.fct.spec]p1:
   3239   //   If a cv-qualifier appears in a decl-specifier-seq, the
   3240   //   init-declarator-list of the declaration shall not be empty.
   3241   //
   3242   // Spurious qualifiers here appear to be valid in C.
   3243   unsigned DiagID = diag::warn_standalone_specifier;
   3244   if (getLangOpts().CPlusPlus)
   3245     DiagID = diag::ext_standalone_specifier;
   3246 
   3247   // Note that a linkage-specification sets a storage class, but
   3248   // 'extern "C" struct foo;' is actually valid and not theoretically
   3249   // useless.
   3250   if (DeclSpec::SCS SCS = DS.getStorageClassSpec())
   3251     if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
   3252       Diag(DS.getStorageClassSpecLoc(), DiagID)
   3253         << DeclSpec::getSpecifierName(SCS);
   3254 
   3255   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
   3256     Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
   3257       << DeclSpec::getSpecifierName(TSCS);
   3258   if (DS.getTypeQualifiers()) {
   3259     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
   3260       Diag(DS.getConstSpecLoc(), DiagID) << "const";
   3261     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
   3262       Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
   3263     // Restrict is covered above.
   3264     if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
   3265       Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
   3266   }
   3267 
   3268   // Warn about ignored type attributes, for example:
   3269   // __attribute__((aligned)) struct A;
   3270   // Attributes should be placed after tag to apply to type declaration.
   3271   if (!DS.getAttributes().empty()) {
   3272     DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
   3273     if (TypeSpecType == DeclSpec::TST_class ||
   3274         TypeSpecType == DeclSpec::TST_struct ||
   3275         TypeSpecType == DeclSpec::TST_interface ||
   3276         TypeSpecType == DeclSpec::TST_union ||
   3277         TypeSpecType == DeclSpec::TST_enum) {
   3278       AttributeList* attrs = DS.getAttributes().getList();
   3279       while (attrs) {
   3280         Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
   3281         << attrs->getName()
   3282         << (TypeSpecType == DeclSpec::TST_class ? 0 :
   3283             TypeSpecType == DeclSpec::TST_struct ? 1 :
   3284             TypeSpecType == DeclSpec::TST_union ? 2 :
   3285             TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
   3286         attrs = attrs->getNext();
   3287       }
   3288     }
   3289   }
   3290 
   3291   return TagD;
   3292 }
   3293 
   3294 /// We are trying to inject an anonymous member into the given scope;
   3295 /// check if there's an existing declaration that can't be overloaded.
   3296 ///
   3297 /// \return true if this is a forbidden redeclaration
   3298 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
   3299                                          Scope *S,
   3300                                          DeclContext *Owner,
   3301                                          DeclarationName Name,
   3302                                          SourceLocation NameLoc,
   3303                                          unsigned diagnostic) {
   3304   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
   3305                  Sema::ForRedeclaration);
   3306   if (!SemaRef.LookupName(R, S)) return false;
   3307 
   3308   if (R.getAsSingle<TagDecl>())
   3309     return false;
   3310 
   3311   // Pick a representative declaration.
   3312   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
   3313   assert(PrevDecl && "Expected a non-null Decl");
   3314 
   3315   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
   3316     return false;
   3317 
   3318   SemaRef.Diag(NameLoc, diagnostic) << Name;
   3319   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   3320 
   3321   return true;
   3322 }
   3323 
   3324 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
   3325 /// anonymous struct or union AnonRecord into the owning context Owner
   3326 /// and scope S. This routine will be invoked just after we realize
   3327 /// that an unnamed union or struct is actually an anonymous union or
   3328 /// struct, e.g.,
   3329 ///
   3330 /// @code
   3331 /// union {
   3332 ///   int i;
   3333 ///   float f;
   3334 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
   3335 ///    // f into the surrounding scope.x
   3336 /// @endcode
   3337 ///
   3338 /// This routine is recursive, injecting the names of nested anonymous
   3339 /// structs/unions into the owning context and scope as well.
   3340 static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
   3341                                          DeclContext *Owner,
   3342                                          RecordDecl *AnonRecord,
   3343                                          AccessSpecifier AS,
   3344                                          SmallVectorImpl<NamedDecl *> &Chaining,
   3345                                          bool MSAnonStruct) {
   3346   unsigned diagKind
   3347     = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
   3348                             : diag::err_anonymous_struct_member_redecl;
   3349 
   3350   bool Invalid = false;
   3351 
   3352   // Look every FieldDecl and IndirectFieldDecl with a name.
   3353   for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
   3354                                DEnd = AnonRecord->decls_end();
   3355        D != DEnd; ++D) {
   3356     if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
   3357         cast<NamedDecl>(*D)->getDeclName()) {
   3358       ValueDecl *VD = cast<ValueDecl>(*D);
   3359       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
   3360                                        VD->getLocation(), diagKind)) {
   3361         // C++ [class.union]p2:
   3362         //   The names of the members of an anonymous union shall be
   3363         //   distinct from the names of any other entity in the
   3364         //   scope in which the anonymous union is declared.
   3365         Invalid = true;
   3366       } else {
   3367         // C++ [class.union]p2:
   3368         //   For the purpose of name lookup, after the anonymous union
   3369         //   definition, the members of the anonymous union are
   3370         //   considered to have been defined in the scope in which the
   3371         //   anonymous union is declared.
   3372         unsigned OldChainingSize = Chaining.size();
   3373         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
   3374           for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
   3375                PE = IF->chain_end(); PI != PE; ++PI)
   3376             Chaining.push_back(*PI);
   3377         else
   3378           Chaining.push_back(VD);
   3379 
   3380         assert(Chaining.size() >= 2);
   3381         NamedDecl **NamedChain =
   3382           new (SemaRef.Context)NamedDecl*[Chaining.size()];
   3383         for (unsigned i = 0; i < Chaining.size(); i++)
   3384           NamedChain[i] = Chaining[i];
   3385 
   3386         IndirectFieldDecl* IndirectField =
   3387           IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
   3388                                     VD->getIdentifier(), VD->getType(),
   3389                                     NamedChain, Chaining.size());
   3390 
   3391         IndirectField->setAccess(AS);
   3392         IndirectField->setImplicit();
   3393         SemaRef.PushOnScopeChains(IndirectField, S);
   3394 
   3395         // That includes picking up the appropriate access specifier.
   3396         if (AS != AS_none) IndirectField->setAccess(AS);
   3397 
   3398         Chaining.resize(OldChainingSize);
   3399       }
   3400     }
   3401   }
   3402 
   3403   return Invalid;
   3404 }
   3405 
   3406 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
   3407 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
   3408 /// illegal input values are mapped to SC_None.
   3409 static StorageClass
   3410 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
   3411   DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
   3412   assert(StorageClassSpec != DeclSpec::SCS_typedef &&
   3413          "Parser allowed 'typedef' as storage class VarDecl.");
   3414   switch (StorageClassSpec) {
   3415   case DeclSpec::SCS_unspecified:    return SC_None;
   3416   case DeclSpec::SCS_extern:
   3417     if (DS.isExternInLinkageSpec())
   3418       return SC_None;
   3419     return SC_Extern;
   3420   case DeclSpec::SCS_static:         return SC_Static;
   3421   case DeclSpec::SCS_auto:           return SC_Auto;
   3422   case DeclSpec::SCS_register:       return SC_Register;
   3423   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
   3424     // Illegal SCSs map to None: error reporting is up to the caller.
   3425   case DeclSpec::SCS_mutable:        // Fall through.
   3426   case DeclSpec::SCS_typedef:        return SC_None;
   3427   }
   3428   llvm_unreachable("unknown storage class specifier");
   3429 }
   3430 
   3431 /// BuildAnonymousStructOrUnion - Handle the declaration of an
   3432 /// anonymous structure or union. Anonymous unions are a C++ feature
   3433 /// (C++ [class.union]) and a C11 feature; anonymous structures
   3434 /// are a C11 feature and GNU C++ extension.
   3435 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
   3436                                              AccessSpecifier AS,
   3437                                              RecordDecl *Record) {
   3438   DeclContext *Owner = Record->getDeclContext();
   3439 
   3440   // Diagnose whether this anonymous struct/union is an extension.
   3441   if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
   3442     Diag(Record->getLocation(), diag::ext_anonymous_union);
   3443   else if (!Record->isUnion() && getLangOpts().CPlusPlus)
   3444     Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
   3445   else if (!Record->isUnion() && !getLangOpts().C11)
   3446     Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
   3447 
   3448   // C and C++ require different kinds of checks for anonymous
   3449   // structs/unions.
   3450   bool Invalid = false;
   3451   if (getLangOpts().CPlusPlus) {
   3452     const char* PrevSpec = 0;
   3453     unsigned DiagID;
   3454     if (Record->isUnion()) {
   3455       // C++ [class.union]p6:
   3456       //   Anonymous unions declared in a named namespace or in the
   3457       //   global namespace shall be declared static.
   3458       if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
   3459           (isa<TranslationUnitDecl>(Owner) ||
   3460            (isa<NamespaceDecl>(Owner) &&
   3461             cast<NamespaceDecl>(Owner)->getDeclName()))) {
   3462         Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
   3463           << FixItHint::CreateInsertion(Record->getLocation(), "static ");
   3464 
   3465         // Recover by adding 'static'.
   3466         DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
   3467                                PrevSpec, DiagID);
   3468       }
   3469       // C++ [class.union]p6:
   3470       //   A storage class is not allowed in a declaration of an
   3471       //   anonymous union in a class scope.
   3472       else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
   3473                isa<RecordDecl>(Owner)) {
   3474         Diag(DS.getStorageClassSpecLoc(),
   3475              diag::err_anonymous_union_with_storage_spec)
   3476           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
   3477 
   3478         // Recover by removing the storage specifier.
   3479         DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
   3480                                SourceLocation(),
   3481                                PrevSpec, DiagID);
   3482       }
   3483     }
   3484 
   3485     // Ignore const/volatile/restrict qualifiers.
   3486     if (DS.getTypeQualifiers()) {
   3487       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
   3488         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
   3489           << Record->isUnion() << "const"
   3490           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
   3491       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
   3492         Diag(DS.getVolatileSpecLoc(),
   3493              diag::ext_anonymous_struct_union_qualified)
   3494           << Record->isUnion() << "volatile"
   3495           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
   3496       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
   3497         Diag(DS.getRestrictSpecLoc(),
   3498              diag::ext_anonymous_struct_union_qualified)
   3499           << Record->isUnion() << "restrict"
   3500           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
   3501       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
   3502         Diag(DS.getAtomicSpecLoc(),
   3503              diag::ext_anonymous_struct_union_qualified)
   3504           << Record->isUnion() << "_Atomic"
   3505           << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
   3506 
   3507       DS.ClearTypeQualifiers();
   3508     }
   3509 
   3510     // C++ [class.union]p2:
   3511     //   The member-specification of an anonymous union shall only
   3512     //   define non-static data members. [Note: nested types and
   3513     //   functions cannot be declared within an anonymous union. ]
   3514     for (DeclContext::decl_iterator Mem = Record->decls_begin(),
   3515                                  MemEnd = Record->decls_end();
   3516          Mem != MemEnd; ++Mem) {
   3517       if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
   3518         // C++ [class.union]p3:
   3519         //   An anonymous union shall not have private or protected
   3520         //   members (clause 11).
   3521         assert(FD->getAccess() != AS_none);
   3522         if (FD->getAccess() != AS_public) {
   3523           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
   3524             << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
   3525           Invalid = true;
   3526         }
   3527 
   3528         // C++ [class.union]p1
   3529         //   An object of a class with a non-trivial constructor, a non-trivial
   3530         //   copy constructor, a non-trivial destructor, or a non-trivial copy
   3531         //   assignment operator cannot be a member of a union, nor can an
   3532         //   array of such objects.
   3533         if (CheckNontrivialField(FD))
   3534           Invalid = true;
   3535       } else if ((*Mem)->isImplicit()) {
   3536         // Any implicit members are fine.
   3537       } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
   3538         // This is a type that showed up in an
   3539         // elaborated-type-specifier inside the anonymous struct or
   3540         // union, but which actually declares a type outside of the
   3541         // anonymous struct or union. It's okay.
   3542       } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
   3543         if (!MemRecord->isAnonymousStructOrUnion() &&
   3544             MemRecord->getDeclName()) {
   3545           // Visual C++ allows type definition in anonymous struct or union.
   3546           if (getLangOpts().MicrosoftExt)
   3547             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
   3548               << (int)Record->isUnion();
   3549           else {
   3550             // This is a nested type declaration.
   3551             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
   3552               << (int)Record->isUnion();
   3553             Invalid = true;
   3554           }
   3555         } else {
   3556           // This is an anonymous type definition within another anonymous type.
   3557           // This is a popular extension, provided by Plan9, MSVC and GCC, but
   3558           // not part of standard C++.
   3559           Diag(MemRecord->getLocation(),
   3560                diag::ext_anonymous_record_with_anonymous_type)
   3561             << (int)Record->isUnion();
   3562         }
   3563       } else if (isa<AccessSpecDecl>(*Mem)) {
   3564         // Any access specifier is fine.
   3565       } else {
   3566         // We have something that isn't a non-static data
   3567         // member. Complain about it.
   3568         unsigned DK = diag::err_anonymous_record_bad_member;
   3569         if (isa<TypeDecl>(*Mem))
   3570           DK = diag::err_anonymous_record_with_type;
   3571         else if (isa<FunctionDecl>(*Mem))
   3572           DK = diag::err_anonymous_record_with_function;
   3573         else if (isa<VarDecl>(*Mem))
   3574           DK = diag::err_anonymous_record_with_static;
   3575 
   3576         // Visual C++ allows type definition in anonymous struct or union.
   3577         if (getLangOpts().MicrosoftExt &&
   3578             DK == diag::err_anonymous_record_with_type)
   3579           Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
   3580             << (int)Record->isUnion();
   3581         else {
   3582           Diag((*Mem)->getLocation(), DK)
   3583               << (int)Record->isUnion();
   3584           Invalid = true;
   3585         }
   3586       }
   3587     }
   3588   }
   3589 
   3590   if (!Record->isUnion() && !Owner->isRecord()) {
   3591     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
   3592       << (int)getLangOpts().CPlusPlus;
   3593     Invalid = true;
   3594   }
   3595 
   3596   // Mock up a declarator.
   3597   Declarator Dc(DS, Declarator::MemberContext);
   3598   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
   3599   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
   3600 
   3601   // Create a declaration for this anonymous struct/union.
   3602   NamedDecl *Anon = 0;
   3603   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
   3604     Anon = FieldDecl::Create(Context, OwningClass,
   3605                              DS.getLocStart(),
   3606                              Record->getLocation(),
   3607                              /*IdentifierInfo=*/0,
   3608                              Context.getTypeDeclType(Record),
   3609                              TInfo,
   3610                              /*BitWidth=*/0, /*Mutable=*/false,
   3611                              /*InitStyle=*/ICIS_NoInit);
   3612     Anon->setAccess(AS);
   3613     if (getLangOpts().CPlusPlus)
   3614       FieldCollector->Add(cast<FieldDecl>(Anon));
   3615   } else {
   3616     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
   3617     VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
   3618     if (SCSpec == DeclSpec::SCS_mutable) {
   3619       // mutable can only appear on non-static class members, so it's always
   3620       // an error here
   3621       Diag(Record->getLocation(), diag::err_mutable_nonmember);
   3622       Invalid = true;
   3623       SC = SC_None;
   3624     }
   3625 
   3626     Anon = VarDecl::Create(Context, Owner,
   3627                            DS.getLocStart(),
   3628                            Record->getLocation(), /*IdentifierInfo=*/0,
   3629                            Context.getTypeDeclType(Record),
   3630                            TInfo, SC);
   3631 
   3632     // Default-initialize the implicit variable. This initialization will be
   3633     // trivial in almost all cases, except if a union member has an in-class
   3634     // initializer:
   3635     //   union { int n = 0; };
   3636     ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
   3637   }
   3638   Anon->setImplicit();
   3639 
   3640   // Add the anonymous struct/union object to the current
   3641   // context. We'll be referencing this object when we refer to one of
   3642   // its members.
   3643   Owner->addDecl(Anon);
   3644 
   3645   // Inject the members of the anonymous struct/union into the owning
   3646   // context and into the identifier resolver chain for name lookup
   3647   // purposes.
   3648   SmallVector<NamedDecl*, 2> Chain;
   3649   Chain.push_back(Anon);
   3650 
   3651   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
   3652                                           Chain, false))
   3653     Invalid = true;
   3654 
   3655   // Mark this as an anonymous struct/union type. Note that we do not
   3656   // do this until after we have already checked and injected the
   3657   // members of this anonymous struct/union type, because otherwise
   3658   // the members could be injected twice: once by DeclContext when it
   3659   // builds its lookup table, and once by
   3660   // InjectAnonymousStructOrUnionMembers.
   3661   Record->setAnonymousStructOrUnion(true);
   3662 
   3663   if (Invalid)
   3664     Anon->setInvalidDecl();
   3665 
   3666   return Anon;
   3667 }
   3668 
   3669 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
   3670 /// Microsoft C anonymous structure.
   3671 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
   3672 /// Example:
   3673 ///
   3674 /// struct A { int a; };
   3675 /// struct B { struct A; int b; };
   3676 ///
   3677 /// void foo() {
   3678 ///   B var;
   3679 ///   var.a = 3;
   3680 /// }
   3681 ///
   3682 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
   3683                                            RecordDecl *Record) {
   3684 
   3685   // If there is no Record, get the record via the typedef.
   3686   if (!Record)
   3687     Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
   3688 
   3689   // Mock up a declarator.
   3690   Declarator Dc(DS, Declarator::TypeNameContext);
   3691   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
   3692   assert(TInfo && "couldn't build declarator info for anonymous struct");
   3693 
   3694   // Create a declaration for this anonymous struct.
   3695   NamedDecl* Anon = FieldDecl::Create(Context,
   3696                              cast<RecordDecl>(CurContext),
   3697                              DS.getLocStart(),
   3698                              DS.getLocStart(),
   3699                              /*IdentifierInfo=*/0,
   3700                              Context.getTypeDeclType(Record),
   3701                              TInfo,
   3702                              /*BitWidth=*/0, /*Mutable=*/false,
   3703                              /*InitStyle=*/ICIS_NoInit);
   3704   Anon->setImplicit();
   3705 
   3706   // Add the anonymous struct object to the current context.
   3707   CurContext->addDecl(Anon);
   3708 
   3709   // Inject the members of the anonymous struct into the current
   3710   // context and into the identifier resolver chain for name lookup
   3711   // purposes.
   3712   SmallVector<NamedDecl*, 2> Chain;
   3713   Chain.push_back(Anon);
   3714 
   3715   RecordDecl *RecordDef = Record->getDefinition();
   3716   if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
   3717                                                         RecordDef, AS_none,
   3718                                                         Chain, true))
   3719     Anon->setInvalidDecl();
   3720 
   3721   return Anon;
   3722 }
   3723 
   3724 /// GetNameForDeclarator - Determine the full declaration name for the
   3725 /// given Declarator.
   3726 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
   3727   return GetNameFromUnqualifiedId(D.getName());
   3728 }
   3729 
   3730 /// \brief Retrieves the declaration name from a parsed unqualified-id.
   3731 DeclarationNameInfo
   3732 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
   3733   DeclarationNameInfo NameInfo;
   3734   NameInfo.setLoc(Name.StartLocation);
   3735 
   3736   switch (Name.getKind()) {
   3737 
   3738   case UnqualifiedId::IK_ImplicitSelfParam:
   3739   case UnqualifiedId::IK_Identifier:
   3740     NameInfo.setName(Name.Identifier);
   3741     NameInfo.setLoc(Name.StartLocation);
   3742     return NameInfo;
   3743 
   3744   case UnqualifiedId::IK_OperatorFunctionId:
   3745     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
   3746                                            Name.OperatorFunctionId.Operator));
   3747     NameInfo.setLoc(Name.StartLocation);
   3748     NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
   3749       = Name.OperatorFunctionId.SymbolLocations[0];
   3750     NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
   3751       = Name.EndLocation.getRawEncoding();
   3752     return NameInfo;
   3753 
   3754   case UnqualifiedId::IK_LiteralOperatorId:
   3755     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
   3756                                                            Name.Identifier));
   3757     NameInfo.setLoc(Name.StartLocation);
   3758     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
   3759     return NameInfo;
   3760 
   3761   case UnqualifiedId::IK_ConversionFunctionId: {
   3762     TypeSourceInfo *TInfo;
   3763     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
   3764     if (Ty.isNull())
   3765       return DeclarationNameInfo();
   3766     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
   3767                                                Context.getCanonicalType(Ty)));
   3768     NameInfo.setLoc(Name.StartLocation);
   3769     NameInfo.setNamedTypeInfo(TInfo);
   3770     return NameInfo;
   3771   }
   3772 
   3773   case UnqualifiedId::IK_ConstructorName: {
   3774     TypeSourceInfo *TInfo;
   3775     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
   3776     if (Ty.isNull())
   3777       return DeclarationNameInfo();
   3778     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
   3779                                               Context.getCanonicalType(Ty)));
   3780     NameInfo.setLoc(Name.StartLocation);
   3781     NameInfo.setNamedTypeInfo(TInfo);
   3782     return NameInfo;
   3783   }
   3784 
   3785   case UnqualifiedId::IK_ConstructorTemplateId: {
   3786     // In well-formed code, we can only have a constructor
   3787     // template-id that refers to the current context, so go there
   3788     // to find the actual type being constructed.
   3789     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
   3790     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
   3791       return DeclarationNameInfo();
   3792 
   3793     // Determine the type of the class being constructed.
   3794     QualType CurClassType = Context.getTypeDeclType(CurClass);
   3795 
   3796     // FIXME: Check two things: that the template-id names the same type as
   3797     // CurClassType, and that the template-id does not occur when the name
   3798     // was qualified.
   3799 
   3800     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
   3801                                     Context.getCanonicalType(CurClassType)));
   3802     NameInfo.setLoc(Name.StartLocation);
   3803     // FIXME: should we retrieve TypeSourceInfo?
   3804     NameInfo.setNamedTypeInfo(0);
   3805     return NameInfo;
   3806   }
   3807 
   3808   case UnqualifiedId::IK_DestructorName: {
   3809     TypeSourceInfo *TInfo;
   3810     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
   3811     if (Ty.isNull())
   3812       return DeclarationNameInfo();
   3813     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
   3814                                               Context.getCanonicalType(Ty)));
   3815     NameInfo.setLoc(Name.StartLocation);
   3816     NameInfo.setNamedTypeInfo(TInfo);
   3817     return NameInfo;
   3818   }
   3819 
   3820   case UnqualifiedId::IK_TemplateId: {
   3821     TemplateName TName = Name.TemplateId->Template.get();
   3822     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
   3823     return Context.getNameForTemplate(TName, TNameLoc);
   3824   }
   3825 
   3826   } // switch (Name.getKind())
   3827 
   3828   llvm_unreachable("Unknown name kind");
   3829 }
   3830 
   3831 static QualType getCoreType(QualType Ty) {
   3832   do {
   3833     if (Ty->isPointerType() || Ty->isReferenceType())
   3834       Ty = Ty->getPointeeType();
   3835     else if (Ty->isArrayType())
   3836       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
   3837     else
   3838       return Ty.withoutLocalFastQualifiers();
   3839   } while (true);
   3840 }
   3841 
   3842 /// hasSimilarParameters - Determine whether the C++ functions Declaration
   3843 /// and Definition have "nearly" matching parameters. This heuristic is
   3844 /// used to improve diagnostics in the case where an out-of-line function
   3845 /// definition doesn't match any declaration within the class or namespace.
   3846 /// Also sets Params to the list of indices to the parameters that differ
   3847 /// between the declaration and the definition. If hasSimilarParameters
   3848 /// returns true and Params is empty, then all of the parameters match.
   3849 static bool hasSimilarParameters(ASTContext &Context,
   3850                                      FunctionDecl *Declaration,
   3851                                      FunctionDecl *Definition,
   3852                                      SmallVectorImpl<unsigned> &Params) {
   3853   Params.clear();
   3854   if (Declaration->param_size() != Definition->param_size())
   3855     return false;
   3856   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
   3857     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
   3858     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
   3859 
   3860     // The parameter types are identical
   3861     if (Context.hasSameType(DefParamTy, DeclParamTy))
   3862       continue;
   3863 
   3864     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
   3865     QualType DefParamBaseTy = getCoreType(DefParamTy);
   3866     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
   3867     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
   3868 
   3869     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
   3870         (DeclTyName && DeclTyName == DefTyName))
   3871       Params.push_back(Idx);
   3872     else  // The two parameters aren't even close
   3873       return false;
   3874   }
   3875 
   3876   return true;
   3877 }
   3878 
   3879 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
   3880 /// declarator needs to be rebuilt in the current instantiation.
   3881 /// Any bits of declarator which appear before the name are valid for
   3882 /// consideration here.  That's specifically the type in the decl spec
   3883 /// and the base type in any member-pointer chunks.
   3884 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
   3885                                                     DeclarationName Name) {
   3886   // The types we specifically need to rebuild are:
   3887   //   - typenames, typeofs, and decltypes
   3888   //   - types which will become injected class names
   3889   // Of course, we also need to rebuild any type referencing such a
   3890   // type.  It's safest to just say "dependent", but we call out a
   3891   // few cases here.
   3892 
   3893   DeclSpec &DS = D.getMutableDeclSpec();
   3894   switch (DS.getTypeSpecType()) {
   3895   case DeclSpec::TST_typename:
   3896   case DeclSpec::TST_typeofType:
   3897   case DeclSpec::TST_underlyingType:
   3898   case DeclSpec::TST_atomic: {
   3899     // Grab the type from the parser.
   3900     TypeSourceInfo *TSI = 0;
   3901     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
   3902     if (T.isNull() || !T->isDependentType()) break;
   3903 
   3904     // Make sure there's a type source info.  This isn't really much
   3905     // of a waste; most dependent types should have type source info
   3906     // attached already.
   3907     if (!TSI)
   3908       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
   3909 
   3910     // Rebuild the type in the current instantiation.
   3911     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
   3912     if (!TSI) return true;
   3913 
   3914     // Store the new type back in the decl spec.
   3915     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
   3916     DS.UpdateTypeRep(LocType);
   3917     break;
   3918   }
   3919 
   3920   case DeclSpec::TST_decltype:
   3921   case DeclSpec::TST_typeofExpr: {
   3922     Expr *E = DS.getRepAsExpr();
   3923     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
   3924     if (Result.isInvalid()) return true;
   3925     DS.UpdateExprRep(Result.get());
   3926     break;
   3927   }
   3928 
   3929   default:
   3930     // Nothing to do for these decl specs.
   3931     break;
   3932   }
   3933 
   3934   // It doesn't matter what order we do this in.
   3935   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
   3936     DeclaratorChunk &Chunk = D.getTypeObject(I);
   3937 
   3938     // The only type information in the declarator which can come
   3939     // before the declaration name is the base type of a member
   3940     // pointer.
   3941     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
   3942       continue;
   3943 
   3944     // Rebuild the scope specifier in-place.
   3945     CXXScopeSpec &SS = Chunk.Mem.Scope();
   3946     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
   3947       return true;
   3948   }
   3949 
   3950   return false;
   3951 }
   3952 
   3953 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
   3954   D.setFunctionDefinitionKind(FDK_Declaration);
   3955   Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
   3956 
   3957   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
   3958       Dcl && Dcl->getDeclContext()->isFileContext())
   3959     Dcl->setTopLevelDeclInObjCContainer();
   3960 
   3961   return Dcl;
   3962 }
   3963 
   3964 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
   3965 ///   If T is the name of a class, then each of the following shall have a
   3966 ///   name different from T:
   3967 ///     - every static data member of class T;
   3968 ///     - every member function of class T
   3969 ///     - every member of class T that is itself a type;
   3970 /// \returns true if the declaration name violates these rules.
   3971 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
   3972                                    DeclarationNameInfo NameInfo) {
   3973   DeclarationName Name = NameInfo.getName();
   3974 
   3975   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
   3976     if (Record->getIdentifier() && Record->getDeclName() == Name) {
   3977       Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
   3978       return true;
   3979     }
   3980 
   3981   return false;
   3982 }
   3983 
   3984 /// \brief Diagnose a declaration whose declarator-id has the given
   3985 /// nested-name-specifier.
   3986 ///
   3987 /// \param SS The nested-name-specifier of the declarator-id.
   3988 ///
   3989 /// \param DC The declaration context to which the nested-name-specifier
   3990 /// resolves.
   3991 ///
   3992 /// \param Name The name of the entity being declared.
   3993 ///
   3994 /// \param Loc The location of the name of the entity being declared.
   3995 ///
   3996 /// \returns true if we cannot safely recover from this error, false otherwise.
   3997 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
   3998                                         DeclarationName Name,
   3999                                       SourceLocation Loc) {
   4000   DeclContext *Cur = CurContext;
   4001   while (isa<LinkageSpecDecl>(Cur))
   4002     Cur = Cur->getParent();
   4003 
   4004   // C++ [dcl.meaning]p1:
   4005   //   A declarator-id shall not be qualified except for the definition
   4006   //   of a member function (9.3) or static data member (9.4) outside of
   4007   //   its class, the definition or explicit instantiation of a function
   4008   //   or variable member of a namespace outside of its namespace, or the
   4009   //   definition of an explicit specialization outside of its namespace,
   4010   //   or the declaration of a friend function that is a member of
   4011   //   another class or namespace (11.3). [...]
   4012 
   4013   // The user provided a superfluous scope specifier that refers back to the
   4014   // class or namespaces in which the entity is already declared.
   4015   //
   4016   // class X {
   4017   //   void X::f();
   4018   // };
   4019   if (Cur->Equals(DC)) {
   4020     Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
   4021                                    : diag::err_member_extra_qualification)
   4022       << Name << FixItHint::CreateRemoval(SS.getRange());
   4023     SS.clear();
   4024     return false;
   4025   }
   4026 
   4027   // Check whether the qualifying scope encloses the scope of the original
   4028   // declaration.
   4029   if (!Cur->Encloses(DC)) {
   4030     if (Cur->isRecord())
   4031       Diag(Loc, diag::err_member_qualification)
   4032         << Name << SS.getRange();
   4033     else if (isa<TranslationUnitDecl>(DC))
   4034       Diag(Loc, diag::err_invalid_declarator_global_scope)
   4035         << Name << SS.getRange();
   4036     else if (isa<FunctionDecl>(Cur))
   4037       Diag(Loc, diag::err_invalid_declarator_in_function)
   4038         << Name << SS.getRange();
   4039     else
   4040       Diag(Loc, diag::err_invalid_declarator_scope)
   4041       << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
   4042 
   4043     return true;
   4044   }
   4045 
   4046   if (Cur->isRecord()) {
   4047     // Cannot qualify members within a class.
   4048     Diag(Loc, diag::err_member_qualification)
   4049       << Name << SS.getRange();
   4050     SS.clear();
   4051 
   4052     // C++ constructors and destructors with incorrect scopes can break
   4053     // our AST invariants by having the wrong underlying types. If
   4054     // that's the case, then drop this declaration entirely.
   4055     if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
   4056          Name.getNameKind() == DeclarationName::CXXDestructorName) &&
   4057         !Context.hasSameType(Name.getCXXNameType(),
   4058                              Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
   4059       return true;
   4060 
   4061     return false;
   4062   }
   4063 
   4064   // C++11 [dcl.meaning]p1:
   4065   //   [...] "The nested-name-specifier of the qualified declarator-id shall
   4066   //   not begin with a decltype-specifer"
   4067   NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
   4068   while (SpecLoc.getPrefix())
   4069     SpecLoc = SpecLoc.getPrefix();
   4070   if (dyn_cast_or_null<DecltypeType>(
   4071         SpecLoc.getNestedNameSpecifier()->getAsType()))
   4072     Diag(Loc, diag::err_decltype_in_declarator)
   4073       << SpecLoc.getTypeLoc().getSourceRange();
   4074 
   4075   return false;
   4076 }
   4077 
   4078 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
   4079                                   MultiTemplateParamsArg TemplateParamLists) {
   4080   // TODO: consider using NameInfo for diagnostic.
   4081   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
   4082   DeclarationName Name = NameInfo.getName();
   4083 
   4084   // All of these full declarators require an identifier.  If it doesn't have
   4085   // one, the ParsedFreeStandingDeclSpec action should be used.
   4086   if (!Name) {
   4087     if (!D.isInvalidType())  // Reject this if we think it is valid.
   4088       Diag(D.getDeclSpec().getLocStart(),
   4089            diag::err_declarator_need_ident)
   4090         << D.getDeclSpec().getSourceRange() << D.getSourceRange();
   4091     return 0;
   4092   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
   4093     return 0;
   4094 
   4095   // The scope passed in may not be a decl scope.  Zip up the scope tree until
   4096   // we find one that is.
   4097   while ((S->getFlags() & Scope::DeclScope) == 0 ||
   4098          (S->getFlags() & Scope::TemplateParamScope) != 0)
   4099     S = S->getParent();
   4100 
   4101   DeclContext *DC = CurContext;
   4102   if (D.getCXXScopeSpec().isInvalid())
   4103     D.setInvalidType();
   4104   else if (D.getCXXScopeSpec().isSet()) {
   4105     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
   4106                                         UPPC_DeclarationQualifier))
   4107       return 0;
   4108 
   4109     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
   4110     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
   4111     if (!DC) {
   4112       // If we could not compute the declaration context, it's because the
   4113       // declaration context is dependent but does not refer to a class,
   4114       // class template, or class template partial specialization. Complain
   4115       // and return early, to avoid the coming semantic disaster.
   4116       Diag(D.getIdentifierLoc(),
   4117            diag::err_template_qualified_declarator_no_match)
   4118         << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
   4119         << D.getCXXScopeSpec().getRange();
   4120       return 0;
   4121     }
   4122     bool IsDependentContext = DC->isDependentContext();
   4123 
   4124     if (!IsDependentContext &&
   4125         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
   4126       return 0;
   4127 
   4128     if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
   4129       Diag(D.getIdentifierLoc(),
   4130            diag::err_member_def_undefined_record)
   4131         << Name << DC << D.getCXXScopeSpec().getRange();
   4132       D.setInvalidType();
   4133     } else if (!D.getDeclSpec().isFriendSpecified()) {
   4134       if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
   4135                                       Name, D.getIdentifierLoc())) {
   4136         if (DC->isRecord())
   4137           return 0;
   4138 
   4139         D.setInvalidType();
   4140       }
   4141     }
   4142 
   4143     // Check whether we need to rebuild the type of the given
   4144     // declaration in the current instantiation.
   4145     if (EnteringContext && IsDependentContext &&
   4146         TemplateParamLists.size() != 0) {
   4147       ContextRAII SavedContext(*this, DC);
   4148       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
   4149         D.setInvalidType();
   4150     }
   4151   }
   4152 
   4153   if (DiagnoseClassNameShadow(DC, NameInfo))
   4154     // If this is a typedef, we'll end up spewing multiple diagnostics.
   4155     // Just return early; it's safer.
   4156     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
   4157       return 0;
   4158 
   4159   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   4160   QualType R = TInfo->getType();
   4161 
   4162   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
   4163                                       UPPC_DeclarationType))
   4164     D.setInvalidType();
   4165 
   4166   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
   4167                         ForRedeclaration);
   4168 
   4169   // See if this is a redefinition of a variable in the same scope.
   4170   if (!D.getCXXScopeSpec().isSet()) {
   4171     bool IsLinkageLookup = false;
   4172 
   4173     // If the declaration we're planning to build will be a function
   4174     // or object with linkage, then look for another declaration with
   4175     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
   4176     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
   4177       /* Do nothing*/;
   4178     else if (R->isFunctionType()) {
   4179       if (CurContext->isFunctionOrMethod() ||
   4180           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
   4181         IsLinkageLookup = true;
   4182     } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
   4183       IsLinkageLookup = true;
   4184     else if (CurContext->getRedeclContext()->isTranslationUnit() &&
   4185              D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
   4186       IsLinkageLookup = true;
   4187 
   4188     if (IsLinkageLookup)
   4189       Previous.clear(LookupRedeclarationWithLinkage);
   4190 
   4191     LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
   4192   } else { // Something like "int foo::x;"
   4193     LookupQualifiedName(Previous, DC);
   4194 
   4195     // C++ [dcl.meaning]p1:
   4196     //   When the declarator-id is qualified, the declaration shall refer to a
   4197     //  previously declared member of the class or namespace to which the
   4198     //  qualifier refers (or, in the case of a namespace, of an element of the
   4199     //  inline namespace set of that namespace (7.3.1)) or to a specialization
   4200     //  thereof; [...]
   4201     //
   4202     // Note that we already checked the context above, and that we do not have
   4203     // enough information to make sure that Previous contains the declaration
   4204     // we want to match. For example, given:
   4205     //
   4206     //   class X {
   4207     //     void f();
   4208     //     void f(float);
   4209     //   };
   4210     //
   4211     //   void X::f(int) { } // ill-formed
   4212     //
   4213     // In this case, Previous will point to the overload set
   4214     // containing the two f's declared in X, but neither of them
   4215     // matches.
   4216 
   4217     // C++ [dcl.meaning]p1:
   4218     //   [...] the member shall not merely have been introduced by a
   4219     //   using-declaration in the scope of the class or namespace nominated by
   4220     //   the nested-name-specifier of the declarator-id.
   4221     RemoveUsingDecls(Previous);
   4222   }
   4223 
   4224   if (Previous.isSingleResult() &&
   4225       Previous.getFoundDecl()->isTemplateParameter()) {
   4226     // Maybe we will complain about the shadowed template parameter.
   4227     if (!D.isInvalidType())
   4228       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
   4229                                       Previous.getFoundDecl());
   4230 
   4231     // Just pretend that we didn't see the previous declaration.
   4232     Previous.clear();
   4233   }
   4234 
   4235   // In C++, the previous declaration we find might be a tag type
   4236   // (class or enum). In this case, the new declaration will hide the
   4237   // tag type. Note that this does does not apply if we're declaring a
   4238   // typedef (C++ [dcl.typedef]p4).
   4239   if (Previous.isSingleTagDecl() &&
   4240       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
   4241     Previous.clear();
   4242 
   4243   // Check that there are no default arguments other than in the parameters
   4244   // of a function declaration (C++ only).
   4245   if (getLangOpts().CPlusPlus)
   4246     CheckExtraCXXDefaultArguments(D);
   4247 
   4248   NamedDecl *New;
   4249 
   4250   bool AddToScope = true;
   4251   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
   4252     if (TemplateParamLists.size()) {
   4253       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
   4254       return 0;
   4255     }
   4256 
   4257     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
   4258   } else if (R->isFunctionType()) {
   4259     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
   4260                                   TemplateParamLists,
   4261                                   AddToScope);
   4262   } else {
   4263     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
   4264                                   AddToScope);
   4265   }
   4266 
   4267   if (New == 0)
   4268     return 0;
   4269 
   4270   // If this has an identifier and is not an invalid redeclaration or
   4271   // function template specialization, add it to the scope stack.
   4272   if (New->getDeclName() && AddToScope &&
   4273        !(D.isRedeclaration() && New->isInvalidDecl()))
   4274     PushOnScopeChains(New, S);
   4275 
   4276   return New;
   4277 }
   4278 
   4279 /// Helper method to turn variable array types into constant array
   4280 /// types in certain situations which would otherwise be errors (for
   4281 /// GCC compatibility).
   4282 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
   4283                                                     ASTContext &Context,
   4284                                                     bool &SizeIsNegative,
   4285                                                     llvm::APSInt &Oversized) {
   4286   // This method tries to turn a variable array into a constant
   4287   // array even when the size isn't an ICE.  This is necessary
   4288   // for compatibility with code that depends on gcc's buggy
   4289   // constant expression folding, like struct {char x[(int)(char*)2];}
   4290   SizeIsNegative = false;
   4291   Oversized = 0;
   4292 
   4293   if (T->isDependentType())
   4294     return QualType();
   4295 
   4296   QualifierCollector Qs;
   4297   const Type *Ty = Qs.strip(T);
   4298 
   4299   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
   4300     QualType Pointee = PTy->getPointeeType();
   4301     QualType FixedType =
   4302         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
   4303                                             Oversized);
   4304     if (FixedType.isNull()) return FixedType;
   4305     FixedType = Context.getPointerType(FixedType);
   4306     return Qs.apply(Context, FixedType);
   4307   }
   4308   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
   4309     QualType Inner = PTy->getInnerType();
   4310     QualType FixedType =
   4311         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
   4312                                             Oversized);
   4313     if (FixedType.isNull()) return FixedType;
   4314     FixedType = Context.getParenType(FixedType);
   4315     return Qs.apply(Context, FixedType);
   4316   }
   4317 
   4318   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
   4319   if (!VLATy)
   4320     return QualType();
   4321   // FIXME: We should probably handle this case
   4322   if (VLATy->getElementType()->isVariablyModifiedType())
   4323     return QualType();
   4324 
   4325   llvm::APSInt Res;
   4326   if (!VLATy->getSizeExpr() ||
   4327       !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
   4328     return QualType();
   4329 
   4330   // Check whether the array size is negative.
   4331   if (Res.isSigned() && Res.isNegative()) {
   4332     SizeIsNegative = true;
   4333     return QualType();
   4334   }
   4335 
   4336   // Check whether the array is too large to be addressed.
   4337   unsigned ActiveSizeBits
   4338     = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
   4339                                               Res);
   4340   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
   4341     Oversized = Res;
   4342     return QualType();
   4343   }
   4344 
   4345   return Context.getConstantArrayType(VLATy->getElementType(),
   4346                                       Res, ArrayType::Normal, 0);
   4347 }
   4348 
   4349 static void
   4350 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
   4351   if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
   4352     PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
   4353     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
   4354                                       DstPTL.getPointeeLoc());
   4355     DstPTL.setStarLoc(SrcPTL.getStarLoc());
   4356     return;
   4357   }
   4358   if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
   4359     ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
   4360     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
   4361                                       DstPTL.getInnerLoc());
   4362     DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
   4363     DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
   4364     return;
   4365   }
   4366   ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
   4367   ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
   4368   TypeLoc SrcElemTL = SrcATL.getElementLoc();
   4369   TypeLoc DstElemTL = DstATL.getElementLoc();
   4370   DstElemTL.initializeFullCopy(SrcElemTL);
   4371   DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
   4372   DstATL.setSizeExpr(SrcATL.getSizeExpr());
   4373   DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
   4374 }
   4375 
   4376 /// Helper method to turn variable array types into constant array
   4377 /// types in certain situations which would otherwise be errors (for
   4378 /// GCC compatibility).
   4379 static TypeSourceInfo*
   4380 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
   4381                                               ASTContext &Context,
   4382                                               bool &SizeIsNegative,
   4383                                               llvm::APSInt &Oversized) {
   4384   QualType FixedTy
   4385     = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
   4386                                           SizeIsNegative, Oversized);
   4387   if (FixedTy.isNull())
   4388     return 0;
   4389   TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
   4390   FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
   4391                                     FixedTInfo->getTypeLoc());
   4392   return FixedTInfo;
   4393 }
   4394 
   4395 /// \brief Register the given locally-scoped extern "C" declaration so
   4396 /// that it can be found later for redeclarations. We include any extern "C"
   4397 /// declaration that is not visible in the translation unit here, not just
   4398 /// function-scope declarations.
   4399 void
   4400 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
   4401   if (!getLangOpts().CPlusPlus &&
   4402       ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
   4403     // Don't need to track declarations in the TU in C.
   4404     return;
   4405 
   4406   // Note that we have a locally-scoped external with this name.
   4407   // FIXME: There can be multiple such declarations if they are functions marked
   4408   // __attribute__((overloadable)) declared in function scope in C.
   4409   LocallyScopedExternCDecls[ND->getDeclName()] = ND;
   4410 }
   4411 
   4412 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
   4413   if (ExternalSource) {
   4414     // Load locally-scoped external decls from the external source.
   4415     // FIXME: This is inefficient. Maybe add a DeclContext for extern "C" decls?
   4416     SmallVector<NamedDecl *, 4> Decls;
   4417     ExternalSource->ReadLocallyScopedExternCDecls(Decls);
   4418     for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
   4419       llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
   4420         = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
   4421       if (Pos == LocallyScopedExternCDecls.end())
   4422         LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
   4423     }
   4424   }
   4425 
   4426   NamedDecl *D = LocallyScopedExternCDecls.lookup(Name);
   4427   return D ? cast<NamedDecl>(D->getMostRecentDecl()) : 0;
   4428 }
   4429 
   4430 /// \brief Diagnose function specifiers on a declaration of an identifier that
   4431 /// does not identify a function.
   4432 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
   4433   // FIXME: We should probably indicate the identifier in question to avoid
   4434   // confusion for constructs like "inline int a(), b;"
   4435   if (DS.isInlineSpecified())
   4436     Diag(DS.getInlineSpecLoc(),
   4437          diag::err_inline_non_function);
   4438 
   4439   if (DS.isVirtualSpecified())
   4440     Diag(DS.getVirtualSpecLoc(),
   4441          diag::err_virtual_non_function);
   4442 
   4443   if (DS.isExplicitSpecified())
   4444     Diag(DS.getExplicitSpecLoc(),
   4445          diag::err_explicit_non_function);
   4446 
   4447   if (DS.isNoreturnSpecified())
   4448     Diag(DS.getNoreturnSpecLoc(),
   4449          diag::err_noreturn_non_function);
   4450 }
   4451 
   4452 NamedDecl*
   4453 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
   4454                              TypeSourceInfo *TInfo, LookupResult &Previous) {
   4455   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
   4456   if (D.getCXXScopeSpec().isSet()) {
   4457     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
   4458       << D.getCXXScopeSpec().getRange();
   4459     D.setInvalidType();
   4460     // Pretend we didn't see the scope specifier.
   4461     DC = CurContext;
   4462     Previous.clear();
   4463   }
   4464 
   4465   DiagnoseFunctionSpecifiers(D.getDeclSpec());
   4466 
   4467   if (D.getDeclSpec().isConstexprSpecified())
   4468     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
   4469       << 1;
   4470 
   4471   if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
   4472     Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
   4473       << D.getName().getSourceRange();
   4474     return 0;
   4475   }
   4476 
   4477   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
   4478   if (!NewTD) return 0;
   4479 
   4480   // Handle attributes prior to checking for duplicates in MergeVarDecl
   4481   ProcessDeclAttributes(S, NewTD, D);
   4482 
   4483   CheckTypedefForVariablyModifiedType(S, NewTD);
   4484 
   4485   bool Redeclaration = D.isRedeclaration();
   4486   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
   4487   D.setRedeclaration(Redeclaration);
   4488   return ND;
   4489 }
   4490 
   4491 void
   4492 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
   4493   // C99 6.7.7p2: If a typedef name specifies a variably modified type
   4494   // then it shall have block scope.
   4495   // Note that variably modified types must be fixed before merging the decl so
   4496   // that redeclarations will match.
   4497   TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
   4498   QualType T = TInfo->getType();
   4499   if (T->isVariablyModifiedType()) {
   4500     getCurFunction()->setHasBranchProtectedScope();
   4501 
   4502     if (S->getFnParent() == 0) {
   4503       bool SizeIsNegative;
   4504       llvm::APSInt Oversized;
   4505       TypeSourceInfo *FixedTInfo =
   4506         TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
   4507                                                       SizeIsNegative,
   4508                                                       Oversized);
   4509       if (FixedTInfo) {
   4510         Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
   4511         NewTD->setTypeSourceInfo(FixedTInfo);
   4512       } else {
   4513         if (SizeIsNegative)
   4514           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
   4515         else if (T->isVariableArrayType())
   4516           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
   4517         else if (Oversized.getBoolValue())
   4518           Diag(NewTD->getLocation(), diag::err_array_too_large)
   4519             << Oversized.toString(10);
   4520         else
   4521           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
   4522         NewTD->setInvalidDecl();
   4523       }
   4524     }
   4525   }
   4526 }
   4527 
   4528 
   4529 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
   4530 /// declares a typedef-name, either using the 'typedef' type specifier or via
   4531 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
   4532 NamedDecl*
   4533 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
   4534                            LookupResult &Previous, bool &Redeclaration) {
   4535   // Merge the decl with the existing one if appropriate. If the decl is
   4536   // in an outer scope, it isn't the same thing.
   4537   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
   4538                        /*ExplicitInstantiationOrSpecialization=*/false);
   4539   filterNonConflictingPreviousDecls(Context, NewTD, Previous);
   4540   if (!Previous.empty()) {
   4541     Redeclaration = true;
   4542     MergeTypedefNameDecl(NewTD, Previous);
   4543   }
   4544 
   4545   // If this is the C FILE type, notify the AST context.
   4546   if (IdentifierInfo *II = NewTD->getIdentifier())
   4547     if (!NewTD->isInvalidDecl() &&
   4548         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
   4549       if (II->isStr("FILE"))
   4550         Context.setFILEDecl(NewTD);
   4551       else if (II->isStr("jmp_buf"))
   4552         Context.setjmp_bufDecl(NewTD);
   4553       else if (II->isStr("sigjmp_buf"))
   4554         Context.setsigjmp_bufDecl(NewTD);
   4555       else if (II->isStr("ucontext_t"))
   4556         Context.setucontext_tDecl(NewTD);
   4557     }
   4558 
   4559   return NewTD;
   4560 }
   4561 
   4562 /// \brief Determines whether the given declaration is an out-of-scope
   4563 /// previous declaration.
   4564 ///
   4565 /// This routine should be invoked when name lookup has found a
   4566 /// previous declaration (PrevDecl) that is not in the scope where a
   4567 /// new declaration by the same name is being introduced. If the new
   4568 /// declaration occurs in a local scope, previous declarations with
   4569 /// linkage may still be considered previous declarations (C99
   4570 /// 6.2.2p4-5, C++ [basic.link]p6).
   4571 ///
   4572 /// \param PrevDecl the previous declaration found by name
   4573 /// lookup
   4574 ///
   4575 /// \param DC the context in which the new declaration is being
   4576 /// declared.
   4577 ///
   4578 /// \returns true if PrevDecl is an out-of-scope previous declaration
   4579 /// for a new delcaration with the same name.
   4580 static bool
   4581 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
   4582                                 ASTContext &Context) {
   4583   if (!PrevDecl)
   4584     return false;
   4585 
   4586   if (!PrevDecl->hasLinkage())
   4587     return false;
   4588 
   4589   if (Context.getLangOpts().CPlusPlus) {
   4590     // C++ [basic.link]p6:
   4591     //   If there is a visible declaration of an entity with linkage
   4592     //   having the same name and type, ignoring entities declared
   4593     //   outside the innermost enclosing namespace scope, the block
   4594     //   scope declaration declares that same entity and receives the
   4595     //   linkage of the previous declaration.
   4596     DeclContext *OuterContext = DC->getRedeclContext();
   4597     if (!OuterContext->isFunctionOrMethod())
   4598       // This rule only applies to block-scope declarations.
   4599       return false;
   4600 
   4601     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
   4602     if (PrevOuterContext->isRecord())
   4603       // We found a member function: ignore it.
   4604       return false;
   4605 
   4606     // Find the innermost enclosing namespace for the new and
   4607     // previous declarations.
   4608     OuterContext = OuterContext->getEnclosingNamespaceContext();
   4609     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
   4610 
   4611     // The previous declaration is in a different namespace, so it
   4612     // isn't the same function.
   4613     if (!OuterContext->Equals(PrevOuterContext))
   4614       return false;
   4615   }
   4616 
   4617   return true;
   4618 }
   4619 
   4620 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
   4621   CXXScopeSpec &SS = D.getCXXScopeSpec();
   4622   if (!SS.isSet()) return;
   4623   DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
   4624 }
   4625 
   4626 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
   4627   QualType type = decl->getType();
   4628   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
   4629   if (lifetime == Qualifiers::OCL_Autoreleasing) {
   4630     // Various kinds of declaration aren't allowed to be __autoreleasing.
   4631     unsigned kind = -1U;
   4632     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
   4633       if (var->hasAttr<BlocksAttr>())
   4634         kind = 0; // __block
   4635       else if (!var->hasLocalStorage())
   4636         kind = 1; // global
   4637     } else if (isa<ObjCIvarDecl>(decl)) {
   4638       kind = 3; // ivar
   4639     } else if (isa<FieldDecl>(decl)) {
   4640       kind = 2; // field
   4641     }
   4642 
   4643     if (kind != -1U) {
   4644       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
   4645         << kind;
   4646     }
   4647   } else if (lifetime == Qualifiers::OCL_None) {
   4648     // Try to infer lifetime.
   4649     if (!type->isObjCLifetimeType())
   4650       return false;
   4651 
   4652     lifetime = type->getObjCARCImplicitLifetime();
   4653     type = Context.getLifetimeQualifiedType(type, lifetime);
   4654     decl->setType(type);
   4655   }
   4656 
   4657   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
   4658     // Thread-local variables cannot have lifetime.
   4659     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
   4660         var->getTLSKind()) {
   4661       Diag(var->getLocation(), diag::err_arc_thread_ownership)
   4662         << var->getType();
   4663       return true;
   4664     }
   4665   }
   4666 
   4667   return false;
   4668 }
   4669 
   4670 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
   4671   // 'weak' only applies to declarations with external linkage.
   4672   if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
   4673     if (!ND.isExternallyVisible()) {
   4674       S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
   4675       ND.dropAttr<WeakAttr>();
   4676     }
   4677   }
   4678   if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
   4679     if (ND.isExternallyVisible()) {
   4680       S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
   4681       ND.dropAttr<WeakRefAttr>();
   4682     }
   4683   }
   4684 
   4685   // 'selectany' only applies to externally visible varable declarations.
   4686   // It does not apply to functions.
   4687   if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
   4688     if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
   4689       S.Diag(Attr->getLocation(), diag::err_attribute_selectany_non_extern_data);
   4690       ND.dropAttr<SelectAnyAttr>();
   4691     }
   4692   }
   4693 }
   4694 
   4695 /// Given that we are within the definition of the given function,
   4696 /// will that definition behave like C99's 'inline', where the
   4697 /// definition is discarded except for optimization purposes?
   4698 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
   4699   // Try to avoid calling GetGVALinkageForFunction.
   4700 
   4701   // All cases of this require the 'inline' keyword.
   4702   if (!FD->isInlined()) return false;
   4703 
   4704   // This is only possible in C++ with the gnu_inline attribute.
   4705   if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
   4706     return false;
   4707 
   4708   // Okay, go ahead and call the relatively-more-expensive function.
   4709 
   4710 #ifndef NDEBUG
   4711   // AST quite reasonably asserts that it's working on a function
   4712   // definition.  We don't really have a way to tell it that we're
   4713   // currently defining the function, so just lie to it in +Asserts
   4714   // builds.  This is an awful hack.
   4715   FD->setLazyBody(1);
   4716 #endif
   4717 
   4718   bool isC99Inline = (S.Context.GetGVALinkageForFunction(FD) == GVA_C99Inline);
   4719 
   4720 #ifndef NDEBUG
   4721   FD->setLazyBody(0);
   4722 #endif
   4723 
   4724   return isC99Inline;
   4725 }
   4726 
   4727 /// Determine whether a variable is extern "C" prior to attaching
   4728 /// an initializer. We can't just call isExternC() here, because that
   4729 /// will also compute and cache whether the declaration is externally
   4730 /// visible, which might change when we attach the initializer.
   4731 ///
   4732 /// This can only be used if the declaration is known to not be a
   4733 /// redeclaration of an internal linkage declaration.
   4734 ///
   4735 /// For instance:
   4736 ///
   4737 ///   auto x = []{};
   4738 ///
   4739 /// Attaching the initializer here makes this declaration not externally
   4740 /// visible, because its type has internal linkage.
   4741 ///
   4742 /// FIXME: This is a hack.
   4743 template<typename T>
   4744 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
   4745   if (S.getLangOpts().CPlusPlus) {
   4746     // In C++, the overloadable attribute negates the effects of extern "C".
   4747     if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
   4748       return false;
   4749   }
   4750   return D->isExternC();
   4751 }
   4752 
   4753 static bool shouldConsiderLinkage(const VarDecl *VD) {
   4754   const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
   4755   if (DC->isFunctionOrMethod())
   4756     return VD->hasExternalStorage();
   4757   if (DC->isFileContext())
   4758     return true;
   4759   if (DC->isRecord())
   4760     return false;
   4761   llvm_unreachable("Unexpected context");
   4762 }
   4763 
   4764 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
   4765   const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
   4766   if (DC->isFileContext() || DC->isFunctionOrMethod())
   4767     return true;
   4768   if (DC->isRecord())
   4769     return false;
   4770   llvm_unreachable("Unexpected context");
   4771 }
   4772 
   4773 bool Sema::HandleVariableRedeclaration(Decl *D, CXXScopeSpec &SS) {
   4774   // If this is a redeclaration of a variable template or a forward
   4775   // declaration of a variable template partial specialization
   4776   // with nested name specifier, complain.
   4777 
   4778   if (D && SS.isNotEmpty() &&
   4779       (isa<VarTemplateDecl>(D) ||
   4780        isa<VarTemplatePartialSpecializationDecl>(D))) {
   4781     Diag(SS.getBeginLoc(), diag::err_forward_var_nested_name_specifier)
   4782       << isa<VarTemplatePartialSpecializationDecl>(D) << SS.getRange();
   4783     return true;
   4784   }
   4785   return false;
   4786 }
   4787 
   4788 NamedDecl *
   4789 Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
   4790                               TypeSourceInfo *TInfo, LookupResult &Previous,
   4791                               MultiTemplateParamsArg TemplateParamLists,
   4792                               bool &AddToScope) {
   4793   QualType R = TInfo->getType();
   4794   DeclarationName Name = GetNameForDeclarator(D).getName();
   4795 
   4796   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
   4797   VarDecl::StorageClass SC =
   4798     StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
   4799 
   4800   if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16) {
   4801     // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
   4802     // half array type (unless the cl_khr_fp16 extension is enabled).
   4803     if (Context.getBaseElementType(R)->isHalfType()) {
   4804       Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
   4805       D.setInvalidType();
   4806     }
   4807   }
   4808 
   4809   if (SCSpec == DeclSpec::SCS_mutable) {
   4810     // mutable can only appear on non-static class members, so it's always
   4811     // an error here
   4812     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
   4813     D.setInvalidType();
   4814     SC = SC_None;
   4815   }
   4816 
   4817   if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
   4818       !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
   4819                               D.getDeclSpec().getStorageClassSpecLoc())) {
   4820     // In C++11, the 'register' storage class specifier is deprecated.
   4821     // Suppress the warning in system macros, it's used in macros in some
   4822     // popular C system headers, such as in glibc's htonl() macro.
   4823     Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   4824          diag::warn_deprecated_register)
   4825       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
   4826   }
   4827 
   4828   IdentifierInfo *II = Name.getAsIdentifierInfo();
   4829   if (!II) {
   4830     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
   4831       << Name;
   4832     return 0;
   4833   }
   4834 
   4835   DiagnoseFunctionSpecifiers(D.getDeclSpec());
   4836 
   4837   if (!DC->isRecord() && S->getFnParent() == 0) {
   4838     // C99 6.9p2: The storage-class specifiers auto and register shall not
   4839     // appear in the declaration specifiers in an external declaration.
   4840     if (SC == SC_Auto || SC == SC_Register) {
   4841       // If this is a register variable with an asm label specified, then this
   4842       // is a GNU extension.
   4843       if (SC == SC_Register && D.getAsmLabel())
   4844         Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
   4845       else
   4846         Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
   4847       D.setInvalidType();
   4848     }
   4849   }
   4850 
   4851   if (getLangOpts().OpenCL) {
   4852     // Set up the special work-group-local storage class for variables in the
   4853     // OpenCL __local address space.
   4854     if (R.getAddressSpace() == LangAS::opencl_local) {
   4855       SC = SC_OpenCLWorkGroupLocal;
   4856     }
   4857 
   4858     // OpenCL v1.2 s6.9.b p4:
   4859     // The sampler type cannot be used with the __local and __global address
   4860     // space qualifiers.
   4861     if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
   4862       R.getAddressSpace() == LangAS::opencl_global)) {
   4863       Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
   4864     }
   4865 
   4866     // OpenCL 1.2 spec, p6.9 r:
   4867     // The event type cannot be used to declare a program scope variable.
   4868     // The event type cannot be used with the __local, __constant and __global
   4869     // address space qualifiers.
   4870     if (R->isEventT()) {
   4871       if (S->getParent() == 0) {
   4872         Diag(D.getLocStart(), diag::err_event_t_global_var);
   4873         D.setInvalidType();
   4874       }
   4875 
   4876       if (R.getAddressSpace()) {
   4877         Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
   4878         D.setInvalidType();
   4879       }
   4880     }
   4881   }
   4882 
   4883   bool IsExplicitSpecialization = false;
   4884   bool IsVariableTemplateSpecialization = false;
   4885   bool IsPartialSpecialization = false;
   4886   bool Invalid = false; // TODO: Can we remove this (error-prone)?
   4887   TemplateParameterList *TemplateParams = 0;
   4888   VarTemplateDecl *PrevVarTemplate = 0;
   4889   VarDecl *NewVD;
   4890   if (!getLangOpts().CPlusPlus) {
   4891     NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
   4892                             D.getIdentifierLoc(), II,
   4893                             R, TInfo, SC);
   4894 
   4895     if (D.isInvalidType())
   4896       NewVD->setInvalidDecl();
   4897   } else {
   4898     if (DC->isRecord() && !CurContext->isRecord()) {
   4899       // This is an out-of-line definition of a static data member.
   4900       switch (SC) {
   4901       case SC_None:
   4902         break;
   4903       case SC_Static:
   4904         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   4905              diag::err_static_out_of_line)
   4906           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
   4907         break;
   4908       case SC_Auto:
   4909       case SC_Register:
   4910       case SC_Extern:
   4911         // [dcl.stc] p2: The auto or register specifiers shall be applied only
   4912         // to names of variables declared in a block or to function parameters.
   4913         // [dcl.stc] p6: The extern specifier cannot be used in the declaration
   4914         // of class members
   4915 
   4916         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   4917              diag::err_storage_class_for_static_member)
   4918           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
   4919         break;
   4920       case SC_PrivateExtern:
   4921         llvm_unreachable("C storage class in c++!");
   4922       case SC_OpenCLWorkGroupLocal:
   4923         llvm_unreachable("OpenCL storage class in c++!");
   4924       }
   4925     }
   4926 
   4927     if (SC == SC_Static && CurContext->isRecord()) {
   4928       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
   4929         if (RD->isLocalClass())
   4930           Diag(D.getIdentifierLoc(),
   4931                diag::err_static_data_member_not_allowed_in_local_class)
   4932             << Name << RD->getDeclName();
   4933 
   4934         // C++98 [class.union]p1: If a union contains a static data member,
   4935         // the program is ill-formed. C++11 drops this restriction.
   4936         if (RD->isUnion())
   4937           Diag(D.getIdentifierLoc(),
   4938                getLangOpts().CPlusPlus11
   4939                  ? diag::warn_cxx98_compat_static_data_member_in_union
   4940                  : diag::ext_static_data_member_in_union) << Name;
   4941         // We conservatively disallow static data members in anonymous structs.
   4942         else if (!RD->getDeclName())
   4943           Diag(D.getIdentifierLoc(),
   4944                diag::err_static_data_member_not_allowed_in_anon_struct)
   4945             << Name << RD->isUnion();
   4946       }
   4947     }
   4948 
   4949     NamedDecl *PrevDecl = 0;
   4950     if (Previous.begin() != Previous.end())
   4951       PrevDecl = (*Previous.begin())->getUnderlyingDecl();
   4952     PrevVarTemplate = dyn_cast_or_null<VarTemplateDecl>(PrevDecl);
   4953 
   4954     // Match up the template parameter lists with the scope specifier, then
   4955     // determine whether we have a template or a template specialization.
   4956     TemplateParams = MatchTemplateParametersToScopeSpecifier(
   4957         D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
   4958         D.getCXXScopeSpec(), TemplateParamLists,
   4959         /*never a friend*/ false, IsExplicitSpecialization, Invalid);
   4960     if (TemplateParams) {
   4961       if (!TemplateParams->size() &&
   4962           D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
   4963         // There is an extraneous 'template<>' for this variable. Complain
   4964         // about it, but allow the declaration of the variable.
   4965         Diag(TemplateParams->getTemplateLoc(),
   4966              diag::err_template_variable_noparams)
   4967           << II
   4968           << SourceRange(TemplateParams->getTemplateLoc(),
   4969                          TemplateParams->getRAngleLoc());
   4970       } else {
   4971         // Only C++1y supports variable templates (N3651).
   4972         Diag(D.getIdentifierLoc(),
   4973              getLangOpts().CPlusPlus1y
   4974                  ? diag::warn_cxx11_compat_variable_template
   4975                  : diag::ext_variable_template);
   4976 
   4977         if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
   4978           // This is an explicit specialization or a partial specialization.
   4979           // Check that we can declare a specialization here
   4980 
   4981           IsVariableTemplateSpecialization = true;
   4982           IsPartialSpecialization = TemplateParams->size() > 0;
   4983 
   4984         } else { // if (TemplateParams->size() > 0)
   4985           // This is a template declaration.
   4986 
   4987           // Check that we can declare a template here.
   4988           if (CheckTemplateDeclScope(S, TemplateParams))
   4989             return 0;
   4990 
   4991           // If there is a previous declaration with the same name, check
   4992           // whether this is a valid redeclaration.
   4993           if (PrevDecl && !isDeclInScope(PrevDecl, DC, S))
   4994             PrevDecl = PrevVarTemplate = 0;
   4995 
   4996           if (PrevVarTemplate) {
   4997             // Ensure that the template parameter lists are compatible.
   4998             if (!TemplateParameterListsAreEqual(
   4999                     TemplateParams, PrevVarTemplate->getTemplateParameters(),
   5000                     /*Complain=*/true, TPL_TemplateMatch))
   5001               return 0;
   5002           } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
   5003             // Maybe we will complain about the shadowed template parameter.
   5004             DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
   5005 
   5006             // Just pretend that we didn't see the previous declaration.
   5007             PrevDecl = 0;
   5008           } else if (PrevDecl) {
   5009             // C++ [temp]p5:
   5010             // ... a template name declared in namespace scope or in class
   5011             // scope shall be unique in that scope.
   5012             Diag(D.getIdentifierLoc(), diag::err_redefinition_different_kind)
   5013                 << Name;
   5014             Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   5015             return 0;
   5016           }
   5017 
   5018           // Check the template parameter list of this declaration, possibly
   5019           // merging in the template parameter list from the previous variable
   5020           // template declaration.
   5021           if (CheckTemplateParameterList(
   5022                   TemplateParams,
   5023                   PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
   5024                                   : 0,
   5025                   (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
   5026                    DC->isDependentContext())
   5027                       ? TPC_ClassTemplateMember
   5028                       : TPC_VarTemplate))
   5029             Invalid = true;
   5030 
   5031           if (D.getCXXScopeSpec().isSet()) {
   5032             // If the name of the template was qualified, we must be defining
   5033             // the template out-of-line.
   5034             if (!D.getCXXScopeSpec().isInvalid() && !Invalid &&
   5035                 !PrevVarTemplate) {
   5036               Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
   5037                   << Name << DC << D.getCXXScopeSpec().getRange();
   5038               Invalid = true;
   5039             }
   5040           }
   5041         }
   5042       }
   5043     } else if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
   5044       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
   5045 
   5046       // We have encountered something that the user meant to be a
   5047       // specialization (because it has explicitly-specified template
   5048       // arguments) but that was not introduced with a "template<>" (or had
   5049       // too few of them).
   5050       // FIXME: Differentiate between attempts for explicit instantiations
   5051       // (starting with "template") and the rest.
   5052       Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
   5053           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
   5054           << FixItHint::CreateInsertion(D.getDeclSpec().getLocStart(),
   5055                                         "template<> ");
   5056       IsVariableTemplateSpecialization = true;
   5057     }
   5058 
   5059     if (IsVariableTemplateSpecialization) {
   5060       if (!PrevVarTemplate) {
   5061         Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
   5062             << IsPartialSpecialization;
   5063         return 0;
   5064       }
   5065 
   5066       SourceLocation TemplateKWLoc =
   5067           TemplateParamLists.size() > 0
   5068               ? TemplateParamLists[0]->getTemplateLoc()
   5069               : SourceLocation();
   5070       DeclResult Res = ActOnVarTemplateSpecialization(
   5071           S, PrevVarTemplate, D, TInfo, TemplateKWLoc, TemplateParams, SC,
   5072           IsPartialSpecialization);
   5073       if (Res.isInvalid())
   5074         return 0;
   5075       NewVD = cast<VarDecl>(Res.get());
   5076       AddToScope = false;
   5077     } else
   5078       NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
   5079                               D.getIdentifierLoc(), II, R, TInfo, SC);
   5080 
   5081     // If this decl has an auto type in need of deduction, make a note of the
   5082     // Decl so we can diagnose uses of it in its own initializer.
   5083     if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
   5084       ParsingInitForAutoVars.insert(NewVD);
   5085 
   5086     if (D.isInvalidType() || Invalid)
   5087       NewVD->setInvalidDecl();
   5088 
   5089     SetNestedNameSpecifier(NewVD, D);
   5090 
   5091     // FIXME: Do we need D.getCXXScopeSpec().isSet()?
   5092     if (TemplateParams && TemplateParamLists.size() > 1 &&
   5093         (!IsVariableTemplateSpecialization || D.getCXXScopeSpec().isSet())) {
   5094       NewVD->setTemplateParameterListsInfo(
   5095           Context, TemplateParamLists.size() - 1, TemplateParamLists.data());
   5096     } else if (IsVariableTemplateSpecialization ||
   5097                (!TemplateParams && TemplateParamLists.size() > 0 &&
   5098                 (D.getCXXScopeSpec().isSet()))) {
   5099       NewVD->setTemplateParameterListsInfo(Context,
   5100                                            TemplateParamLists.size(),
   5101                                            TemplateParamLists.data());
   5102     }
   5103 
   5104     if (D.getDeclSpec().isConstexprSpecified())
   5105       NewVD->setConstexpr(true);
   5106   }
   5107 
   5108   // Set the lexical context. If the declarator has a C++ scope specifier, the
   5109   // lexical context will be different from the semantic context.
   5110   NewVD->setLexicalDeclContext(CurContext);
   5111 
   5112   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
   5113     if (NewVD->hasLocalStorage()) {
   5114       // C++11 [dcl.stc]p4:
   5115       //   When thread_local is applied to a variable of block scope the
   5116       //   storage-class-specifier static is implied if it does not appear
   5117       //   explicitly.
   5118       // Core issue: 'static' is not implied if the variable is declared
   5119       //   'extern'.
   5120       if (SCSpec == DeclSpec::SCS_unspecified &&
   5121           TSCS == DeclSpec::TSCS_thread_local &&
   5122           DC->isFunctionOrMethod())
   5123         NewVD->setTSCSpec(TSCS);
   5124       else
   5125         Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
   5126              diag::err_thread_non_global)
   5127           << DeclSpec::getSpecifierName(TSCS);
   5128     } else if (!Context.getTargetInfo().isTLSSupported())
   5129       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
   5130            diag::err_thread_unsupported);
   5131     else
   5132       NewVD->setTSCSpec(TSCS);
   5133   }
   5134 
   5135   // C99 6.7.4p3
   5136   //   An inline definition of a function with external linkage shall
   5137   //   not contain a definition of a modifiable object with static or
   5138   //   thread storage duration...
   5139   // We only apply this when the function is required to be defined
   5140   // elsewhere, i.e. when the function is not 'extern inline'.  Note
   5141   // that a local variable with thread storage duration still has to
   5142   // be marked 'static'.  Also note that it's possible to get these
   5143   // semantics in C++ using __attribute__((gnu_inline)).
   5144   if (SC == SC_Static && S->getFnParent() != 0 &&
   5145       !NewVD->getType().isConstQualified()) {
   5146     FunctionDecl *CurFD = getCurFunctionDecl();
   5147     if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
   5148       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   5149            diag::warn_static_local_in_extern_inline);
   5150       MaybeSuggestAddingStaticToDecl(CurFD);
   5151     }
   5152   }
   5153 
   5154   if (D.getDeclSpec().isModulePrivateSpecified()) {
   5155     if (IsVariableTemplateSpecialization)
   5156       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
   5157           << (IsPartialSpecialization ? 1 : 0)
   5158           << FixItHint::CreateRemoval(
   5159                  D.getDeclSpec().getModulePrivateSpecLoc());
   5160     else if (IsExplicitSpecialization)
   5161       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
   5162         << 2
   5163         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
   5164     else if (NewVD->hasLocalStorage())
   5165       Diag(NewVD->getLocation(), diag::err_module_private_local)
   5166         << 0 << NewVD->getDeclName()
   5167         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
   5168         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
   5169     else
   5170       NewVD->setModulePrivate();
   5171   }
   5172 
   5173   // Handle attributes prior to checking for duplicates in MergeVarDecl
   5174   ProcessDeclAttributes(S, NewVD, D);
   5175 
   5176   if (NewVD->hasAttrs())
   5177     CheckAlignasUnderalignment(NewVD);
   5178 
   5179   if (getLangOpts().CUDA) {
   5180     // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
   5181     // storage [duration]."
   5182     if (SC == SC_None && S->getFnParent() != 0 &&
   5183         (NewVD->hasAttr<CUDASharedAttr>() ||
   5184          NewVD->hasAttr<CUDAConstantAttr>())) {
   5185       NewVD->setStorageClass(SC_Static);
   5186     }
   5187   }
   5188 
   5189   // In auto-retain/release, infer strong retension for variables of
   5190   // retainable type.
   5191   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
   5192     NewVD->setInvalidDecl();
   5193 
   5194   // Handle GNU asm-label extension (encoded as an attribute).
   5195   if (Expr *E = (Expr*)D.getAsmLabel()) {
   5196     // The parser guarantees this is a string.
   5197     StringLiteral *SE = cast<StringLiteral>(E);
   5198     StringRef Label = SE->getString();
   5199     if (S->getFnParent() != 0) {
   5200       switch (SC) {
   5201       case SC_None:
   5202       case SC_Auto:
   5203         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
   5204         break;
   5205       case SC_Register:
   5206         if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
   5207           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
   5208         break;
   5209       case SC_Static:
   5210       case SC_Extern:
   5211       case SC_PrivateExtern:
   5212       case SC_OpenCLWorkGroupLocal:
   5213         break;
   5214       }
   5215     }
   5216 
   5217     NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
   5218                                                 Context, Label));
   5219   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
   5220     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
   5221       ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
   5222     if (I != ExtnameUndeclaredIdentifiers.end()) {
   5223       NewVD->addAttr(I->second);
   5224       ExtnameUndeclaredIdentifiers.erase(I);
   5225     }
   5226   }
   5227 
   5228   // Diagnose shadowed variables before filtering for scope.
   5229   // FIXME: Special treatment for static variable template members (?).
   5230   if (!D.getCXXScopeSpec().isSet())
   5231     CheckShadow(S, NewVD, Previous);
   5232 
   5233   // Don't consider existing declarations that are in a different
   5234   // scope and are out-of-semantic-context declarations (if the new
   5235   // declaration has linkage).
   5236   FilterLookupForScope(
   5237       Previous, DC, S, shouldConsiderLinkage(NewVD),
   5238       IsExplicitSpecialization || IsVariableTemplateSpecialization);
   5239 
   5240   if (!getLangOpts().CPlusPlus) {
   5241     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
   5242   } else {
   5243     // Merge the decl with the existing one if appropriate.
   5244     if (!Previous.empty()) {
   5245       if (Previous.isSingleResult() &&
   5246           isa<FieldDecl>(Previous.getFoundDecl()) &&
   5247           D.getCXXScopeSpec().isSet()) {
   5248         // The user tried to define a non-static data member
   5249         // out-of-line (C++ [dcl.meaning]p1).
   5250         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
   5251           << D.getCXXScopeSpec().getRange();
   5252         Previous.clear();
   5253         NewVD->setInvalidDecl();
   5254       }
   5255     } else if (D.getCXXScopeSpec().isSet()) {
   5256       // No previous declaration in the qualifying scope.
   5257       Diag(D.getIdentifierLoc(), diag::err_no_member)
   5258         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
   5259         << D.getCXXScopeSpec().getRange();
   5260       NewVD->setInvalidDecl();
   5261     }
   5262 
   5263     if (!IsVariableTemplateSpecialization) {
   5264       if (PrevVarTemplate) {
   5265         LookupResult PrevDecl(*this, GetNameForDeclarator(D),
   5266                               LookupOrdinaryName, ForRedeclaration);
   5267         PrevDecl.addDecl(PrevVarTemplate->getTemplatedDecl());
   5268         D.setRedeclaration(CheckVariableDeclaration(NewVD, PrevDecl));
   5269       } else
   5270         D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
   5271     }
   5272 
   5273     // This is an explicit specialization of a static data member. Check it.
   5274     // FIXME: Special treatment for static variable template members (?).
   5275     if (IsExplicitSpecialization && !NewVD->isInvalidDecl() &&
   5276         CheckMemberSpecialization(NewVD, Previous))
   5277       NewVD->setInvalidDecl();
   5278   }
   5279 
   5280   ProcessPragmaWeak(S, NewVD);
   5281   checkAttributesAfterMerging(*this, *NewVD);
   5282 
   5283   // If this is the first declaration of an extern C variable, update
   5284   // the map of such variables.
   5285   if (!NewVD->getPreviousDecl() && !NewVD->isInvalidDecl() &&
   5286       isIncompleteDeclExternC(*this, NewVD))
   5287     RegisterLocallyScopedExternCDecl(NewVD, S);
   5288 
   5289   if (NewVD->isStaticLocal()) {
   5290     Decl *ManglingContextDecl;
   5291     if (MangleNumberingContext *MCtx =
   5292             getCurrentMangleNumberContext(NewVD->getDeclContext(),
   5293                                           ManglingContextDecl)) {
   5294       Context.setManglingNumber(NewVD, MCtx->getManglingNumber(NewVD));
   5295     }
   5296   }
   5297 
   5298   // If this is not a variable template, return it now
   5299   if (!TemplateParams || IsVariableTemplateSpecialization)
   5300     return NewVD;
   5301 
   5302   // If this is supposed to be a variable template, create it as such.
   5303   VarTemplateDecl *NewTemplate =
   5304       VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
   5305                               TemplateParams, NewVD, PrevVarTemplate);
   5306   NewVD->setDescribedVarTemplate(NewTemplate);
   5307 
   5308   if (D.getDeclSpec().isModulePrivateSpecified())
   5309     NewTemplate->setModulePrivate();
   5310 
   5311   // If we are providing an explicit specialization of a static variable
   5312   // template, make a note of that.
   5313   if (PrevVarTemplate && PrevVarTemplate->getInstantiatedFromMemberTemplate())
   5314     NewTemplate->setMemberSpecialization();
   5315 
   5316   // Set the lexical context of this template
   5317   NewTemplate->setLexicalDeclContext(CurContext);
   5318   if (NewVD->isStaticDataMember() && NewVD->isOutOfLine())
   5319     NewTemplate->setAccess(NewVD->getAccess());
   5320 
   5321   if (PrevVarTemplate)
   5322     mergeDeclAttributes(NewVD, PrevVarTemplate->getTemplatedDecl());
   5323 
   5324   AddPushedVisibilityAttribute(NewVD);
   5325 
   5326   PushOnScopeChains(NewTemplate, S);
   5327   AddToScope = false;
   5328 
   5329   if (Invalid) {
   5330     NewTemplate->setInvalidDecl();
   5331     NewVD->setInvalidDecl();
   5332   }
   5333 
   5334   ActOnDocumentableDecl(NewTemplate);
   5335 
   5336   return NewTemplate;
   5337 }
   5338 
   5339 /// \brief Diagnose variable or built-in function shadowing.  Implements
   5340 /// -Wshadow.
   5341 ///
   5342 /// This method is called whenever a VarDecl is added to a "useful"
   5343 /// scope.
   5344 ///
   5345 /// \param S the scope in which the shadowing name is being declared
   5346 /// \param R the lookup of the name
   5347 ///
   5348 void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
   5349   // Return if warning is ignored.
   5350   if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
   5351         DiagnosticsEngine::Ignored)
   5352     return;
   5353 
   5354   // Don't diagnose declarations at file scope.
   5355   if (D->hasGlobalStorage())
   5356     return;
   5357 
   5358   DeclContext *NewDC = D->getDeclContext();
   5359 
   5360   // Only diagnose if we're shadowing an unambiguous field or variable.
   5361   if (R.getResultKind() != LookupResult::Found)
   5362     return;
   5363 
   5364   NamedDecl* ShadowedDecl = R.getFoundDecl();
   5365   if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
   5366     return;
   5367 
   5368   // Fields are not shadowed by variables in C++ static methods.
   5369   if (isa<FieldDecl>(ShadowedDecl))
   5370     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
   5371       if (MD->isStatic())
   5372         return;
   5373 
   5374   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
   5375     if (shadowedVar->isExternC()) {
   5376       // For shadowing external vars, make sure that we point to the global
   5377       // declaration, not a locally scoped extern declaration.
   5378       for (VarDecl::redecl_iterator
   5379              I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
   5380            I != E; ++I)
   5381         if (I->isFileVarDecl()) {
   5382           ShadowedDecl = *I;
   5383           break;
   5384         }
   5385     }
   5386 
   5387   DeclContext *OldDC = ShadowedDecl->getDeclContext();
   5388 
   5389   // Only warn about certain kinds of shadowing for class members.
   5390   if (NewDC && NewDC->isRecord()) {
   5391     // In particular, don't warn about shadowing non-class members.
   5392     if (!OldDC->isRecord())
   5393       return;
   5394 
   5395     // TODO: should we warn about static data members shadowing
   5396     // static data members from base classes?
   5397 
   5398     // TODO: don't diagnose for inaccessible shadowed members.
   5399     // This is hard to do perfectly because we might friend the
   5400     // shadowing context, but that's just a false negative.
   5401   }
   5402 
   5403   // Determine what kind of declaration we're shadowing.
   5404   unsigned Kind;
   5405   if (isa<RecordDecl>(OldDC)) {
   5406     if (isa<FieldDecl>(ShadowedDecl))
   5407       Kind = 3; // field
   5408     else
   5409       Kind = 2; // static data member
   5410   } else if (OldDC->isFileContext())
   5411     Kind = 1; // global
   5412   else
   5413     Kind = 0; // local
   5414 
   5415   DeclarationName Name = R.getLookupName();
   5416 
   5417   // Emit warning and note.
   5418   Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
   5419   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
   5420 }
   5421 
   5422 /// \brief Check -Wshadow without the advantage of a previous lookup.
   5423 void Sema::CheckShadow(Scope *S, VarDecl *D) {
   5424   if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
   5425         DiagnosticsEngine::Ignored)
   5426     return;
   5427 
   5428   LookupResult R(*this, D->getDeclName(), D->getLocation(),
   5429                  Sema::LookupOrdinaryName, Sema::ForRedeclaration);
   5430   LookupName(R, S);
   5431   CheckShadow(S, D, R);
   5432 }
   5433 
   5434 /// Check for conflict between this global or extern "C" declaration and
   5435 /// previous global or extern "C" declarations. This is only used in C++.
   5436 template<typename T>
   5437 static bool checkGlobalOrExternCConflict(
   5438     Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
   5439   assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
   5440   NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
   5441 
   5442   if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
   5443     // The common case: this global doesn't conflict with any extern "C"
   5444     // declaration.
   5445     return false;
   5446   }
   5447 
   5448   if (Prev) {
   5449     if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
   5450       // Both the old and new declarations have C language linkage. This is a
   5451       // redeclaration.
   5452       Previous.clear();
   5453       Previous.addDecl(Prev);
   5454       return true;
   5455     }
   5456 
   5457     // This is a global, non-extern "C" declaration, and there is a previous
   5458     // non-global extern "C" declaration. Diagnose if this is a variable
   5459     // declaration.
   5460     if (!isa<VarDecl>(ND))
   5461       return false;
   5462   } else {
   5463     // The declaration is extern "C". Check for any declaration in the
   5464     // translation unit which might conflict.
   5465     if (IsGlobal) {
   5466       // We have already performed the lookup into the translation unit.
   5467       IsGlobal = false;
   5468       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
   5469            I != E; ++I) {
   5470         if (isa<VarDecl>(*I)) {
   5471           Prev = *I;
   5472           break;
   5473         }
   5474       }
   5475     } else {
   5476       DeclContext::lookup_result R =
   5477           S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
   5478       for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
   5479            I != E; ++I) {
   5480         if (isa<VarDecl>(*I)) {
   5481           Prev = *I;
   5482           break;
   5483         }
   5484         // FIXME: If we have any other entity with this name in global scope,
   5485         // the declaration is ill-formed, but that is a defect: it breaks the
   5486         // 'stat' hack, for instance. Only variables can have mangled name
   5487         // clashes with extern "C" declarations, so only they deserve a
   5488         // diagnostic.
   5489       }
   5490     }
   5491 
   5492     if (!Prev)
   5493       return false;
   5494   }
   5495 
   5496   // Use the first declaration's location to ensure we point at something which
   5497   // is lexically inside an extern "C" linkage-spec.
   5498   assert(Prev && "should have found a previous declaration to diagnose");
   5499   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
   5500     Prev = FD->getFirstDeclaration();
   5501   else
   5502     Prev = cast<VarDecl>(Prev)->getFirstDeclaration();
   5503 
   5504   S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
   5505     << IsGlobal << ND;
   5506   S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
   5507     << IsGlobal;
   5508   return false;
   5509 }
   5510 
   5511 /// Apply special rules for handling extern "C" declarations. Returns \c true
   5512 /// if we have found that this is a redeclaration of some prior entity.
   5513 ///
   5514 /// Per C++ [dcl.link]p6:
   5515 ///   Two declarations [for a function or variable] with C language linkage
   5516 ///   with the same name that appear in different scopes refer to the same
   5517 ///   [entity]. An entity with C language linkage shall not be declared with
   5518 ///   the same name as an entity in global scope.
   5519 template<typename T>
   5520 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
   5521                                                   LookupResult &Previous) {
   5522   if (!S.getLangOpts().CPlusPlus) {
   5523     // In C, when declaring a global variable, look for a corresponding 'extern'
   5524     // variable declared in function scope.
   5525     //
   5526     // FIXME: The corresponding case in C++ does not work.  We should instead
   5527     // set the semantic DC for an extern local variable to be the innermost
   5528     // enclosing namespace, and ensure they are only found by redeclaration
   5529     // lookup.
   5530     if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
   5531       if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
   5532         Previous.clear();
   5533         Previous.addDecl(Prev);
   5534         return true;
   5535       }
   5536     }
   5537     return false;
   5538   }
   5539 
   5540   // A declaration in the translation unit can conflict with an extern "C"
   5541   // declaration.
   5542   if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
   5543     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
   5544 
   5545   // An extern "C" declaration can conflict with a declaration in the
   5546   // translation unit or can be a redeclaration of an extern "C" declaration
   5547   // in another scope.
   5548   if (isIncompleteDeclExternC(S,ND))
   5549     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
   5550 
   5551   // Neither global nor extern "C": nothing to do.
   5552   return false;
   5553 }
   5554 
   5555 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
   5556   // If the decl is already known invalid, don't check it.
   5557   if (NewVD->isInvalidDecl())
   5558     return;
   5559 
   5560   TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
   5561   QualType T = TInfo->getType();
   5562 
   5563   // Defer checking an 'auto' type until its initializer is attached.
   5564   if (T->isUndeducedType())
   5565     return;
   5566 
   5567   if (T->isObjCObjectType()) {
   5568     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
   5569       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
   5570     T = Context.getObjCObjectPointerType(T);
   5571     NewVD->setType(T);
   5572   }
   5573 
   5574   // Emit an error if an address space was applied to decl with local storage.
   5575   // This includes arrays of objects with address space qualifiers, but not
   5576   // automatic variables that point to other address spaces.
   5577   // ISO/IEC TR 18037 S5.1.2
   5578   if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
   5579     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
   5580     NewVD->setInvalidDecl();
   5581     return;
   5582   }
   5583 
   5584   // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
   5585   // __constant address space.
   5586   if (getLangOpts().OpenCL && NewVD->isFileVarDecl()
   5587       && T.getAddressSpace() != LangAS::opencl_constant
   5588       && !T->isSamplerT()){
   5589     Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space);
   5590     NewVD->setInvalidDecl();
   5591     return;
   5592   }
   5593 
   5594   // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
   5595   // scope.
   5596   if ((getLangOpts().OpenCLVersion >= 120)
   5597       && NewVD->isStaticLocal()) {
   5598     Diag(NewVD->getLocation(), diag::err_static_function_scope);
   5599     NewVD->setInvalidDecl();
   5600     return;
   5601   }
   5602 
   5603   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
   5604       && !NewVD->hasAttr<BlocksAttr>()) {
   5605     if (getLangOpts().getGC() != LangOptions::NonGC)
   5606       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
   5607     else {
   5608       assert(!getLangOpts().ObjCAutoRefCount);
   5609       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
   5610     }
   5611   }
   5612 
   5613   bool isVM = T->isVariablyModifiedType();
   5614   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
   5615       NewVD->hasAttr<BlocksAttr>())
   5616     getCurFunction()->setHasBranchProtectedScope();
   5617 
   5618   if ((isVM && NewVD->hasLinkage()) ||
   5619       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
   5620     bool SizeIsNegative;
   5621     llvm::APSInt Oversized;
   5622     TypeSourceInfo *FixedTInfo =
   5623       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
   5624                                                     SizeIsNegative, Oversized);
   5625     if (FixedTInfo == 0 && T->isVariableArrayType()) {
   5626       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
   5627       // FIXME: This won't give the correct result for
   5628       // int a[10][n];
   5629       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
   5630 
   5631       if (NewVD->isFileVarDecl())
   5632         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
   5633         << SizeRange;
   5634       else if (NewVD->isStaticLocal())
   5635         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
   5636         << SizeRange;
   5637       else
   5638         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
   5639         << SizeRange;
   5640       NewVD->setInvalidDecl();
   5641       return;
   5642     }
   5643 
   5644     if (FixedTInfo == 0) {
   5645       if (NewVD->isFileVarDecl())
   5646         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
   5647       else
   5648         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
   5649       NewVD->setInvalidDecl();
   5650       return;
   5651     }
   5652 
   5653     Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
   5654     NewVD->setType(FixedTInfo->getType());
   5655     NewVD->setTypeSourceInfo(FixedTInfo);
   5656   }
   5657 
   5658   if (T->isVoidType()) {
   5659     // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
   5660     //                    of objects and functions.
   5661     if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
   5662       Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
   5663         << T;
   5664       NewVD->setInvalidDecl();
   5665       return;
   5666     }
   5667   }
   5668 
   5669   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
   5670     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
   5671     NewVD->setInvalidDecl();
   5672     return;
   5673   }
   5674 
   5675   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
   5676     Diag(NewVD->getLocation(), diag::err_block_on_vm);
   5677     NewVD->setInvalidDecl();
   5678     return;
   5679   }
   5680 
   5681   if (NewVD->isConstexpr() && !T->isDependentType() &&
   5682       RequireLiteralType(NewVD->getLocation(), T,
   5683                          diag::err_constexpr_var_non_literal)) {
   5684     // Can't perform this check until the type is deduced.
   5685     NewVD->setInvalidDecl();
   5686     return;
   5687   }
   5688 }
   5689 
   5690 /// \brief Perform semantic checking on a newly-created variable
   5691 /// declaration.
   5692 ///
   5693 /// This routine performs all of the type-checking required for a
   5694 /// variable declaration once it has been built. It is used both to
   5695 /// check variables after they have been parsed and their declarators
   5696 /// have been translated into a declaration, and to check variables
   5697 /// that have been instantiated from a template.
   5698 ///
   5699 /// Sets NewVD->isInvalidDecl() if an error was encountered.
   5700 ///
   5701 /// Returns true if the variable declaration is a redeclaration.
   5702 bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
   5703                                     LookupResult &Previous) {
   5704   CheckVariableDeclarationType(NewVD);
   5705 
   5706   // If the decl is already known invalid, don't check it.
   5707   if (NewVD->isInvalidDecl())
   5708     return false;
   5709 
   5710   // If we did not find anything by this name, look for a non-visible
   5711   // extern "C" declaration with the same name.
   5712   //
   5713   // Clang has a lot of problems with extern local declarations.
   5714   // The actual standards text here is:
   5715   //
   5716   // C++11 [basic.link]p6:
   5717   //   The name of a function declared in block scope and the name
   5718   //   of a variable declared by a block scope extern declaration
   5719   //   have linkage. If there is a visible declaration of an entity
   5720   //   with linkage having the same name and type, ignoring entities
   5721   //   declared outside the innermost enclosing namespace scope, the
   5722   //   block scope declaration declares that same entity and
   5723   //   receives the linkage of the previous declaration.
   5724   //
   5725   // C11 6.2.7p4:
   5726   //   For an identifier with internal or external linkage declared
   5727   //   in a scope in which a prior declaration of that identifier is
   5728   //   visible, if the prior declaration specifies internal or
   5729   //   external linkage, the type of the identifier at the later
   5730   //   declaration becomes the composite type.
   5731   //
   5732   // The most important point here is that we're not allowed to
   5733   // update our understanding of the type according to declarations
   5734   // not in scope.
   5735   bool PreviousWasHidden =
   5736       Previous.empty() &&
   5737       checkForConflictWithNonVisibleExternC(*this, NewVD, Previous);
   5738 
   5739   // Filter out any non-conflicting previous declarations.
   5740   filterNonConflictingPreviousDecls(Context, NewVD, Previous);
   5741 
   5742   if (!Previous.empty()) {
   5743     MergeVarDecl(NewVD, Previous, PreviousWasHidden);
   5744     return true;
   5745   }
   5746   return false;
   5747 }
   5748 
   5749 /// \brief Data used with FindOverriddenMethod
   5750 struct FindOverriddenMethodData {
   5751   Sema *S;
   5752   CXXMethodDecl *Method;
   5753 };
   5754 
   5755 /// \brief Member lookup function that determines whether a given C++
   5756 /// method overrides a method in a base class, to be used with
   5757 /// CXXRecordDecl::lookupInBases().
   5758 static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
   5759                                  CXXBasePath &Path,
   5760                                  void *UserData) {
   5761   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
   5762 
   5763   FindOverriddenMethodData *Data
   5764     = reinterpret_cast<FindOverriddenMethodData*>(UserData);
   5765 
   5766   DeclarationName Name = Data->Method->getDeclName();
   5767 
   5768   // FIXME: Do we care about other names here too?
   5769   if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
   5770     // We really want to find the base class destructor here.
   5771     QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
   5772     CanQualType CT = Data->S->Context.getCanonicalType(T);
   5773 
   5774     Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
   5775   }
   5776 
   5777   for (Path.Decls = BaseRecord->lookup(Name);
   5778        !Path.Decls.empty();
   5779        Path.Decls = Path.Decls.slice(1)) {
   5780     NamedDecl *D = Path.Decls.front();
   5781     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
   5782       if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
   5783         return true;
   5784     }
   5785   }
   5786 
   5787   return false;
   5788 }
   5789 
   5790 namespace {
   5791   enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
   5792 }
   5793 /// \brief Report an error regarding overriding, along with any relevant
   5794 /// overriden methods.
   5795 ///
   5796 /// \param DiagID the primary error to report.
   5797 /// \param MD the overriding method.
   5798 /// \param OEK which overrides to include as notes.
   5799 static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
   5800                             OverrideErrorKind OEK = OEK_All) {
   5801   S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
   5802   for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
   5803                                       E = MD->end_overridden_methods();
   5804        I != E; ++I) {
   5805     // This check (& the OEK parameter) could be replaced by a predicate, but
   5806     // without lambdas that would be overkill. This is still nicer than writing
   5807     // out the diag loop 3 times.
   5808     if ((OEK == OEK_All) ||
   5809         (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
   5810         (OEK == OEK_Deleted && (*I)->isDeleted()))
   5811       S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
   5812   }
   5813 }
   5814 
   5815 /// AddOverriddenMethods - See if a method overrides any in the base classes,
   5816 /// and if so, check that it's a valid override and remember it.
   5817 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
   5818   // Look for virtual methods in base classes that this method might override.
   5819   CXXBasePaths Paths;
   5820   FindOverriddenMethodData Data;
   5821   Data.Method = MD;
   5822   Data.S = this;
   5823   bool hasDeletedOverridenMethods = false;
   5824   bool hasNonDeletedOverridenMethods = false;
   5825   bool AddedAny = false;
   5826   if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
   5827     for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
   5828          E = Paths.found_decls_end(); I != E; ++I) {
   5829       if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
   5830         MD->addOverriddenMethod(OldMD->getCanonicalDecl());
   5831         if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
   5832             !CheckOverridingFunctionAttributes(MD, OldMD) &&
   5833             !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
   5834             !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
   5835           hasDeletedOverridenMethods |= OldMD->isDeleted();
   5836           hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
   5837           AddedAny = true;
   5838         }
   5839       }
   5840     }
   5841   }
   5842 
   5843   if (hasDeletedOverridenMethods && !MD->isDeleted()) {
   5844     ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
   5845   }
   5846   if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
   5847     ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
   5848   }
   5849 
   5850   return AddedAny;
   5851 }
   5852 
   5853 namespace {
   5854   // Struct for holding all of the extra arguments needed by
   5855   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
   5856   struct ActOnFDArgs {
   5857     Scope *S;
   5858     Declarator &D;
   5859     MultiTemplateParamsArg TemplateParamLists;
   5860     bool AddToScope;
   5861   };
   5862 }
   5863 
   5864 namespace {
   5865 
   5866 // Callback to only accept typo corrections that have a non-zero edit distance.
   5867 // Also only accept corrections that have the same parent decl.
   5868 class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
   5869  public:
   5870   DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
   5871                             CXXRecordDecl *Parent)
   5872       : Context(Context), OriginalFD(TypoFD),
   5873         ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
   5874 
   5875   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
   5876     if (candidate.getEditDistance() == 0)
   5877       return false;
   5878 
   5879     SmallVector<unsigned, 1> MismatchedParams;
   5880     for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
   5881                                           CDeclEnd = candidate.end();
   5882          CDecl != CDeclEnd; ++CDecl) {
   5883       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
   5884 
   5885       if (FD && !FD->hasBody() &&
   5886           hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
   5887         if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
   5888           CXXRecordDecl *Parent = MD->getParent();
   5889           if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
   5890             return true;
   5891         } else if (!ExpectedParent) {
   5892           return true;
   5893         }
   5894       }
   5895     }
   5896 
   5897     return false;
   5898   }
   5899 
   5900  private:
   5901   ASTContext &Context;
   5902   FunctionDecl *OriginalFD;
   5903   CXXRecordDecl *ExpectedParent;
   5904 };
   5905 
   5906 }
   5907 
   5908 /// \brief Generate diagnostics for an invalid function redeclaration.
   5909 ///
   5910 /// This routine handles generating the diagnostic messages for an invalid
   5911 /// function redeclaration, including finding possible similar declarations
   5912 /// or performing typo correction if there are no previous declarations with
   5913 /// the same name.
   5914 ///
   5915 /// Returns a NamedDecl iff typo correction was performed and substituting in
   5916 /// the new declaration name does not cause new errors.
   5917 static NamedDecl* DiagnoseInvalidRedeclaration(
   5918     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
   5919     ActOnFDArgs &ExtraArgs) {
   5920   NamedDecl *Result = NULL;
   5921   DeclarationName Name = NewFD->getDeclName();
   5922   DeclContext *NewDC = NewFD->getDeclContext();
   5923   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
   5924                     Sema::LookupOrdinaryName, Sema::ForRedeclaration);
   5925   SmallVector<unsigned, 1> MismatchedParams;
   5926   SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
   5927   TypoCorrection Correction;
   5928   bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
   5929                        ExtraArgs.D.getDeclSpec().isFriendSpecified());
   5930   unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
   5931                                   : diag::err_member_def_does_not_match;
   5932 
   5933   NewFD->setInvalidDecl();
   5934   SemaRef.LookupQualifiedName(Prev, NewDC);
   5935   assert(!Prev.isAmbiguous() &&
   5936          "Cannot have an ambiguity in previous-declaration lookup");
   5937   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
   5938   DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
   5939                                       MD ? MD->getParent() : 0);
   5940   if (!Prev.empty()) {
   5941     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
   5942          Func != FuncEnd; ++Func) {
   5943       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
   5944       if (FD &&
   5945           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
   5946         // Add 1 to the index so that 0 can mean the mismatch didn't
   5947         // involve a parameter
   5948         unsigned ParamNum =
   5949             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
   5950         NearMatches.push_back(std::make_pair(FD, ParamNum));
   5951       }
   5952     }
   5953   // If the qualified name lookup yielded nothing, try typo correction
   5954   } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
   5955                                          Prev.getLookupKind(), 0, 0,
   5956                                          Validator, NewDC))) {
   5957     // Trap errors.
   5958     Sema::SFINAETrap Trap(SemaRef);
   5959 
   5960     // Set up everything for the call to ActOnFunctionDeclarator
   5961     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
   5962                               ExtraArgs.D.getIdentifierLoc());
   5963     Previous.clear();
   5964     Previous.setLookupName(Correction.getCorrection());
   5965     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
   5966                                     CDeclEnd = Correction.end();
   5967          CDecl != CDeclEnd; ++CDecl) {
   5968       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
   5969       if (FD && !FD->hasBody() &&
   5970           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
   5971         Previous.addDecl(FD);
   5972       }
   5973     }
   5974     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
   5975     // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
   5976     // pieces need to verify the typo-corrected C++ declaraction and hopefully
   5977     // eliminate the need for the parameter pack ExtraArgs.
   5978     Result = SemaRef.ActOnFunctionDeclarator(
   5979         ExtraArgs.S, ExtraArgs.D,
   5980         Correction.getCorrectionDecl()->getDeclContext(),
   5981         NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
   5982         ExtraArgs.AddToScope);
   5983     if (Trap.hasErrorOccurred()) {
   5984       // Pretend the typo correction never occurred
   5985       ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
   5986                                 ExtraArgs.D.getIdentifierLoc());
   5987       ExtraArgs.D.setRedeclaration(wasRedeclaration);
   5988       Previous.clear();
   5989       Previous.setLookupName(Name);
   5990       Result = NULL;
   5991     } else {
   5992       for (LookupResult::iterator Func = Previous.begin(),
   5993                                FuncEnd = Previous.end();
   5994            Func != FuncEnd; ++Func) {
   5995         if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
   5996           NearMatches.push_back(std::make_pair(FD, 0));
   5997       }
   5998     }
   5999     if (NearMatches.empty()) {
   6000       // Ignore the correction if it didn't yield any close FunctionDecl matches
   6001       Correction = TypoCorrection();
   6002     } else {
   6003       DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
   6004                              : diag::err_member_def_does_not_match_suggest;
   6005     }
   6006   }
   6007 
   6008   if (Correction) {
   6009     // FIXME: use Correction.getCorrectionRange() instead of computing the range
   6010     // here. This requires passing in the CXXScopeSpec to CorrectTypo which in
   6011     // turn causes the correction to fully qualify the name. If we fix
   6012     // CorrectTypo to minimally qualify then this change should be good.
   6013     SourceRange FixItLoc(NewFD->getLocation());
   6014     CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
   6015     if (Correction.getCorrectionSpecifier() && SS.isValid())
   6016       FixItLoc.setBegin(SS.getBeginLoc());
   6017     SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
   6018         << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
   6019         << FixItHint::CreateReplacement(
   6020             FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
   6021   } else {
   6022     SemaRef.Diag(NewFD->getLocation(), DiagMsg)
   6023         << Name << NewDC << NewFD->getLocation();
   6024   }
   6025 
   6026   bool NewFDisConst = false;
   6027   if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
   6028     NewFDisConst = NewMD->isConst();
   6029 
   6030   for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
   6031        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
   6032        NearMatch != NearMatchEnd; ++NearMatch) {
   6033     FunctionDecl *FD = NearMatch->first;
   6034     bool FDisConst = false;
   6035     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
   6036       FDisConst = MD->isConst();
   6037 
   6038     if (unsigned Idx = NearMatch->second) {
   6039       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
   6040       SourceLocation Loc = FDParam->getTypeSpecStartLoc();
   6041       if (Loc.isInvalid()) Loc = FD->getLocation();
   6042       SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
   6043           << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
   6044     } else if (Correction) {
   6045       SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
   6046           << Correction.getQuoted(SemaRef.getLangOpts());
   6047     } else if (FDisConst != NewFDisConst) {
   6048       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
   6049           << NewFDisConst << FD->getSourceRange().getEnd();
   6050     } else
   6051       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
   6052   }
   6053   return Result;
   6054 }
   6055 
   6056 static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
   6057                                                           Declarator &D) {
   6058   switch (D.getDeclSpec().getStorageClassSpec()) {
   6059   default: llvm_unreachable("Unknown storage class!");
   6060   case DeclSpec::SCS_auto:
   6061   case DeclSpec::SCS_register:
   6062   case DeclSpec::SCS_mutable:
   6063     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   6064                  diag::err_typecheck_sclass_func);
   6065     D.setInvalidType();
   6066     break;
   6067   case DeclSpec::SCS_unspecified: break;
   6068   case DeclSpec::SCS_extern:
   6069     if (D.getDeclSpec().isExternInLinkageSpec())
   6070       return SC_None;
   6071     return SC_Extern;
   6072   case DeclSpec::SCS_static: {
   6073     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
   6074       // C99 6.7.1p5:
   6075       //   The declaration of an identifier for a function that has
   6076       //   block scope shall have no explicit storage-class specifier
   6077       //   other than extern
   6078       // See also (C++ [dcl.stc]p4).
   6079       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   6080                    diag::err_static_block_func);
   6081       break;
   6082     } else
   6083       return SC_Static;
   6084   }
   6085   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
   6086   }
   6087 
   6088   // No explicit storage class has already been returned
   6089   return SC_None;
   6090 }
   6091 
   6092 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
   6093                                            DeclContext *DC, QualType &R,
   6094                                            TypeSourceInfo *TInfo,
   6095                                            FunctionDecl::StorageClass SC,
   6096                                            bool &IsVirtualOkay) {
   6097   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
   6098   DeclarationName Name = NameInfo.getName();
   6099 
   6100   FunctionDecl *NewFD = 0;
   6101   bool isInline = D.getDeclSpec().isInlineSpecified();
   6102 
   6103   if (!SemaRef.getLangOpts().CPlusPlus) {
   6104     // Determine whether the function was written with a
   6105     // prototype. This true when:
   6106     //   - there is a prototype in the declarator, or
   6107     //   - the type R of the function is some kind of typedef or other reference
   6108     //     to a type name (which eventually refers to a function type).
   6109     bool HasPrototype =
   6110       (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
   6111       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
   6112 
   6113     NewFD = FunctionDecl::Create(SemaRef.Context, DC,
   6114                                  D.getLocStart(), NameInfo, R,
   6115                                  TInfo, SC, isInline,
   6116                                  HasPrototype, false);
   6117     if (D.isInvalidType())
   6118       NewFD->setInvalidDecl();
   6119 
   6120     // Set the lexical context.
   6121     NewFD->setLexicalDeclContext(SemaRef.CurContext);
   6122 
   6123     return NewFD;
   6124   }
   6125 
   6126   bool isExplicit = D.getDeclSpec().isExplicitSpecified();
   6127   bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
   6128 
   6129   // Check that the return type is not an abstract class type.
   6130   // For record types, this is done by the AbstractClassUsageDiagnoser once
   6131   // the class has been completely parsed.
   6132   if (!DC->isRecord() &&
   6133       SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
   6134                                      R->getAs<FunctionType>()->getResultType(),
   6135                                      diag::err_abstract_type_in_decl,
   6136                                      SemaRef.AbstractReturnType))
   6137     D.setInvalidType();
   6138 
   6139   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
   6140     // This is a C++ constructor declaration.
   6141     assert(DC->isRecord() &&
   6142            "Constructors can only be declared in a member context");
   6143 
   6144     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
   6145     return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
   6146                                       D.getLocStart(), NameInfo,
   6147                                       R, TInfo, isExplicit, isInline,
   6148                                       /*isImplicitlyDeclared=*/false,
   6149                                       isConstexpr);
   6150 
   6151   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
   6152     // This is a C++ destructor declaration.
   6153     if (DC->isRecord()) {
   6154       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
   6155       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
   6156       CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
   6157                                         SemaRef.Context, Record,
   6158                                         D.getLocStart(),
   6159                                         NameInfo, R, TInfo, isInline,
   6160                                         /*isImplicitlyDeclared=*/false);
   6161 
   6162       // If the class is complete, then we now create the implicit exception
   6163       // specification. If the class is incomplete or dependent, we can't do
   6164       // it yet.
   6165       if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
   6166           Record->getDefinition() && !Record->isBeingDefined() &&
   6167           R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
   6168         SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
   6169       }
   6170 
   6171       // The Microsoft ABI requires that we perform the destructor body
   6172       // checks (i.e. operator delete() lookup) at every declaration, as
   6173       // any translation unit may need to emit a deleting destructor.
   6174       if (SemaRef.Context.getTargetInfo().getCXXABI().isMicrosoft() &&
   6175           !Record->isDependentType() && Record->getDefinition() &&
   6176           !Record->isBeingDefined()) {
   6177         SemaRef.CheckDestructor(NewDD);
   6178       }
   6179 
   6180       IsVirtualOkay = true;
   6181       return NewDD;
   6182 
   6183     } else {
   6184       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
   6185       D.setInvalidType();
   6186 
   6187       // Create a FunctionDecl to satisfy the function definition parsing
   6188       // code path.
   6189       return FunctionDecl::Create(SemaRef.Context, DC,
   6190                                   D.getLocStart(),
   6191                                   D.getIdentifierLoc(), Name, R, TInfo,
   6192                                   SC, isInline,
   6193                                   /*hasPrototype=*/true, isConstexpr);
   6194     }
   6195 
   6196   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
   6197     if (!DC->isRecord()) {
   6198       SemaRef.Diag(D.getIdentifierLoc(),
   6199            diag::err_conv_function_not_member);
   6200       return 0;
   6201     }
   6202 
   6203     SemaRef.CheckConversionDeclarator(D, R, SC);
   6204     IsVirtualOkay = true;
   6205     return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
   6206                                      D.getLocStart(), NameInfo,
   6207                                      R, TInfo, isInline, isExplicit,
   6208                                      isConstexpr, SourceLocation());
   6209 
   6210   } else if (DC->isRecord()) {
   6211     // If the name of the function is the same as the name of the record,
   6212     // then this must be an invalid constructor that has a return type.
   6213     // (The parser checks for a return type and makes the declarator a
   6214     // constructor if it has no return type).
   6215     if (Name.getAsIdentifierInfo() &&
   6216         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
   6217       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
   6218         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
   6219         << SourceRange(D.getIdentifierLoc());
   6220       return 0;
   6221     }
   6222 
   6223     // This is a C++ method declaration.
   6224     CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
   6225                                                cast<CXXRecordDecl>(DC),
   6226                                                D.getLocStart(), NameInfo, R,
   6227                                                TInfo, SC, isInline,
   6228                                                isConstexpr, SourceLocation());
   6229     IsVirtualOkay = !Ret->isStatic();
   6230     return Ret;
   6231   } else {
   6232     // Determine whether the function was written with a
   6233     // prototype. This true when:
   6234     //   - we're in C++ (where every function has a prototype),
   6235     return FunctionDecl::Create(SemaRef.Context, DC,
   6236                                 D.getLocStart(),
   6237                                 NameInfo, R, TInfo, SC, isInline,
   6238                                 true/*HasPrototype*/, isConstexpr);
   6239   }
   6240 }
   6241 
   6242 void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
   6243   // In C++, the empty parameter-type-list must be spelled "void"; a
   6244   // typedef of void is not permitted.
   6245   if (getLangOpts().CPlusPlus &&
   6246       Param->getType().getUnqualifiedType() != Context.VoidTy) {
   6247     bool IsTypeAlias = false;
   6248     if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
   6249       IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
   6250     else if (const TemplateSpecializationType *TST =
   6251                Param->getType()->getAs<TemplateSpecializationType>())
   6252       IsTypeAlias = TST->isTypeAlias();
   6253     Diag(Param->getLocation(), diag::err_param_typedef_of_void)
   6254       << IsTypeAlias;
   6255   }
   6256 }
   6257 
   6258 enum OpenCLParamType {
   6259   ValidKernelParam,
   6260   PtrPtrKernelParam,
   6261   PtrKernelParam,
   6262   InvalidKernelParam,
   6263   RecordKernelParam
   6264 };
   6265 
   6266 static OpenCLParamType getOpenCLKernelParameterType(QualType PT) {
   6267   if (PT->isPointerType()) {
   6268     QualType PointeeType = PT->getPointeeType();
   6269     return PointeeType->isPointerType() ? PtrPtrKernelParam : PtrKernelParam;
   6270   }
   6271 
   6272   // TODO: Forbid the other integer types (size_t, ptrdiff_t...) when they can
   6273   // be used as builtin types.
   6274 
   6275   if (PT->isImageType())
   6276     return PtrKernelParam;
   6277 
   6278   if (PT->isBooleanType())
   6279     return InvalidKernelParam;
   6280 
   6281   if (PT->isEventT())
   6282     return InvalidKernelParam;
   6283 
   6284   if (PT->isHalfType())
   6285     return InvalidKernelParam;
   6286 
   6287   if (PT->isRecordType())
   6288     return RecordKernelParam;
   6289 
   6290   return ValidKernelParam;
   6291 }
   6292 
   6293 static void checkIsValidOpenCLKernelParameter(
   6294   Sema &S,
   6295   Declarator &D,
   6296   ParmVarDecl *Param,
   6297   llvm::SmallPtrSet<const Type *, 16> &ValidTypes) {
   6298   QualType PT = Param->getType();
   6299 
   6300   // Cache the valid types we encounter to avoid rechecking structs that are
   6301   // used again
   6302   if (ValidTypes.count(PT.getTypePtr()))
   6303     return;
   6304 
   6305   switch (getOpenCLKernelParameterType(PT)) {
   6306   case PtrPtrKernelParam:
   6307     // OpenCL v1.2 s6.9.a:
   6308     // A kernel function argument cannot be declared as a
   6309     // pointer to a pointer type.
   6310     S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
   6311     D.setInvalidType();
   6312     return;
   6313 
   6314     // OpenCL v1.2 s6.9.k:
   6315     // Arguments to kernel functions in a program cannot be declared with the
   6316     // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
   6317     // uintptr_t or a struct and/or union that contain fields declared to be
   6318     // one of these built-in scalar types.
   6319 
   6320   case InvalidKernelParam:
   6321     // OpenCL v1.2 s6.8 n:
   6322     // A kernel function argument cannot be declared
   6323     // of event_t type.
   6324     S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
   6325     D.setInvalidType();
   6326     return;
   6327 
   6328   case PtrKernelParam:
   6329   case ValidKernelParam:
   6330     ValidTypes.insert(PT.getTypePtr());
   6331     return;
   6332 
   6333   case RecordKernelParam:
   6334     break;
   6335   }
   6336 
   6337   // Track nested structs we will inspect
   6338   SmallVector<const Decl *, 4> VisitStack;
   6339 
   6340   // Track where we are in the nested structs. Items will migrate from
   6341   // VisitStack to HistoryStack as we do the DFS for bad field.
   6342   SmallVector<const FieldDecl *, 4> HistoryStack;
   6343   HistoryStack.push_back((const FieldDecl *) 0);
   6344 
   6345   const RecordDecl *PD = PT->castAs<RecordType>()->getDecl();
   6346   VisitStack.push_back(PD);
   6347 
   6348   assert(VisitStack.back() && "First decl null?");
   6349 
   6350   do {
   6351     const Decl *Next = VisitStack.pop_back_val();
   6352     if (!Next) {
   6353       assert(!HistoryStack.empty());
   6354       // Found a marker, we have gone up a level
   6355       if (const FieldDecl *Hist = HistoryStack.pop_back_val())
   6356         ValidTypes.insert(Hist->getType().getTypePtr());
   6357 
   6358       continue;
   6359     }
   6360 
   6361     // Adds everything except the original parameter declaration (which is not a
   6362     // field itself) to the history stack.
   6363     const RecordDecl *RD;
   6364     if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
   6365       HistoryStack.push_back(Field);
   6366       RD = Field->getType()->castAs<RecordType>()->getDecl();
   6367     } else {
   6368       RD = cast<RecordDecl>(Next);
   6369     }
   6370 
   6371     // Add a null marker so we know when we've gone back up a level
   6372     VisitStack.push_back((const Decl *) 0);
   6373 
   6374     for (RecordDecl::field_iterator I = RD->field_begin(),
   6375            E = RD->field_end(); I != E; ++I) {
   6376       const FieldDecl *FD = *I;
   6377       QualType QT = FD->getType();
   6378 
   6379       if (ValidTypes.count(QT.getTypePtr()))
   6380         continue;
   6381 
   6382       OpenCLParamType ParamType = getOpenCLKernelParameterType(QT);
   6383       if (ParamType == ValidKernelParam)
   6384         continue;
   6385 
   6386       if (ParamType == RecordKernelParam) {
   6387         VisitStack.push_back(FD);
   6388         continue;
   6389       }
   6390 
   6391       // OpenCL v1.2 s6.9.p:
   6392       // Arguments to kernel functions that are declared to be a struct or union
   6393       // do not allow OpenCL objects to be passed as elements of the struct or
   6394       // union.
   6395       if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam) {
   6396         S.Diag(Param->getLocation(),
   6397                diag::err_record_with_pointers_kernel_param)
   6398           << PT->isUnionType()
   6399           << PT;
   6400       } else {
   6401         S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
   6402       }
   6403 
   6404       S.Diag(PD->getLocation(), diag::note_within_field_of_type)
   6405         << PD->getDeclName();
   6406 
   6407       // We have an error, now let's go back up through history and show where
   6408       // the offending field came from
   6409       for (ArrayRef<const FieldDecl *>::const_iterator I = HistoryStack.begin() + 1,
   6410              E = HistoryStack.end(); I != E; ++I) {
   6411         const FieldDecl *OuterField = *I;
   6412         S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
   6413           << OuterField->getType();
   6414       }
   6415 
   6416       S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
   6417         << QT->isPointerType()
   6418         << QT;
   6419       D.setInvalidType();
   6420       return;
   6421     }
   6422   } while (!VisitStack.empty());
   6423 }
   6424 
   6425 NamedDecl*
   6426 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
   6427                               TypeSourceInfo *TInfo, LookupResult &Previous,
   6428                               MultiTemplateParamsArg TemplateParamLists,
   6429                               bool &AddToScope) {
   6430   QualType R = TInfo->getType();
   6431 
   6432   assert(R.getTypePtr()->isFunctionType());
   6433 
   6434   // TODO: consider using NameInfo for diagnostic.
   6435   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
   6436   DeclarationName Name = NameInfo.getName();
   6437   FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
   6438 
   6439   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
   6440     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
   6441          diag::err_invalid_thread)
   6442       << DeclSpec::getSpecifierName(TSCS);
   6443 
   6444   bool isFriend = false;
   6445   FunctionTemplateDecl *FunctionTemplate = 0;
   6446   bool isExplicitSpecialization = false;
   6447   bool isFunctionTemplateSpecialization = false;
   6448 
   6449   bool isDependentClassScopeExplicitSpecialization = false;
   6450   bool HasExplicitTemplateArgs = false;
   6451   TemplateArgumentListInfo TemplateArgs;
   6452 
   6453   bool isVirtualOkay = false;
   6454 
   6455   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
   6456                                               isVirtualOkay);
   6457   if (!NewFD) return 0;
   6458 
   6459   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
   6460     NewFD->setTopLevelDeclInObjCContainer();
   6461 
   6462   if (getLangOpts().CPlusPlus) {
   6463     bool isInline = D.getDeclSpec().isInlineSpecified();
   6464     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
   6465     bool isExplicit = D.getDeclSpec().isExplicitSpecified();
   6466     bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
   6467     isFriend = D.getDeclSpec().isFriendSpecified();
   6468     if (isFriend && !isInline && D.isFunctionDefinition()) {
   6469       // C++ [class.friend]p5
   6470       //   A function can be defined in a friend declaration of a
   6471       //   class . . . . Such a function is implicitly inline.
   6472       NewFD->setImplicitlyInline();
   6473     }
   6474 
   6475     // If this is a method defined in an __interface, and is not a constructor
   6476     // or an overloaded operator, then set the pure flag (isVirtual will already
   6477     // return true).
   6478     if (const CXXRecordDecl *Parent =
   6479           dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
   6480       if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
   6481         NewFD->setPure(true);
   6482     }
   6483 
   6484     SetNestedNameSpecifier(NewFD, D);
   6485     isExplicitSpecialization = false;
   6486     isFunctionTemplateSpecialization = false;
   6487     if (D.isInvalidType())
   6488       NewFD->setInvalidDecl();
   6489 
   6490     // Set the lexical context. If the declarator has a C++
   6491     // scope specifier, or is the object of a friend declaration, the
   6492     // lexical context will be different from the semantic context.
   6493     NewFD->setLexicalDeclContext(CurContext);
   6494 
   6495     // Match up the template parameter lists with the scope specifier, then
   6496     // determine whether we have a template or a template specialization.
   6497     bool Invalid = false;
   6498     if (TemplateParameterList *TemplateParams =
   6499             MatchTemplateParametersToScopeSpecifier(
   6500                 D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
   6501                 D.getCXXScopeSpec(), TemplateParamLists, isFriend,
   6502                 isExplicitSpecialization, Invalid)) {
   6503       if (TemplateParams->size() > 0) {
   6504         // This is a function template
   6505 
   6506         // Check that we can declare a template here.
   6507         if (CheckTemplateDeclScope(S, TemplateParams))
   6508           return 0;
   6509 
   6510         // A destructor cannot be a template.
   6511         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
   6512           Diag(NewFD->getLocation(), diag::err_destructor_template);
   6513           return 0;
   6514         }
   6515 
   6516         // If we're adding a template to a dependent context, we may need to
   6517         // rebuilding some of the types used within the template parameter list,
   6518         // now that we know what the current instantiation is.
   6519         if (DC->isDependentContext()) {
   6520           ContextRAII SavedContext(*this, DC);
   6521           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
   6522             Invalid = true;
   6523         }
   6524 
   6525 
   6526         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
   6527                                                         NewFD->getLocation(),
   6528                                                         Name, TemplateParams,
   6529                                                         NewFD);
   6530         FunctionTemplate->setLexicalDeclContext(CurContext);
   6531         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
   6532 
   6533         // For source fidelity, store the other template param lists.
   6534         if (TemplateParamLists.size() > 1) {
   6535           NewFD->setTemplateParameterListsInfo(Context,
   6536                                                TemplateParamLists.size() - 1,
   6537                                                TemplateParamLists.data());
   6538         }
   6539       } else {
   6540         // This is a function template specialization.
   6541         isFunctionTemplateSpecialization = true;
   6542         // For source fidelity, store all the template param lists.
   6543         NewFD->setTemplateParameterListsInfo(Context,
   6544                                              TemplateParamLists.size(),
   6545                                              TemplateParamLists.data());
   6546 
   6547         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
   6548         if (isFriend) {
   6549           // We want to remove the "template<>", found here.
   6550           SourceRange RemoveRange = TemplateParams->getSourceRange();
   6551 
   6552           // If we remove the template<> and the name is not a
   6553           // template-id, we're actually silently creating a problem:
   6554           // the friend declaration will refer to an untemplated decl,
   6555           // and clearly the user wants a template specialization.  So
   6556           // we need to insert '<>' after the name.
   6557           SourceLocation InsertLoc;
   6558           if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
   6559             InsertLoc = D.getName().getSourceRange().getEnd();
   6560             InsertLoc = PP.getLocForEndOfToken(InsertLoc);
   6561           }
   6562 
   6563           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
   6564             << Name << RemoveRange
   6565             << FixItHint::CreateRemoval(RemoveRange)
   6566             << FixItHint::CreateInsertion(InsertLoc, "<>");
   6567         }
   6568       }
   6569     }
   6570     else {
   6571       // All template param lists were matched against the scope specifier:
   6572       // this is NOT (an explicit specialization of) a template.
   6573       if (TemplateParamLists.size() > 0)
   6574         // For source fidelity, store all the template param lists.
   6575         NewFD->setTemplateParameterListsInfo(Context,
   6576                                              TemplateParamLists.size(),
   6577                                              TemplateParamLists.data());
   6578     }
   6579 
   6580     if (Invalid) {
   6581       NewFD->setInvalidDecl();
   6582       if (FunctionTemplate)
   6583         FunctionTemplate->setInvalidDecl();
   6584     }
   6585 
   6586     // C++ [dcl.fct.spec]p5:
   6587     //   The virtual specifier shall only be used in declarations of
   6588     //   nonstatic class member functions that appear within a
   6589     //   member-specification of a class declaration; see 10.3.
   6590     //
   6591     if (isVirtual && !NewFD->isInvalidDecl()) {
   6592       if (!isVirtualOkay) {
   6593         Diag(D.getDeclSpec().getVirtualSpecLoc(),
   6594              diag::err_virtual_non_function);
   6595       } else if (!CurContext->isRecord()) {
   6596         // 'virtual' was specified outside of the class.
   6597         Diag(D.getDeclSpec().getVirtualSpecLoc(),
   6598              diag::err_virtual_out_of_class)
   6599           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
   6600       } else if (NewFD->getDescribedFunctionTemplate()) {
   6601         // C++ [temp.mem]p3:
   6602         //  A member function template shall not be virtual.
   6603         Diag(D.getDeclSpec().getVirtualSpecLoc(),
   6604              diag::err_virtual_member_function_template)
   6605           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
   6606       } else {
   6607         // Okay: Add virtual to the method.
   6608         NewFD->setVirtualAsWritten(true);
   6609       }
   6610 
   6611       if (getLangOpts().CPlusPlus1y &&
   6612           NewFD->getResultType()->isUndeducedType())
   6613         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
   6614     }
   6615 
   6616     // C++ [dcl.fct.spec]p3:
   6617     //  The inline specifier shall not appear on a block scope function
   6618     //  declaration.
   6619     if (isInline && !NewFD->isInvalidDecl()) {
   6620       if (CurContext->isFunctionOrMethod()) {
   6621         // 'inline' is not allowed on block scope function declaration.
   6622         Diag(D.getDeclSpec().getInlineSpecLoc(),
   6623              diag::err_inline_declaration_block_scope) << Name
   6624           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
   6625       }
   6626     }
   6627 
   6628     // C++ [dcl.fct.spec]p6:
   6629     //  The explicit specifier shall be used only in the declaration of a
   6630     //  constructor or conversion function within its class definition;
   6631     //  see 12.3.1 and 12.3.2.
   6632     if (isExplicit && !NewFD->isInvalidDecl()) {
   6633       if (!CurContext->isRecord()) {
   6634         // 'explicit' was specified outside of the class.
   6635         Diag(D.getDeclSpec().getExplicitSpecLoc(),
   6636              diag::err_explicit_out_of_class)
   6637           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
   6638       } else if (!isa<CXXConstructorDecl>(NewFD) &&
   6639                  !isa<CXXConversionDecl>(NewFD)) {
   6640         // 'explicit' was specified on a function that wasn't a constructor
   6641         // or conversion function.
   6642         Diag(D.getDeclSpec().getExplicitSpecLoc(),
   6643              diag::err_explicit_non_ctor_or_conv_function)
   6644           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
   6645       }
   6646     }
   6647 
   6648     if (isConstexpr) {
   6649       // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
   6650       // are implicitly inline.
   6651       NewFD->setImplicitlyInline();
   6652 
   6653       // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
   6654       // be either constructors or to return a literal type. Therefore,
   6655       // destructors cannot be declared constexpr.
   6656       if (isa<CXXDestructorDecl>(NewFD))
   6657         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
   6658     }
   6659 
   6660     // If __module_private__ was specified, mark the function accordingly.
   6661     if (D.getDeclSpec().isModulePrivateSpecified()) {
   6662       if (isFunctionTemplateSpecialization) {
   6663         SourceLocation ModulePrivateLoc
   6664           = D.getDeclSpec().getModulePrivateSpecLoc();
   6665         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
   6666           << 0
   6667           << FixItHint::CreateRemoval(ModulePrivateLoc);
   6668       } else {
   6669         NewFD->setModulePrivate();
   6670         if (FunctionTemplate)
   6671           FunctionTemplate->setModulePrivate();
   6672       }
   6673     }
   6674 
   6675     if (isFriend) {
   6676       if (FunctionTemplate) {
   6677         FunctionTemplate->setObjectOfFriendDecl();
   6678         FunctionTemplate->setAccess(AS_public);
   6679       }
   6680       NewFD->setObjectOfFriendDecl();
   6681       NewFD->setAccess(AS_public);
   6682     }
   6683 
   6684     // If a function is defined as defaulted or deleted, mark it as such now.
   6685     switch (D.getFunctionDefinitionKind()) {
   6686       case FDK_Declaration:
   6687       case FDK_Definition:
   6688         break;
   6689 
   6690       case FDK_Defaulted:
   6691         NewFD->setDefaulted();
   6692         break;
   6693 
   6694       case FDK_Deleted:
   6695         NewFD->setDeletedAsWritten();
   6696         break;
   6697     }
   6698 
   6699     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
   6700         D.isFunctionDefinition()) {
   6701       // C++ [class.mfct]p2:
   6702       //   A member function may be defined (8.4) in its class definition, in
   6703       //   which case it is an inline member function (7.1.2)
   6704       NewFD->setImplicitlyInline();
   6705     }
   6706 
   6707     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
   6708         !CurContext->isRecord()) {
   6709       // C++ [class.static]p1:
   6710       //   A data or function member of a class may be declared static
   6711       //   in a class definition, in which case it is a static member of
   6712       //   the class.
   6713 
   6714       // Complain about the 'static' specifier if it's on an out-of-line
   6715       // member function definition.
   6716       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   6717            diag::err_static_out_of_line)
   6718         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
   6719     }
   6720 
   6721     // C++11 [except.spec]p15:
   6722     //   A deallocation function with no exception-specification is treated
   6723     //   as if it were specified with noexcept(true).
   6724     const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
   6725     if ((Name.getCXXOverloadedOperator() == OO_Delete ||
   6726          Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
   6727         getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
   6728       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
   6729       EPI.ExceptionSpecType = EST_BasicNoexcept;
   6730       NewFD->setType(Context.getFunctionType(FPT->getResultType(),
   6731                                              FPT->getArgTypes(), EPI));
   6732     }
   6733   }
   6734 
   6735   // Filter out previous declarations that don't match the scope.
   6736   FilterLookupForScope(Previous, DC, S, shouldConsiderLinkage(NewFD),
   6737                        isExplicitSpecialization ||
   6738                        isFunctionTemplateSpecialization);
   6739 
   6740   // Handle GNU asm-label extension (encoded as an attribute).
   6741   if (Expr *E = (Expr*) D.getAsmLabel()) {
   6742     // The parser guarantees this is a string.
   6743     StringLiteral *SE = cast<StringLiteral>(E);
   6744     NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
   6745                                                 SE->getString()));
   6746   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
   6747     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
   6748       ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
   6749     if (I != ExtnameUndeclaredIdentifiers.end()) {
   6750       NewFD->addAttr(I->second);
   6751       ExtnameUndeclaredIdentifiers.erase(I);
   6752     }
   6753   }
   6754 
   6755   // Copy the parameter declarations from the declarator D to the function
   6756   // declaration NewFD, if they are available.  First scavenge them into Params.
   6757   SmallVector<ParmVarDecl*, 16> Params;
   6758   if (D.isFunctionDeclarator()) {
   6759     DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
   6760 
   6761     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
   6762     // function that takes no arguments, not a function that takes a
   6763     // single void argument.
   6764     // We let through "const void" here because Sema::GetTypeForDeclarator
   6765     // already checks for that case.
   6766     if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
   6767         FTI.ArgInfo[0].Param &&
   6768         cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
   6769       // Empty arg list, don't push any params.
   6770       checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
   6771     } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
   6772       for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
   6773         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
   6774         assert(Param->getDeclContext() != NewFD && "Was set before ?");
   6775         Param->setDeclContext(NewFD);
   6776         Params.push_back(Param);
   6777 
   6778         if (Param->isInvalidDecl())
   6779           NewFD->setInvalidDecl();
   6780       }
   6781     }
   6782 
   6783   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
   6784     // When we're declaring a function with a typedef, typeof, etc as in the
   6785     // following example, we'll need to synthesize (unnamed)
   6786     // parameters for use in the declaration.
   6787     //
   6788     // @code
   6789     // typedef void fn(int);
   6790     // fn f;
   6791     // @endcode
   6792 
   6793     // Synthesize a parameter for each argument type.
   6794     for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
   6795          AE = FT->arg_type_end(); AI != AE; ++AI) {
   6796       ParmVarDecl *Param =
   6797         BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
   6798       Param->setScopeInfo(0, Params.size());
   6799       Params.push_back(Param);
   6800     }
   6801   } else {
   6802     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
   6803            "Should not need args for typedef of non-prototype fn");
   6804   }
   6805 
   6806   // Finally, we know we have the right number of parameters, install them.
   6807   NewFD->setParams(Params);
   6808 
   6809   // Find all anonymous symbols defined during the declaration of this function
   6810   // and add to NewFD. This lets us track decls such 'enum Y' in:
   6811   //
   6812   //   void f(enum Y {AA} x) {}
   6813   //
   6814   // which would otherwise incorrectly end up in the translation unit scope.
   6815   NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
   6816   DeclsInPrototypeScope.clear();
   6817 
   6818   if (D.getDeclSpec().isNoreturnSpecified())
   6819     NewFD->addAttr(
   6820         ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
   6821                                        Context));
   6822 
   6823   // Process the non-inheritable attributes on this declaration.
   6824   ProcessDeclAttributes(S, NewFD, D,
   6825                         /*NonInheritable=*/true, /*Inheritable=*/false);
   6826 
   6827   // Functions returning a variably modified type violate C99 6.7.5.2p2
   6828   // because all functions have linkage.
   6829   if (!NewFD->isInvalidDecl() &&
   6830       NewFD->getResultType()->isVariablyModifiedType()) {
   6831     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
   6832     NewFD->setInvalidDecl();
   6833   }
   6834 
   6835   // Handle attributes.
   6836   ProcessDeclAttributes(S, NewFD, D,
   6837                         /*NonInheritable=*/false, /*Inheritable=*/true);
   6838 
   6839   QualType RetType = NewFD->getResultType();
   6840   const CXXRecordDecl *Ret = RetType->isRecordType() ?
   6841       RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
   6842   if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
   6843       Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
   6844     const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
   6845     if (!(MD && MD->getCorrespondingMethodInClass(Ret, true))) {
   6846       NewFD->addAttr(new (Context) WarnUnusedResultAttr(SourceRange(),
   6847                                                         Context));
   6848     }
   6849   }
   6850 
   6851   if (!getLangOpts().CPlusPlus) {
   6852     // Perform semantic checking on the function declaration.
   6853     bool isExplicitSpecialization=false;
   6854     if (!NewFD->isInvalidDecl() && NewFD->isMain())
   6855       CheckMain(NewFD, D.getDeclSpec());
   6856 
   6857     if (!NewFD->isInvalidDecl())
   6858       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
   6859                                                   isExplicitSpecialization));
   6860     // Make graceful recovery from an invalid redeclaration.
   6861     else if (!Previous.empty())
   6862            D.setRedeclaration(true);
   6863     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
   6864             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
   6865            "previous declaration set still overloaded");
   6866   } else {
   6867     // If the declarator is a template-id, translate the parser's template
   6868     // argument list into our AST format.
   6869     if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
   6870       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
   6871       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
   6872       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
   6873       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
   6874                                          TemplateId->NumArgs);
   6875       translateTemplateArguments(TemplateArgsPtr,
   6876                                  TemplateArgs);
   6877 
   6878       HasExplicitTemplateArgs = true;
   6879 
   6880       if (NewFD->isInvalidDecl()) {
   6881         HasExplicitTemplateArgs = false;
   6882       } else if (FunctionTemplate) {
   6883         // Function template with explicit template arguments.
   6884         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
   6885           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
   6886 
   6887         HasExplicitTemplateArgs = false;
   6888       } else if (!isFunctionTemplateSpecialization &&
   6889                  !D.getDeclSpec().isFriendSpecified()) {
   6890         // We have encountered something that the user meant to be a
   6891         // specialization (because it has explicitly-specified template
   6892         // arguments) but that was not introduced with a "template<>" (or had
   6893         // too few of them).
   6894         // FIXME: Differentiate between attempts for explicit instantiations
   6895         // (starting with "template") and the rest.
   6896         Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
   6897           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
   6898           << FixItHint::CreateInsertion(
   6899                                     D.getDeclSpec().getLocStart(),
   6900                                         "template<> ");
   6901         isFunctionTemplateSpecialization = true;
   6902       } else {
   6903         // "friend void foo<>(int);" is an implicit specialization decl.
   6904         isFunctionTemplateSpecialization = true;
   6905       }
   6906     } else if (isFriend && isFunctionTemplateSpecialization) {
   6907       // This combination is only possible in a recovery case;  the user
   6908       // wrote something like:
   6909       //   template <> friend void foo(int);
   6910       // which we're recovering from as if the user had written:
   6911       //   friend void foo<>(int);
   6912       // Go ahead and fake up a template id.
   6913       HasExplicitTemplateArgs = true;
   6914         TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
   6915       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
   6916     }
   6917 
   6918     // If it's a friend (and only if it's a friend), it's possible
   6919     // that either the specialized function type or the specialized
   6920     // template is dependent, and therefore matching will fail.  In
   6921     // this case, don't check the specialization yet.
   6922     bool InstantiationDependent = false;
   6923     if (isFunctionTemplateSpecialization && isFriend &&
   6924         (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
   6925          TemplateSpecializationType::anyDependentTemplateArguments(
   6926             TemplateArgs.getArgumentArray(), TemplateArgs.size(),
   6927             InstantiationDependent))) {
   6928       assert(HasExplicitTemplateArgs &&
   6929              "friend function specialization without template args");
   6930       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
   6931                                                        Previous))
   6932         NewFD->setInvalidDecl();
   6933     } else if (isFunctionTemplateSpecialization) {
   6934       if (CurContext->isDependentContext() && CurContext->isRecord()
   6935           && !isFriend) {
   6936         isDependentClassScopeExplicitSpecialization = true;
   6937         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
   6938           diag::ext_function_specialization_in_class :
   6939           diag::err_function_specialization_in_class)
   6940           << NewFD->getDeclName();
   6941       } else if (CheckFunctionTemplateSpecialization(NewFD,
   6942                                   (HasExplicitTemplateArgs ? &TemplateArgs : 0),
   6943                                                      Previous))
   6944         NewFD->setInvalidDecl();
   6945 
   6946       // C++ [dcl.stc]p1:
   6947       //   A storage-class-specifier shall not be specified in an explicit
   6948       //   specialization (14.7.3)
   6949       FunctionTemplateSpecializationInfo *Info =
   6950           NewFD->getTemplateSpecializationInfo();
   6951       if (Info && SC != SC_None) {
   6952         if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
   6953           Diag(NewFD->getLocation(),
   6954                diag::err_explicit_specialization_inconsistent_storage_class)
   6955             << SC
   6956             << FixItHint::CreateRemoval(
   6957                                       D.getDeclSpec().getStorageClassSpecLoc());
   6958 
   6959         else
   6960           Diag(NewFD->getLocation(),
   6961                diag::ext_explicit_specialization_storage_class)
   6962             << FixItHint::CreateRemoval(
   6963                                       D.getDeclSpec().getStorageClassSpecLoc());
   6964       }
   6965 
   6966     } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
   6967       if (CheckMemberSpecialization(NewFD, Previous))
   6968           NewFD->setInvalidDecl();
   6969     }
   6970 
   6971     // Perform semantic checking on the function declaration.
   6972     if (!isDependentClassScopeExplicitSpecialization) {
   6973       if (!NewFD->isInvalidDecl() && NewFD->isMain())
   6974         CheckMain(NewFD, D.getDeclSpec());
   6975 
   6976       if (NewFD->isInvalidDecl()) {
   6977         // If this is a class member, mark the class invalid immediately.
   6978         // This avoids some consistency errors later.
   6979         if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
   6980           methodDecl->getParent()->setInvalidDecl();
   6981       } else
   6982         D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
   6983                                                     isExplicitSpecialization));
   6984     }
   6985 
   6986     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
   6987             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
   6988            "previous declaration set still overloaded");
   6989 
   6990     NamedDecl *PrincipalDecl = (FunctionTemplate
   6991                                 ? cast<NamedDecl>(FunctionTemplate)
   6992                                 : NewFD);
   6993 
   6994     if (isFriend && D.isRedeclaration()) {
   6995       AccessSpecifier Access = AS_public;
   6996       if (!NewFD->isInvalidDecl())
   6997         Access = NewFD->getPreviousDecl()->getAccess();
   6998 
   6999       NewFD->setAccess(Access);
   7000       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
   7001     }
   7002 
   7003     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
   7004         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
   7005       PrincipalDecl->setNonMemberOperator();
   7006 
   7007     // If we have a function template, check the template parameter
   7008     // list. This will check and merge default template arguments.
   7009     if (FunctionTemplate) {
   7010       FunctionTemplateDecl *PrevTemplate =
   7011                                      FunctionTemplate->getPreviousDecl();
   7012       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
   7013                        PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
   7014                             D.getDeclSpec().isFriendSpecified()
   7015                               ? (D.isFunctionDefinition()
   7016                                    ? TPC_FriendFunctionTemplateDefinition
   7017                                    : TPC_FriendFunctionTemplate)
   7018                               : (D.getCXXScopeSpec().isSet() &&
   7019                                  DC && DC->isRecord() &&
   7020                                  DC->isDependentContext())
   7021                                   ? TPC_ClassTemplateMember
   7022                                   : TPC_FunctionTemplate);
   7023     }
   7024 
   7025     if (NewFD->isInvalidDecl()) {
   7026       // Ignore all the rest of this.
   7027     } else if (!D.isRedeclaration()) {
   7028       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
   7029                                        AddToScope };
   7030       // Fake up an access specifier if it's supposed to be a class member.
   7031       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
   7032         NewFD->setAccess(AS_public);
   7033 
   7034       // Qualified decls generally require a previous declaration.
   7035       if (D.getCXXScopeSpec().isSet()) {
   7036         // ...with the major exception of templated-scope or
   7037         // dependent-scope friend declarations.
   7038 
   7039         // TODO: we currently also suppress this check in dependent
   7040         // contexts because (1) the parameter depth will be off when
   7041         // matching friend templates and (2) we might actually be
   7042         // selecting a friend based on a dependent factor.  But there
   7043         // are situations where these conditions don't apply and we
   7044         // can actually do this check immediately.
   7045         if (isFriend &&
   7046             (TemplateParamLists.size() ||
   7047              D.getCXXScopeSpec().getScopeRep()->isDependent() ||
   7048              CurContext->isDependentContext())) {
   7049           // ignore these
   7050         } else {
   7051           // The user tried to provide an out-of-line definition for a
   7052           // function that is a member of a class or namespace, but there
   7053           // was no such member function declared (C++ [class.mfct]p2,
   7054           // C++ [namespace.memdef]p2). For example:
   7055           //
   7056           // class X {
   7057           //   void f() const;
   7058           // };
   7059           //
   7060           // void X::f() { } // ill-formed
   7061           //
   7062           // Complain about this problem, and attempt to suggest close
   7063           // matches (e.g., those that differ only in cv-qualifiers and
   7064           // whether the parameter types are references).
   7065 
   7066           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
   7067                                                                NewFD,
   7068                                                                ExtraArgs)) {
   7069             AddToScope = ExtraArgs.AddToScope;
   7070             return Result;
   7071           }
   7072         }
   7073 
   7074         // Unqualified local friend declarations are required to resolve
   7075         // to something.
   7076       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
   7077         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
   7078                                                              NewFD,
   7079                                                              ExtraArgs)) {
   7080           AddToScope = ExtraArgs.AddToScope;
   7081           return Result;
   7082         }
   7083       }
   7084 
   7085     } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
   7086                !isFriend && !isFunctionTemplateSpecialization &&
   7087                !isExplicitSpecialization) {
   7088       // An out-of-line member function declaration must also be a
   7089       // definition (C++ [dcl.meaning]p1).
   7090       // Note that this is not the case for explicit specializations of
   7091       // function templates or member functions of class templates, per
   7092       // C++ [temp.expl.spec]p2. We also allow these declarations as an
   7093       // extension for compatibility with old SWIG code which likes to
   7094       // generate them.
   7095       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
   7096         << D.getCXXScopeSpec().getRange();
   7097     }
   7098   }
   7099 
   7100   ProcessPragmaWeak(S, NewFD);
   7101   checkAttributesAfterMerging(*this, *NewFD);
   7102 
   7103   AddKnownFunctionAttributes(NewFD);
   7104 
   7105   if (NewFD->hasAttr<OverloadableAttr>() &&
   7106       !NewFD->getType()->getAs<FunctionProtoType>()) {
   7107     Diag(NewFD->getLocation(),
   7108          diag::err_attribute_overloadable_no_prototype)
   7109       << NewFD;
   7110 
   7111     // Turn this into a variadic function with no parameters.
   7112     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
   7113     FunctionProtoType::ExtProtoInfo EPI;
   7114     EPI.Variadic = true;
   7115     EPI.ExtInfo = FT->getExtInfo();
   7116 
   7117     QualType R = Context.getFunctionType(FT->getResultType(), None, EPI);
   7118     NewFD->setType(R);
   7119   }
   7120 
   7121   // If there's a #pragma GCC visibility in scope, and this isn't a class
   7122   // member, set the visibility of this function.
   7123   if (!DC->isRecord() && NewFD->isExternallyVisible())
   7124     AddPushedVisibilityAttribute(NewFD);
   7125 
   7126   // If there's a #pragma clang arc_cf_code_audited in scope, consider
   7127   // marking the function.
   7128   AddCFAuditedAttribute(NewFD);
   7129 
   7130   // If this is the first declaration of an extern C variable, update
   7131   // the map of such variables.
   7132   if (!NewFD->getPreviousDecl() && !NewFD->isInvalidDecl() &&
   7133       isIncompleteDeclExternC(*this, NewFD))
   7134     RegisterLocallyScopedExternCDecl(NewFD, S);
   7135 
   7136   // Set this FunctionDecl's range up to the right paren.
   7137   NewFD->setRangeEnd(D.getSourceRange().getEnd());
   7138 
   7139   if (getLangOpts().CPlusPlus) {
   7140     if (FunctionTemplate) {
   7141       if (NewFD->isInvalidDecl())
   7142         FunctionTemplate->setInvalidDecl();
   7143       return FunctionTemplate;
   7144     }
   7145   }
   7146 
   7147   if (NewFD->hasAttr<OpenCLKernelAttr>()) {
   7148     // OpenCL v1.2 s6.8 static is invalid for kernel functions.
   7149     if ((getLangOpts().OpenCLVersion >= 120)
   7150         && (SC == SC_Static)) {
   7151       Diag(D.getIdentifierLoc(), diag::err_static_kernel);
   7152       D.setInvalidType();
   7153     }
   7154 
   7155     // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
   7156     if (!NewFD->getResultType()->isVoidType()) {
   7157       Diag(D.getIdentifierLoc(),
   7158            diag::err_expected_kernel_void_return_type);
   7159       D.setInvalidType();
   7160     }
   7161 
   7162     llvm::SmallPtrSet<const Type *, 16> ValidTypes;
   7163     for (FunctionDecl::param_iterator PI = NewFD->param_begin(),
   7164          PE = NewFD->param_end(); PI != PE; ++PI) {
   7165       ParmVarDecl *Param = *PI;
   7166       checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
   7167     }
   7168   }
   7169 
   7170   MarkUnusedFileScopedDecl(NewFD);
   7171 
   7172   if (getLangOpts().CUDA)
   7173     if (IdentifierInfo *II = NewFD->getIdentifier())
   7174       if (!NewFD->isInvalidDecl() &&
   7175           NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
   7176         if (II->isStr("cudaConfigureCall")) {
   7177           if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
   7178             Diag(NewFD->getLocation(), diag::err_config_scalar_return);
   7179 
   7180           Context.setcudaConfigureCallDecl(NewFD);
   7181         }
   7182       }
   7183 
   7184   // Here we have an function template explicit specialization at class scope.
   7185   // The actually specialization will be postponed to template instatiation
   7186   // time via the ClassScopeFunctionSpecializationDecl node.
   7187   if (isDependentClassScopeExplicitSpecialization) {
   7188     ClassScopeFunctionSpecializationDecl *NewSpec =
   7189                          ClassScopeFunctionSpecializationDecl::Create(
   7190                                 Context, CurContext, SourceLocation(),
   7191                                 cast<CXXMethodDecl>(NewFD),
   7192                                 HasExplicitTemplateArgs, TemplateArgs);
   7193     CurContext->addDecl(NewSpec);
   7194     AddToScope = false;
   7195   }
   7196 
   7197   return NewFD;
   7198 }
   7199 
   7200 /// \brief Perform semantic checking of a new function declaration.
   7201 ///
   7202 /// Performs semantic analysis of the new function declaration
   7203 /// NewFD. This routine performs all semantic checking that does not
   7204 /// require the actual declarator involved in the declaration, and is
   7205 /// used both for the declaration of functions as they are parsed
   7206 /// (called via ActOnDeclarator) and for the declaration of functions
   7207 /// that have been instantiated via C++ template instantiation (called
   7208 /// via InstantiateDecl).
   7209 ///
   7210 /// \param IsExplicitSpecialization whether this new function declaration is
   7211 /// an explicit specialization of the previous declaration.
   7212 ///
   7213 /// This sets NewFD->isInvalidDecl() to true if there was an error.
   7214 ///
   7215 /// \returns true if the function declaration is a redeclaration.
   7216 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
   7217                                     LookupResult &Previous,
   7218                                     bool IsExplicitSpecialization) {
   7219   assert(!NewFD->getResultType()->isVariablyModifiedType()
   7220          && "Variably modified return types are not handled here");
   7221 
   7222   // Filter out any non-conflicting previous declarations.
   7223   filterNonConflictingPreviousDecls(Context, NewFD, Previous);
   7224 
   7225   bool Redeclaration = false;
   7226   NamedDecl *OldDecl = 0;
   7227 
   7228   // Merge or overload the declaration with an existing declaration of
   7229   // the same name, if appropriate.
   7230   if (!Previous.empty()) {
   7231     // Determine whether NewFD is an overload of PrevDecl or
   7232     // a declaration that requires merging. If it's an overload,
   7233     // there's no more work to do here; we'll just add the new
   7234     // function to the scope.
   7235     if (!AllowOverloadingOfFunction(Previous, Context)) {
   7236       NamedDecl *Candidate = Previous.getFoundDecl();
   7237       if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
   7238         Redeclaration = true;
   7239         OldDecl = Candidate;
   7240       }
   7241     } else {
   7242       switch (CheckOverload(S, NewFD, Previous, OldDecl,
   7243                             /*NewIsUsingDecl*/ false)) {
   7244       case Ovl_Match:
   7245         Redeclaration = true;
   7246         break;
   7247 
   7248       case Ovl_NonFunction:
   7249         Redeclaration = true;
   7250         break;
   7251 
   7252       case Ovl_Overload:
   7253         Redeclaration = false;
   7254         break;
   7255       }
   7256 
   7257       if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
   7258         // If a function name is overloadable in C, then every function
   7259         // with that name must be marked "overloadable".
   7260         Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
   7261           << Redeclaration << NewFD;
   7262         NamedDecl *OverloadedDecl = 0;
   7263         if (Redeclaration)
   7264           OverloadedDecl = OldDecl;
   7265         else if (!Previous.empty())
   7266           OverloadedDecl = Previous.getRepresentativeDecl();
   7267         if (OverloadedDecl)
   7268           Diag(OverloadedDecl->getLocation(),
   7269                diag::note_attribute_overloadable_prev_overload);
   7270         NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
   7271                                                         Context));
   7272       }
   7273     }
   7274   }
   7275 
   7276   // Check for a previous extern "C" declaration with this name.
   7277   if (!Redeclaration &&
   7278       checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
   7279     filterNonConflictingPreviousDecls(Context, NewFD, Previous);
   7280     if (!Previous.empty()) {
   7281       // This is an extern "C" declaration with the same name as a previous
   7282       // declaration, and thus redeclares that entity...
   7283       Redeclaration = true;
   7284       OldDecl = Previous.getFoundDecl();
   7285 
   7286       // ... except in the presence of __attribute__((overloadable)).
   7287       if (OldDecl->hasAttr<OverloadableAttr>()) {
   7288         if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
   7289           Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
   7290             << Redeclaration << NewFD;
   7291           Diag(Previous.getFoundDecl()->getLocation(),
   7292                diag::note_attribute_overloadable_prev_overload);
   7293           NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
   7294                                                           Context));
   7295         }
   7296         if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
   7297           Redeclaration = false;
   7298           OldDecl = 0;
   7299         }
   7300       }
   7301     }
   7302   }
   7303 
   7304   // C++11 [dcl.constexpr]p8:
   7305   //   A constexpr specifier for a non-static member function that is not
   7306   //   a constructor declares that member function to be const.
   7307   //
   7308   // This needs to be delayed until we know whether this is an out-of-line
   7309   // definition of a static member function.
   7310   //
   7311   // This rule is not present in C++1y, so we produce a backwards
   7312   // compatibility warning whenever it happens in C++11.
   7313   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
   7314   if (!getLangOpts().CPlusPlus1y && MD && MD->isConstexpr() &&
   7315       !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
   7316       (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
   7317     CXXMethodDecl *OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl);
   7318     if (FunctionTemplateDecl *OldTD =
   7319           dyn_cast_or_null<FunctionTemplateDecl>(OldDecl))
   7320       OldMD = dyn_cast<CXXMethodDecl>(OldTD->getTemplatedDecl());
   7321     if (!OldMD || !OldMD->isStatic()) {
   7322       const FunctionProtoType *FPT =
   7323         MD->getType()->castAs<FunctionProtoType>();
   7324       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
   7325       EPI.TypeQuals |= Qualifiers::Const;
   7326       MD->setType(Context.getFunctionType(FPT->getResultType(),
   7327                                           FPT->getArgTypes(), EPI));
   7328 
   7329       // Warn that we did this, if we're not performing template instantiation.
   7330       // In that case, we'll have warned already when the template was defined.
   7331       if (ActiveTemplateInstantiations.empty()) {
   7332         SourceLocation AddConstLoc;
   7333         if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
   7334                 .IgnoreParens().getAs<FunctionTypeLoc>())
   7335           AddConstLoc = PP.getLocForEndOfToken(FTL.getRParenLoc());
   7336 
   7337         Diag(MD->getLocation(), diag::warn_cxx1y_compat_constexpr_not_const)
   7338           << FixItHint::CreateInsertion(AddConstLoc, " const");
   7339       }
   7340     }
   7341   }
   7342 
   7343   if (Redeclaration) {
   7344     // NewFD and OldDecl represent declarations that need to be
   7345     // merged.
   7346     if (MergeFunctionDecl(NewFD, OldDecl, S)) {
   7347       NewFD->setInvalidDecl();
   7348       return Redeclaration;
   7349     }
   7350 
   7351     Previous.clear();
   7352     Previous.addDecl(OldDecl);
   7353 
   7354     if (FunctionTemplateDecl *OldTemplateDecl
   7355                                   = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
   7356       NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
   7357       FunctionTemplateDecl *NewTemplateDecl
   7358         = NewFD->getDescribedFunctionTemplate();
   7359       assert(NewTemplateDecl && "Template/non-template mismatch");
   7360       if (CXXMethodDecl *Method
   7361             = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
   7362         Method->setAccess(OldTemplateDecl->getAccess());
   7363         NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
   7364       }
   7365 
   7366       // If this is an explicit specialization of a member that is a function
   7367       // template, mark it as a member specialization.
   7368       if (IsExplicitSpecialization &&
   7369           NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
   7370         NewTemplateDecl->setMemberSpecialization();
   7371         assert(OldTemplateDecl->isMemberSpecialization());
   7372       }
   7373 
   7374     } else {
   7375       // This needs to happen first so that 'inline' propagates.
   7376       NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
   7377 
   7378       if (isa<CXXMethodDecl>(NewFD)) {
   7379         // A valid redeclaration of a C++ method must be out-of-line,
   7380         // but (unfortunately) it's not necessarily a definition
   7381         // because of templates, which means that the previous
   7382         // declaration is not necessarily from the class definition.
   7383 
   7384         // For just setting the access, that doesn't matter.
   7385         CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
   7386         NewFD->setAccess(oldMethod->getAccess());
   7387 
   7388         // Update the key-function state if necessary for this ABI.
   7389         if (NewFD->isInlined() &&
   7390             !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
   7391           // setNonKeyFunction needs to work with the original
   7392           // declaration from the class definition, and isVirtual() is
   7393           // just faster in that case, so map back to that now.
   7394           oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDeclaration());
   7395           if (oldMethod->isVirtual()) {
   7396             Context.setNonKeyFunction(oldMethod);
   7397           }
   7398         }
   7399       }
   7400     }
   7401   }
   7402 
   7403   // Semantic checking for this function declaration (in isolation).
   7404   if (getLangOpts().CPlusPlus) {
   7405     // C++-specific checks.
   7406     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
   7407       CheckConstructor(Constructor);
   7408     } else if (CXXDestructorDecl *Destructor =
   7409                 dyn_cast<CXXDestructorDecl>(NewFD)) {
   7410       CXXRecordDecl *Record = Destructor->getParent();
   7411       QualType ClassType = Context.getTypeDeclType(Record);
   7412 
   7413       // FIXME: Shouldn't we be able to perform this check even when the class
   7414       // type is dependent? Both gcc and edg can handle that.
   7415       if (!ClassType->isDependentType()) {
   7416         DeclarationName Name
   7417           = Context.DeclarationNames.getCXXDestructorName(
   7418                                         Context.getCanonicalType(ClassType));
   7419         if (NewFD->getDeclName() != Name) {
   7420           Diag(NewFD->getLocation(), diag::err_destructor_name);
   7421           NewFD->setInvalidDecl();
   7422           return Redeclaration;
   7423         }
   7424       }
   7425     } else if (CXXConversionDecl *Conversion
   7426                = dyn_cast<CXXConversionDecl>(NewFD)) {
   7427       ActOnConversionDeclarator(Conversion);
   7428     }
   7429 
   7430     // Find any virtual functions that this function overrides.
   7431     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
   7432       if (!Method->isFunctionTemplateSpecialization() &&
   7433           !Method->getDescribedFunctionTemplate() &&
   7434           Method->isCanonicalDecl()) {
   7435         if (AddOverriddenMethods(Method->getParent(), Method)) {
   7436           // If the function was marked as "static", we have a problem.
   7437           if (NewFD->getStorageClass() == SC_Static) {
   7438             ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
   7439           }
   7440         }
   7441       }
   7442 
   7443       if (Method->isStatic())
   7444         checkThisInStaticMemberFunctionType(Method);
   7445     }
   7446 
   7447     // Extra checking for C++ overloaded operators (C++ [over.oper]).
   7448     if (NewFD->isOverloadedOperator() &&
   7449         CheckOverloadedOperatorDeclaration(NewFD)) {
   7450       NewFD->setInvalidDecl();
   7451       return Redeclaration;
   7452     }
   7453 
   7454     // Extra checking for C++0x literal operators (C++0x [over.literal]).
   7455     if (NewFD->getLiteralIdentifier() &&
   7456         CheckLiteralOperatorDeclaration(NewFD)) {
   7457       NewFD->setInvalidDecl();
   7458       return Redeclaration;
   7459     }
   7460 
   7461     // In C++, check default arguments now that we have merged decls. Unless
   7462     // the lexical context is the class, because in this case this is done
   7463     // during delayed parsing anyway.
   7464     if (!CurContext->isRecord())
   7465       CheckCXXDefaultArguments(NewFD);
   7466 
   7467     // If this function declares a builtin function, check the type of this
   7468     // declaration against the expected type for the builtin.
   7469     if (unsigned BuiltinID = NewFD->getBuiltinID()) {
   7470       ASTContext::GetBuiltinTypeError Error;
   7471       LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
   7472       QualType T = Context.GetBuiltinType(BuiltinID, Error);
   7473       if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
   7474         // The type of this function differs from the type of the builtin,
   7475         // so forget about the builtin entirely.
   7476         Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
   7477       }
   7478     }
   7479 
   7480     // If this function is declared as being extern "C", then check to see if
   7481     // the function returns a UDT (class, struct, or union type) that is not C
   7482     // compatible, and if it does, warn the user.
   7483     // But, issue any diagnostic on the first declaration only.
   7484     if (NewFD->isExternC() && Previous.empty()) {
   7485       QualType R = NewFD->getResultType();
   7486       if (R->isIncompleteType() && !R->isVoidType())
   7487         Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
   7488             << NewFD << R;
   7489       else if (!R.isPODType(Context) && !R->isVoidType() &&
   7490                !R->isObjCObjectPointerType())
   7491         Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
   7492     }
   7493   }
   7494   return Redeclaration;
   7495 }
   7496 
   7497 static SourceRange getResultSourceRange(const FunctionDecl *FD) {
   7498   const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
   7499   if (!TSI)
   7500     return SourceRange();
   7501 
   7502   TypeLoc TL = TSI->getTypeLoc();
   7503   FunctionTypeLoc FunctionTL = TL.getAs<FunctionTypeLoc>();
   7504   if (!FunctionTL)
   7505     return SourceRange();
   7506 
   7507   TypeLoc ResultTL = FunctionTL.getResultLoc();
   7508   if (ResultTL.getUnqualifiedLoc().getAs<BuiltinTypeLoc>())
   7509     return ResultTL.getSourceRange();
   7510 
   7511   return SourceRange();
   7512 }
   7513 
   7514 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
   7515   // C++11 [basic.start.main]p3:  A program that declares main to be inline,
   7516   //   static or constexpr is ill-formed.
   7517   // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
   7518   //   appear in a declaration of main.
   7519   // static main is not an error under C99, but we should warn about it.
   7520   // We accept _Noreturn main as an extension.
   7521   if (FD->getStorageClass() == SC_Static)
   7522     Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
   7523          ? diag::err_static_main : diag::warn_static_main)
   7524       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
   7525   if (FD->isInlineSpecified())
   7526     Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
   7527       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
   7528   if (DS.isNoreturnSpecified()) {
   7529     SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
   7530     SourceRange NoreturnRange(NoreturnLoc,
   7531                               PP.getLocForEndOfToken(NoreturnLoc));
   7532     Diag(NoreturnLoc, diag::ext_noreturn_main);
   7533     Diag(NoreturnLoc, diag::note_main_remove_noreturn)
   7534       << FixItHint::CreateRemoval(NoreturnRange);
   7535   }
   7536   if (FD->isConstexpr()) {
   7537     Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
   7538       << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
   7539     FD->setConstexpr(false);
   7540   }
   7541 
   7542   QualType T = FD->getType();
   7543   assert(T->isFunctionType() && "function decl is not of function type");
   7544   const FunctionType* FT = T->castAs<FunctionType>();
   7545 
   7546   // All the standards say that main() should should return 'int'.
   7547   if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
   7548     // In C and C++, main magically returns 0 if you fall off the end;
   7549     // set the flag which tells us that.
   7550     // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
   7551     FD->setHasImplicitReturnZero(true);
   7552 
   7553   // In C with GNU extensions we allow main() to have non-integer return
   7554   // type, but we should warn about the extension, and we disable the
   7555   // implicit-return-zero rule.
   7556   } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
   7557     Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
   7558 
   7559     SourceRange ResultRange = getResultSourceRange(FD);
   7560     if (ResultRange.isValid())
   7561       Diag(ResultRange.getBegin(), diag::note_main_change_return_type)
   7562           << FixItHint::CreateReplacement(ResultRange, "int");
   7563 
   7564   // Otherwise, this is just a flat-out error.
   7565   } else {
   7566     SourceRange ResultRange = getResultSourceRange(FD);
   7567     if (ResultRange.isValid())
   7568       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
   7569           << FixItHint::CreateReplacement(ResultRange, "int");
   7570     else
   7571       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
   7572 
   7573     FD->setInvalidDecl(true);
   7574   }
   7575 
   7576   // Treat protoless main() as nullary.
   7577   if (isa<FunctionNoProtoType>(FT)) return;
   7578 
   7579   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
   7580   unsigned nparams = FTP->getNumArgs();
   7581   assert(FD->getNumParams() == nparams);
   7582 
   7583   bool HasExtraParameters = (nparams > 3);
   7584 
   7585   // Darwin passes an undocumented fourth argument of type char**.  If
   7586   // other platforms start sprouting these, the logic below will start
   7587   // getting shifty.
   7588   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
   7589     HasExtraParameters = false;
   7590 
   7591   if (HasExtraParameters) {
   7592     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
   7593     FD->setInvalidDecl(true);
   7594     nparams = 3;
   7595   }
   7596 
   7597   // FIXME: a lot of the following diagnostics would be improved
   7598   // if we had some location information about types.
   7599 
   7600   QualType CharPP =
   7601     Context.getPointerType(Context.getPointerType(Context.CharTy));
   7602   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
   7603 
   7604   for (unsigned i = 0; i < nparams; ++i) {
   7605     QualType AT = FTP->getArgType(i);
   7606 
   7607     bool mismatch = true;
   7608 
   7609     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
   7610       mismatch = false;
   7611     else if (Expected[i] == CharPP) {
   7612       // As an extension, the following forms are okay:
   7613       //   char const **
   7614       //   char const * const *
   7615       //   char * const *
   7616 
   7617       QualifierCollector qs;
   7618       const PointerType* PT;
   7619       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
   7620           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
   7621           Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
   7622                               Context.CharTy)) {
   7623         qs.removeConst();
   7624         mismatch = !qs.empty();
   7625       }
   7626     }
   7627 
   7628     if (mismatch) {
   7629       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
   7630       // TODO: suggest replacing given type with expected type
   7631       FD->setInvalidDecl(true);
   7632     }
   7633   }
   7634 
   7635   if (nparams == 1 && !FD->isInvalidDecl()) {
   7636     Diag(FD->getLocation(), diag::warn_main_one_arg);
   7637   }
   7638 
   7639   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
   7640     Diag(FD->getLocation(), diag::err_main_template_decl);
   7641     FD->setInvalidDecl();
   7642   }
   7643 }
   7644 
   7645 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
   7646   // FIXME: Need strict checking.  In C89, we need to check for
   7647   // any assignment, increment, decrement, function-calls, or
   7648   // commas outside of a sizeof.  In C99, it's the same list,
   7649   // except that the aforementioned are allowed in unevaluated
   7650   // expressions.  Everything else falls under the
   7651   // "may accept other forms of constant expressions" exception.
   7652   // (We never end up here for C++, so the constant expression
   7653   // rules there don't matter.)
   7654   if (Init->isConstantInitializer(Context, false))
   7655     return false;
   7656   Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
   7657     << Init->getSourceRange();
   7658   return true;
   7659 }
   7660 
   7661 namespace {
   7662   // Visits an initialization expression to see if OrigDecl is evaluated in
   7663   // its own initialization and throws a warning if it does.
   7664   class SelfReferenceChecker
   7665       : public EvaluatedExprVisitor<SelfReferenceChecker> {
   7666     Sema &S;
   7667     Decl *OrigDecl;
   7668     bool isRecordType;
   7669     bool isPODType;
   7670     bool isReferenceType;
   7671 
   7672   public:
   7673     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
   7674 
   7675     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
   7676                                                     S(S), OrigDecl(OrigDecl) {
   7677       isPODType = false;
   7678       isRecordType = false;
   7679       isReferenceType = false;
   7680       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
   7681         isPODType = VD->getType().isPODType(S.Context);
   7682         isRecordType = VD->getType()->isRecordType();
   7683         isReferenceType = VD->getType()->isReferenceType();
   7684       }
   7685     }
   7686 
   7687     // For most expressions, the cast is directly above the DeclRefExpr.
   7688     // For conditional operators, the cast can be outside the conditional
   7689     // operator if both expressions are DeclRefExpr's.
   7690     void HandleValue(Expr *E) {
   7691       if (isReferenceType)
   7692         return;
   7693       E = E->IgnoreParenImpCasts();
   7694       if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
   7695         HandleDeclRefExpr(DRE);
   7696         return;
   7697       }
   7698 
   7699       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
   7700         HandleValue(CO->getTrueExpr());
   7701         HandleValue(CO->getFalseExpr());
   7702         return;
   7703       }
   7704 
   7705       if (isa<MemberExpr>(E)) {
   7706         Expr *Base = E->IgnoreParenImpCasts();
   7707         while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
   7708           // Check for static member variables and don't warn on them.
   7709           if (!isa<FieldDecl>(ME->getMemberDecl()))
   7710             return;
   7711           Base = ME->getBase()->IgnoreParenImpCasts();
   7712         }
   7713         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
   7714           HandleDeclRefExpr(DRE);
   7715         return;
   7716       }
   7717     }
   7718 
   7719     // Reference types are handled here since all uses of references are
   7720     // bad, not just r-value uses.
   7721     void VisitDeclRefExpr(DeclRefExpr *E) {
   7722       if (isReferenceType)
   7723         HandleDeclRefExpr(E);
   7724     }
   7725 
   7726     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
   7727       if (E->getCastKind() == CK_LValueToRValue ||
   7728           (isRecordType && E->getCastKind() == CK_NoOp))
   7729         HandleValue(E->getSubExpr());
   7730 
   7731       Inherited::VisitImplicitCastExpr(E);
   7732     }
   7733 
   7734     void VisitMemberExpr(MemberExpr *E) {
   7735       // Don't warn on arrays since they can be treated as pointers.
   7736       if (E->getType()->canDecayToPointerType()) return;
   7737 
   7738       // Warn when a non-static method call is followed by non-static member
   7739       // field accesses, which is followed by a DeclRefExpr.
   7740       CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
   7741       bool Warn = (MD && !MD->isStatic());
   7742       Expr *Base = E->getBase()->IgnoreParenImpCasts();
   7743       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
   7744         if (!isa<FieldDecl>(ME->getMemberDecl()))
   7745           Warn = false;
   7746         Base = ME->getBase()->IgnoreParenImpCasts();
   7747       }
   7748 
   7749       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
   7750         if (Warn)
   7751           HandleDeclRefExpr(DRE);
   7752         return;
   7753       }
   7754 
   7755       // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
   7756       // Visit that expression.
   7757       Visit(Base);
   7758     }
   7759 
   7760     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
   7761       if (E->getNumArgs() > 0)
   7762         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getArg(0)))
   7763           HandleDeclRefExpr(DRE);
   7764 
   7765       Inherited::VisitCXXOperatorCallExpr(E);
   7766     }
   7767 
   7768     void VisitUnaryOperator(UnaryOperator *E) {
   7769       // For POD record types, addresses of its own members are well-defined.
   7770       if (E->getOpcode() == UO_AddrOf && isRecordType &&
   7771           isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
   7772         if (!isPODType)
   7773           HandleValue(E->getSubExpr());
   7774         return;
   7775       }
   7776       Inherited::VisitUnaryOperator(E);
   7777     }
   7778 
   7779     void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
   7780 
   7781     void HandleDeclRefExpr(DeclRefExpr *DRE) {
   7782       Decl* ReferenceDecl = DRE->getDecl();
   7783       if (OrigDecl != ReferenceDecl) return;
   7784       unsigned diag;
   7785       if (isReferenceType) {
   7786         diag = diag::warn_uninit_self_reference_in_reference_init;
   7787       } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
   7788         diag = diag::warn_static_self_reference_in_init;
   7789       } else {
   7790         diag = diag::warn_uninit_self_reference_in_init;
   7791       }
   7792 
   7793       S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
   7794                             S.PDiag(diag)
   7795                               << DRE->getNameInfo().getName()
   7796                               << OrigDecl->getLocation()
   7797                               << DRE->getSourceRange());
   7798     }
   7799   };
   7800 
   7801   /// CheckSelfReference - Warns if OrigDecl is used in expression E.
   7802   static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
   7803                                  bool DirectInit) {
   7804     // Parameters arguments are occassionially constructed with itself,
   7805     // for instance, in recursive functions.  Skip them.
   7806     if (isa<ParmVarDecl>(OrigDecl))
   7807       return;
   7808 
   7809     E = E->IgnoreParens();
   7810 
   7811     // Skip checking T a = a where T is not a record or reference type.
   7812     // Doing so is a way to silence uninitialized warnings.
   7813     if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
   7814       if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
   7815         if (ICE->getCastKind() == CK_LValueToRValue)
   7816           if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
   7817             if (DRE->getDecl() == OrigDecl)
   7818               return;
   7819 
   7820     SelfReferenceChecker(S, OrigDecl).Visit(E);
   7821   }
   7822 }
   7823 
   7824 /// AddInitializerToDecl - Adds the initializer Init to the
   7825 /// declaration dcl. If DirectInit is true, this is C++ direct
   7826 /// initialization rather than copy initialization.
   7827 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
   7828                                 bool DirectInit, bool TypeMayContainAuto) {
   7829   // If there is no declaration, there was an error parsing it.  Just ignore
   7830   // the initializer.
   7831   if (RealDecl == 0 || RealDecl->isInvalidDecl())
   7832     return;
   7833 
   7834   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
   7835     // With declarators parsed the way they are, the parser cannot
   7836     // distinguish between a normal initializer and a pure-specifier.
   7837     // Thus this grotesque test.
   7838     IntegerLiteral *IL;
   7839     if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
   7840         Context.getCanonicalType(IL->getType()) == Context.IntTy)
   7841       CheckPureMethod(Method, Init->getSourceRange());
   7842     else {
   7843       Diag(Method->getLocation(), diag::err_member_function_initialization)
   7844         << Method->getDeclName() << Init->getSourceRange();
   7845       Method->setInvalidDecl();
   7846     }
   7847     return;
   7848   }
   7849 
   7850   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
   7851   if (!VDecl) {
   7852     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
   7853     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
   7854     RealDecl->setInvalidDecl();
   7855     return;
   7856   }
   7857   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
   7858 
   7859   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
   7860   if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
   7861     Expr *DeduceInit = Init;
   7862     // Initializer could be a C++ direct-initializer. Deduction only works if it
   7863     // contains exactly one expression.
   7864     if (CXXDirectInit) {
   7865       if (CXXDirectInit->getNumExprs() == 0) {
   7866         // It isn't possible to write this directly, but it is possible to
   7867         // end up in this situation with "auto x(some_pack...);"
   7868         Diag(CXXDirectInit->getLocStart(),
   7869              diag::err_auto_var_init_no_expression)
   7870           << VDecl->getDeclName() << VDecl->getType()
   7871           << VDecl->getSourceRange();
   7872         RealDecl->setInvalidDecl();
   7873         return;
   7874       } else if (CXXDirectInit->getNumExprs() > 1) {
   7875         Diag(CXXDirectInit->getExpr(1)->getLocStart(),
   7876              diag::err_auto_var_init_multiple_expressions)
   7877           << VDecl->getDeclName() << VDecl->getType()
   7878           << VDecl->getSourceRange();
   7879         RealDecl->setInvalidDecl();
   7880         return;
   7881       } else {
   7882         DeduceInit = CXXDirectInit->getExpr(0);
   7883       }
   7884     }
   7885 
   7886     // Expressions default to 'id' when we're in a debugger.
   7887     bool DefaultedToAuto = false;
   7888     if (getLangOpts().DebuggerCastResultToId &&
   7889         Init->getType() == Context.UnknownAnyTy) {
   7890       ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
   7891       if (Result.isInvalid()) {
   7892         VDecl->setInvalidDecl();
   7893         return;
   7894       }
   7895       Init = Result.take();
   7896       DefaultedToAuto = true;
   7897     }
   7898 
   7899     QualType DeducedType;
   7900     if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
   7901             DAR_Failed)
   7902       DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
   7903     if (DeducedType.isNull()) {
   7904       RealDecl->setInvalidDecl();
   7905       return;
   7906     }
   7907     VDecl->setType(DeducedType);
   7908     assert(VDecl->isLinkageValid());
   7909 
   7910     // In ARC, infer lifetime.
   7911     if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
   7912       VDecl->setInvalidDecl();
   7913 
   7914     // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
   7915     // 'id' instead of a specific object type prevents most of our usual checks.
   7916     // We only want to warn outside of template instantiations, though:
   7917     // inside a template, the 'id' could have come from a parameter.
   7918     if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
   7919         DeducedType->isObjCIdType()) {
   7920       SourceLocation Loc =
   7921           VDecl->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
   7922       Diag(Loc, diag::warn_auto_var_is_id)
   7923         << VDecl->getDeclName() << DeduceInit->getSourceRange();
   7924     }
   7925 
   7926     // If this is a redeclaration, check that the type we just deduced matches
   7927     // the previously declared type.
   7928     if (VarDecl *Old = VDecl->getPreviousDecl())
   7929       MergeVarDeclTypes(VDecl, Old, /*OldWasHidden*/ false);
   7930 
   7931     // Check the deduced type is valid for a variable declaration.
   7932     CheckVariableDeclarationType(VDecl);
   7933     if (VDecl->isInvalidDecl())
   7934       return;
   7935   }
   7936 
   7937   if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
   7938     // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
   7939     Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
   7940     VDecl->setInvalidDecl();
   7941     return;
   7942   }
   7943 
   7944   if (!VDecl->getType()->isDependentType()) {
   7945     // A definition must end up with a complete type, which means it must be
   7946     // complete with the restriction that an array type might be completed by
   7947     // the initializer; note that later code assumes this restriction.
   7948     QualType BaseDeclType = VDecl->getType();
   7949     if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
   7950       BaseDeclType = Array->getElementType();
   7951     if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
   7952                             diag::err_typecheck_decl_incomplete_type)) {
   7953       RealDecl->setInvalidDecl();
   7954       return;
   7955     }
   7956 
   7957     // The variable can not have an abstract class type.
   7958     if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
   7959                                diag::err_abstract_type_in_decl,
   7960                                AbstractVariableType))
   7961       VDecl->setInvalidDecl();
   7962   }
   7963 
   7964   const VarDecl *Def;
   7965   if ((Def = VDecl->getDefinition()) && Def != VDecl) {
   7966     Diag(VDecl->getLocation(), diag::err_redefinition)
   7967       << VDecl->getDeclName();
   7968     Diag(Def->getLocation(), diag::note_previous_definition);
   7969     VDecl->setInvalidDecl();
   7970     return;
   7971   }
   7972 
   7973   const VarDecl* PrevInit = 0;
   7974   if (getLangOpts().CPlusPlus) {
   7975     // C++ [class.static.data]p4
   7976     //   If a static data member is of const integral or const
   7977     //   enumeration type, its declaration in the class definition can
   7978     //   specify a constant-initializer which shall be an integral
   7979     //   constant expression (5.19). In that case, the member can appear
   7980     //   in integral constant expressions. The member shall still be
   7981     //   defined in a namespace scope if it is used in the program and the
   7982     //   namespace scope definition shall not contain an initializer.
   7983     //
   7984     // We already performed a redefinition check above, but for static
   7985     // data members we also need to check whether there was an in-class
   7986     // declaration with an initializer.
   7987     if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
   7988       Diag(VDecl->getLocation(), diag::err_redefinition)
   7989         << VDecl->getDeclName();
   7990       Diag(PrevInit->getLocation(), diag::note_previous_definition);
   7991       return;
   7992     }
   7993 
   7994     if (VDecl->hasLocalStorage())
   7995       getCurFunction()->setHasBranchProtectedScope();
   7996 
   7997     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
   7998       VDecl->setInvalidDecl();
   7999       return;
   8000     }
   8001   }
   8002 
   8003   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
   8004   // a kernel function cannot be initialized."
   8005   if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
   8006     Diag(VDecl->getLocation(), diag::err_local_cant_init);
   8007     VDecl->setInvalidDecl();
   8008     return;
   8009   }
   8010 
   8011   // Get the decls type and save a reference for later, since
   8012   // CheckInitializerTypes may change it.
   8013   QualType DclT = VDecl->getType(), SavT = DclT;
   8014 
   8015   // Expressions default to 'id' when we're in a debugger
   8016   // and we are assigning it to a variable of Objective-C pointer type.
   8017   if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
   8018       Init->getType() == Context.UnknownAnyTy) {
   8019     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
   8020     if (Result.isInvalid()) {
   8021       VDecl->setInvalidDecl();
   8022       return;
   8023     }
   8024     Init = Result.take();
   8025   }
   8026 
   8027   // Perform the initialization.
   8028   if (!VDecl->isInvalidDecl()) {
   8029     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
   8030     InitializationKind Kind
   8031       = DirectInit ?
   8032           CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
   8033                                                            Init->getLocStart(),
   8034                                                            Init->getLocEnd())
   8035                         : InitializationKind::CreateDirectList(
   8036                                                           VDecl->getLocation())
   8037                    : InitializationKind::CreateCopy(VDecl->getLocation(),
   8038                                                     Init->getLocStart());
   8039 
   8040     MultiExprArg Args = Init;
   8041     if (CXXDirectInit)
   8042       Args = MultiExprArg(CXXDirectInit->getExprs(),
   8043                           CXXDirectInit->getNumExprs());
   8044 
   8045     InitializationSequence InitSeq(*this, Entity, Kind, Args);
   8046     ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
   8047     if (Result.isInvalid()) {
   8048       VDecl->setInvalidDecl();
   8049       return;
   8050     }
   8051 
   8052     Init = Result.takeAs<Expr>();
   8053   }
   8054 
   8055   // Check for self-references within variable initializers.
   8056   // Variables declared within a function/method body (except for references)
   8057   // are handled by a dataflow analysis.
   8058   if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
   8059       VDecl->getType()->isReferenceType()) {
   8060     CheckSelfReference(*this, RealDecl, Init, DirectInit);
   8061   }
   8062 
   8063   // If the type changed, it means we had an incomplete type that was
   8064   // completed by the initializer. For example:
   8065   //   int ary[] = { 1, 3, 5 };
   8066   // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
   8067   if (!VDecl->isInvalidDecl() && (DclT != SavT))
   8068     VDecl->setType(DclT);
   8069 
   8070   if (!VDecl->isInvalidDecl()) {
   8071     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
   8072 
   8073     if (VDecl->hasAttr<BlocksAttr>())
   8074       checkRetainCycles(VDecl, Init);
   8075 
   8076     // It is safe to assign a weak reference into a strong variable.
   8077     // Although this code can still have problems:
   8078     //   id x = self.weakProp;
   8079     //   id y = self.weakProp;
   8080     // we do not warn to warn spuriously when 'x' and 'y' are on separate
   8081     // paths through the function. This should be revisited if
   8082     // -Wrepeated-use-of-weak is made flow-sensitive.
   8083     if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
   8084       DiagnosticsEngine::Level Level =
   8085         Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
   8086                                  Init->getLocStart());
   8087       if (Level != DiagnosticsEngine::Ignored)
   8088         getCurFunction()->markSafeWeakUse(Init);
   8089     }
   8090   }
   8091 
   8092   // The initialization is usually a full-expression.
   8093   //
   8094   // FIXME: If this is a braced initialization of an aggregate, it is not
   8095   // an expression, and each individual field initializer is a separate
   8096   // full-expression. For instance, in:
   8097   //
   8098   //   struct Temp { ~Temp(); };
   8099   //   struct S { S(Temp); };
   8100   //   struct T { S a, b; } t = { Temp(), Temp() }
   8101   //
   8102   // we should destroy the first Temp before constructing the second.
   8103   ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
   8104                                           false,
   8105                                           VDecl->isConstexpr());
   8106   if (Result.isInvalid()) {
   8107     VDecl->setInvalidDecl();
   8108     return;
   8109   }
   8110   Init = Result.take();
   8111 
   8112   // Attach the initializer to the decl.
   8113   VDecl->setInit(Init);
   8114 
   8115   if (VDecl->isLocalVarDecl()) {
   8116     // C99 6.7.8p4: All the expressions in an initializer for an object that has
   8117     // static storage duration shall be constant expressions or string literals.
   8118     // C++ does not have this restriction.
   8119     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) {
   8120       if (VDecl->getStorageClass() == SC_Static)
   8121         CheckForConstantInitializer(Init, DclT);
   8122       // C89 is stricter than C99 for non-static aggregate types.
   8123       // C89 6.5.7p3: All the expressions [...] in an initializer list
   8124       // for an object that has aggregate or union type shall be
   8125       // constant expressions.
   8126       else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
   8127                isa<InitListExpr>(Init) &&
   8128                !Init->isConstantInitializer(Context, false))
   8129         Diag(Init->getExprLoc(),
   8130              diag::ext_aggregate_init_not_constant)
   8131           << Init->getSourceRange();
   8132     }
   8133   } else if (VDecl->isStaticDataMember() &&
   8134              VDecl->getLexicalDeclContext()->isRecord()) {
   8135     // This is an in-class initialization for a static data member, e.g.,
   8136     //
   8137     // struct S {
   8138     //   static const int value = 17;
   8139     // };
   8140 
   8141     // C++ [class.mem]p4:
   8142     //   A member-declarator can contain a constant-initializer only
   8143     //   if it declares a static member (9.4) of const integral or
   8144     //   const enumeration type, see 9.4.2.
   8145     //
   8146     // C++11 [class.static.data]p3:
   8147     //   If a non-volatile const static data member is of integral or
   8148     //   enumeration type, its declaration in the class definition can
   8149     //   specify a brace-or-equal-initializer in which every initalizer-clause
   8150     //   that is an assignment-expression is a constant expression. A static
   8151     //   data member of literal type can be declared in the class definition
   8152     //   with the constexpr specifier; if so, its declaration shall specify a
   8153     //   brace-or-equal-initializer in which every initializer-clause that is
   8154     //   an assignment-expression is a constant expression.
   8155 
   8156     // Do nothing on dependent types.
   8157     if (DclT->isDependentType()) {
   8158 
   8159     // Allow any 'static constexpr' members, whether or not they are of literal
   8160     // type. We separately check that every constexpr variable is of literal
   8161     // type.
   8162     } else if (VDecl->isConstexpr()) {
   8163 
   8164     // Require constness.
   8165     } else if (!DclT.isConstQualified()) {
   8166       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
   8167         << Init->getSourceRange();
   8168       VDecl->setInvalidDecl();
   8169 
   8170     // We allow integer constant expressions in all cases.
   8171     } else if (DclT->isIntegralOrEnumerationType()) {
   8172       // Check whether the expression is a constant expression.
   8173       SourceLocation Loc;
   8174       if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
   8175         // In C++11, a non-constexpr const static data member with an
   8176         // in-class initializer cannot be volatile.
   8177         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
   8178       else if (Init->isValueDependent())
   8179         ; // Nothing to check.
   8180       else if (Init->isIntegerConstantExpr(Context, &Loc))
   8181         ; // Ok, it's an ICE!
   8182       else if (Init->isEvaluatable(Context)) {
   8183         // If we can constant fold the initializer through heroics, accept it,
   8184         // but report this as a use of an extension for -pedantic.
   8185         Diag(Loc, diag::ext_in_class_initializer_non_constant)
   8186           << Init->getSourceRange();
   8187       } else {
   8188         // Otherwise, this is some crazy unknown case.  Report the issue at the
   8189         // location provided by the isIntegerConstantExpr failed check.
   8190         Diag(Loc, diag::err_in_class_initializer_non_constant)
   8191           << Init->getSourceRange();
   8192         VDecl->setInvalidDecl();
   8193       }
   8194 
   8195     // We allow foldable floating-point constants as an extension.
   8196     } else if (DclT->isFloatingType()) { // also permits complex, which is ok
   8197       // In C++98, this is a GNU extension. In C++11, it is not, but we support
   8198       // it anyway and provide a fixit to add the 'constexpr'.
   8199       if (getLangOpts().CPlusPlus11) {
   8200         Diag(VDecl->getLocation(),
   8201              diag::ext_in_class_initializer_float_type_cxx11)
   8202             << DclT << Init->getSourceRange();
   8203         Diag(VDecl->getLocStart(),
   8204              diag::note_in_class_initializer_float_type_cxx11)
   8205             << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
   8206       } else {
   8207         Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
   8208           << DclT << Init->getSourceRange();
   8209 
   8210         if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
   8211           Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
   8212             << Init->getSourceRange();
   8213           VDecl->setInvalidDecl();
   8214         }
   8215       }
   8216 
   8217     // Suggest adding 'constexpr' in C++11 for literal types.
   8218     } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
   8219       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
   8220         << DclT << Init->getSourceRange()
   8221         << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
   8222       VDecl->setConstexpr(true);
   8223 
   8224     } else {
   8225       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
   8226         << DclT << Init->getSourceRange();
   8227       VDecl->setInvalidDecl();
   8228     }
   8229   } else if (VDecl->isFileVarDecl()) {
   8230     if (VDecl->getStorageClass() == SC_Extern &&
   8231         (!getLangOpts().CPlusPlus ||
   8232          !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
   8233            VDecl->isExternC())))
   8234       Diag(VDecl->getLocation(), diag::warn_extern_init);
   8235 
   8236     // C99 6.7.8p4. All file scoped initializers need to be constant.
   8237     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
   8238       CheckForConstantInitializer(Init, DclT);
   8239     else if (VDecl->getTLSKind() == VarDecl::TLS_Static &&
   8240              !VDecl->isInvalidDecl() && !DclT->isDependentType() &&
   8241              !Init->isValueDependent() && !VDecl->isConstexpr() &&
   8242              !Init->isConstantInitializer(
   8243                  Context, VDecl->getType()->isReferenceType())) {
   8244       // GNU C++98 edits for __thread, [basic.start.init]p4:
   8245       //   An object of thread storage duration shall not require dynamic
   8246       //   initialization.
   8247       // FIXME: Need strict checking here.
   8248       Diag(VDecl->getLocation(), diag::err_thread_dynamic_init);
   8249       if (getLangOpts().CPlusPlus11)
   8250         Diag(VDecl->getLocation(), diag::note_use_thread_local);
   8251     }
   8252   }
   8253 
   8254   // We will represent direct-initialization similarly to copy-initialization:
   8255   //    int x(1);  -as-> int x = 1;
   8256   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
   8257   //
   8258   // Clients that want to distinguish between the two forms, can check for
   8259   // direct initializer using VarDecl::getInitStyle().
   8260   // A major benefit is that clients that don't particularly care about which
   8261   // exactly form was it (like the CodeGen) can handle both cases without
   8262   // special case code.
   8263 
   8264   // C++ 8.5p11:
   8265   // The form of initialization (using parentheses or '=') is generally
   8266   // insignificant, but does matter when the entity being initialized has a
   8267   // class type.
   8268   if (CXXDirectInit) {
   8269     assert(DirectInit && "Call-style initializer must be direct init.");
   8270     VDecl->setInitStyle(VarDecl::CallInit);
   8271   } else if (DirectInit) {
   8272     // This must be list-initialization. No other way is direct-initialization.
   8273     VDecl->setInitStyle(VarDecl::ListInit);
   8274   }
   8275 
   8276   CheckCompleteVariableDeclaration(VDecl);
   8277 }
   8278 
   8279 /// ActOnInitializerError - Given that there was an error parsing an
   8280 /// initializer for the given declaration, try to return to some form
   8281 /// of sanity.
   8282 void Sema::ActOnInitializerError(Decl *D) {
   8283   // Our main concern here is re-establishing invariants like "a
   8284   // variable's type is either dependent or complete".
   8285   if (!D || D->isInvalidDecl()) return;
   8286 
   8287   VarDecl *VD = dyn_cast<VarDecl>(D);
   8288   if (!VD) return;
   8289 
   8290   // Auto types are meaningless if we can't make sense of the initializer.
   8291   if (ParsingInitForAutoVars.count(D)) {
   8292     D->setInvalidDecl();
   8293     return;
   8294   }
   8295 
   8296   QualType Ty = VD->getType();
   8297   if (Ty->isDependentType()) return;
   8298 
   8299   // Require a complete type.
   8300   if (RequireCompleteType(VD->getLocation(),
   8301                           Context.getBaseElementType(Ty),
   8302                           diag::err_typecheck_decl_incomplete_type)) {
   8303     VD->setInvalidDecl();
   8304     return;
   8305   }
   8306 
   8307   // Require an abstract type.
   8308   if (RequireNonAbstractType(VD->getLocation(), Ty,
   8309                              diag::err_abstract_type_in_decl,
   8310                              AbstractVariableType)) {
   8311     VD->setInvalidDecl();
   8312     return;
   8313   }
   8314 
   8315   // Don't bother complaining about constructors or destructors,
   8316   // though.
   8317 }
   8318 
   8319 void Sema::ActOnUninitializedDecl(Decl *RealDecl,
   8320                                   bool TypeMayContainAuto) {
   8321   // If there is no declaration, there was an error parsing it. Just ignore it.
   8322   if (RealDecl == 0)
   8323     return;
   8324 
   8325   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
   8326     QualType Type = Var->getType();
   8327 
   8328     // C++11 [dcl.spec.auto]p3
   8329     if (TypeMayContainAuto && Type->getContainedAutoType()) {
   8330       Diag(Var->getLocation(), diag::err_auto_var_requires_init)
   8331         << Var->getDeclName() << Type;
   8332       Var->setInvalidDecl();
   8333       return;
   8334     }
   8335 
   8336     // C++11 [class.static.data]p3: A static data member can be declared with
   8337     // the constexpr specifier; if so, its declaration shall specify
   8338     // a brace-or-equal-initializer.
   8339     // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
   8340     // the definition of a variable [...] or the declaration of a static data
   8341     // member.
   8342     if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
   8343       if (Var->isStaticDataMember())
   8344         Diag(Var->getLocation(),
   8345              diag::err_constexpr_static_mem_var_requires_init)
   8346           << Var->getDeclName();
   8347       else
   8348         Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
   8349       Var->setInvalidDecl();
   8350       return;
   8351     }
   8352 
   8353     switch (Var->isThisDeclarationADefinition()) {
   8354     case VarDecl::Definition:
   8355       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
   8356         break;
   8357 
   8358       // We have an out-of-line definition of a static data member
   8359       // that has an in-class initializer, so we type-check this like
   8360       // a declaration.
   8361       //
   8362       // Fall through
   8363 
   8364     case VarDecl::DeclarationOnly:
   8365       // It's only a declaration.
   8366 
   8367       // Block scope. C99 6.7p7: If an identifier for an object is
   8368       // declared with no linkage (C99 6.2.2p6), the type for the
   8369       // object shall be complete.
   8370       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
   8371           !Var->hasLinkage() && !Var->isInvalidDecl() &&
   8372           RequireCompleteType(Var->getLocation(), Type,
   8373                               diag::err_typecheck_decl_incomplete_type))
   8374         Var->setInvalidDecl();
   8375 
   8376       // Make sure that the type is not abstract.
   8377       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
   8378           RequireNonAbstractType(Var->getLocation(), Type,
   8379                                  diag::err_abstract_type_in_decl,
   8380                                  AbstractVariableType))
   8381         Var->setInvalidDecl();
   8382       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
   8383           Var->getStorageClass() == SC_PrivateExtern) {
   8384         Diag(Var->getLocation(), diag::warn_private_extern);
   8385         Diag(Var->getLocation(), diag::note_private_extern);
   8386       }
   8387 
   8388       return;
   8389 
   8390     case VarDecl::TentativeDefinition:
   8391       // File scope. C99 6.9.2p2: A declaration of an identifier for an
   8392       // object that has file scope without an initializer, and without a
   8393       // storage-class specifier or with the storage-class specifier "static",
   8394       // constitutes a tentative definition. Note: A tentative definition with
   8395       // external linkage is valid (C99 6.2.2p5).
   8396       if (!Var->isInvalidDecl()) {
   8397         if (const IncompleteArrayType *ArrayT
   8398                                     = Context.getAsIncompleteArrayType(Type)) {
   8399           if (RequireCompleteType(Var->getLocation(),
   8400                                   ArrayT->getElementType(),
   8401                                   diag::err_illegal_decl_array_incomplete_type))
   8402             Var->setInvalidDecl();
   8403         } else if (Var->getStorageClass() == SC_Static) {
   8404           // C99 6.9.2p3: If the declaration of an identifier for an object is
   8405           // a tentative definition and has internal linkage (C99 6.2.2p3), the
   8406           // declared type shall not be an incomplete type.
   8407           // NOTE: code such as the following
   8408           //     static struct s;
   8409           //     struct s { int a; };
   8410           // is accepted by gcc. Hence here we issue a warning instead of
   8411           // an error and we do not invalidate the static declaration.
   8412           // NOTE: to avoid multiple warnings, only check the first declaration.
   8413           if (Var->getPreviousDecl() == 0)
   8414             RequireCompleteType(Var->getLocation(), Type,
   8415                                 diag::ext_typecheck_decl_incomplete_type);
   8416         }
   8417       }
   8418 
   8419       // Record the tentative definition; we're done.
   8420       if (!Var->isInvalidDecl())
   8421         TentativeDefinitions.push_back(Var);
   8422       return;
   8423     }
   8424 
   8425     // Provide a specific diagnostic for uninitialized variable
   8426     // definitions with incomplete array type.
   8427     if (Type->isIncompleteArrayType()) {
   8428       Diag(Var->getLocation(),
   8429            diag::err_typecheck_incomplete_array_needs_initializer);
   8430       Var->setInvalidDecl();
   8431       return;
   8432     }
   8433 
   8434     // Provide a specific diagnostic for uninitialized variable
   8435     // definitions with reference type.
   8436     if (Type->isReferenceType()) {
   8437       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
   8438         << Var->getDeclName()
   8439         << SourceRange(Var->getLocation(), Var->getLocation());
   8440       Var->setInvalidDecl();
   8441       return;
   8442     }
   8443 
   8444     // Do not attempt to type-check the default initializer for a
   8445     // variable with dependent type.
   8446     if (Type->isDependentType())
   8447       return;
   8448 
   8449     if (Var->isInvalidDecl())
   8450       return;
   8451 
   8452     if (RequireCompleteType(Var->getLocation(),
   8453                             Context.getBaseElementType(Type),
   8454                             diag::err_typecheck_decl_incomplete_type)) {
   8455       Var->setInvalidDecl();
   8456       return;
   8457     }
   8458 
   8459     // The variable can not have an abstract class type.
   8460     if (RequireNonAbstractType(Var->getLocation(), Type,
   8461                                diag::err_abstract_type_in_decl,
   8462                                AbstractVariableType)) {
   8463       Var->setInvalidDecl();
   8464       return;
   8465     }
   8466 
   8467     // Check for jumps past the implicit initializer.  C++0x
   8468     // clarifies that this applies to a "variable with automatic
   8469     // storage duration", not a "local variable".
   8470     // C++11 [stmt.dcl]p3
   8471     //   A program that jumps from a point where a variable with automatic
   8472     //   storage duration is not in scope to a point where it is in scope is
   8473     //   ill-formed unless the variable has scalar type, class type with a
   8474     //   trivial default constructor and a trivial destructor, a cv-qualified
   8475     //   version of one of these types, or an array of one of the preceding
   8476     //   types and is declared without an initializer.
   8477     if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
   8478       if (const RecordType *Record
   8479             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
   8480         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
   8481         // Mark the function for further checking even if the looser rules of
   8482         // C++11 do not require such checks, so that we can diagnose
   8483         // incompatibilities with C++98.
   8484         if (!CXXRecord->isPOD())
   8485           getCurFunction()->setHasBranchProtectedScope();
   8486       }
   8487     }
   8488 
   8489     // C++03 [dcl.init]p9:
   8490     //   If no initializer is specified for an object, and the
   8491     //   object is of (possibly cv-qualified) non-POD class type (or
   8492     //   array thereof), the object shall be default-initialized; if
   8493     //   the object is of const-qualified type, the underlying class
   8494     //   type shall have a user-declared default
   8495     //   constructor. Otherwise, if no initializer is specified for
   8496     //   a non- static object, the object and its subobjects, if
   8497     //   any, have an indeterminate initial value); if the object
   8498     //   or any of its subobjects are of const-qualified type, the
   8499     //   program is ill-formed.
   8500     // C++0x [dcl.init]p11:
   8501     //   If no initializer is specified for an object, the object is
   8502     //   default-initialized; [...].
   8503     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
   8504     InitializationKind Kind
   8505       = InitializationKind::CreateDefault(Var->getLocation());
   8506 
   8507     InitializationSequence InitSeq(*this, Entity, Kind, None);
   8508     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
   8509     if (Init.isInvalid())
   8510       Var->setInvalidDecl();
   8511     else if (Init.get()) {
   8512       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
   8513       // This is important for template substitution.
   8514       Var->setInitStyle(VarDecl::CallInit);
   8515     }
   8516 
   8517     CheckCompleteVariableDeclaration(Var);
   8518   }
   8519 }
   8520 
   8521 void Sema::ActOnCXXForRangeDecl(Decl *D) {
   8522   VarDecl *VD = dyn_cast<VarDecl>(D);
   8523   if (!VD) {
   8524     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
   8525     D->setInvalidDecl();
   8526     return;
   8527   }
   8528 
   8529   VD->setCXXForRangeDecl(true);
   8530 
   8531   // for-range-declaration cannot be given a storage class specifier.
   8532   int Error = -1;
   8533   switch (VD->getStorageClass()) {
   8534   case SC_None:
   8535     break;
   8536   case SC_Extern:
   8537     Error = 0;
   8538     break;
   8539   case SC_Static:
   8540     Error = 1;
   8541     break;
   8542   case SC_PrivateExtern:
   8543     Error = 2;
   8544     break;
   8545   case SC_Auto:
   8546     Error = 3;
   8547     break;
   8548   case SC_Register:
   8549     Error = 4;
   8550     break;
   8551   case SC_OpenCLWorkGroupLocal:
   8552     llvm_unreachable("Unexpected storage class");
   8553   }
   8554   if (VD->isConstexpr())
   8555     Error = 5;
   8556   if (Error != -1) {
   8557     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
   8558       << VD->getDeclName() << Error;
   8559     D->setInvalidDecl();
   8560   }
   8561 }
   8562 
   8563 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
   8564   if (var->isInvalidDecl()) return;
   8565 
   8566   // In ARC, don't allow jumps past the implicit initialization of a
   8567   // local retaining variable.
   8568   if (getLangOpts().ObjCAutoRefCount &&
   8569       var->hasLocalStorage()) {
   8570     switch (var->getType().getObjCLifetime()) {
   8571     case Qualifiers::OCL_None:
   8572     case Qualifiers::OCL_ExplicitNone:
   8573     case Qualifiers::OCL_Autoreleasing:
   8574       break;
   8575 
   8576     case Qualifiers::OCL_Weak:
   8577     case Qualifiers::OCL_Strong:
   8578       getCurFunction()->setHasBranchProtectedScope();
   8579       break;
   8580     }
   8581   }
   8582 
   8583   if (var->isThisDeclarationADefinition() &&
   8584       var->isExternallyVisible() &&
   8585       getDiagnostics().getDiagnosticLevel(
   8586                        diag::warn_missing_variable_declarations,
   8587                        var->getLocation())) {
   8588     // Find a previous declaration that's not a definition.
   8589     VarDecl *prev = var->getPreviousDecl();
   8590     while (prev && prev->isThisDeclarationADefinition())
   8591       prev = prev->getPreviousDecl();
   8592 
   8593     if (!prev)
   8594       Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
   8595   }
   8596 
   8597   if (var->getTLSKind() == VarDecl::TLS_Static &&
   8598       var->getType().isDestructedType()) {
   8599     // GNU C++98 edits for __thread, [basic.start.term]p3:
   8600     //   The type of an object with thread storage duration shall not
   8601     //   have a non-trivial destructor.
   8602     Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
   8603     if (getLangOpts().CPlusPlus11)
   8604       Diag(var->getLocation(), diag::note_use_thread_local);
   8605   }
   8606 
   8607   // All the following checks are C++ only.
   8608   if (!getLangOpts().CPlusPlus) return;
   8609 
   8610   QualType type = var->getType();
   8611   if (type->isDependentType()) return;
   8612 
   8613   // __block variables might require us to capture a copy-initializer.
   8614   if (var->hasAttr<BlocksAttr>()) {
   8615     // It's currently invalid to ever have a __block variable with an
   8616     // array type; should we diagnose that here?
   8617 
   8618     // Regardless, we don't want to ignore array nesting when
   8619     // constructing this copy.
   8620     if (type->isStructureOrClassType()) {
   8621       EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
   8622       SourceLocation poi = var->getLocation();
   8623       Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
   8624       ExprResult result
   8625         = PerformMoveOrCopyInitialization(
   8626             InitializedEntity::InitializeBlock(poi, type, false),
   8627             var, var->getType(), varRef, /*AllowNRVO=*/true);
   8628       if (!result.isInvalid()) {
   8629         result = MaybeCreateExprWithCleanups(result);
   8630         Expr *init = result.takeAs<Expr>();
   8631         Context.setBlockVarCopyInits(var, init);
   8632       }
   8633     }
   8634   }
   8635 
   8636   Expr *Init = var->getInit();
   8637   bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
   8638   QualType baseType = Context.getBaseElementType(type);
   8639 
   8640   if (!var->getDeclContext()->isDependentContext() &&
   8641       Init && !Init->isValueDependent()) {
   8642     if (IsGlobal && !var->isConstexpr() &&
   8643         getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
   8644                                             var->getLocation())
   8645           != DiagnosticsEngine::Ignored) {
   8646       // Warn about globals which don't have a constant initializer.  Don't
   8647       // warn about globals with a non-trivial destructor because we already
   8648       // warned about them.
   8649       CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
   8650       if (!(RD && !RD->hasTrivialDestructor()) &&
   8651           !Init->isConstantInitializer(Context, baseType->isReferenceType()))
   8652         Diag(var->getLocation(), diag::warn_global_constructor)
   8653           << Init->getSourceRange();
   8654     }
   8655 
   8656     if (var->isConstexpr()) {
   8657       SmallVector<PartialDiagnosticAt, 8> Notes;
   8658       if (!var->evaluateValue(Notes) || !var->isInitICE()) {
   8659         SourceLocation DiagLoc = var->getLocation();
   8660         // If the note doesn't add any useful information other than a source
   8661         // location, fold it into the primary diagnostic.
   8662         if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
   8663               diag::note_invalid_subexpr_in_const_expr) {
   8664           DiagLoc = Notes[0].first;
   8665           Notes.clear();
   8666         }
   8667         Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
   8668           << var << Init->getSourceRange();
   8669         for (unsigned I = 0, N = Notes.size(); I != N; ++I)
   8670           Diag(Notes[I].first, Notes[I].second);
   8671       }
   8672     } else if (var->isUsableInConstantExpressions(Context)) {
   8673       // Check whether the initializer of a const variable of integral or
   8674       // enumeration type is an ICE now, since we can't tell whether it was
   8675       // initialized by a constant expression if we check later.
   8676       var->checkInitIsICE();
   8677     }
   8678   }
   8679 
   8680   // Require the destructor.
   8681   if (const RecordType *recordType = baseType->getAs<RecordType>())
   8682     FinalizeVarWithDestructor(var, recordType);
   8683 }
   8684 
   8685 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
   8686 /// any semantic actions necessary after any initializer has been attached.
   8687 void
   8688 Sema::FinalizeDeclaration(Decl *ThisDecl) {
   8689   // Note that we are no longer parsing the initializer for this declaration.
   8690   ParsingInitForAutoVars.erase(ThisDecl);
   8691 
   8692   VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
   8693   if (!VD)
   8694     return;
   8695 
   8696   const DeclContext *DC = VD->getDeclContext();
   8697   // If there's a #pragma GCC visibility in scope, and this isn't a class
   8698   // member, set the visibility of this variable.
   8699   if (!DC->isRecord() && VD->isExternallyVisible())
   8700     AddPushedVisibilityAttribute(VD);
   8701 
   8702   if (VD->isFileVarDecl())
   8703     MarkUnusedFileScopedDecl(VD);
   8704 
   8705   // Now we have parsed the initializer and can update the table of magic
   8706   // tag values.
   8707   if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
   8708       !VD->getType()->isIntegralOrEnumerationType())
   8709     return;
   8710 
   8711   for (specific_attr_iterator<TypeTagForDatatypeAttr>
   8712          I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
   8713          E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
   8714        I != E; ++I) {
   8715     const Expr *MagicValueExpr = VD->getInit();
   8716     if (!MagicValueExpr) {
   8717       continue;
   8718     }
   8719     llvm::APSInt MagicValueInt;
   8720     if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
   8721       Diag(I->getRange().getBegin(),
   8722            diag::err_type_tag_for_datatype_not_ice)
   8723         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
   8724       continue;
   8725     }
   8726     if (MagicValueInt.getActiveBits() > 64) {
   8727       Diag(I->getRange().getBegin(),
   8728            diag::err_type_tag_for_datatype_too_large)
   8729         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
   8730       continue;
   8731     }
   8732     uint64_t MagicValue = MagicValueInt.getZExtValue();
   8733     RegisterTypeTagForDatatype(I->getArgumentKind(),
   8734                                MagicValue,
   8735                                I->getMatchingCType(),
   8736                                I->getLayoutCompatible(),
   8737                                I->getMustBeNull());
   8738   }
   8739 }
   8740 
   8741 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
   8742                                                    ArrayRef<Decl *> Group) {
   8743   SmallVector<Decl*, 8> Decls;
   8744 
   8745   if (DS.isTypeSpecOwned())
   8746     Decls.push_back(DS.getRepAsDecl());
   8747 
   8748   for (unsigned i = 0, e = Group.size(); i != e; ++i)
   8749     if (Decl *D = Group[i])
   8750       Decls.push_back(D);
   8751 
   8752   if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
   8753     if (const TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl()))
   8754       HandleTagNumbering(*this, Tag);
   8755   }
   8756 
   8757   return BuildDeclaratorGroup(Decls, DS.containsPlaceholderType());
   8758 }
   8759 
   8760 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
   8761 /// group, performing any necessary semantic checking.
   8762 Sema::DeclGroupPtrTy
   8763 Sema::BuildDeclaratorGroup(llvm::MutableArrayRef<Decl *> Group,
   8764                            bool TypeMayContainAuto) {
   8765   // C++0x [dcl.spec.auto]p7:
   8766   //   If the type deduced for the template parameter U is not the same in each
   8767   //   deduction, the program is ill-formed.
   8768   // FIXME: When initializer-list support is added, a distinction is needed
   8769   // between the deduced type U and the deduced type which 'auto' stands for.
   8770   //   auto a = 0, b = { 1, 2, 3 };
   8771   // is legal because the deduced type U is 'int' in both cases.
   8772   if (TypeMayContainAuto && Group.size() > 1) {
   8773     QualType Deduced;
   8774     CanQualType DeducedCanon;
   8775     VarDecl *DeducedDecl = 0;
   8776     for (unsigned i = 0, e = Group.size(); i != e; ++i) {
   8777       if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
   8778         AutoType *AT = D->getType()->getContainedAutoType();
   8779         // Don't reissue diagnostics when instantiating a template.
   8780         if (AT && D->isInvalidDecl())
   8781           break;
   8782         QualType U = AT ? AT->getDeducedType() : QualType();
   8783         if (!U.isNull()) {
   8784           CanQualType UCanon = Context.getCanonicalType(U);
   8785           if (Deduced.isNull()) {
   8786             Deduced = U;
   8787             DeducedCanon = UCanon;
   8788             DeducedDecl = D;
   8789           } else if (DeducedCanon != UCanon) {
   8790             Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
   8791                  diag::err_auto_different_deductions)
   8792               << (AT->isDecltypeAuto() ? 1 : 0)
   8793               << Deduced << DeducedDecl->getDeclName()
   8794               << U << D->getDeclName()
   8795               << DeducedDecl->getInit()->getSourceRange()
   8796               << D->getInit()->getSourceRange();
   8797             D->setInvalidDecl();
   8798             break;
   8799           }
   8800         }
   8801       }
   8802     }
   8803   }
   8804 
   8805   ActOnDocumentableDecls(Group);
   8806 
   8807   return DeclGroupPtrTy::make(
   8808       DeclGroupRef::Create(Context, Group.data(), Group.size()));
   8809 }
   8810 
   8811 void Sema::ActOnDocumentableDecl(Decl *D) {
   8812   ActOnDocumentableDecls(D);
   8813 }
   8814 
   8815 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
   8816   // Don't parse the comment if Doxygen diagnostics are ignored.
   8817   if (Group.empty() || !Group[0])
   8818    return;
   8819 
   8820   if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
   8821                                Group[0]->getLocation())
   8822         == DiagnosticsEngine::Ignored)
   8823     return;
   8824 
   8825   if (Group.size() >= 2) {
   8826     // This is a decl group.  Normally it will contain only declarations
   8827     // produced from declarator list.  But in case we have any definitions or
   8828     // additional declaration references:
   8829     //   'typedef struct S {} S;'
   8830     //   'typedef struct S *S;'
   8831     //   'struct S *pS;'
   8832     // FinalizeDeclaratorGroup adds these as separate declarations.
   8833     Decl *MaybeTagDecl = Group[0];
   8834     if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
   8835       Group = Group.slice(1);
   8836     }
   8837   }
   8838 
   8839   // See if there are any new comments that are not attached to a decl.
   8840   ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
   8841   if (!Comments.empty() &&
   8842       !Comments.back()->isAttached()) {
   8843     // There is at least one comment that not attached to a decl.
   8844     // Maybe it should be attached to one of these decls?
   8845     //
   8846     // Note that this way we pick up not only comments that precede the
   8847     // declaration, but also comments that *follow* the declaration -- thanks to
   8848     // the lookahead in the lexer: we've consumed the semicolon and looked
   8849     // ahead through comments.
   8850     for (unsigned i = 0, e = Group.size(); i != e; ++i)
   8851       Context.getCommentForDecl(Group[i], &PP);
   8852   }
   8853 }
   8854 
   8855 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
   8856 /// to introduce parameters into function prototype scope.
   8857 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
   8858   const DeclSpec &DS = D.getDeclSpec();
   8859 
   8860   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
   8861   // C++03 [dcl.stc]p2 also permits 'auto'.
   8862   VarDecl::StorageClass StorageClass = SC_None;
   8863   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
   8864     StorageClass = SC_Register;
   8865   } else if (getLangOpts().CPlusPlus &&
   8866              DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
   8867     StorageClass = SC_Auto;
   8868   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
   8869     Diag(DS.getStorageClassSpecLoc(),
   8870          diag::err_invalid_storage_class_in_func_decl);
   8871     D.getMutableDeclSpec().ClearStorageClassSpecs();
   8872   }
   8873 
   8874   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
   8875     Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
   8876       << DeclSpec::getSpecifierName(TSCS);
   8877   if (DS.isConstexprSpecified())
   8878     Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
   8879       << 0;
   8880 
   8881   DiagnoseFunctionSpecifiers(DS);
   8882 
   8883   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   8884   QualType parmDeclType = TInfo->getType();
   8885 
   8886   if (getLangOpts().CPlusPlus) {
   8887     // Check that there are no default arguments inside the type of this
   8888     // parameter.
   8889     CheckExtraCXXDefaultArguments(D);
   8890 
   8891     // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
   8892     if (D.getCXXScopeSpec().isSet()) {
   8893       Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
   8894         << D.getCXXScopeSpec().getRange();
   8895       D.getCXXScopeSpec().clear();
   8896     }
   8897   }
   8898 
   8899   // Ensure we have a valid name
   8900   IdentifierInfo *II = 0;
   8901   if (D.hasName()) {
   8902     II = D.getIdentifier();
   8903     if (!II) {
   8904       Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
   8905         << GetNameForDeclarator(D).getName().getAsString();
   8906       D.setInvalidType(true);
   8907     }
   8908   }
   8909 
   8910   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
   8911   if (II) {
   8912     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
   8913                    ForRedeclaration);
   8914     LookupName(R, S);
   8915     if (R.isSingleResult()) {
   8916       NamedDecl *PrevDecl = R.getFoundDecl();
   8917       if (PrevDecl->isTemplateParameter()) {
   8918         // Maybe we will complain about the shadowed template parameter.
   8919         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
   8920         // Just pretend that we didn't see the previous declaration.
   8921         PrevDecl = 0;
   8922       } else if (S->isDeclScope(PrevDecl)) {
   8923         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
   8924         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   8925 
   8926         // Recover by removing the name
   8927         II = 0;
   8928         D.SetIdentifier(0, D.getIdentifierLoc());
   8929         D.setInvalidType(true);
   8930       }
   8931     }
   8932   }
   8933 
   8934   // Temporarily put parameter variables in the translation unit, not
   8935   // the enclosing context.  This prevents them from accidentally
   8936   // looking like class members in C++.
   8937   ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
   8938                                     D.getLocStart(),
   8939                                     D.getIdentifierLoc(), II,
   8940                                     parmDeclType, TInfo,
   8941                                     StorageClass);
   8942 
   8943   if (D.isInvalidType())
   8944     New->setInvalidDecl();
   8945 
   8946   assert(S->isFunctionPrototypeScope());
   8947   assert(S->getFunctionPrototypeDepth() >= 1);
   8948   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
   8949                     S->getNextFunctionPrototypeIndex());
   8950 
   8951   // Add the parameter declaration into this scope.
   8952   S->AddDecl(New);
   8953   if (II)
   8954     IdResolver.AddDecl(New);
   8955 
   8956   ProcessDeclAttributes(S, New, D);
   8957 
   8958   if (D.getDeclSpec().isModulePrivateSpecified())
   8959     Diag(New->getLocation(), diag::err_module_private_local)
   8960       << 1 << New->getDeclName()
   8961       << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
   8962       << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
   8963 
   8964   if (New->hasAttr<BlocksAttr>()) {
   8965     Diag(New->getLocation(), diag::err_block_on_nonlocal);
   8966   }
   8967   return New;
   8968 }
   8969 
   8970 /// \brief Synthesizes a variable for a parameter arising from a
   8971 /// typedef.
   8972 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
   8973                                               SourceLocation Loc,
   8974                                               QualType T) {
   8975   /* FIXME: setting StartLoc == Loc.
   8976      Would it be worth to modify callers so as to provide proper source
   8977      location for the unnamed parameters, embedding the parameter's type? */
   8978   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
   8979                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
   8980                                            SC_None, 0);
   8981   Param->setImplicit();
   8982   return Param;
   8983 }
   8984 
   8985 void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
   8986                                     ParmVarDecl * const *ParamEnd) {
   8987   // Don't diagnose unused-parameter errors in template instantiations; we
   8988   // will already have done so in the template itself.
   8989   if (!ActiveTemplateInstantiations.empty())
   8990     return;
   8991 
   8992   for (; Param != ParamEnd; ++Param) {
   8993     if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
   8994         !(*Param)->hasAttr<UnusedAttr>()) {
   8995       Diag((*Param)->getLocation(), diag::warn_unused_parameter)
   8996         << (*Param)->getDeclName();
   8997     }
   8998   }
   8999 }
   9000 
   9001 void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
   9002                                                   ParmVarDecl * const *ParamEnd,
   9003                                                   QualType ReturnTy,
   9004                                                   NamedDecl *D) {
   9005   if (LangOpts.NumLargeByValueCopy == 0) // No check.
   9006     return;
   9007 
   9008   // Warn if the return value is pass-by-value and larger than the specified
   9009   // threshold.
   9010   if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
   9011     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
   9012     if (Size > LangOpts.NumLargeByValueCopy)
   9013       Diag(D->getLocation(), diag::warn_return_value_size)
   9014           << D->getDeclName() << Size;
   9015   }
   9016 
   9017   // Warn if any parameter is pass-by-value and larger than the specified
   9018   // threshold.
   9019   for (; Param != ParamEnd; ++Param) {
   9020     QualType T = (*Param)->getType();
   9021     if (T->isDependentType() || !T.isPODType(Context))
   9022       continue;
   9023     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
   9024     if (Size > LangOpts.NumLargeByValueCopy)
   9025       Diag((*Param)->getLocation(), diag::warn_parameter_size)
   9026           << (*Param)->getDeclName() << Size;
   9027   }
   9028 }
   9029 
   9030 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
   9031                                   SourceLocation NameLoc, IdentifierInfo *Name,
   9032                                   QualType T, TypeSourceInfo *TSInfo,
   9033                                   VarDecl::StorageClass StorageClass) {
   9034   // In ARC, infer a lifetime qualifier for appropriate parameter types.
   9035   if (getLangOpts().ObjCAutoRefCount &&
   9036       T.getObjCLifetime() == Qualifiers::OCL_None &&
   9037       T->isObjCLifetimeType()) {
   9038 
   9039     Qualifiers::ObjCLifetime lifetime;
   9040 
   9041     // Special cases for arrays:
   9042     //   - if it's const, use __unsafe_unretained
   9043     //   - otherwise, it's an error
   9044     if (T->isArrayType()) {
   9045       if (!T.isConstQualified()) {
   9046         DelayedDiagnostics.add(
   9047             sema::DelayedDiagnostic::makeForbiddenType(
   9048             NameLoc, diag::err_arc_array_param_no_ownership, T, false));
   9049       }
   9050       lifetime = Qualifiers::OCL_ExplicitNone;
   9051     } else {
   9052       lifetime = T->getObjCARCImplicitLifetime();
   9053     }
   9054     T = Context.getLifetimeQualifiedType(T, lifetime);
   9055   }
   9056 
   9057   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
   9058                                          Context.getAdjustedParameterType(T),
   9059                                          TSInfo,
   9060                                          StorageClass, 0);
   9061 
   9062   // Parameters can not be abstract class types.
   9063   // For record types, this is done by the AbstractClassUsageDiagnoser once
   9064   // the class has been completely parsed.
   9065   if (!CurContext->isRecord() &&
   9066       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
   9067                              AbstractParamType))
   9068     New->setInvalidDecl();
   9069 
   9070   // Parameter declarators cannot be interface types. All ObjC objects are
   9071   // passed by reference.
   9072   if (T->isObjCObjectType()) {
   9073     SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
   9074     Diag(NameLoc,
   9075          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
   9076       << FixItHint::CreateInsertion(TypeEndLoc, "*");
   9077     T = Context.getObjCObjectPointerType(T);
   9078     New->setType(T);
   9079   }
   9080 
   9081   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
   9082   // duration shall not be qualified by an address-space qualifier."
   9083   // Since all parameters have automatic store duration, they can not have
   9084   // an address space.
   9085   if (T.getAddressSpace() != 0) {
   9086     Diag(NameLoc, diag::err_arg_with_address_space);
   9087     New->setInvalidDecl();
   9088   }
   9089 
   9090   return New;
   9091 }
   9092 
   9093 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
   9094                                            SourceLocation LocAfterDecls) {
   9095   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
   9096 
   9097   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
   9098   // for a K&R function.
   9099   if (!FTI.hasPrototype) {
   9100     for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
   9101       --i;
   9102       if (FTI.ArgInfo[i].Param == 0) {
   9103         SmallString<256> Code;
   9104         llvm::raw_svector_ostream(Code) << "  int "
   9105                                         << FTI.ArgInfo[i].Ident->getName()
   9106                                         << ";\n";
   9107         Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
   9108           << FTI.ArgInfo[i].Ident
   9109           << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
   9110 
   9111         // Implicitly declare the argument as type 'int' for lack of a better
   9112         // type.
   9113         AttributeFactory attrs;
   9114         DeclSpec DS(attrs);
   9115         const char* PrevSpec; // unused
   9116         unsigned DiagID; // unused
   9117         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
   9118                            PrevSpec, DiagID);
   9119         // Use the identifier location for the type source range.
   9120         DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
   9121         DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
   9122         Declarator ParamD(DS, Declarator::KNRTypeListContext);
   9123         ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
   9124         FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
   9125       }
   9126     }
   9127   }
   9128 }
   9129 
   9130 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
   9131   assert(getCurFunctionDecl() == 0 && "Function parsing confused");
   9132   assert(D.isFunctionDeclarator() && "Not a function declarator!");
   9133   Scope *ParentScope = FnBodyScope->getParent();
   9134 
   9135   D.setFunctionDefinitionKind(FDK_Definition);
   9136   Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
   9137   return ActOnStartOfFunctionDef(FnBodyScope, DP);
   9138 }
   9139 
   9140 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
   9141                              const FunctionDecl*& PossibleZeroParamPrototype) {
   9142   // Don't warn about invalid declarations.
   9143   if (FD->isInvalidDecl())
   9144     return false;
   9145 
   9146   // Or declarations that aren't global.
   9147   if (!FD->isGlobal())
   9148     return false;
   9149 
   9150   // Don't warn about C++ member functions.
   9151   if (isa<CXXMethodDecl>(FD))
   9152     return false;
   9153 
   9154   // Don't warn about 'main'.
   9155   if (FD->isMain())
   9156     return false;
   9157 
   9158   // Don't warn about inline functions.
   9159   if (FD->isInlined())
   9160     return false;
   9161 
   9162   // Don't warn about function templates.
   9163   if (FD->getDescribedFunctionTemplate())
   9164     return false;
   9165 
   9166   // Don't warn about function template specializations.
   9167   if (FD->isFunctionTemplateSpecialization())
   9168     return false;
   9169 
   9170   // Don't warn for OpenCL kernels.
   9171   if (FD->hasAttr<OpenCLKernelAttr>())
   9172     return false;
   9173 
   9174   bool MissingPrototype = true;
   9175   for (const FunctionDecl *Prev = FD->getPreviousDecl();
   9176        Prev; Prev = Prev->getPreviousDecl()) {
   9177     // Ignore any declarations that occur in function or method
   9178     // scope, because they aren't visible from the header.
   9179     if (Prev->getDeclContext()->isFunctionOrMethod())
   9180       continue;
   9181 
   9182     MissingPrototype = !Prev->getType()->isFunctionProtoType();
   9183     if (FD->getNumParams() == 0)
   9184       PossibleZeroParamPrototype = Prev;
   9185     break;
   9186   }
   9187 
   9188   return MissingPrototype;
   9189 }
   9190 
   9191 void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
   9192   // Don't complain if we're in GNU89 mode and the previous definition
   9193   // was an extern inline function.
   9194   const FunctionDecl *Definition;
   9195   if (FD->isDefined(Definition) &&
   9196       !canRedefineFunction(Definition, getLangOpts())) {
   9197     if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
   9198         Definition->getStorageClass() == SC_Extern)
   9199       Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
   9200         << FD->getDeclName() << getLangOpts().CPlusPlus;
   9201     else
   9202       Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
   9203     Diag(Definition->getLocation(), diag::note_previous_definition);
   9204     FD->setInvalidDecl();
   9205   }
   9206 }
   9207 
   9208 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
   9209   // Clear the last template instantiation error context.
   9210   LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
   9211 
   9212   if (!D)
   9213     return D;
   9214   FunctionDecl *FD = 0;
   9215 
   9216   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
   9217     FD = FunTmpl->getTemplatedDecl();
   9218   else
   9219     FD = cast<FunctionDecl>(D);
   9220 
   9221   // Enter a new function scope
   9222   PushFunctionScope();
   9223 
   9224   // See if this is a redefinition.
   9225   if (!FD->isLateTemplateParsed())
   9226     CheckForFunctionRedefinition(FD);
   9227 
   9228   // Builtin functions cannot be defined.
   9229   if (unsigned BuiltinID = FD->getBuiltinID()) {
   9230     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
   9231         !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
   9232       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
   9233       FD->setInvalidDecl();
   9234     }
   9235   }
   9236 
   9237   // The return type of a function definition must be complete
   9238   // (C99 6.9.1p3, C++ [dcl.fct]p6).
   9239   QualType ResultType = FD->getResultType();
   9240   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
   9241       !FD->isInvalidDecl() &&
   9242       RequireCompleteType(FD->getLocation(), ResultType,
   9243                           diag::err_func_def_incomplete_result))
   9244     FD->setInvalidDecl();
   9245 
   9246   // GNU warning -Wmissing-prototypes:
   9247   //   Warn if a global function is defined without a previous
   9248   //   prototype declaration. This warning is issued even if the
   9249   //   definition itself provides a prototype. The aim is to detect
   9250   //   global functions that fail to be declared in header files.
   9251   const FunctionDecl *PossibleZeroParamPrototype = 0;
   9252   if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
   9253     Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
   9254 
   9255     if (PossibleZeroParamPrototype) {
   9256       // We found a declaration that is not a prototype,
   9257       // but that could be a zero-parameter prototype
   9258       if (TypeSourceInfo *TI =
   9259               PossibleZeroParamPrototype->getTypeSourceInfo()) {
   9260         TypeLoc TL = TI->getTypeLoc();
   9261         if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
   9262           Diag(PossibleZeroParamPrototype->getLocation(),
   9263                diag::note_declaration_not_a_prototype)
   9264             << PossibleZeroParamPrototype
   9265             << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
   9266       }
   9267     }
   9268   }
   9269 
   9270   if (FnBodyScope)
   9271     PushDeclContext(FnBodyScope, FD);
   9272 
   9273   // Check the validity of our function parameters
   9274   CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
   9275                            /*CheckParameterNames=*/true);
   9276 
   9277   // Introduce our parameters into the function scope
   9278   for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
   9279     ParmVarDecl *Param = FD->getParamDecl(p);
   9280     Param->setOwningFunction(FD);
   9281 
   9282     // If this has an identifier, add it to the scope stack.
   9283     if (Param->getIdentifier() && FnBodyScope) {
   9284       CheckShadow(FnBodyScope, Param);
   9285 
   9286       PushOnScopeChains(Param, FnBodyScope);
   9287     }
   9288   }
   9289 
   9290   // If we had any tags defined in the function prototype,
   9291   // introduce them into the function scope.
   9292   if (FnBodyScope) {
   9293     for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
   9294            E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
   9295       NamedDecl *D = *I;
   9296 
   9297       // Some of these decls (like enums) may have been pinned to the translation unit
   9298       // for lack of a real context earlier. If so, remove from the translation unit
   9299       // and reattach to the current context.
   9300       if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
   9301         // Is the decl actually in the context?
   9302         for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
   9303                DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
   9304           if (*DI == D) {
   9305             Context.getTranslationUnitDecl()->removeDecl(D);
   9306             break;
   9307           }
   9308         }
   9309         // Either way, reassign the lexical decl context to our FunctionDecl.
   9310         D->setLexicalDeclContext(CurContext);
   9311       }
   9312 
   9313       // If the decl has a non-null name, make accessible in the current scope.
   9314       if (!D->getName().empty())
   9315         PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
   9316 
   9317       // Similarly, dive into enums and fish their constants out, making them
   9318       // accessible in this scope.
   9319       if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
   9320         for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
   9321                EE = ED->enumerator_end(); EI != EE; ++EI)
   9322           PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
   9323       }
   9324     }
   9325   }
   9326 
   9327   // Ensure that the function's exception specification is instantiated.
   9328   if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
   9329     ResolveExceptionSpec(D->getLocation(), FPT);
   9330 
   9331   // Checking attributes of current function definition
   9332   // dllimport attribute.
   9333   DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
   9334   if (DA && (!FD->getAttr<DLLExportAttr>())) {
   9335     // dllimport attribute cannot be directly applied to definition.
   9336     // Microsoft accepts dllimport for functions defined within class scope.
   9337     if (!DA->isInherited() &&
   9338         !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
   9339       Diag(FD->getLocation(),
   9340            diag::err_attribute_can_be_applied_only_to_symbol_declaration)
   9341         << "dllimport";
   9342       FD->setInvalidDecl();
   9343       return D;
   9344     }
   9345 
   9346     // Visual C++ appears to not think this is an issue, so only issue
   9347     // a warning when Microsoft extensions are disabled.
   9348     if (!LangOpts.MicrosoftExt) {
   9349       // If a symbol previously declared dllimport is later defined, the
   9350       // attribute is ignored in subsequent references, and a warning is
   9351       // emitted.
   9352       Diag(FD->getLocation(),
   9353            diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
   9354         << FD->getName() << "dllimport";
   9355     }
   9356   }
   9357   // We want to attach documentation to original Decl (which might be
   9358   // a function template).
   9359   ActOnDocumentableDecl(D);
   9360   return D;
   9361 }
   9362 
   9363 /// \brief Given the set of return statements within a function body,
   9364 /// compute the variables that are subject to the named return value
   9365 /// optimization.
   9366 ///
   9367 /// Each of the variables that is subject to the named return value
   9368 /// optimization will be marked as NRVO variables in the AST, and any
   9369 /// return statement that has a marked NRVO variable as its NRVO candidate can
   9370 /// use the named return value optimization.
   9371 ///
   9372 /// This function applies a very simplistic algorithm for NRVO: if every return
   9373 /// statement in the function has the same NRVO candidate, that candidate is
   9374 /// the NRVO variable.
   9375 ///
   9376 /// FIXME: Employ a smarter algorithm that accounts for multiple return
   9377 /// statements and the lifetimes of the NRVO candidates. We should be able to
   9378 /// find a maximal set of NRVO variables.
   9379 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
   9380   ReturnStmt **Returns = Scope->Returns.data();
   9381 
   9382   const VarDecl *NRVOCandidate = 0;
   9383   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
   9384     if (!Returns[I]->getNRVOCandidate())
   9385       return;
   9386 
   9387     if (!NRVOCandidate)
   9388       NRVOCandidate = Returns[I]->getNRVOCandidate();
   9389     else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
   9390       return;
   9391   }
   9392 
   9393   if (NRVOCandidate)
   9394     const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
   9395 }
   9396 
   9397 bool Sema::canSkipFunctionBody(Decl *D) {
   9398   if (!Consumer.shouldSkipFunctionBody(D))
   9399     return false;
   9400 
   9401   if (isa<ObjCMethodDecl>(D))
   9402     return true;
   9403 
   9404   FunctionDecl *FD = 0;
   9405   if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
   9406     FD = FTD->getTemplatedDecl();
   9407   else
   9408     FD = cast<FunctionDecl>(D);
   9409 
   9410   // We cannot skip the body of a function (or function template) which is
   9411   // constexpr, since we may need to evaluate its body in order to parse the
   9412   // rest of the file.
   9413   // We cannot skip the body of a function with an undeduced return type,
   9414   // because any callers of that function need to know the type.
   9415   return !FD->isConstexpr() && !FD->getResultType()->isUndeducedType();
   9416 }
   9417 
   9418 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
   9419   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
   9420     FD->setHasSkippedBody();
   9421   else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
   9422     MD->setHasSkippedBody();
   9423   return ActOnFinishFunctionBody(Decl, 0);
   9424 }
   9425 
   9426 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
   9427   return ActOnFinishFunctionBody(D, BodyArg, false);
   9428 }
   9429 
   9430 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
   9431                                     bool IsInstantiation) {
   9432   FunctionDecl *FD = 0;
   9433   FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
   9434   if (FunTmpl)
   9435     FD = FunTmpl->getTemplatedDecl();
   9436   else
   9437     FD = dyn_cast_or_null<FunctionDecl>(dcl);
   9438 
   9439   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
   9440   sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
   9441 
   9442   if (FD) {
   9443     FD->setBody(Body);
   9444 
   9445     if (getLangOpts().CPlusPlus1y && !FD->isInvalidDecl() && Body &&
   9446         !FD->isDependentContext() && FD->getResultType()->isUndeducedType()) {
   9447       // If the function has a deduced result type but contains no 'return'
   9448       // statements, the result type as written must be exactly 'auto', and
   9449       // the deduced result type is 'void'.
   9450       if (!FD->getResultType()->getAs<AutoType>()) {
   9451         Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
   9452           << FD->getResultType();
   9453         FD->setInvalidDecl();
   9454       } else {
   9455         // Substitute 'void' for the 'auto' in the type.
   9456         TypeLoc ResultType = FD->getTypeSourceInfo()->getTypeLoc().
   9457             IgnoreParens().castAs<FunctionProtoTypeLoc>().getResultLoc();
   9458         Context.adjustDeducedFunctionResultType(
   9459             FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
   9460       }
   9461     }
   9462 
   9463     // The only way to be included in UndefinedButUsed is if there is an
   9464     // ODR use before the definition. Avoid the expensive map lookup if this
   9465     // is the first declaration.
   9466     if (FD->getPreviousDecl() != 0 && FD->getPreviousDecl()->isUsed()) {
   9467       if (!FD->isExternallyVisible())
   9468         UndefinedButUsed.erase(FD);
   9469       else if (FD->isInlined() &&
   9470                (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
   9471                (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
   9472         UndefinedButUsed.erase(FD);
   9473     }
   9474 
   9475     // If the function implicitly returns zero (like 'main') or is naked,
   9476     // don't complain about missing return statements.
   9477     if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
   9478       WP.disableCheckFallThrough();
   9479 
   9480     // MSVC permits the use of pure specifier (=0) on function definition,
   9481     // defined at class scope, warn about this non standard construct.
   9482     if (getLangOpts().MicrosoftExt && FD->isPure())
   9483       Diag(FD->getLocation(), diag::warn_pure_function_definition);
   9484 
   9485     if (!FD->isInvalidDecl()) {
   9486       DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
   9487       DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
   9488                                              FD->getResultType(), FD);
   9489 
   9490       // If this is a constructor, we need a vtable.
   9491       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
   9492         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
   9493 
   9494       // Try to apply the named return value optimization. We have to check
   9495       // if we can do this here because lambdas keep return statements around
   9496       // to deduce an implicit return type.
   9497       if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
   9498           !FD->isDependentContext())
   9499         computeNRVO(Body, getCurFunction());
   9500     }
   9501 
   9502     assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
   9503            "Function parsing confused");
   9504   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
   9505     assert(MD == getCurMethodDecl() && "Method parsing confused");
   9506     MD->setBody(Body);
   9507     if (!MD->isInvalidDecl()) {
   9508       DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
   9509       DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
   9510                                              MD->getResultType(), MD);
   9511 
   9512       if (Body)
   9513         computeNRVO(Body, getCurFunction());
   9514     }
   9515     if (getCurFunction()->ObjCShouldCallSuper) {
   9516       Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
   9517         << MD->getSelector().getAsString();
   9518       getCurFunction()->ObjCShouldCallSuper = false;
   9519     }
   9520   } else {
   9521     return 0;
   9522   }
   9523 
   9524   assert(!getCurFunction()->ObjCShouldCallSuper &&
   9525          "This should only be set for ObjC methods, which should have been "
   9526          "handled in the block above.");
   9527 
   9528   // Verify and clean out per-function state.
   9529   if (Body) {
   9530     // C++ constructors that have function-try-blocks can't have return
   9531     // statements in the handlers of that block. (C++ [except.handle]p14)
   9532     // Verify this.
   9533     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
   9534       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
   9535 
   9536     // Verify that gotos and switch cases don't jump into scopes illegally.
   9537     if (getCurFunction()->NeedsScopeChecking() &&
   9538         !dcl->isInvalidDecl() &&
   9539         !hasAnyUnrecoverableErrorsInThisFunction() &&
   9540         !PP.isCodeCompletionEnabled())
   9541       DiagnoseInvalidJumps(Body);
   9542 
   9543     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
   9544       if (!Destructor->getParent()->isDependentType())
   9545         CheckDestructor(Destructor);
   9546 
   9547       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
   9548                                              Destructor->getParent());
   9549     }
   9550 
   9551     // If any errors have occurred, clear out any temporaries that may have
   9552     // been leftover. This ensures that these temporaries won't be picked up for
   9553     // deletion in some later function.
   9554     if (PP.getDiagnostics().hasErrorOccurred() ||
   9555         PP.getDiagnostics().getSuppressAllDiagnostics()) {
   9556       DiscardCleanupsInEvaluationContext();
   9557     }
   9558     if (!PP.getDiagnostics().hasUncompilableErrorOccurred() &&
   9559         !isa<FunctionTemplateDecl>(dcl)) {
   9560       // Since the body is valid, issue any analysis-based warnings that are
   9561       // enabled.
   9562       ActivePolicy = &WP;
   9563     }
   9564 
   9565     if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
   9566         (!CheckConstexprFunctionDecl(FD) ||
   9567          !CheckConstexprFunctionBody(FD, Body)))
   9568       FD->setInvalidDecl();
   9569 
   9570     assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
   9571     assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
   9572     assert(MaybeODRUseExprs.empty() &&
   9573            "Leftover expressions for odr-use checking");
   9574   }
   9575 
   9576   if (!IsInstantiation)
   9577     PopDeclContext();
   9578 
   9579   PopFunctionScopeInfo(ActivePolicy, dcl);
   9580 
   9581   // If any errors have occurred, clear out any temporaries that may have
   9582   // been leftover. This ensures that these temporaries won't be picked up for
   9583   // deletion in some later function.
   9584   if (getDiagnostics().hasErrorOccurred()) {
   9585     DiscardCleanupsInEvaluationContext();
   9586   }
   9587 
   9588   return dcl;
   9589 }
   9590 
   9591 
   9592 /// When we finish delayed parsing of an attribute, we must attach it to the
   9593 /// relevant Decl.
   9594 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
   9595                                        ParsedAttributes &Attrs) {
   9596   // Always attach attributes to the underlying decl.
   9597   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
   9598     D = TD->getTemplatedDecl();
   9599   ProcessDeclAttributeList(S, D, Attrs.getList());
   9600 
   9601   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
   9602     if (Method->isStatic())
   9603       checkThisInStaticMemberFunctionAttributes(Method);
   9604 }
   9605 
   9606 
   9607 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
   9608 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
   9609 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
   9610                                           IdentifierInfo &II, Scope *S) {
   9611   // Before we produce a declaration for an implicitly defined
   9612   // function, see whether there was a locally-scoped declaration of
   9613   // this name as a function or variable. If so, use that
   9614   // (non-visible) declaration, and complain about it.
   9615   if (NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II)) {
   9616     Diag(Loc, diag::warn_use_out_of_scope_declaration) << ExternCPrev;
   9617     Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
   9618     return ExternCPrev;
   9619   }
   9620 
   9621   // Extension in C99.  Legal in C90, but warn about it.
   9622   unsigned diag_id;
   9623   if (II.getName().startswith("__builtin_"))
   9624     diag_id = diag::warn_builtin_unknown;
   9625   else if (getLangOpts().C99)
   9626     diag_id = diag::ext_implicit_function_decl;
   9627   else
   9628     diag_id = diag::warn_implicit_function_decl;
   9629   Diag(Loc, diag_id) << &II;
   9630 
   9631   // Because typo correction is expensive, only do it if the implicit
   9632   // function declaration is going to be treated as an error.
   9633   if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
   9634     TypoCorrection Corrected;
   9635     DeclFilterCCC<FunctionDecl> Validator;
   9636     if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
   9637                                       LookupOrdinaryName, S, 0, Validator))) {
   9638       std::string CorrectedStr = Corrected.getAsString(getLangOpts());
   9639       std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
   9640       FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
   9641 
   9642       Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
   9643           << FixItHint::CreateReplacement(Loc, CorrectedStr);
   9644 
   9645       if (Func->getLocation().isValid()
   9646           && !II.getName().startswith("__builtin_"))
   9647         Diag(Func->getLocation(), diag::note_previous_decl)
   9648             << CorrectedQuotedStr;
   9649     }
   9650   }
   9651 
   9652   // Set a Declarator for the implicit definition: int foo();
   9653   const char *Dummy;
   9654   AttributeFactory attrFactory;
   9655   DeclSpec DS(attrFactory);
   9656   unsigned DiagID;
   9657   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
   9658   (void)Error; // Silence warning.
   9659   assert(!Error && "Error setting up implicit decl!");
   9660   SourceLocation NoLoc;
   9661   Declarator D(DS, Declarator::BlockContext);
   9662   D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
   9663                                              /*IsAmbiguous=*/false,
   9664                                              /*RParenLoc=*/NoLoc,
   9665                                              /*ArgInfo=*/0,
   9666                                              /*NumArgs=*/0,
   9667                                              /*EllipsisLoc=*/NoLoc,
   9668                                              /*RParenLoc=*/NoLoc,
   9669                                              /*TypeQuals=*/0,
   9670                                              /*RefQualifierIsLvalueRef=*/true,
   9671                                              /*RefQualifierLoc=*/NoLoc,
   9672                                              /*ConstQualifierLoc=*/NoLoc,
   9673                                              /*VolatileQualifierLoc=*/NoLoc,
   9674                                              /*MutableLoc=*/NoLoc,
   9675                                              EST_None,
   9676                                              /*ESpecLoc=*/NoLoc,
   9677                                              /*Exceptions=*/0,
   9678                                              /*ExceptionRanges=*/0,
   9679                                              /*NumExceptions=*/0,
   9680                                              /*NoexceptExpr=*/0,
   9681                                              Loc, Loc, D),
   9682                 DS.getAttributes(),
   9683                 SourceLocation());
   9684   D.SetIdentifier(&II, Loc);
   9685 
   9686   // Insert this function into translation-unit scope.
   9687 
   9688   DeclContext *PrevDC = CurContext;
   9689   CurContext = Context.getTranslationUnitDecl();
   9690 
   9691   FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
   9692   FD->setImplicit();
   9693 
   9694   CurContext = PrevDC;
   9695 
   9696   AddKnownFunctionAttributes(FD);
   9697 
   9698   return FD;
   9699 }
   9700 
   9701 /// \brief Adds any function attributes that we know a priori based on
   9702 /// the declaration of this function.
   9703 ///
   9704 /// These attributes can apply both to implicitly-declared builtins
   9705 /// (like __builtin___printf_chk) or to library-declared functions
   9706 /// like NSLog or printf.
   9707 ///
   9708 /// We need to check for duplicate attributes both here and where user-written
   9709 /// attributes are applied to declarations.
   9710 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
   9711   if (FD->isInvalidDecl())
   9712     return;
   9713 
   9714   // If this is a built-in function, map its builtin attributes to
   9715   // actual attributes.
   9716   if (unsigned BuiltinID = FD->getBuiltinID()) {
   9717     // Handle printf-formatting attributes.
   9718     unsigned FormatIdx;
   9719     bool HasVAListArg;
   9720     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
   9721       if (!FD->getAttr<FormatAttr>()) {
   9722         const char *fmt = "printf";
   9723         unsigned int NumParams = FD->getNumParams();
   9724         if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
   9725             FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
   9726           fmt = "NSString";
   9727         FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
   9728                                                fmt, FormatIdx+1,
   9729                                                HasVAListArg ? 0 : FormatIdx+2));
   9730       }
   9731     }
   9732     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
   9733                                              HasVAListArg)) {
   9734      if (!FD->getAttr<FormatAttr>())
   9735        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
   9736                                               "scanf", FormatIdx+1,
   9737                                               HasVAListArg ? 0 : FormatIdx+2));
   9738     }
   9739 
   9740     // Mark const if we don't care about errno and that is the only
   9741     // thing preventing the function from being const. This allows
   9742     // IRgen to use LLVM intrinsics for such functions.
   9743     if (!getLangOpts().MathErrno &&
   9744         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
   9745       if (!FD->getAttr<ConstAttr>())
   9746         FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
   9747     }
   9748 
   9749     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
   9750         !FD->getAttr<ReturnsTwiceAttr>())
   9751       FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
   9752     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
   9753       FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
   9754     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
   9755       FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
   9756   }
   9757 
   9758   IdentifierInfo *Name = FD->getIdentifier();
   9759   if (!Name)
   9760     return;
   9761   if ((!getLangOpts().CPlusPlus &&
   9762        FD->getDeclContext()->isTranslationUnit()) ||
   9763       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
   9764        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
   9765        LinkageSpecDecl::lang_c)) {
   9766     // Okay: this could be a libc/libm/Objective-C function we know
   9767     // about.
   9768   } else
   9769     return;
   9770 
   9771   if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
   9772     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
   9773     // target-specific builtins, perhaps?
   9774     if (!FD->getAttr<FormatAttr>())
   9775       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
   9776                                              "printf", 2,
   9777                                              Name->isStr("vasprintf") ? 0 : 3));
   9778   }
   9779 
   9780   if (Name->isStr("__CFStringMakeConstantString")) {
   9781     // We already have a __builtin___CFStringMakeConstantString,
   9782     // but builds that use -fno-constant-cfstrings don't go through that.
   9783     if (!FD->getAttr<FormatArgAttr>())
   9784       FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
   9785   }
   9786 }
   9787 
   9788 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
   9789                                     TypeSourceInfo *TInfo) {
   9790   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
   9791   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
   9792 
   9793   if (!TInfo) {
   9794     assert(D.isInvalidType() && "no declarator info for valid type");
   9795     TInfo = Context.getTrivialTypeSourceInfo(T);
   9796   }
   9797 
   9798   // Scope manipulation handled by caller.
   9799   TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
   9800                                            D.getLocStart(),
   9801                                            D.getIdentifierLoc(),
   9802                                            D.getIdentifier(),
   9803                                            TInfo);
   9804 
   9805   // Bail out immediately if we have an invalid declaration.
   9806   if (D.isInvalidType()) {
   9807     NewTD->setInvalidDecl();
   9808     return NewTD;
   9809   }
   9810 
   9811   if (D.getDeclSpec().isModulePrivateSpecified()) {
   9812     if (CurContext->isFunctionOrMethod())
   9813       Diag(NewTD->getLocation(), diag::err_module_private_local)
   9814         << 2 << NewTD->getDeclName()
   9815         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
   9816         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
   9817     else
   9818       NewTD->setModulePrivate();
   9819   }
   9820 
   9821   // C++ [dcl.typedef]p8:
   9822   //   If the typedef declaration defines an unnamed class (or
   9823   //   enum), the first typedef-name declared by the declaration
   9824   //   to be that class type (or enum type) is used to denote the
   9825   //   class type (or enum type) for linkage purposes only.
   9826   // We need to check whether the type was declared in the declaration.
   9827   switch (D.getDeclSpec().getTypeSpecType()) {
   9828   case TST_enum:
   9829   case TST_struct:
   9830   case TST_interface:
   9831   case TST_union:
   9832   case TST_class: {
   9833     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
   9834 
   9835     // Do nothing if the tag is not anonymous or already has an
   9836     // associated typedef (from an earlier typedef in this decl group).
   9837     if (tagFromDeclSpec->getIdentifier()) break;
   9838     if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
   9839 
   9840     // A well-formed anonymous tag must always be a TUK_Definition.
   9841     assert(tagFromDeclSpec->isThisDeclarationADefinition());
   9842 
   9843     // The type must match the tag exactly;  no qualifiers allowed.
   9844     if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
   9845       break;
   9846 
   9847     // Otherwise, set this is the anon-decl typedef for the tag.
   9848     tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
   9849     break;
   9850   }
   9851 
   9852   default:
   9853     break;
   9854   }
   9855 
   9856   return NewTD;
   9857 }
   9858 
   9859 
   9860 /// \brief Check that this is a valid underlying type for an enum declaration.
   9861 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
   9862   SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
   9863   QualType T = TI->getType();
   9864 
   9865   if (T->isDependentType())
   9866     return false;
   9867 
   9868   if (const BuiltinType *BT = T->getAs<BuiltinType>())
   9869     if (BT->isInteger())
   9870       return false;
   9871 
   9872   Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
   9873   return true;
   9874 }
   9875 
   9876 /// Check whether this is a valid redeclaration of a previous enumeration.
   9877 /// \return true if the redeclaration was invalid.
   9878 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
   9879                                   QualType EnumUnderlyingTy,
   9880                                   const EnumDecl *Prev) {
   9881   bool IsFixed = !EnumUnderlyingTy.isNull();
   9882 
   9883   if (IsScoped != Prev->isScoped()) {
   9884     Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
   9885       << Prev->isScoped();
   9886     Diag(Prev->getLocation(), diag::note_previous_use);
   9887     return true;
   9888   }
   9889 
   9890   if (IsFixed && Prev->isFixed()) {
   9891     if (!EnumUnderlyingTy->isDependentType() &&
   9892         !Prev->getIntegerType()->isDependentType() &&
   9893         !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
   9894                                         Prev->getIntegerType())) {
   9895       Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
   9896         << EnumUnderlyingTy << Prev->getIntegerType();
   9897       Diag(Prev->getLocation(), diag::note_previous_use);
   9898       return true;
   9899     }
   9900   } else if (IsFixed != Prev->isFixed()) {
   9901     Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
   9902       << Prev->isFixed();
   9903     Diag(Prev->getLocation(), diag::note_previous_use);
   9904     return true;
   9905   }
   9906 
   9907   return false;
   9908 }
   9909 
   9910 /// \brief Get diagnostic %select index for tag kind for
   9911 /// redeclaration diagnostic message.
   9912 /// WARNING: Indexes apply to particular diagnostics only!
   9913 ///
   9914 /// \returns diagnostic %select index.
   9915 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
   9916   switch (Tag) {
   9917   case TTK_Struct: return 0;
   9918   case TTK_Interface: return 1;
   9919   case TTK_Class:  return 2;
   9920   default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
   9921   }
   9922 }
   9923 
   9924 /// \brief Determine if tag kind is a class-key compatible with
   9925 /// class for redeclaration (class, struct, or __interface).
   9926 ///
   9927 /// \returns true iff the tag kind is compatible.
   9928 static bool isClassCompatTagKind(TagTypeKind Tag)
   9929 {
   9930   return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
   9931 }
   9932 
   9933 /// \brief Determine whether a tag with a given kind is acceptable
   9934 /// as a redeclaration of the given tag declaration.
   9935 ///
   9936 /// \returns true if the new tag kind is acceptable, false otherwise.
   9937 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
   9938                                         TagTypeKind NewTag, bool isDefinition,
   9939                                         SourceLocation NewTagLoc,
   9940                                         const IdentifierInfo &Name) {
   9941   // C++ [dcl.type.elab]p3:
   9942   //   The class-key or enum keyword present in the
   9943   //   elaborated-type-specifier shall agree in kind with the
   9944   //   declaration to which the name in the elaborated-type-specifier
   9945   //   refers. This rule also applies to the form of
   9946   //   elaborated-type-specifier that declares a class-name or
   9947   //   friend class since it can be construed as referring to the
   9948   //   definition of the class. Thus, in any
   9949   //   elaborated-type-specifier, the enum keyword shall be used to
   9950   //   refer to an enumeration (7.2), the union class-key shall be
   9951   //   used to refer to a union (clause 9), and either the class or
   9952   //   struct class-key shall be used to refer to a class (clause 9)
   9953   //   declared using the class or struct class-key.
   9954   TagTypeKind OldTag = Previous->getTagKind();
   9955   if (!isDefinition || !isClassCompatTagKind(NewTag))
   9956     if (OldTag == NewTag)
   9957       return true;
   9958 
   9959   if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
   9960     // Warn about the struct/class tag mismatch.
   9961     bool isTemplate = false;
   9962     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
   9963       isTemplate = Record->getDescribedClassTemplate();
   9964 
   9965     if (!ActiveTemplateInstantiations.empty()) {
   9966       // In a template instantiation, do not offer fix-its for tag mismatches
   9967       // since they usually mess up the template instead of fixing the problem.
   9968       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
   9969         << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
   9970         << getRedeclDiagFromTagKind(OldTag);
   9971       return true;
   9972     }
   9973 
   9974     if (isDefinition) {
   9975       // On definitions, check previous tags and issue a fix-it for each
   9976       // one that doesn't match the current tag.
   9977       if (Previous->getDefinition()) {
   9978         // Don't suggest fix-its for redefinitions.
   9979         return true;
   9980       }
   9981 
   9982       bool previousMismatch = false;
   9983       for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
   9984            E(Previous->redecls_end()); I != E; ++I) {
   9985         if (I->getTagKind() != NewTag) {
   9986           if (!previousMismatch) {
   9987             previousMismatch = true;
   9988             Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
   9989               << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
   9990               << getRedeclDiagFromTagKind(I->getTagKind());
   9991           }
   9992           Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
   9993             << getRedeclDiagFromTagKind(NewTag)
   9994             << FixItHint::CreateReplacement(I->getInnerLocStart(),
   9995                  TypeWithKeyword::getTagTypeKindName(NewTag));
   9996         }
   9997       }
   9998       return true;
   9999     }
   10000 
   10001     // Check for a previous definition.  If current tag and definition
   10002     // are same type, do nothing.  If no definition, but disagree with
   10003     // with previous tag type, give a warning, but no fix-it.
   10004     const TagDecl *Redecl = Previous->getDefinition() ?
   10005                             Previous->getDefinition() : Previous;
   10006     if (Redecl->getTagKind() == NewTag) {
   10007       return true;
   10008     }
   10009 
   10010     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
   10011       << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
   10012       << getRedeclDiagFromTagKind(OldTag);
   10013     Diag(Redecl->getLocation(), diag::note_previous_use);
   10014 
   10015     // If there is a previous defintion, suggest a fix-it.
   10016     if (Previous->getDefinition()) {
   10017         Diag(NewTagLoc, diag::note_struct_class_suggestion)
   10018           << getRedeclDiagFromTagKind(Redecl->getTagKind())
   10019           << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
   10020                TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
   10021     }
   10022 
   10023     return true;
   10024   }
   10025   return false;
   10026 }
   10027 
   10028 /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
   10029 /// former case, Name will be non-null.  In the later case, Name will be null.
   10030 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
   10031 /// reference/declaration/definition of a tag.
   10032 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
   10033                      SourceLocation KWLoc, CXXScopeSpec &SS,
   10034                      IdentifierInfo *Name, SourceLocation NameLoc,
   10035                      AttributeList *Attr, AccessSpecifier AS,
   10036                      SourceLocation ModulePrivateLoc,
   10037                      MultiTemplateParamsArg TemplateParameterLists,
   10038                      bool &OwnedDecl, bool &IsDependent,
   10039                      SourceLocation ScopedEnumKWLoc,
   10040                      bool ScopedEnumUsesClassTag,
   10041                      TypeResult UnderlyingType) {
   10042   // If this is not a definition, it must have a name.
   10043   IdentifierInfo *OrigName = Name;
   10044   assert((Name != 0 || TUK == TUK_Definition) &&
   10045          "Nameless record must be a definition!");
   10046   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
   10047 
   10048   OwnedDecl = false;
   10049   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
   10050   bool ScopedEnum = ScopedEnumKWLoc.isValid();
   10051 
   10052   // FIXME: Check explicit specializations more carefully.
   10053   bool isExplicitSpecialization = false;
   10054   bool Invalid = false;
   10055 
   10056   // We only need to do this matching if we have template parameters
   10057   // or a scope specifier, which also conveniently avoids this work
   10058   // for non-C++ cases.
   10059   if (TemplateParameterLists.size() > 0 ||
   10060       (SS.isNotEmpty() && TUK != TUK_Reference)) {
   10061     if (TemplateParameterList *TemplateParams =
   10062             MatchTemplateParametersToScopeSpecifier(
   10063                 KWLoc, NameLoc, SS, TemplateParameterLists, TUK == TUK_Friend,
   10064                 isExplicitSpecialization, Invalid)) {
   10065       if (Kind == TTK_Enum) {
   10066         Diag(KWLoc, diag::err_enum_template);
   10067         return 0;
   10068       }
   10069 
   10070       if (TemplateParams->size() > 0) {
   10071         // This is a declaration or definition of a class template (which may
   10072         // be a member of another template).
   10073 
   10074         if (Invalid)
   10075           return 0;
   10076 
   10077         OwnedDecl = false;
   10078         DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
   10079                                                SS, Name, NameLoc, Attr,
   10080                                                TemplateParams, AS,
   10081                                                ModulePrivateLoc,
   10082                                                TemplateParameterLists.size()-1,
   10083                                                TemplateParameterLists.data());
   10084         return Result.get();
   10085       } else {
   10086         // The "template<>" header is extraneous.
   10087         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
   10088           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
   10089         isExplicitSpecialization = true;
   10090       }
   10091     }
   10092   }
   10093 
   10094   // Figure out the underlying type if this a enum declaration. We need to do
   10095   // this early, because it's needed to detect if this is an incompatible
   10096   // redeclaration.
   10097   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
   10098 
   10099   if (Kind == TTK_Enum) {
   10100     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
   10101       // No underlying type explicitly specified, or we failed to parse the
   10102       // type, default to int.
   10103       EnumUnderlying = Context.IntTy.getTypePtr();
   10104     else if (UnderlyingType.get()) {
   10105       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
   10106       // integral type; any cv-qualification is ignored.
   10107       TypeSourceInfo *TI = 0;
   10108       GetTypeFromParser(UnderlyingType.get(), &TI);
   10109       EnumUnderlying = TI;
   10110 
   10111       if (CheckEnumUnderlyingType(TI))
   10112         // Recover by falling back to int.
   10113         EnumUnderlying = Context.IntTy.getTypePtr();
   10114 
   10115       if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
   10116                                           UPPC_FixedUnderlyingType))
   10117         EnumUnderlying = Context.IntTy.getTypePtr();
   10118 
   10119     } else if (getLangOpts().MicrosoftMode)
   10120       // Microsoft enums are always of int type.
   10121       EnumUnderlying = Context.IntTy.getTypePtr();
   10122   }
   10123 
   10124   DeclContext *SearchDC = CurContext;
   10125   DeclContext *DC = CurContext;
   10126   bool isStdBadAlloc = false;
   10127 
   10128   RedeclarationKind Redecl = ForRedeclaration;
   10129   if (TUK == TUK_Friend || TUK == TUK_Reference)
   10130     Redecl = NotForRedeclaration;
   10131 
   10132   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
   10133   bool FriendSawTagOutsideEnclosingNamespace = false;
   10134   if (Name && SS.isNotEmpty()) {
   10135     // We have a nested-name tag ('struct foo::bar').
   10136 
   10137     // Check for invalid 'foo::'.
   10138     if (SS.isInvalid()) {
   10139       Name = 0;
   10140       goto CreateNewDecl;
   10141     }
   10142 
   10143     // If this is a friend or a reference to a class in a dependent
   10144     // context, don't try to make a decl for it.
   10145     if (TUK == TUK_Friend || TUK == TUK_Reference) {
   10146       DC = computeDeclContext(SS, false);
   10147       if (!DC) {
   10148         IsDependent = true;
   10149         return 0;
   10150       }
   10151     } else {
   10152       DC = computeDeclContext(SS, true);
   10153       if (!DC) {
   10154         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
   10155           << SS.getRange();
   10156         return 0;
   10157       }
   10158     }
   10159 
   10160     if (RequireCompleteDeclContext(SS, DC))
   10161       return 0;
   10162 
   10163     SearchDC = DC;
   10164     // Look-up name inside 'foo::'.
   10165     LookupQualifiedName(Previous, DC);
   10166 
   10167     if (Previous.isAmbiguous())
   10168       return 0;
   10169 
   10170     if (Previous.empty()) {
   10171       // Name lookup did not find anything. However, if the
   10172       // nested-name-specifier refers to the current instantiation,
   10173       // and that current instantiation has any dependent base
   10174       // classes, we might find something at instantiation time: treat
   10175       // this as a dependent elaborated-type-specifier.
   10176       // But this only makes any sense for reference-like lookups.
   10177       if (Previous.wasNotFoundInCurrentInstantiation() &&
   10178           (TUK == TUK_Reference || TUK == TUK_Friend)) {
   10179         IsDependent = true;
   10180         return 0;
   10181       }
   10182 
   10183       // A tag 'foo::bar' must already exist.
   10184       Diag(NameLoc, diag::err_not_tag_in_scope)
   10185         << Kind << Name << DC << SS.getRange();
   10186       Name = 0;
   10187       Invalid = true;
   10188       goto CreateNewDecl;
   10189     }
   10190   } else if (Name) {
   10191     // If this is a named struct, check to see if there was a previous forward
   10192     // declaration or definition.
   10193     // FIXME: We're looking into outer scopes here, even when we
   10194     // shouldn't be. Doing so can result in ambiguities that we
   10195     // shouldn't be diagnosing.
   10196     LookupName(Previous, S);
   10197 
   10198     // When declaring or defining a tag, ignore ambiguities introduced
   10199     // by types using'ed into this scope.
   10200     if (Previous.isAmbiguous() &&
   10201         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
   10202       LookupResult::Filter F = Previous.makeFilter();
   10203       while (F.hasNext()) {
   10204         NamedDecl *ND = F.next();
   10205         if (ND->getDeclContext()->getRedeclContext() != SearchDC)
   10206           F.erase();
   10207       }
   10208       F.done();
   10209     }
   10210 
   10211     // C++11 [namespace.memdef]p3:
   10212     //   If the name in a friend declaration is neither qualified nor
   10213     //   a template-id and the declaration is a function or an
   10214     //   elaborated-type-specifier, the lookup to determine whether
   10215     //   the entity has been previously declared shall not consider
   10216     //   any scopes outside the innermost enclosing namespace.
   10217     //
   10218     // Does it matter that this should be by scope instead of by
   10219     // semantic context?
   10220     if (!Previous.empty() && TUK == TUK_Friend) {
   10221       DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
   10222       LookupResult::Filter F = Previous.makeFilter();
   10223       while (F.hasNext()) {
   10224         NamedDecl *ND = F.next();
   10225         DeclContext *DC = ND->getDeclContext()->getRedeclContext();
   10226         if (DC->isFileContext() &&
   10227             !EnclosingNS->Encloses(ND->getDeclContext())) {
   10228           F.erase();
   10229           FriendSawTagOutsideEnclosingNamespace = true;
   10230         }
   10231       }
   10232       F.done();
   10233     }
   10234 
   10235     // Note:  there used to be some attempt at recovery here.
   10236     if (Previous.isAmbiguous())
   10237       return 0;
   10238 
   10239     if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
   10240       // FIXME: This makes sure that we ignore the contexts associated
   10241       // with C structs, unions, and enums when looking for a matching
   10242       // tag declaration or definition. See the similar lookup tweak
   10243       // in Sema::LookupName; is there a better way to deal with this?
   10244       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
   10245         SearchDC = SearchDC->getParent();
   10246     }
   10247   } else if (S->isFunctionPrototypeScope()) {
   10248     // If this is an enum declaration in function prototype scope, set its
   10249     // initial context to the translation unit.
   10250     // FIXME: [citation needed]
   10251     SearchDC = Context.getTranslationUnitDecl();
   10252   }
   10253 
   10254   if (Previous.isSingleResult() &&
   10255       Previous.getFoundDecl()->isTemplateParameter()) {
   10256     // Maybe we will complain about the shadowed template parameter.
   10257     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
   10258     // Just pretend that we didn't see the previous declaration.
   10259     Previous.clear();
   10260   }
   10261 
   10262   if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
   10263       DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
   10264     // This is a declaration of or a reference to "std::bad_alloc".
   10265     isStdBadAlloc = true;
   10266 
   10267     if (Previous.empty() && StdBadAlloc) {
   10268       // std::bad_alloc has been implicitly declared (but made invisible to
   10269       // name lookup). Fill in this implicit declaration as the previous
   10270       // declaration, so that the declarations get chained appropriately.
   10271       Previous.addDecl(getStdBadAlloc());
   10272     }
   10273   }
   10274 
   10275   // If we didn't find a previous declaration, and this is a reference
   10276   // (or friend reference), move to the correct scope.  In C++, we
   10277   // also need to do a redeclaration lookup there, just in case
   10278   // there's a shadow friend decl.
   10279   if (Name && Previous.empty() &&
   10280       (TUK == TUK_Reference || TUK == TUK_Friend)) {
   10281     if (Invalid) goto CreateNewDecl;
   10282     assert(SS.isEmpty());
   10283 
   10284     if (TUK == TUK_Reference) {
   10285       // C++ [basic.scope.pdecl]p5:
   10286       //   -- for an elaborated-type-specifier of the form
   10287       //
   10288       //          class-key identifier
   10289       //
   10290       //      if the elaborated-type-specifier is used in the
   10291       //      decl-specifier-seq or parameter-declaration-clause of a
   10292       //      function defined in namespace scope, the identifier is
   10293       //      declared as a class-name in the namespace that contains
   10294       //      the declaration; otherwise, except as a friend
   10295       //      declaration, the identifier is declared in the smallest
   10296       //      non-class, non-function-prototype scope that contains the
   10297       //      declaration.
   10298       //
   10299       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
   10300       // C structs and unions.
   10301       //
   10302       // It is an error in C++ to declare (rather than define) an enum
   10303       // type, including via an elaborated type specifier.  We'll
   10304       // diagnose that later; for now, declare the enum in the same
   10305       // scope as we would have picked for any other tag type.
   10306       //
   10307       // GNU C also supports this behavior as part of its incomplete
   10308       // enum types extension, while GNU C++ does not.
   10309       //
   10310       // Find the context where we'll be declaring the tag.
   10311       // FIXME: We would like to maintain the current DeclContext as the
   10312       // lexical context,
   10313       while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
   10314         SearchDC = SearchDC->getParent();
   10315 
   10316       // Find the scope where we'll be declaring the tag.
   10317       while (S->isClassScope() ||
   10318              (getLangOpts().CPlusPlus &&
   10319               S->isFunctionPrototypeScope()) ||
   10320              ((S->getFlags() & Scope::DeclScope) == 0) ||
   10321              (S->getEntity() &&
   10322               ((DeclContext *)S->getEntity())->isTransparentContext()))
   10323         S = S->getParent();
   10324     } else {
   10325       assert(TUK == TUK_Friend);
   10326       // C++ [namespace.memdef]p3:
   10327       //   If a friend declaration in a non-local class first declares a
   10328       //   class or function, the friend class or function is a member of
   10329       //   the innermost enclosing namespace.
   10330       SearchDC = SearchDC->getEnclosingNamespaceContext();
   10331     }
   10332 
   10333     // In C++, we need to do a redeclaration lookup to properly
   10334     // diagnose some problems.
   10335     if (getLangOpts().CPlusPlus) {
   10336       Previous.setRedeclarationKind(ForRedeclaration);
   10337       LookupQualifiedName(Previous, SearchDC);
   10338     }
   10339   }
   10340 
   10341   if (!Previous.empty()) {
   10342     NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
   10343 
   10344     // It's okay to have a tag decl in the same scope as a typedef
   10345     // which hides a tag decl in the same scope.  Finding this
   10346     // insanity with a redeclaration lookup can only actually happen
   10347     // in C++.
   10348     //
   10349     // This is also okay for elaborated-type-specifiers, which is
   10350     // technically forbidden by the current standard but which is
   10351     // okay according to the likely resolution of an open issue;
   10352     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
   10353     if (getLangOpts().CPlusPlus) {
   10354       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
   10355         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
   10356           TagDecl *Tag = TT->getDecl();
   10357           if (Tag->getDeclName() == Name &&
   10358               Tag->getDeclContext()->getRedeclContext()
   10359                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
   10360             PrevDecl = Tag;
   10361             Previous.clear();
   10362             Previous.addDecl(Tag);
   10363             Previous.resolveKind();
   10364           }
   10365         }
   10366       }
   10367     }
   10368 
   10369     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
   10370       // If this is a use of a previous tag, or if the tag is already declared
   10371       // in the same scope (so that the definition/declaration completes or
   10372       // rementions the tag), reuse the decl.
   10373       if (TUK == TUK_Reference || TUK == TUK_Friend ||
   10374           isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
   10375         // Make sure that this wasn't declared as an enum and now used as a
   10376         // struct or something similar.
   10377         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
   10378                                           TUK == TUK_Definition, KWLoc,
   10379                                           *Name)) {
   10380           bool SafeToContinue
   10381             = (PrevTagDecl->getTagKind() != TTK_Enum &&
   10382                Kind != TTK_Enum);
   10383           if (SafeToContinue)
   10384             Diag(KWLoc, diag::err_use_with_wrong_tag)
   10385               << Name
   10386               << FixItHint::CreateReplacement(SourceRange(KWLoc),
   10387                                               PrevTagDecl->getKindName());
   10388           else
   10389             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
   10390           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
   10391 
   10392           if (SafeToContinue)
   10393             Kind = PrevTagDecl->getTagKind();
   10394           else {
   10395             // Recover by making this an anonymous redefinition.
   10396             Name = 0;
   10397             Previous.clear();
   10398             Invalid = true;
   10399           }
   10400         }
   10401 
   10402         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
   10403           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
   10404 
   10405           // If this is an elaborated-type-specifier for a scoped enumeration,
   10406           // the 'class' keyword is not necessary and not permitted.
   10407           if (TUK == TUK_Reference || TUK == TUK_Friend) {
   10408             if (ScopedEnum)
   10409               Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
   10410                 << PrevEnum->isScoped()
   10411                 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
   10412             return PrevTagDecl;
   10413           }
   10414 
   10415           QualType EnumUnderlyingTy;
   10416           if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
   10417             EnumUnderlyingTy = TI->getType();
   10418           else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
   10419             EnumUnderlyingTy = QualType(T, 0);
   10420 
   10421           // All conflicts with previous declarations are recovered by
   10422           // returning the previous declaration, unless this is a definition,
   10423           // in which case we want the caller to bail out.
   10424           if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
   10425                                      ScopedEnum, EnumUnderlyingTy, PrevEnum))
   10426             return TUK == TUK_Declaration ? PrevTagDecl : 0;
   10427         }
   10428 
   10429         // C++11 [class.mem]p1:
   10430         //   A member shall not be declared twice in the member-specification,
   10431         //   except that a nested class or member class template can be declared
   10432         //   and then later defined.
   10433         if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
   10434             S->isDeclScope(PrevDecl)) {
   10435           Diag(NameLoc, diag::ext_member_redeclared);
   10436           Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
   10437         }
   10438 
   10439         if (!Invalid) {
   10440           // If this is a use, just return the declaration we found.
   10441 
   10442           // FIXME: In the future, return a variant or some other clue
   10443           // for the consumer of this Decl to know it doesn't own it.
   10444           // For our current ASTs this shouldn't be a problem, but will
   10445           // need to be changed with DeclGroups.
   10446           if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
   10447                getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
   10448             return PrevTagDecl;
   10449 
   10450           // Diagnose attempts to redefine a tag.
   10451           if (TUK == TUK_Definition) {
   10452             if (TagDecl *Def = PrevTagDecl->getDefinition()) {
   10453               // If we're defining a specialization and the previous definition
   10454               // is from an implicit instantiation, don't emit an error
   10455               // here; we'll catch this in the general case below.
   10456               bool IsExplicitSpecializationAfterInstantiation = false;
   10457               if (isExplicitSpecialization) {
   10458                 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
   10459                   IsExplicitSpecializationAfterInstantiation =
   10460                     RD->getTemplateSpecializationKind() !=
   10461                     TSK_ExplicitSpecialization;
   10462                 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
   10463                   IsExplicitSpecializationAfterInstantiation =
   10464                     ED->getTemplateSpecializationKind() !=
   10465                     TSK_ExplicitSpecialization;
   10466               }
   10467 
   10468               if (!IsExplicitSpecializationAfterInstantiation) {
   10469                 // A redeclaration in function prototype scope in C isn't
   10470                 // visible elsewhere, so merely issue a warning.
   10471                 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
   10472                   Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
   10473                 else
   10474                   Diag(NameLoc, diag::err_redefinition) << Name;
   10475                 Diag(Def->getLocation(), diag::note_previous_definition);
   10476                 // If this is a redefinition, recover by making this
   10477                 // struct be anonymous, which will make any later
   10478                 // references get the previous definition.
   10479                 Name = 0;
   10480                 Previous.clear();
   10481                 Invalid = true;
   10482               }
   10483             } else {
   10484               // If the type is currently being defined, complain
   10485               // about a nested redefinition.
   10486               const TagType *Tag
   10487                 = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
   10488               if (Tag->isBeingDefined()) {
   10489                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
   10490                 Diag(PrevTagDecl->getLocation(),
   10491                      diag::note_previous_definition);
   10492                 Name = 0;
   10493                 Previous.clear();
   10494                 Invalid = true;
   10495               }
   10496             }
   10497 
   10498             // Okay, this is definition of a previously declared or referenced
   10499             // tag PrevDecl. We're going to create a new Decl for it.
   10500           }
   10501         }
   10502         // If we get here we have (another) forward declaration or we
   10503         // have a definition.  Just create a new decl.
   10504 
   10505       } else {
   10506         // If we get here, this is a definition of a new tag type in a nested
   10507         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
   10508         // new decl/type.  We set PrevDecl to NULL so that the entities
   10509         // have distinct types.
   10510         Previous.clear();
   10511       }
   10512       // If we get here, we're going to create a new Decl. If PrevDecl
   10513       // is non-NULL, it's a definition of the tag declared by
   10514       // PrevDecl. If it's NULL, we have a new definition.
   10515 
   10516 
   10517     // Otherwise, PrevDecl is not a tag, but was found with tag
   10518     // lookup.  This is only actually possible in C++, where a few
   10519     // things like templates still live in the tag namespace.
   10520     } else {
   10521       // Use a better diagnostic if an elaborated-type-specifier
   10522       // found the wrong kind of type on the first
   10523       // (non-redeclaration) lookup.
   10524       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
   10525           !Previous.isForRedeclaration()) {
   10526         unsigned Kind = 0;
   10527         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
   10528         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
   10529         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
   10530         Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
   10531         Diag(PrevDecl->getLocation(), diag::note_declared_at);
   10532         Invalid = true;
   10533 
   10534       // Otherwise, only diagnose if the declaration is in scope.
   10535       } else if (!isDeclInScope(PrevDecl, SearchDC, S,
   10536                                 isExplicitSpecialization)) {
   10537         // do nothing
   10538 
   10539       // Diagnose implicit declarations introduced by elaborated types.
   10540       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
   10541         unsigned Kind = 0;
   10542         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
   10543         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
   10544         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
   10545         Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
   10546         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
   10547         Invalid = true;
   10548 
   10549       // Otherwise it's a declaration.  Call out a particularly common
   10550       // case here.
   10551       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
   10552         unsigned Kind = 0;
   10553         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
   10554         Diag(NameLoc, diag::err_tag_definition_of_typedef)
   10555           << Name << Kind << TND->getUnderlyingType();
   10556         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
   10557         Invalid = true;
   10558 
   10559       // Otherwise, diagnose.
   10560       } else {
   10561         // The tag name clashes with something else in the target scope,
   10562         // issue an error and recover by making this tag be anonymous.
   10563         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
   10564         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   10565         Name = 0;
   10566         Invalid = true;
   10567       }
   10568 
   10569       // The existing declaration isn't relevant to us; we're in a
   10570       // new scope, so clear out the previous declaration.
   10571       Previous.clear();
   10572     }
   10573   }
   10574 
   10575 CreateNewDecl:
   10576 
   10577   TagDecl *PrevDecl = 0;
   10578   if (Previous.isSingleResult())
   10579     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
   10580 
   10581   // If there is an identifier, use the location of the identifier as the
   10582   // location of the decl, otherwise use the location of the struct/union
   10583   // keyword.
   10584   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
   10585 
   10586   // Otherwise, create a new declaration. If there is a previous
   10587   // declaration of the same entity, the two will be linked via
   10588   // PrevDecl.
   10589   TagDecl *New;
   10590 
   10591   bool IsForwardReference = false;
   10592   if (Kind == TTK_Enum) {
   10593     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
   10594     // enum X { A, B, C } D;    D should chain to X.
   10595     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
   10596                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
   10597                            ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
   10598     // If this is an undefined enum, warn.
   10599     if (TUK != TUK_Definition && !Invalid) {
   10600       TagDecl *Def;
   10601       if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
   10602           cast<EnumDecl>(New)->isFixed()) {
   10603         // C++0x: 7.2p2: opaque-enum-declaration.
   10604         // Conflicts are diagnosed above. Do nothing.
   10605       }
   10606       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
   10607         Diag(Loc, diag::ext_forward_ref_enum_def)
   10608           << New;
   10609         Diag(Def->getLocation(), diag::note_previous_definition);
   10610       } else {
   10611         unsigned DiagID = diag::ext_forward_ref_enum;
   10612         if (getLangOpts().MicrosoftMode)
   10613           DiagID = diag::ext_ms_forward_ref_enum;
   10614         else if (getLangOpts().CPlusPlus)
   10615           DiagID = diag::err_forward_ref_enum;
   10616         Diag(Loc, DiagID);
   10617 
   10618         // If this is a forward-declared reference to an enumeration, make a
   10619         // note of it; we won't actually be introducing the declaration into
   10620         // the declaration context.
   10621         if (TUK == TUK_Reference)
   10622           IsForwardReference = true;
   10623       }
   10624     }
   10625 
   10626     if (EnumUnderlying) {
   10627       EnumDecl *ED = cast<EnumDecl>(New);
   10628       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
   10629         ED->setIntegerTypeSourceInfo(TI);
   10630       else
   10631         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
   10632       ED->setPromotionType(ED->getIntegerType());
   10633     }
   10634 
   10635   } else {
   10636     // struct/union/class
   10637 
   10638     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
   10639     // struct X { int A; } D;    D should chain to X.
   10640     if (getLangOpts().CPlusPlus) {
   10641       // FIXME: Look for a way to use RecordDecl for simple structs.
   10642       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
   10643                                   cast_or_null<CXXRecordDecl>(PrevDecl));
   10644 
   10645       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
   10646         StdBadAlloc = cast<CXXRecordDecl>(New);
   10647     } else
   10648       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
   10649                                cast_or_null<RecordDecl>(PrevDecl));
   10650   }
   10651 
   10652   // Maybe add qualifier info.
   10653   if (SS.isNotEmpty()) {
   10654     if (SS.isSet()) {
   10655       // If this is either a declaration or a definition, check the
   10656       // nested-name-specifier against the current context. We don't do this
   10657       // for explicit specializations, because they have similar checking
   10658       // (with more specific diagnostics) in the call to
   10659       // CheckMemberSpecialization, below.
   10660       if (!isExplicitSpecialization &&
   10661           (TUK == TUK_Definition || TUK == TUK_Declaration) &&
   10662           diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
   10663         Invalid = true;
   10664 
   10665       New->setQualifierInfo(SS.getWithLocInContext(Context));
   10666       if (TemplateParameterLists.size() > 0) {
   10667         New->setTemplateParameterListsInfo(Context,
   10668                                            TemplateParameterLists.size(),
   10669                                            TemplateParameterLists.data());
   10670       }
   10671     }
   10672     else
   10673       Invalid = true;
   10674   }
   10675 
   10676   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
   10677     // Add alignment attributes if necessary; these attributes are checked when
   10678     // the ASTContext lays out the structure.
   10679     //
   10680     // It is important for implementing the correct semantics that this
   10681     // happen here (in act on tag decl). The #pragma pack stack is
   10682     // maintained as a result of parser callbacks which can occur at
   10683     // many points during the parsing of a struct declaration (because
   10684     // the #pragma tokens are effectively skipped over during the
   10685     // parsing of the struct).
   10686     if (TUK == TUK_Definition) {
   10687       AddAlignmentAttributesForRecord(RD);
   10688       AddMsStructLayoutForRecord(RD);
   10689     }
   10690   }
   10691 
   10692   if (ModulePrivateLoc.isValid()) {
   10693     if (isExplicitSpecialization)
   10694       Diag(New->getLocation(), diag::err_module_private_specialization)
   10695         << 2
   10696         << FixItHint::CreateRemoval(ModulePrivateLoc);
   10697     // __module_private__ does not apply to local classes. However, we only
   10698     // diagnose this as an error when the declaration specifiers are
   10699     // freestanding. Here, we just ignore the __module_private__.
   10700     else if (!SearchDC->isFunctionOrMethod())
   10701       New->setModulePrivate();
   10702   }
   10703 
   10704   // If this is a specialization of a member class (of a class template),
   10705   // check the specialization.
   10706   if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
   10707     Invalid = true;
   10708 
   10709   if (Invalid)
   10710     New->setInvalidDecl();
   10711 
   10712   if (Attr)
   10713     ProcessDeclAttributeList(S, New, Attr);
   10714 
   10715   // If we're declaring or defining a tag in function prototype scope
   10716   // in C, note that this type can only be used within the function.
   10717   if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
   10718     Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
   10719 
   10720   // Set the lexical context. If the tag has a C++ scope specifier, the
   10721   // lexical context will be different from the semantic context.
   10722   New->setLexicalDeclContext(CurContext);
   10723 
   10724   // Mark this as a friend decl if applicable.
   10725   // In Microsoft mode, a friend declaration also acts as a forward
   10726   // declaration so we always pass true to setObjectOfFriendDecl to make
   10727   // the tag name visible.
   10728   if (TUK == TUK_Friend)
   10729     New->setObjectOfFriendDecl(!FriendSawTagOutsideEnclosingNamespace &&
   10730                                getLangOpts().MicrosoftExt);
   10731 
   10732   // Set the access specifier.
   10733   if (!Invalid && SearchDC->isRecord())
   10734     SetMemberAccessSpecifier(New, PrevDecl, AS);
   10735 
   10736   if (TUK == TUK_Definition)
   10737     New->startDefinition();
   10738 
   10739   // If this has an identifier, add it to the scope stack.
   10740   if (TUK == TUK_Friend) {
   10741     // We might be replacing an existing declaration in the lookup tables;
   10742     // if so, borrow its access specifier.
   10743     if (PrevDecl)
   10744       New->setAccess(PrevDecl->getAccess());
   10745 
   10746     DeclContext *DC = New->getDeclContext()->getRedeclContext();
   10747     DC->makeDeclVisibleInContext(New);
   10748     if (Name) // can be null along some error paths
   10749       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
   10750         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
   10751   } else if (Name) {
   10752     S = getNonFieldDeclScope(S);
   10753     PushOnScopeChains(New, S, !IsForwardReference);
   10754     if (IsForwardReference)
   10755       SearchDC->makeDeclVisibleInContext(New);
   10756 
   10757   } else {
   10758     CurContext->addDecl(New);
   10759   }
   10760 
   10761   // If this is the C FILE type, notify the AST context.
   10762   if (IdentifierInfo *II = New->getIdentifier())
   10763     if (!New->isInvalidDecl() &&
   10764         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
   10765         II->isStr("FILE"))
   10766       Context.setFILEDecl(New);
   10767 
   10768   // If we were in function prototype scope (and not in C++ mode), add this
   10769   // tag to the list of decls to inject into the function definition scope.
   10770   if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
   10771       InFunctionDeclarator && Name)
   10772     DeclsInPrototypeScope.push_back(New);
   10773 
   10774   if (PrevDecl)
   10775     mergeDeclAttributes(New, PrevDecl);
   10776 
   10777   // If there's a #pragma GCC visibility in scope, set the visibility of this
   10778   // record.
   10779   AddPushedVisibilityAttribute(New);
   10780 
   10781   OwnedDecl = true;
   10782   // In C++, don't return an invalid declaration. We can't recover well from
   10783   // the cases where we make the type anonymous.
   10784   return (Invalid && getLangOpts().CPlusPlus) ? 0 : New;
   10785 }
   10786 
   10787 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
   10788   AdjustDeclIfTemplate(TagD);
   10789   TagDecl *Tag = cast<TagDecl>(TagD);
   10790 
   10791   // Enter the tag context.
   10792   PushDeclContext(S, Tag);
   10793 
   10794   ActOnDocumentableDecl(TagD);
   10795 
   10796   // If there's a #pragma GCC visibility in scope, set the visibility of this
   10797   // record.
   10798   AddPushedVisibilityAttribute(Tag);
   10799 }
   10800 
   10801 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
   10802   assert(isa<ObjCContainerDecl>(IDecl) &&
   10803          "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
   10804   DeclContext *OCD = cast<DeclContext>(IDecl);
   10805   assert(getContainingDC(OCD) == CurContext &&
   10806       "The next DeclContext should be lexically contained in the current one.");
   10807   CurContext = OCD;
   10808   return IDecl;
   10809 }
   10810 
   10811 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
   10812                                            SourceLocation FinalLoc,
   10813                                            SourceLocation LBraceLoc) {
   10814   AdjustDeclIfTemplate(TagD);
   10815   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
   10816 
   10817   FieldCollector->StartClass();
   10818 
   10819   if (!Record->getIdentifier())
   10820     return;
   10821 
   10822   if (FinalLoc.isValid())
   10823     Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
   10824 
   10825   // C++ [class]p2:
   10826   //   [...] The class-name is also inserted into the scope of the
   10827   //   class itself; this is known as the injected-class-name. For
   10828   //   purposes of access checking, the injected-class-name is treated
   10829   //   as if it were a public member name.
   10830   CXXRecordDecl *InjectedClassName
   10831     = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
   10832                             Record->getLocStart(), Record->getLocation(),
   10833                             Record->getIdentifier(),
   10834                             /*PrevDecl=*/0,
   10835                             /*DelayTypeCreation=*/true);
   10836   Context.getTypeDeclType(InjectedClassName, Record);
   10837   InjectedClassName->setImplicit();
   10838   InjectedClassName->setAccess(AS_public);
   10839   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
   10840       InjectedClassName->setDescribedClassTemplate(Template);
   10841   PushOnScopeChains(InjectedClassName, S);
   10842   assert(InjectedClassName->isInjectedClassName() &&
   10843          "Broken injected-class-name");
   10844 }
   10845 
   10846 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
   10847                                     SourceLocation RBraceLoc) {
   10848   AdjustDeclIfTemplate(TagD);
   10849   TagDecl *Tag = cast<TagDecl>(TagD);
   10850   Tag->setRBraceLoc(RBraceLoc);
   10851 
   10852   // Make sure we "complete" the definition even it is invalid.
   10853   if (Tag->isBeingDefined()) {
   10854     assert(Tag->isInvalidDecl() && "We should already have completed it");
   10855     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
   10856       RD->completeDefinition();
   10857   }
   10858 
   10859   if (isa<CXXRecordDecl>(Tag))
   10860     FieldCollector->FinishClass();
   10861 
   10862   // Exit this scope of this tag's definition.
   10863   PopDeclContext();
   10864 
   10865   if (getCurLexicalContext()->isObjCContainer() &&
   10866       Tag->getDeclContext()->isFileContext())
   10867     Tag->setTopLevelDeclInObjCContainer();
   10868 
   10869   // Notify the consumer that we've defined a tag.
   10870   if (!Tag->isInvalidDecl())
   10871     Consumer.HandleTagDeclDefinition(Tag);
   10872 }
   10873 
   10874 void Sema::ActOnObjCContainerFinishDefinition() {
   10875   // Exit this scope of this interface definition.
   10876   PopDeclContext();
   10877 }
   10878 
   10879 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
   10880   assert(DC == CurContext && "Mismatch of container contexts");
   10881   OriginalLexicalContext = DC;
   10882   ActOnObjCContainerFinishDefinition();
   10883 }
   10884 
   10885 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
   10886   ActOnObjCContainerStartDefinition(cast<Decl>(DC));
   10887   OriginalLexicalContext = 0;
   10888 }
   10889 
   10890 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
   10891   AdjustDeclIfTemplate(TagD);
   10892   TagDecl *Tag = cast<TagDecl>(TagD);
   10893   Tag->setInvalidDecl();
   10894 
   10895   // Make sure we "complete" the definition even it is invalid.
   10896   if (Tag->isBeingDefined()) {
   10897     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
   10898       RD->completeDefinition();
   10899   }
   10900 
   10901   // We're undoing ActOnTagStartDefinition here, not
   10902   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
   10903   // the FieldCollector.
   10904 
   10905   PopDeclContext();
   10906 }
   10907 
   10908 // Note that FieldName may be null for anonymous bitfields.
   10909 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
   10910                                 IdentifierInfo *FieldName,
   10911                                 QualType FieldTy, bool IsMsStruct,
   10912                                 Expr *BitWidth, bool *ZeroWidth) {
   10913   // Default to true; that shouldn't confuse checks for emptiness
   10914   if (ZeroWidth)
   10915     *ZeroWidth = true;
   10916 
   10917   // C99 6.7.2.1p4 - verify the field type.
   10918   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
   10919   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
   10920     // Handle incomplete types with specific error.
   10921     if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
   10922       return ExprError();
   10923     if (FieldName)
   10924       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
   10925         << FieldName << FieldTy << BitWidth->getSourceRange();
   10926     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
   10927       << FieldTy << BitWidth->getSourceRange();
   10928   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
   10929                                              UPPC_BitFieldWidth))
   10930     return ExprError();
   10931 
   10932   // If the bit-width is type- or value-dependent, don't try to check
   10933   // it now.
   10934   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
   10935     return Owned(BitWidth);
   10936 
   10937   llvm::APSInt Value;
   10938   ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
   10939   if (ICE.isInvalid())
   10940     return ICE;
   10941   BitWidth = ICE.take();
   10942 
   10943   if (Value != 0 && ZeroWidth)
   10944     *ZeroWidth = false;
   10945 
   10946   // Zero-width bitfield is ok for anonymous field.
   10947   if (Value == 0 && FieldName)
   10948     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
   10949 
   10950   if (Value.isSigned() && Value.isNegative()) {
   10951     if (FieldName)
   10952       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
   10953                << FieldName << Value.toString(10);
   10954     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
   10955       << Value.toString(10);
   10956   }
   10957 
   10958   if (!FieldTy->isDependentType()) {
   10959     uint64_t TypeSize = Context.getTypeSize(FieldTy);
   10960     if (Value.getZExtValue() > TypeSize) {
   10961       if (!getLangOpts().CPlusPlus || IsMsStruct) {
   10962         if (FieldName)
   10963           return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
   10964             << FieldName << (unsigned)Value.getZExtValue()
   10965             << (unsigned)TypeSize;
   10966 
   10967         return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
   10968           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
   10969       }
   10970 
   10971       if (FieldName)
   10972         Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
   10973           << FieldName << (unsigned)Value.getZExtValue()
   10974           << (unsigned)TypeSize;
   10975       else
   10976         Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
   10977           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
   10978     }
   10979   }
   10980 
   10981   return Owned(BitWidth);
   10982 }
   10983 
   10984 /// ActOnField - Each field of a C struct/union is passed into this in order
   10985 /// to create a FieldDecl object for it.
   10986 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
   10987                        Declarator &D, Expr *BitfieldWidth) {
   10988   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
   10989                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
   10990                                /*InitStyle=*/ICIS_NoInit, AS_public);
   10991   return Res;
   10992 }
   10993 
   10994 /// HandleField - Analyze a field of a C struct or a C++ data member.
   10995 ///
   10996 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
   10997                              SourceLocation DeclStart,
   10998                              Declarator &D, Expr *BitWidth,
   10999                              InClassInitStyle InitStyle,
   11000                              AccessSpecifier AS) {
   11001   IdentifierInfo *II = D.getIdentifier();
   11002   SourceLocation Loc = DeclStart;
   11003   if (II) Loc = D.getIdentifierLoc();
   11004 
   11005   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   11006   QualType T = TInfo->getType();
   11007   if (getLangOpts().CPlusPlus) {
   11008     CheckExtraCXXDefaultArguments(D);
   11009 
   11010     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
   11011                                         UPPC_DataMemberType)) {
   11012       D.setInvalidType();
   11013       T = Context.IntTy;
   11014       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
   11015     }
   11016   }
   11017 
   11018   // TR 18037 does not allow fields to be declared with address spaces.
   11019   if (T.getQualifiers().hasAddressSpace()) {
   11020     Diag(Loc, diag::err_field_with_address_space);
   11021     D.setInvalidType();
   11022   }
   11023 
   11024   // OpenCL 1.2 spec, s6.9 r:
   11025   // The event type cannot be used to declare a structure or union field.
   11026   if (LangOpts.OpenCL && T->isEventT()) {
   11027     Diag(Loc, diag::err_event_t_struct_field);
   11028     D.setInvalidType();
   11029   }
   11030 
   11031   DiagnoseFunctionSpecifiers(D.getDeclSpec());
   11032 
   11033   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
   11034     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
   11035          diag::err_invalid_thread)
   11036       << DeclSpec::getSpecifierName(TSCS);
   11037 
   11038   // Check to see if this name was declared as a member previously
   11039   NamedDecl *PrevDecl = 0;
   11040   LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
   11041   LookupName(Previous, S);
   11042   switch (Previous.getResultKind()) {
   11043     case LookupResult::Found:
   11044     case LookupResult::FoundUnresolvedValue:
   11045       PrevDecl = Previous.getAsSingle<NamedDecl>();
   11046       break;
   11047 
   11048     case LookupResult::FoundOverloaded:
   11049       PrevDecl = Previous.getRepresentativeDecl();
   11050       break;
   11051 
   11052     case LookupResult::NotFound:
   11053     case LookupResult::NotFoundInCurrentInstantiation:
   11054     case LookupResult::Ambiguous:
   11055       break;
   11056   }
   11057   Previous.suppressDiagnostics();
   11058 
   11059   if (PrevDecl && PrevDecl->isTemplateParameter()) {
   11060     // Maybe we will complain about the shadowed template parameter.
   11061     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
   11062     // Just pretend that we didn't see the previous declaration.
   11063     PrevDecl = 0;
   11064   }
   11065 
   11066   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
   11067     PrevDecl = 0;
   11068 
   11069   bool Mutable
   11070     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
   11071   SourceLocation TSSL = D.getLocStart();
   11072   FieldDecl *NewFD
   11073     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
   11074                      TSSL, AS, PrevDecl, &D);
   11075 
   11076   if (NewFD->isInvalidDecl())
   11077     Record->setInvalidDecl();
   11078 
   11079   if (D.getDeclSpec().isModulePrivateSpecified())
   11080     NewFD->setModulePrivate();
   11081 
   11082   if (NewFD->isInvalidDecl() && PrevDecl) {
   11083     // Don't introduce NewFD into scope; there's already something
   11084     // with the same name in the same scope.
   11085   } else if (II) {
   11086     PushOnScopeChains(NewFD, S);
   11087   } else
   11088     Record->addDecl(NewFD);
   11089 
   11090   return NewFD;
   11091 }
   11092 
   11093 /// \brief Build a new FieldDecl and check its well-formedness.
   11094 ///
   11095 /// This routine builds a new FieldDecl given the fields name, type,
   11096 /// record, etc. \p PrevDecl should refer to any previous declaration
   11097 /// with the same name and in the same scope as the field to be
   11098 /// created.
   11099 ///
   11100 /// \returns a new FieldDecl.
   11101 ///
   11102 /// \todo The Declarator argument is a hack. It will be removed once
   11103 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
   11104                                 TypeSourceInfo *TInfo,
   11105                                 RecordDecl *Record, SourceLocation Loc,
   11106                                 bool Mutable, Expr *BitWidth,
   11107                                 InClassInitStyle InitStyle,
   11108                                 SourceLocation TSSL,
   11109                                 AccessSpecifier AS, NamedDecl *PrevDecl,
   11110                                 Declarator *D) {
   11111   IdentifierInfo *II = Name.getAsIdentifierInfo();
   11112   bool InvalidDecl = false;
   11113   if (D) InvalidDecl = D->isInvalidType();
   11114 
   11115   // If we receive a broken type, recover by assuming 'int' and
   11116   // marking this declaration as invalid.
   11117   if (T.isNull()) {
   11118     InvalidDecl = true;
   11119     T = Context.IntTy;
   11120   }
   11121 
   11122   QualType EltTy = Context.getBaseElementType(T);
   11123   if (!EltTy->isDependentType()) {
   11124     if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
   11125       // Fields of incomplete type force their record to be invalid.
   11126       Record->setInvalidDecl();
   11127       InvalidDecl = true;
   11128     } else {
   11129       NamedDecl *Def;
   11130       EltTy->isIncompleteType(&Def);
   11131       if (Def && Def->isInvalidDecl()) {
   11132         Record->setInvalidDecl();
   11133         InvalidDecl = true;
   11134       }
   11135     }
   11136   }
   11137 
   11138   // OpenCL v1.2 s6.9.c: bitfields are not supported.
   11139   if (BitWidth && getLangOpts().OpenCL) {
   11140     Diag(Loc, diag::err_opencl_bitfields);
   11141     InvalidDecl = true;
   11142   }
   11143 
   11144   // C99 6.7.2.1p8: A member of a structure or union may have any type other
   11145   // than a variably modified type.
   11146   if (!InvalidDecl && T->isVariablyModifiedType()) {
   11147     bool SizeIsNegative;
   11148     llvm::APSInt Oversized;
   11149 
   11150     TypeSourceInfo *FixedTInfo =
   11151       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
   11152                                                     SizeIsNegative,
   11153                                                     Oversized);
   11154     if (FixedTInfo) {
   11155       Diag(Loc, diag::warn_illegal_constant_array_size);
   11156       TInfo = FixedTInfo;
   11157       T = FixedTInfo->getType();
   11158     } else {
   11159       if (SizeIsNegative)
   11160         Diag(Loc, diag::err_typecheck_negative_array_size);
   11161       else if (Oversized.getBoolValue())
   11162         Diag(Loc, diag::err_array_too_large)
   11163           << Oversized.toString(10);
   11164       else
   11165         Diag(Loc, diag::err_typecheck_field_variable_size);
   11166       InvalidDecl = true;
   11167     }
   11168   }
   11169 
   11170   // Fields can not have abstract class types
   11171   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
   11172                                              diag::err_abstract_type_in_decl,
   11173                                              AbstractFieldType))
   11174     InvalidDecl = true;
   11175 
   11176   bool ZeroWidth = false;
   11177   // If this is declared as a bit-field, check the bit-field.
   11178   if (!InvalidDecl && BitWidth) {
   11179     BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
   11180                               &ZeroWidth).take();
   11181     if (!BitWidth) {
   11182       InvalidDecl = true;
   11183       BitWidth = 0;
   11184       ZeroWidth = false;
   11185     }
   11186   }
   11187 
   11188   // Check that 'mutable' is consistent with the type of the declaration.
   11189   if (!InvalidDecl && Mutable) {
   11190     unsigned DiagID = 0;
   11191     if (T->isReferenceType())
   11192       DiagID = diag::err_mutable_reference;
   11193     else if (T.isConstQualified())
   11194       DiagID = diag::err_mutable_const;
   11195 
   11196     if (DiagID) {
   11197       SourceLocation ErrLoc = Loc;
   11198       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
   11199         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
   11200       Diag(ErrLoc, DiagID);
   11201       Mutable = false;
   11202       InvalidDecl = true;
   11203     }
   11204   }
   11205 
   11206   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
   11207                                        BitWidth, Mutable, InitStyle);
   11208   if (InvalidDecl)
   11209     NewFD->setInvalidDecl();
   11210 
   11211   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
   11212     Diag(Loc, diag::err_duplicate_member) << II;
   11213     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   11214     NewFD->setInvalidDecl();
   11215   }
   11216 
   11217   if (!InvalidDecl && getLangOpts().CPlusPlus) {
   11218     if (Record->isUnion()) {
   11219       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
   11220         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
   11221         if (RDecl->getDefinition()) {
   11222           // C++ [class.union]p1: An object of a class with a non-trivial
   11223           // constructor, a non-trivial copy constructor, a non-trivial
   11224           // destructor, or a non-trivial copy assignment operator
   11225           // cannot be a member of a union, nor can an array of such
   11226           // objects.
   11227           if (CheckNontrivialField(NewFD))
   11228             NewFD->setInvalidDecl();
   11229         }
   11230       }
   11231 
   11232       // C++ [class.union]p1: If a union contains a member of reference type,
   11233       // the program is ill-formed, except when compiling with MSVC extensions
   11234       // enabled.
   11235       if (EltTy->isReferenceType()) {
   11236         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
   11237                                     diag::ext_union_member_of_reference_type :
   11238                                     diag::err_union_member_of_reference_type)
   11239           << NewFD->getDeclName() << EltTy;
   11240         if (!getLangOpts().MicrosoftExt)
   11241           NewFD->setInvalidDecl();
   11242       }
   11243     }
   11244   }
   11245 
   11246   // FIXME: We need to pass in the attributes given an AST
   11247   // representation, not a parser representation.
   11248   if (D) {
   11249     // FIXME: The current scope is almost... but not entirely... correct here.
   11250     ProcessDeclAttributes(getCurScope(), NewFD, *D);
   11251 
   11252     if (NewFD->hasAttrs())
   11253       CheckAlignasUnderalignment(NewFD);
   11254   }
   11255 
   11256   // In auto-retain/release, infer strong retension for fields of
   11257   // retainable type.
   11258   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
   11259     NewFD->setInvalidDecl();
   11260 
   11261   if (T.isObjCGCWeak())
   11262     Diag(Loc, diag::warn_attribute_weak_on_field);
   11263 
   11264   NewFD->setAccess(AS);
   11265   return NewFD;
   11266 }
   11267 
   11268 bool Sema::CheckNontrivialField(FieldDecl *FD) {
   11269   assert(FD);
   11270   assert(getLangOpts().CPlusPlus && "valid check only for C++");
   11271 
   11272   if (FD->isInvalidDecl() || FD->getType()->isDependentType())
   11273     return false;
   11274 
   11275   QualType EltTy = Context.getBaseElementType(FD->getType());
   11276   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
   11277     CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
   11278     if (RDecl->getDefinition()) {
   11279       // We check for copy constructors before constructors
   11280       // because otherwise we'll never get complaints about
   11281       // copy constructors.
   11282 
   11283       CXXSpecialMember member = CXXInvalid;
   11284       // We're required to check for any non-trivial constructors. Since the
   11285       // implicit default constructor is suppressed if there are any
   11286       // user-declared constructors, we just need to check that there is a
   11287       // trivial default constructor and a trivial copy constructor. (We don't
   11288       // worry about move constructors here, since this is a C++98 check.)
   11289       if (RDecl->hasNonTrivialCopyConstructor())
   11290         member = CXXCopyConstructor;
   11291       else if (!RDecl->hasTrivialDefaultConstructor())
   11292         member = CXXDefaultConstructor;
   11293       else if (RDecl->hasNonTrivialCopyAssignment())
   11294         member = CXXCopyAssignment;
   11295       else if (RDecl->hasNonTrivialDestructor())
   11296         member = CXXDestructor;
   11297 
   11298       if (member != CXXInvalid) {
   11299         if (!getLangOpts().CPlusPlus11 &&
   11300             getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
   11301           // Objective-C++ ARC: it is an error to have a non-trivial field of
   11302           // a union. However, system headers in Objective-C programs
   11303           // occasionally have Objective-C lifetime objects within unions,
   11304           // and rather than cause the program to fail, we make those
   11305           // members unavailable.
   11306           SourceLocation Loc = FD->getLocation();
   11307           if (getSourceManager().isInSystemHeader(Loc)) {
   11308             if (!FD->hasAttr<UnavailableAttr>())
   11309               FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
   11310                                   "this system field has retaining ownership"));
   11311             return false;
   11312           }
   11313         }
   11314 
   11315         Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
   11316                diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
   11317                diag::err_illegal_union_or_anon_struct_member)
   11318           << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
   11319         DiagnoseNontrivial(RDecl, member);
   11320         return !getLangOpts().CPlusPlus11;
   11321       }
   11322     }
   11323   }
   11324 
   11325   return false;
   11326 }
   11327 
   11328 /// TranslateIvarVisibility - Translate visibility from a token ID to an
   11329 ///  AST enum value.
   11330 static ObjCIvarDecl::AccessControl
   11331 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
   11332   switch (ivarVisibility) {
   11333   default: llvm_unreachable("Unknown visitibility kind");
   11334   case tok::objc_private: return ObjCIvarDecl::Private;
   11335   case tok::objc_public: return ObjCIvarDecl::Public;
   11336   case tok::objc_protected: return ObjCIvarDecl::Protected;
   11337   case tok::objc_package: return ObjCIvarDecl::Package;
   11338   }
   11339 }
   11340 
   11341 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
   11342 /// in order to create an IvarDecl object for it.
   11343 Decl *Sema::ActOnIvar(Scope *S,
   11344                                 SourceLocation DeclStart,
   11345                                 Declarator &D, Expr *BitfieldWidth,
   11346                                 tok::ObjCKeywordKind Visibility) {
   11347 
   11348   IdentifierInfo *II = D.getIdentifier();
   11349   Expr *BitWidth = (Expr*)BitfieldWidth;
   11350   SourceLocation Loc = DeclStart;
   11351   if (II) Loc = D.getIdentifierLoc();
   11352 
   11353   // FIXME: Unnamed fields can be handled in various different ways, for
   11354   // example, unnamed unions inject all members into the struct namespace!
   11355 
   11356   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   11357   QualType T = TInfo->getType();
   11358 
   11359   if (BitWidth) {
   11360     // 6.7.2.1p3, 6.7.2.1p4
   11361     BitWidth =
   11362         VerifyBitField(Loc, II, T, /*IsMsStruct=*/false, BitWidth).take();
   11363     if (!BitWidth)
   11364       D.setInvalidType();
   11365   } else {
   11366     // Not a bitfield.
   11367 
   11368     // validate II.
   11369 
   11370   }
   11371   if (T->isReferenceType()) {
   11372     Diag(Loc, diag::err_ivar_reference_type);
   11373     D.setInvalidType();
   11374   }
   11375   // C99 6.7.2.1p8: A member of a structure or union may have any type other
   11376   // than a variably modified type.
   11377   else if (T->isVariablyModifiedType()) {
   11378     Diag(Loc, diag::err_typecheck_ivar_variable_size);
   11379     D.setInvalidType();
   11380   }
   11381 
   11382   // Get the visibility (access control) for this ivar.
   11383   ObjCIvarDecl::AccessControl ac =
   11384     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
   11385                                         : ObjCIvarDecl::None;
   11386   // Must set ivar's DeclContext to its enclosing interface.
   11387   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
   11388   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
   11389     return 0;
   11390   ObjCContainerDecl *EnclosingContext;
   11391   if (ObjCImplementationDecl *IMPDecl =
   11392       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
   11393     if (LangOpts.ObjCRuntime.isFragile()) {
   11394     // Case of ivar declared in an implementation. Context is that of its class.
   11395       EnclosingContext = IMPDecl->getClassInterface();
   11396       assert(EnclosingContext && "Implementation has no class interface!");
   11397     }
   11398     else
   11399       EnclosingContext = EnclosingDecl;
   11400   } else {
   11401     if (ObjCCategoryDecl *CDecl =
   11402         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
   11403       if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
   11404         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
   11405         return 0;
   11406       }
   11407     }
   11408     EnclosingContext = EnclosingDecl;
   11409   }
   11410 
   11411   // Construct the decl.
   11412   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
   11413                                              DeclStart, Loc, II, T,
   11414                                              TInfo, ac, (Expr *)BitfieldWidth);
   11415 
   11416   if (II) {
   11417     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
   11418                                            ForRedeclaration);
   11419     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
   11420         && !isa<TagDecl>(PrevDecl)) {
   11421       Diag(Loc, diag::err_duplicate_member) << II;
   11422       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   11423       NewID->setInvalidDecl();
   11424     }
   11425   }
   11426 
   11427   // Process attributes attached to the ivar.
   11428   ProcessDeclAttributes(S, NewID, D);
   11429 
   11430   if (D.isInvalidType())
   11431     NewID->setInvalidDecl();
   11432 
   11433   // In ARC, infer 'retaining' for ivars of retainable type.
   11434   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
   11435     NewID->setInvalidDecl();
   11436 
   11437   if (D.getDeclSpec().isModulePrivateSpecified())
   11438     NewID->setModulePrivate();
   11439 
   11440   if (II) {
   11441     // FIXME: When interfaces are DeclContexts, we'll need to add
   11442     // these to the interface.
   11443     S->AddDecl(NewID);
   11444     IdResolver.AddDecl(NewID);
   11445   }
   11446 
   11447   if (LangOpts.ObjCRuntime.isNonFragile() &&
   11448       !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
   11449     Diag(Loc, diag::warn_ivars_in_interface);
   11450 
   11451   return NewID;
   11452 }
   11453 
   11454 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
   11455 /// class and class extensions. For every class \@interface and class
   11456 /// extension \@interface, if the last ivar is a bitfield of any type,
   11457 /// then add an implicit `char :0` ivar to the end of that interface.
   11458 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
   11459                              SmallVectorImpl<Decl *> &AllIvarDecls) {
   11460   if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
   11461     return;
   11462 
   11463   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
   11464   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
   11465 
   11466   if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
   11467     return;
   11468   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
   11469   if (!ID) {
   11470     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
   11471       if (!CD->IsClassExtension())
   11472         return;
   11473     }
   11474     // No need to add this to end of @implementation.
   11475     else
   11476       return;
   11477   }
   11478   // All conditions are met. Add a new bitfield to the tail end of ivars.
   11479   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
   11480   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
   11481 
   11482   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
   11483                               DeclLoc, DeclLoc, 0,
   11484                               Context.CharTy,
   11485                               Context.getTrivialTypeSourceInfo(Context.CharTy,
   11486                                                                DeclLoc),
   11487                               ObjCIvarDecl::Private, BW,
   11488                               true);
   11489   AllIvarDecls.push_back(Ivar);
   11490 }
   11491 
   11492 void Sema::ActOnFields(Scope* S,
   11493                        SourceLocation RecLoc, Decl *EnclosingDecl,
   11494                        llvm::ArrayRef<Decl *> Fields,
   11495                        SourceLocation LBrac, SourceLocation RBrac,
   11496                        AttributeList *Attr) {
   11497   assert(EnclosingDecl && "missing record or interface decl");
   11498 
   11499   // If this is an Objective-C @implementation or category and we have
   11500   // new fields here we should reset the layout of the interface since
   11501   // it will now change.
   11502   if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
   11503     ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
   11504     switch (DC->getKind()) {
   11505     default: break;
   11506     case Decl::ObjCCategory:
   11507       Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
   11508       break;
   11509     case Decl::ObjCImplementation:
   11510       Context.
   11511         ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
   11512       break;
   11513     }
   11514   }
   11515 
   11516   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
   11517 
   11518   // Start counting up the number of named members; make sure to include
   11519   // members of anonymous structs and unions in the total.
   11520   unsigned NumNamedMembers = 0;
   11521   if (Record) {
   11522     for (RecordDecl::decl_iterator i = Record->decls_begin(),
   11523                                    e = Record->decls_end(); i != e; i++) {
   11524       if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
   11525         if (IFD->getDeclName())
   11526           ++NumNamedMembers;
   11527     }
   11528   }
   11529 
   11530   // Verify that all the fields are okay.
   11531   SmallVector<FieldDecl*, 32> RecFields;
   11532 
   11533   bool ARCErrReported = false;
   11534   for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
   11535        i != end; ++i) {
   11536     FieldDecl *FD = cast<FieldDecl>(*i);
   11537 
   11538     // Get the type for the field.
   11539     const Type *FDTy = FD->getType().getTypePtr();
   11540 
   11541     if (!FD->isAnonymousStructOrUnion()) {
   11542       // Remember all fields written by the user.
   11543       RecFields.push_back(FD);
   11544     }
   11545 
   11546     // If the field is already invalid for some reason, don't emit more
   11547     // diagnostics about it.
   11548     if (FD->isInvalidDecl()) {
   11549       EnclosingDecl->setInvalidDecl();
   11550       continue;
   11551     }
   11552 
   11553     // C99 6.7.2.1p2:
   11554     //   A structure or union shall not contain a member with
   11555     //   incomplete or function type (hence, a structure shall not
   11556     //   contain an instance of itself, but may contain a pointer to
   11557     //   an instance of itself), except that the last member of a
   11558     //   structure with more than one named member may have incomplete
   11559     //   array type; such a structure (and any union containing,
   11560     //   possibly recursively, a member that is such a structure)
   11561     //   shall not be a member of a structure or an element of an
   11562     //   array.
   11563     if (FDTy->isFunctionType()) {
   11564       // Field declared as a function.
   11565       Diag(FD->getLocation(), diag::err_field_declared_as_function)
   11566         << FD->getDeclName();
   11567       FD->setInvalidDecl();
   11568       EnclosingDecl->setInvalidDecl();
   11569       continue;
   11570     } else if (FDTy->isIncompleteArrayType() && Record &&
   11571                ((i + 1 == Fields.end() && !Record->isUnion()) ||
   11572                 ((getLangOpts().MicrosoftExt ||
   11573                   getLangOpts().CPlusPlus) &&
   11574                  (i + 1 == Fields.end() || Record->isUnion())))) {
   11575       // Flexible array member.
   11576       // Microsoft and g++ is more permissive regarding flexible array.
   11577       // It will accept flexible array in union and also
   11578       // as the sole element of a struct/class.
   11579       if (getLangOpts().MicrosoftExt) {
   11580         if (Record->isUnion())
   11581           Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
   11582             << FD->getDeclName();
   11583         else if (Fields.size() == 1)
   11584           Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
   11585             << FD->getDeclName() << Record->getTagKind();
   11586       } else if (getLangOpts().CPlusPlus) {
   11587         if (Record->isUnion())
   11588           Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
   11589             << FD->getDeclName();
   11590         else if (Fields.size() == 1)
   11591           Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
   11592             << FD->getDeclName() << Record->getTagKind();
   11593       } else if (!getLangOpts().C99) {
   11594       if (Record->isUnion())
   11595         Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
   11596           << FD->getDeclName();
   11597       else
   11598         Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
   11599           << FD->getDeclName() << Record->getTagKind();
   11600       } else if (NumNamedMembers < 1) {
   11601         Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
   11602           << FD->getDeclName();
   11603         FD->setInvalidDecl();
   11604         EnclosingDecl->setInvalidDecl();
   11605         continue;
   11606       }
   11607       if (!FD->getType()->isDependentType() &&
   11608           !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
   11609         Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
   11610           << FD->getDeclName() << FD->getType();
   11611         FD->setInvalidDecl();
   11612         EnclosingDecl->setInvalidDecl();
   11613         continue;
   11614       }
   11615       // Okay, we have a legal flexible array member at the end of the struct.
   11616       if (Record)
   11617         Record->setHasFlexibleArrayMember(true);
   11618     } else if (!FDTy->isDependentType() &&
   11619                RequireCompleteType(FD->getLocation(), FD->getType(),
   11620                                    diag::err_field_incomplete)) {
   11621       // Incomplete type
   11622       FD->setInvalidDecl();
   11623       EnclosingDecl->setInvalidDecl();
   11624       continue;
   11625     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
   11626       if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
   11627         // If this is a member of a union, then entire union becomes "flexible".
   11628         if (Record && Record->isUnion()) {
   11629           Record->setHasFlexibleArrayMember(true);
   11630         } else {
   11631           // If this is a struct/class and this is not the last element, reject
   11632           // it.  Note that GCC supports variable sized arrays in the middle of
   11633           // structures.
   11634           if (i + 1 != Fields.end())
   11635             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
   11636               << FD->getDeclName() << FD->getType();
   11637           else {
   11638             // We support flexible arrays at the end of structs in
   11639             // other structs as an extension.
   11640             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
   11641               << FD->getDeclName();
   11642             if (Record)
   11643               Record->setHasFlexibleArrayMember(true);
   11644           }
   11645         }
   11646       }
   11647       if (isa<ObjCContainerDecl>(EnclosingDecl) &&
   11648           RequireNonAbstractType(FD->getLocation(), FD->getType(),
   11649                                  diag::err_abstract_type_in_decl,
   11650                                  AbstractIvarType)) {
   11651         // Ivars can not have abstract class types
   11652         FD->setInvalidDecl();
   11653       }
   11654       if (Record && FDTTy->getDecl()->hasObjectMember())
   11655         Record->setHasObjectMember(true);
   11656       if (Record && FDTTy->getDecl()->hasVolatileMember())
   11657         Record->setHasVolatileMember(true);
   11658     } else if (FDTy->isObjCObjectType()) {
   11659       /// A field cannot be an Objective-c object
   11660       Diag(FD->getLocation(), diag::err_statically_allocated_object)
   11661         << FixItHint::CreateInsertion(FD->getLocation(), "*");
   11662       QualType T = Context.getObjCObjectPointerType(FD->getType());
   11663       FD->setType(T);
   11664     } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
   11665                (!getLangOpts().CPlusPlus || Record->isUnion())) {
   11666       // It's an error in ARC if a field has lifetime.
   11667       // We don't want to report this in a system header, though,
   11668       // so we just make the field unavailable.
   11669       // FIXME: that's really not sufficient; we need to make the type
   11670       // itself invalid to, say, initialize or copy.
   11671       QualType T = FD->getType();
   11672       Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
   11673       if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
   11674         SourceLocation loc = FD->getLocation();
   11675         if (getSourceManager().isInSystemHeader(loc)) {
   11676           if (!FD->hasAttr<UnavailableAttr>()) {
   11677             FD->addAttr(new (Context) UnavailableAttr(loc, Context,
   11678                               "this system field has retaining ownership"));
   11679           }
   11680         } else {
   11681           Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
   11682             << T->isBlockPointerType() << Record->getTagKind();
   11683         }
   11684         ARCErrReported = true;
   11685       }
   11686     } else if (getLangOpts().ObjC1 &&
   11687                getLangOpts().getGC() != LangOptions::NonGC &&
   11688                Record && !Record->hasObjectMember()) {
   11689       if (FD->getType()->isObjCObjectPointerType() ||
   11690           FD->getType().isObjCGCStrong())
   11691         Record->setHasObjectMember(true);
   11692       else if (Context.getAsArrayType(FD->getType())) {
   11693         QualType BaseType = Context.getBaseElementType(FD->getType());
   11694         if (BaseType->isRecordType() &&
   11695             BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
   11696           Record->setHasObjectMember(true);
   11697         else if (BaseType->isObjCObjectPointerType() ||
   11698                  BaseType.isObjCGCStrong())
   11699                Record->setHasObjectMember(true);
   11700       }
   11701     }
   11702     if (Record && FD->getType().isVolatileQualified())
   11703       Record->setHasVolatileMember(true);
   11704     // Keep track of the number of named members.
   11705     if (FD->getIdentifier())
   11706       ++NumNamedMembers;
   11707   }
   11708 
   11709   // Okay, we successfully defined 'Record'.
   11710   if (Record) {
   11711     bool Completed = false;
   11712     if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
   11713       if (!CXXRecord->isInvalidDecl()) {
   11714         // Set access bits correctly on the directly-declared conversions.
   11715         for (CXXRecordDecl::conversion_iterator
   11716                I = CXXRecord->conversion_begin(),
   11717                E = CXXRecord->conversion_end(); I != E; ++I)
   11718           I.setAccess((*I)->getAccess());
   11719 
   11720         if (!CXXRecord->isDependentType()) {
   11721           if (CXXRecord->hasUserDeclaredDestructor()) {
   11722             // Adjust user-defined destructor exception spec.
   11723             if (getLangOpts().CPlusPlus11)
   11724               AdjustDestructorExceptionSpec(CXXRecord,
   11725                                             CXXRecord->getDestructor());
   11726 
   11727             // The Microsoft ABI requires that we perform the destructor body
   11728             // checks (i.e. operator delete() lookup) at every declaration, as
   11729             // any translation unit may need to emit a deleting destructor.
   11730             if (Context.getTargetInfo().getCXXABI().isMicrosoft())
   11731               CheckDestructor(CXXRecord->getDestructor());
   11732           }
   11733 
   11734           // Add any implicitly-declared members to this class.
   11735           AddImplicitlyDeclaredMembersToClass(CXXRecord);
   11736 
   11737           // If we have virtual base classes, we may end up finding multiple
   11738           // final overriders for a given virtual function. Check for this
   11739           // problem now.
   11740           if (CXXRecord->getNumVBases()) {
   11741             CXXFinalOverriderMap FinalOverriders;
   11742             CXXRecord->getFinalOverriders(FinalOverriders);
   11743 
   11744             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
   11745                                              MEnd = FinalOverriders.end();
   11746                  M != MEnd; ++M) {
   11747               for (OverridingMethods::iterator SO = M->second.begin(),
   11748                                             SOEnd = M->second.end();
   11749                    SO != SOEnd; ++SO) {
   11750                 assert(SO->second.size() > 0 &&
   11751                        "Virtual function without overridding functions?");
   11752                 if (SO->second.size() == 1)
   11753                   continue;
   11754 
   11755                 // C++ [class.virtual]p2:
   11756                 //   In a derived class, if a virtual member function of a base
   11757                 //   class subobject has more than one final overrider the
   11758                 //   program is ill-formed.
   11759                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
   11760                   << (const NamedDecl *)M->first << Record;
   11761                 Diag(M->first->getLocation(),
   11762                      diag::note_overridden_virtual_function);
   11763                 for (OverridingMethods::overriding_iterator
   11764                           OM = SO->second.begin(),
   11765                        OMEnd = SO->second.end();
   11766                      OM != OMEnd; ++OM)
   11767                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
   11768                     << (const NamedDecl *)M->first << OM->Method->getParent();
   11769 
   11770                 Record->setInvalidDecl();
   11771               }
   11772             }
   11773             CXXRecord->completeDefinition(&FinalOverriders);
   11774             Completed = true;
   11775           }
   11776         }
   11777       }
   11778     }
   11779 
   11780     if (!Completed)
   11781       Record->completeDefinition();
   11782 
   11783     if (Record->hasAttrs())
   11784       CheckAlignasUnderalignment(Record);
   11785 
   11786     // Check if the structure/union declaration is a language extension.
   11787     if (!getLangOpts().CPlusPlus) {
   11788       bool ZeroSize = true;
   11789       bool IsEmpty = true;
   11790       unsigned NonBitFields = 0;
   11791       for (RecordDecl::field_iterator I = Record->field_begin(),
   11792                                       E = Record->field_end();
   11793            (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
   11794         IsEmpty = false;
   11795         if (I->isUnnamedBitfield()) {
   11796           if (I->getBitWidthValue(Context) > 0)
   11797             ZeroSize = false;
   11798         } else {
   11799           ++NonBitFields;
   11800           QualType FieldType = I->getType();
   11801           if (FieldType->isIncompleteType() ||
   11802               !Context.getTypeSizeInChars(FieldType).isZero())
   11803             ZeroSize = false;
   11804         }
   11805       }
   11806 
   11807       // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
   11808       // C++.
   11809       if (ZeroSize)
   11810         Diag(RecLoc, diag::warn_zero_size_struct_union_compat) << IsEmpty
   11811             << Record->isUnion() << (NonBitFields > 1);
   11812 
   11813       // Structs without named members are extension in C (C99 6.7.2.1p7), but
   11814       // are accepted by GCC.
   11815       if (NonBitFields == 0) {
   11816         if (IsEmpty)
   11817           Diag(RecLoc, diag::ext_empty_struct_union) << Record->isUnion();
   11818         else
   11819           Diag(RecLoc, diag::ext_no_named_members_in_struct_union) << Record->isUnion();
   11820       }
   11821     }
   11822   } else {
   11823     ObjCIvarDecl **ClsFields =
   11824       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
   11825     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
   11826       ID->setEndOfDefinitionLoc(RBrac);
   11827       // Add ivar's to class's DeclContext.
   11828       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
   11829         ClsFields[i]->setLexicalDeclContext(ID);
   11830         ID->addDecl(ClsFields[i]);
   11831       }
   11832       // Must enforce the rule that ivars in the base classes may not be
   11833       // duplicates.
   11834       if (ID->getSuperClass())
   11835         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
   11836     } else if (ObjCImplementationDecl *IMPDecl =
   11837                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
   11838       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
   11839       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
   11840         // Ivar declared in @implementation never belongs to the implementation.
   11841         // Only it is in implementation's lexical context.
   11842         ClsFields[I]->setLexicalDeclContext(IMPDecl);
   11843       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
   11844       IMPDecl->setIvarLBraceLoc(LBrac);
   11845       IMPDecl->setIvarRBraceLoc(RBrac);
   11846     } else if (ObjCCategoryDecl *CDecl =
   11847                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
   11848       // case of ivars in class extension; all other cases have been
   11849       // reported as errors elsewhere.
   11850       // FIXME. Class extension does not have a LocEnd field.
   11851       // CDecl->setLocEnd(RBrac);
   11852       // Add ivar's to class extension's DeclContext.
   11853       // Diagnose redeclaration of private ivars.
   11854       ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
   11855       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
   11856         if (IDecl) {
   11857           if (const ObjCIvarDecl *ClsIvar =
   11858               IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
   11859             Diag(ClsFields[i]->getLocation(),
   11860                  diag::err_duplicate_ivar_declaration);
   11861             Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   11862             continue;
   11863           }
   11864           for (ObjCInterfaceDecl::known_extensions_iterator
   11865                  Ext = IDecl->known_extensions_begin(),
   11866                  ExtEnd = IDecl->known_extensions_end();
   11867                Ext != ExtEnd; ++Ext) {
   11868             if (const ObjCIvarDecl *ClsExtIvar
   11869                   = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
   11870               Diag(ClsFields[i]->getLocation(),
   11871                    diag::err_duplicate_ivar_declaration);
   11872               Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
   11873               continue;
   11874             }
   11875           }
   11876         }
   11877         ClsFields[i]->setLexicalDeclContext(CDecl);
   11878         CDecl->addDecl(ClsFields[i]);
   11879       }
   11880       CDecl->setIvarLBraceLoc(LBrac);
   11881       CDecl->setIvarRBraceLoc(RBrac);
   11882     }
   11883   }
   11884 
   11885   if (Attr)
   11886     ProcessDeclAttributeList(S, Record, Attr);
   11887 }
   11888 
   11889 /// \brief Determine whether the given integral value is representable within
   11890 /// the given type T.
   11891 static bool isRepresentableIntegerValue(ASTContext &Context,
   11892                                         llvm::APSInt &Value,
   11893                                         QualType T) {
   11894   assert(T->isIntegralType(Context) && "Integral type required!");
   11895   unsigned BitWidth = Context.getIntWidth(T);
   11896 
   11897   if (Value.isUnsigned() || Value.isNonNegative()) {
   11898     if (T->isSignedIntegerOrEnumerationType())
   11899       --BitWidth;
   11900     return Value.getActiveBits() <= BitWidth;
   11901   }
   11902   return Value.getMinSignedBits() <= BitWidth;
   11903 }
   11904 
   11905 // \brief Given an integral type, return the next larger integral type
   11906 // (or a NULL type of no such type exists).
   11907 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
   11908   // FIXME: Int128/UInt128 support, which also needs to be introduced into
   11909   // enum checking below.
   11910   assert(T->isIntegralType(Context) && "Integral type required!");
   11911   const unsigned NumTypes = 4;
   11912   QualType SignedIntegralTypes[NumTypes] = {
   11913     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
   11914   };
   11915   QualType UnsignedIntegralTypes[NumTypes] = {
   11916     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
   11917     Context.UnsignedLongLongTy
   11918   };
   11919 
   11920   unsigned BitWidth = Context.getTypeSize(T);
   11921   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
   11922                                                         : UnsignedIntegralTypes;
   11923   for (unsigned I = 0; I != NumTypes; ++I)
   11924     if (Context.getTypeSize(Types[I]) > BitWidth)
   11925       return Types[I];
   11926 
   11927   return QualType();
   11928 }
   11929 
   11930 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
   11931                                           EnumConstantDecl *LastEnumConst,
   11932                                           SourceLocation IdLoc,
   11933                                           IdentifierInfo *Id,
   11934                                           Expr *Val) {
   11935   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
   11936   llvm::APSInt EnumVal(IntWidth);
   11937   QualType EltTy;
   11938 
   11939   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
   11940     Val = 0;
   11941 
   11942   if (Val)
   11943     Val = DefaultLvalueConversion(Val).take();
   11944 
   11945   if (Val) {
   11946     if (Enum->isDependentType() || Val->isTypeDependent())
   11947       EltTy = Context.DependentTy;
   11948     else {
   11949       SourceLocation ExpLoc;
   11950       if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
   11951           !getLangOpts().MicrosoftMode) {
   11952         // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
   11953         // constant-expression in the enumerator-definition shall be a converted
   11954         // constant expression of the underlying type.
   11955         EltTy = Enum->getIntegerType();
   11956         ExprResult Converted =
   11957           CheckConvertedConstantExpression(Val, EltTy, EnumVal,
   11958                                            CCEK_Enumerator);
   11959         if (Converted.isInvalid())
   11960           Val = 0;
   11961         else
   11962           Val = Converted.take();
   11963       } else if (!Val->isValueDependent() &&
   11964                  !(Val = VerifyIntegerConstantExpression(Val,
   11965                                                          &EnumVal).take())) {
   11966         // C99 6.7.2.2p2: Make sure we have an integer constant expression.
   11967       } else {
   11968         if (Enum->isFixed()) {
   11969           EltTy = Enum->getIntegerType();
   11970 
   11971           // In Obj-C and Microsoft mode, require the enumeration value to be
   11972           // representable in the underlying type of the enumeration. In C++11,
   11973           // we perform a non-narrowing conversion as part of converted constant
   11974           // expression checking.
   11975           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
   11976             if (getLangOpts().MicrosoftMode) {
   11977               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
   11978               Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
   11979             } else
   11980               Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
   11981           } else
   11982             Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
   11983         } else if (getLangOpts().CPlusPlus) {
   11984           // C++11 [dcl.enum]p5:
   11985           //   If the underlying type is not fixed, the type of each enumerator
   11986           //   is the type of its initializing value:
   11987           //     - If an initializer is specified for an enumerator, the
   11988           //       initializing value has the same type as the expression.
   11989           EltTy = Val->getType();
   11990         } else {
   11991           // C99 6.7.2.2p2:
   11992           //   The expression that defines the value of an enumeration constant
   11993           //   shall be an integer constant expression that has a value
   11994           //   representable as an int.
   11995 
   11996           // Complain if the value is not representable in an int.
   11997           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
   11998             Diag(IdLoc, diag::ext_enum_value_not_int)
   11999               << EnumVal.toString(10) << Val->getSourceRange()
   12000               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
   12001           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
   12002             // Force the type of the expression to 'int'.
   12003             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
   12004           }
   12005           EltTy = Val->getType();
   12006         }
   12007       }
   12008     }
   12009   }
   12010 
   12011   if (!Val) {
   12012     if (Enum->isDependentType())
   12013       EltTy = Context.DependentTy;
   12014     else if (!LastEnumConst) {
   12015       // C++0x [dcl.enum]p5:
   12016       //   If the underlying type is not fixed, the type of each enumerator
   12017       //   is the type of its initializing value:
   12018       //     - If no initializer is specified for the first enumerator, the
   12019       //       initializing value has an unspecified integral type.
   12020       //
   12021       // GCC uses 'int' for its unspecified integral type, as does
   12022       // C99 6.7.2.2p3.
   12023       if (Enum->isFixed()) {
   12024         EltTy = Enum->getIntegerType();
   12025       }
   12026       else {
   12027         EltTy = Context.IntTy;
   12028       }
   12029     } else {
   12030       // Assign the last value + 1.
   12031       EnumVal = LastEnumConst->getInitVal();
   12032       ++EnumVal;
   12033       EltTy = LastEnumConst->getType();
   12034 
   12035       // Check for overflow on increment.
   12036       if (EnumVal < LastEnumConst->getInitVal()) {
   12037         // C++0x [dcl.enum]p5:
   12038         //   If the underlying type is not fixed, the type of each enumerator
   12039         //   is the type of its initializing value:
   12040         //
   12041         //     - Otherwise the type of the initializing value is the same as
   12042         //       the type of the initializing value of the preceding enumerator
   12043         //       unless the incremented value is not representable in that type,
   12044         //       in which case the type is an unspecified integral type
   12045         //       sufficient to contain the incremented value. If no such type
   12046         //       exists, the program is ill-formed.
   12047         QualType T = getNextLargerIntegralType(Context, EltTy);
   12048         if (T.isNull() || Enum->isFixed()) {
   12049           // There is no integral type larger enough to represent this
   12050           // value. Complain, then allow the value to wrap around.
   12051           EnumVal = LastEnumConst->getInitVal();
   12052           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
   12053           ++EnumVal;
   12054           if (Enum->isFixed())
   12055             // When the underlying type is fixed, this is ill-formed.
   12056             Diag(IdLoc, diag::err_enumerator_wrapped)
   12057               << EnumVal.toString(10)
   12058               << EltTy;
   12059           else
   12060             Diag(IdLoc, diag::warn_enumerator_too_large)
   12061               << EnumVal.toString(10);
   12062         } else {
   12063           EltTy = T;
   12064         }
   12065 
   12066         // Retrieve the last enumerator's value, extent that type to the
   12067         // type that is supposed to be large enough to represent the incremented
   12068         // value, then increment.
   12069         EnumVal = LastEnumConst->getInitVal();
   12070         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
   12071         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
   12072         ++EnumVal;
   12073 
   12074         // If we're not in C++, diagnose the overflow of enumerator values,
   12075         // which in C99 means that the enumerator value is not representable in
   12076         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
   12077         // permits enumerator values that are representable in some larger
   12078         // integral type.
   12079         if (!getLangOpts().CPlusPlus && !T.isNull())
   12080           Diag(IdLoc, diag::warn_enum_value_overflow);
   12081       } else if (!getLangOpts().CPlusPlus &&
   12082                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
   12083         // Enforce C99 6.7.2.2p2 even when we compute the next value.
   12084         Diag(IdLoc, diag::ext_enum_value_not_int)
   12085           << EnumVal.toString(10) << 1;
   12086       }
   12087     }
   12088   }
   12089 
   12090   if (!EltTy->isDependentType()) {
   12091     // Make the enumerator value match the signedness and size of the
   12092     // enumerator's type.
   12093     EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
   12094     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
   12095   }
   12096 
   12097   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
   12098                                   Val, EnumVal);
   12099 }
   12100 
   12101 
   12102 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
   12103                               SourceLocation IdLoc, IdentifierInfo *Id,
   12104                               AttributeList *Attr,
   12105                               SourceLocation EqualLoc, Expr *Val) {
   12106   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
   12107   EnumConstantDecl *LastEnumConst =
   12108     cast_or_null<EnumConstantDecl>(lastEnumConst);
   12109 
   12110   // The scope passed in may not be a decl scope.  Zip up the scope tree until
   12111   // we find one that is.
   12112   S = getNonFieldDeclScope(S);
   12113 
   12114   // Verify that there isn't already something declared with this name in this
   12115   // scope.
   12116   NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
   12117                                          ForRedeclaration);
   12118   if (PrevDecl && PrevDecl->isTemplateParameter()) {
   12119     // Maybe we will complain about the shadowed template parameter.
   12120     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
   12121     // Just pretend that we didn't see the previous declaration.
   12122     PrevDecl = 0;
   12123   }
   12124 
   12125   if (PrevDecl) {
   12126     // When in C++, we may get a TagDecl with the same name; in this case the
   12127     // enum constant will 'hide' the tag.
   12128     assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
   12129            "Received TagDecl when not in C++!");
   12130     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
   12131       if (isa<EnumConstantDecl>(PrevDecl))
   12132         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
   12133       else
   12134         Diag(IdLoc, diag::err_redefinition) << Id;
   12135       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   12136       return 0;
   12137     }
   12138   }
   12139 
   12140   // C++ [class.mem]p15:
   12141   // If T is the name of a class, then each of the following shall have a name
   12142   // different from T:
   12143   // - every enumerator of every member of class T that is an unscoped
   12144   // enumerated type
   12145   if (CXXRecordDecl *Record
   12146                       = dyn_cast<CXXRecordDecl>(
   12147                              TheEnumDecl->getDeclContext()->getRedeclContext()))
   12148     if (!TheEnumDecl->isScoped() &&
   12149         Record->getIdentifier() && Record->getIdentifier() == Id)
   12150       Diag(IdLoc, diag::err_member_name_of_class) << Id;
   12151 
   12152   EnumConstantDecl *New =
   12153     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
   12154 
   12155   if (New) {
   12156     // Process attributes.
   12157     if (Attr) ProcessDeclAttributeList(S, New, Attr);
   12158 
   12159     // Register this decl in the current scope stack.
   12160     New->setAccess(TheEnumDecl->getAccess());
   12161     PushOnScopeChains(New, S);
   12162   }
   12163 
   12164   ActOnDocumentableDecl(New);
   12165 
   12166   return New;
   12167 }
   12168 
   12169 // Returns true when the enum initial expression does not trigger the
   12170 // duplicate enum warning.  A few common cases are exempted as follows:
   12171 // Element2 = Element1
   12172 // Element2 = Element1 + 1
   12173 // Element2 = Element1 - 1
   12174 // Where Element2 and Element1 are from the same enum.
   12175 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
   12176   Expr *InitExpr = ECD->getInitExpr();
   12177   if (!InitExpr)
   12178     return true;
   12179   InitExpr = InitExpr->IgnoreImpCasts();
   12180 
   12181   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
   12182     if (!BO->isAdditiveOp())
   12183       return true;
   12184     IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
   12185     if (!IL)
   12186       return true;
   12187     if (IL->getValue() != 1)
   12188       return true;
   12189 
   12190     InitExpr = BO->getLHS();
   12191   }
   12192 
   12193   // This checks if the elements are from the same enum.
   12194   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
   12195   if (!DRE)
   12196     return true;
   12197 
   12198   EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
   12199   if (!EnumConstant)
   12200     return true;
   12201 
   12202   if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
   12203       Enum)
   12204     return true;
   12205 
   12206   return false;
   12207 }
   12208 
   12209 struct DupKey {
   12210   int64_t val;
   12211   bool isTombstoneOrEmptyKey;
   12212   DupKey(int64_t val, bool isTombstoneOrEmptyKey)
   12213     : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
   12214 };
   12215 
   12216 static DupKey GetDupKey(const llvm::APSInt& Val) {
   12217   return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
   12218                 false);
   12219 }
   12220 
   12221 struct DenseMapInfoDupKey {
   12222   static DupKey getEmptyKey() { return DupKey(0, true); }
   12223   static DupKey getTombstoneKey() { return DupKey(1, true); }
   12224   static unsigned getHashValue(const DupKey Key) {
   12225     return (unsigned)(Key.val * 37);
   12226   }
   12227   static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
   12228     return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
   12229            LHS.val == RHS.val;
   12230   }
   12231 };
   12232 
   12233 // Emits a warning when an element is implicitly set a value that
   12234 // a previous element has already been set to.
   12235 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
   12236                                         EnumDecl *Enum,
   12237                                         QualType EnumType) {
   12238   if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
   12239                                  Enum->getLocation()) ==
   12240       DiagnosticsEngine::Ignored)
   12241     return;
   12242   // Avoid anonymous enums
   12243   if (!Enum->getIdentifier())
   12244     return;
   12245 
   12246   // Only check for small enums.
   12247   if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
   12248     return;
   12249 
   12250   typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
   12251   typedef SmallVector<ECDVector *, 3> DuplicatesVector;
   12252 
   12253   typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
   12254   typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
   12255           ValueToVectorMap;
   12256 
   12257   DuplicatesVector DupVector;
   12258   ValueToVectorMap EnumMap;
   12259 
   12260   // Populate the EnumMap with all values represented by enum constants without
   12261   // an initialier.
   12262   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
   12263     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
   12264 
   12265     // Null EnumConstantDecl means a previous diagnostic has been emitted for
   12266     // this constant.  Skip this enum since it may be ill-formed.
   12267     if (!ECD) {
   12268       return;
   12269     }
   12270 
   12271     if (ECD->getInitExpr())
   12272       continue;
   12273 
   12274     DupKey Key = GetDupKey(ECD->getInitVal());
   12275     DeclOrVector &Entry = EnumMap[Key];
   12276 
   12277     // First time encountering this value.
   12278     if (Entry.isNull())
   12279       Entry = ECD;
   12280   }
   12281 
   12282   // Create vectors for any values that has duplicates.
   12283   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
   12284     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
   12285     if (!ValidDuplicateEnum(ECD, Enum))
   12286       continue;
   12287 
   12288     DupKey Key = GetDupKey(ECD->getInitVal());
   12289 
   12290     DeclOrVector& Entry = EnumMap[Key];
   12291     if (Entry.isNull())
   12292       continue;
   12293 
   12294     if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
   12295       // Ensure constants are different.
   12296       if (D == ECD)
   12297         continue;
   12298 
   12299       // Create new vector and push values onto it.
   12300       ECDVector *Vec = new ECDVector();
   12301       Vec->push_back(D);
   12302       Vec->push_back(ECD);
   12303 
   12304       // Update entry to point to the duplicates vector.
   12305       Entry = Vec;
   12306 
   12307       // Store the vector somewhere we can consult later for quick emission of
   12308       // diagnostics.
   12309       DupVector.push_back(Vec);
   12310       continue;
   12311     }
   12312 
   12313     ECDVector *Vec = Entry.get<ECDVector*>();
   12314     // Make sure constants are not added more than once.
   12315     if (*Vec->begin() == ECD)
   12316       continue;
   12317 
   12318     Vec->push_back(ECD);
   12319   }
   12320 
   12321   // Emit diagnostics.
   12322   for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
   12323                                   DupVectorEnd = DupVector.end();
   12324        DupVectorIter != DupVectorEnd; ++DupVectorIter) {
   12325     ECDVector *Vec = *DupVectorIter;
   12326     assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
   12327 
   12328     // Emit warning for one enum constant.
   12329     ECDVector::iterator I = Vec->begin();
   12330     S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
   12331       << (*I)->getName() << (*I)->getInitVal().toString(10)
   12332       << (*I)->getSourceRange();
   12333     ++I;
   12334 
   12335     // Emit one note for each of the remaining enum constants with
   12336     // the same value.
   12337     for (ECDVector::iterator E = Vec->end(); I != E; ++I)
   12338       S.Diag((*I)->getLocation(), diag::note_duplicate_element)
   12339         << (*I)->getName() << (*I)->getInitVal().toString(10)
   12340         << (*I)->getSourceRange();
   12341     delete Vec;
   12342   }
   12343 }
   12344 
   12345 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
   12346                          SourceLocation RBraceLoc, Decl *EnumDeclX,
   12347                          ArrayRef<Decl *> Elements,
   12348                          Scope *S, AttributeList *Attr) {
   12349   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
   12350   QualType EnumType = Context.getTypeDeclType(Enum);
   12351 
   12352   if (Attr)
   12353     ProcessDeclAttributeList(S, Enum, Attr);
   12354 
   12355   if (Enum->isDependentType()) {
   12356     for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
   12357       EnumConstantDecl *ECD =
   12358         cast_or_null<EnumConstantDecl>(Elements[i]);
   12359       if (!ECD) continue;
   12360 
   12361       ECD->setType(EnumType);
   12362     }
   12363 
   12364     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
   12365     return;
   12366   }
   12367 
   12368   // TODO: If the result value doesn't fit in an int, it must be a long or long
   12369   // long value.  ISO C does not support this, but GCC does as an extension,
   12370   // emit a warning.
   12371   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
   12372   unsigned CharWidth = Context.getTargetInfo().getCharWidth();
   12373   unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
   12374 
   12375   // Verify that all the values are okay, compute the size of the values, and
   12376   // reverse the list.
   12377   unsigned NumNegativeBits = 0;
   12378   unsigned NumPositiveBits = 0;
   12379 
   12380   // Keep track of whether all elements have type int.
   12381   bool AllElementsInt = true;
   12382 
   12383   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
   12384     EnumConstantDecl *ECD =
   12385       cast_or_null<EnumConstantDecl>(Elements[i]);
   12386     if (!ECD) continue;  // Already issued a diagnostic.
   12387 
   12388     const llvm::APSInt &InitVal = ECD->getInitVal();
   12389 
   12390     // Keep track of the size of positive and negative values.
   12391     if (InitVal.isUnsigned() || InitVal.isNonNegative())
   12392       NumPositiveBits = std::max(NumPositiveBits,
   12393                                  (unsigned)InitVal.getActiveBits());
   12394     else
   12395       NumNegativeBits = std::max(NumNegativeBits,
   12396                                  (unsigned)InitVal.getMinSignedBits());
   12397 
   12398     // Keep track of whether every enum element has type int (very commmon).
   12399     if (AllElementsInt)
   12400       AllElementsInt = ECD->getType() == Context.IntTy;
   12401   }
   12402 
   12403   // Figure out the type that should be used for this enum.
   12404   QualType BestType;
   12405   unsigned BestWidth;
   12406 
   12407   // C++0x N3000 [conv.prom]p3:
   12408   //   An rvalue of an unscoped enumeration type whose underlying
   12409   //   type is not fixed can be converted to an rvalue of the first
   12410   //   of the following types that can represent all the values of
   12411   //   the enumeration: int, unsigned int, long int, unsigned long
   12412   //   int, long long int, or unsigned long long int.
   12413   // C99 6.4.4.3p2:
   12414   //   An identifier declared as an enumeration constant has type int.
   12415   // The C99 rule is modified by a gcc extension
   12416   QualType BestPromotionType;
   12417 
   12418   bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
   12419   // -fshort-enums is the equivalent to specifying the packed attribute on all
   12420   // enum definitions.
   12421   if (LangOpts.ShortEnums)
   12422     Packed = true;
   12423 
   12424   if (Enum->isFixed()) {
   12425     BestType = Enum->getIntegerType();
   12426     if (BestType->isPromotableIntegerType())
   12427       BestPromotionType = Context.getPromotedIntegerType(BestType);
   12428     else
   12429       BestPromotionType = BestType;
   12430     // We don't need to set BestWidth, because BestType is going to be the type
   12431     // of the enumerators, but we do anyway because otherwise some compilers
   12432     // warn that it might be used uninitialized.
   12433     BestWidth = CharWidth;
   12434   }
   12435   else if (NumNegativeBits) {
   12436     // If there is a negative value, figure out the smallest integer type (of
   12437     // int/long/longlong) that fits.
   12438     // If it's packed, check also if it fits a char or a short.
   12439     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
   12440       BestType = Context.SignedCharTy;
   12441       BestWidth = CharWidth;
   12442     } else if (Packed && NumNegativeBits <= ShortWidth &&
   12443                NumPositiveBits < ShortWidth) {
   12444       BestType = Context.ShortTy;
   12445       BestWidth = ShortWidth;
   12446     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
   12447       BestType = Context.IntTy;
   12448       BestWidth = IntWidth;
   12449     } else {
   12450       BestWidth = Context.getTargetInfo().getLongWidth();
   12451 
   12452       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
   12453         BestType = Context.LongTy;
   12454       } else {
   12455         BestWidth = Context.getTargetInfo().getLongLongWidth();
   12456 
   12457         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
   12458           Diag(Enum->getLocation(), diag::warn_enum_too_large);
   12459         BestType = Context.LongLongTy;
   12460       }
   12461     }
   12462     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
   12463   } else {
   12464     // If there is no negative value, figure out the smallest type that fits
   12465     // all of the enumerator values.
   12466     // If it's packed, check also if it fits a char or a short.
   12467     if (Packed && NumPositiveBits <= CharWidth) {
   12468       BestType = Context.UnsignedCharTy;
   12469       BestPromotionType = Context.IntTy;
   12470       BestWidth = CharWidth;
   12471     } else if (Packed && NumPositiveBits <= ShortWidth) {
   12472       BestType = Context.UnsignedShortTy;
   12473       BestPromotionType = Context.IntTy;
   12474       BestWidth = ShortWidth;
   12475     } else if (NumPositiveBits <= IntWidth) {
   12476       BestType = Context.UnsignedIntTy;
   12477       BestWidth = IntWidth;
   12478       BestPromotionType
   12479         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
   12480                            ? Context.UnsignedIntTy : Context.IntTy;
   12481     } else if (NumPositiveBits <=
   12482                (BestWidth = Context.getTargetInfo().getLongWidth())) {
   12483       BestType = Context.UnsignedLongTy;
   12484       BestPromotionType
   12485         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
   12486                            ? Context.UnsignedLongTy : Context.LongTy;
   12487     } else {
   12488       BestWidth = Context.getTargetInfo().getLongLongWidth();
   12489       assert(NumPositiveBits <= BestWidth &&
   12490              "How could an initializer get larger than ULL?");
   12491       BestType = Context.UnsignedLongLongTy;
   12492       BestPromotionType
   12493         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
   12494                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
   12495     }
   12496   }
   12497 
   12498   // Loop over all of the enumerator constants, changing their types to match
   12499   // the type of the enum if needed.
   12500   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
   12501     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
   12502     if (!ECD) continue;  // Already issued a diagnostic.
   12503 
   12504     // Standard C says the enumerators have int type, but we allow, as an
   12505     // extension, the enumerators to be larger than int size.  If each
   12506     // enumerator value fits in an int, type it as an int, otherwise type it the
   12507     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
   12508     // that X has type 'int', not 'unsigned'.
   12509 
   12510     // Determine whether the value fits into an int.
   12511     llvm::APSInt InitVal = ECD->getInitVal();
   12512 
   12513     // If it fits into an integer type, force it.  Otherwise force it to match
   12514     // the enum decl type.
   12515     QualType NewTy;
   12516     unsigned NewWidth;
   12517     bool NewSign;
   12518     if (!getLangOpts().CPlusPlus &&
   12519         !Enum->isFixed() &&
   12520         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
   12521       NewTy = Context.IntTy;
   12522       NewWidth = IntWidth;
   12523       NewSign = true;
   12524     } else if (ECD->getType() == BestType) {
   12525       // Already the right type!
   12526       if (getLangOpts().CPlusPlus)
   12527         // C++ [dcl.enum]p4: Following the closing brace of an
   12528         // enum-specifier, each enumerator has the type of its
   12529         // enumeration.
   12530         ECD->setType(EnumType);
   12531       continue;
   12532     } else {
   12533       NewTy = BestType;
   12534       NewWidth = BestWidth;
   12535       NewSign = BestType->isSignedIntegerOrEnumerationType();
   12536     }
   12537 
   12538     // Adjust the APSInt value.
   12539     InitVal = InitVal.extOrTrunc(NewWidth);
   12540     InitVal.setIsSigned(NewSign);
   12541     ECD->setInitVal(InitVal);
   12542 
   12543     // Adjust the Expr initializer and type.
   12544     if (ECD->getInitExpr() &&
   12545         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
   12546       ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
   12547                                                 CK_IntegralCast,
   12548                                                 ECD->getInitExpr(),
   12549                                                 /*base paths*/ 0,
   12550                                                 VK_RValue));
   12551     if (getLangOpts().CPlusPlus)
   12552       // C++ [dcl.enum]p4: Following the closing brace of an
   12553       // enum-specifier, each enumerator has the type of its
   12554       // enumeration.
   12555       ECD->setType(EnumType);
   12556     else
   12557       ECD->setType(NewTy);
   12558   }
   12559 
   12560   Enum->completeDefinition(BestType, BestPromotionType,
   12561                            NumPositiveBits, NumNegativeBits);
   12562 
   12563   // If we're declaring a function, ensure this decl isn't forgotten about -
   12564   // it needs to go into the function scope.
   12565   if (InFunctionDeclarator)
   12566     DeclsInPrototypeScope.push_back(Enum);
   12567 
   12568   CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
   12569 
   12570   // Now that the enum type is defined, ensure it's not been underaligned.
   12571   if (Enum->hasAttrs())
   12572     CheckAlignasUnderalignment(Enum);
   12573 }
   12574 
   12575 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
   12576                                   SourceLocation StartLoc,
   12577                                   SourceLocation EndLoc) {
   12578   StringLiteral *AsmString = cast<StringLiteral>(expr);
   12579 
   12580   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
   12581                                                    AsmString, StartLoc,
   12582                                                    EndLoc);
   12583   CurContext->addDecl(New);
   12584   return New;
   12585 }
   12586 
   12587 DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
   12588                                    SourceLocation ImportLoc,
   12589                                    ModuleIdPath Path) {
   12590   Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
   12591                                                 Module::AllVisible,
   12592                                                 /*IsIncludeDirective=*/false);
   12593   if (!Mod)
   12594     return true;
   12595 
   12596   SmallVector<SourceLocation, 2> IdentifierLocs;
   12597   Module *ModCheck = Mod;
   12598   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
   12599     // If we've run out of module parents, just drop the remaining identifiers.
   12600     // We need the length to be consistent.
   12601     if (!ModCheck)
   12602       break;
   12603     ModCheck = ModCheck->Parent;
   12604 
   12605     IdentifierLocs.push_back(Path[I].second);
   12606   }
   12607 
   12608   ImportDecl *Import = ImportDecl::Create(Context,
   12609                                           Context.getTranslationUnitDecl(),
   12610                                           AtLoc.isValid()? AtLoc : ImportLoc,
   12611                                           Mod, IdentifierLocs);
   12612   Context.getTranslationUnitDecl()->addDecl(Import);
   12613   return Import;
   12614 }
   12615 
   12616 void Sema::createImplicitModuleImport(SourceLocation Loc, Module *Mod) {
   12617   // Create the implicit import declaration.
   12618   TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
   12619   ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
   12620                                                    Loc, Mod, Loc);
   12621   TU->addDecl(ImportD);
   12622   Consumer.HandleImplicitImportDecl(ImportD);
   12623 
   12624   // Make the module visible.
   12625   PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc,
   12626                                          /*Complain=*/false);
   12627 }
   12628 
   12629 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
   12630                                       IdentifierInfo* AliasName,
   12631                                       SourceLocation PragmaLoc,
   12632                                       SourceLocation NameLoc,
   12633                                       SourceLocation AliasNameLoc) {
   12634   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
   12635                                     LookupOrdinaryName);
   12636   AsmLabelAttr *Attr =
   12637      ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
   12638 
   12639   if (PrevDecl)
   12640     PrevDecl->addAttr(Attr);
   12641   else
   12642     (void)ExtnameUndeclaredIdentifiers.insert(
   12643       std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
   12644 }
   12645 
   12646 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
   12647                              SourceLocation PragmaLoc,
   12648                              SourceLocation NameLoc) {
   12649   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
   12650 
   12651   if (PrevDecl) {
   12652     PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
   12653   } else {
   12654     (void)WeakUndeclaredIdentifiers.insert(
   12655       std::pair<IdentifierInfo*,WeakInfo>
   12656         (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
   12657   }
   12658 }
   12659 
   12660 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
   12661                                 IdentifierInfo* AliasName,
   12662                                 SourceLocation PragmaLoc,
   12663                                 SourceLocation NameLoc,
   12664                                 SourceLocation AliasNameLoc) {
   12665   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
   12666                                     LookupOrdinaryName);
   12667   WeakInfo W = WeakInfo(Name, NameLoc);
   12668 
   12669   if (PrevDecl) {
   12670     if (!PrevDecl->hasAttr<AliasAttr>())
   12671       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
   12672         DeclApplyPragmaWeak(TUScope, ND, W);
   12673   } else {
   12674     (void)WeakUndeclaredIdentifiers.insert(
   12675       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
   12676   }
   12677 }
   12678 
   12679 Decl *Sema::getObjCDeclContext() const {
   12680   return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
   12681 }
   12682 
   12683 AvailabilityResult Sema::getCurContextAvailability() const {
   12684   const Decl *D = cast<Decl>(getCurObjCLexicalContext());
   12685   return D->getAvailability();
   12686 }
   12687