1 /* 2 * MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4/PNI support 3 * 4 * Copyright (c) 2005 Fabrice Bellard 5 * Copyright (c) 2008 Intel Corporation <andrew.zaborowski (at) intel.com> 6 * 7 * This library is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU Lesser General Public 9 * License as published by the Free Software Foundation; either 10 * version 2 of the License, or (at your option) any later version. 11 * 12 * This library is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * Lesser General Public License for more details. 16 * 17 * You should have received a copy of the GNU Lesser General Public 18 * License along with this library; if not, write to the Free Software 19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA 20 */ 21 #if SHIFT == 0 22 #define Reg MMXReg 23 #define XMM_ONLY(...) 24 #define B(n) MMX_B(n) 25 #define W(n) MMX_W(n) 26 #define L(n) MMX_L(n) 27 #define Q(n) q 28 #define SUFFIX _mmx 29 #else 30 #define Reg XMMReg 31 #define XMM_ONLY(...) __VA_ARGS__ 32 #define B(n) XMM_B(n) 33 #define W(n) XMM_W(n) 34 #define L(n) XMM_L(n) 35 #define Q(n) XMM_Q(n) 36 #define SUFFIX _xmm 37 #endif 38 39 void glue(helper_psrlw, SUFFIX)(Reg *d, Reg *s) 40 { 41 int shift; 42 43 if (s->Q(0) > 15) { 44 d->Q(0) = 0; 45 #if SHIFT == 1 46 d->Q(1) = 0; 47 #endif 48 } else { 49 shift = s->B(0); 50 d->W(0) >>= shift; 51 d->W(1) >>= shift; 52 d->W(2) >>= shift; 53 d->W(3) >>= shift; 54 #if SHIFT == 1 55 d->W(4) >>= shift; 56 d->W(5) >>= shift; 57 d->W(6) >>= shift; 58 d->W(7) >>= shift; 59 #endif 60 } 61 } 62 63 void glue(helper_psraw, SUFFIX)(Reg *d, Reg *s) 64 { 65 int shift; 66 67 if (s->Q(0) > 15) { 68 shift = 15; 69 } else { 70 shift = s->B(0); 71 } 72 d->W(0) = (int16_t)d->W(0) >> shift; 73 d->W(1) = (int16_t)d->W(1) >> shift; 74 d->W(2) = (int16_t)d->W(2) >> shift; 75 d->W(3) = (int16_t)d->W(3) >> shift; 76 #if SHIFT == 1 77 d->W(4) = (int16_t)d->W(4) >> shift; 78 d->W(5) = (int16_t)d->W(5) >> shift; 79 d->W(6) = (int16_t)d->W(6) >> shift; 80 d->W(7) = (int16_t)d->W(7) >> shift; 81 #endif 82 } 83 84 void glue(helper_psllw, SUFFIX)(Reg *d, Reg *s) 85 { 86 int shift; 87 88 if (s->Q(0) > 15) { 89 d->Q(0) = 0; 90 #if SHIFT == 1 91 d->Q(1) = 0; 92 #endif 93 } else { 94 shift = s->B(0); 95 d->W(0) <<= shift; 96 d->W(1) <<= shift; 97 d->W(2) <<= shift; 98 d->W(3) <<= shift; 99 #if SHIFT == 1 100 d->W(4) <<= shift; 101 d->W(5) <<= shift; 102 d->W(6) <<= shift; 103 d->W(7) <<= shift; 104 #endif 105 } 106 } 107 108 void glue(helper_psrld, SUFFIX)(Reg *d, Reg *s) 109 { 110 int shift; 111 112 if (s->Q(0) > 31) { 113 d->Q(0) = 0; 114 #if SHIFT == 1 115 d->Q(1) = 0; 116 #endif 117 } else { 118 shift = s->B(0); 119 d->L(0) >>= shift; 120 d->L(1) >>= shift; 121 #if SHIFT == 1 122 d->L(2) >>= shift; 123 d->L(3) >>= shift; 124 #endif 125 } 126 } 127 128 void glue(helper_psrad, SUFFIX)(Reg *d, Reg *s) 129 { 130 int shift; 131 132 if (s->Q(0) > 31) { 133 shift = 31; 134 } else { 135 shift = s->B(0); 136 } 137 d->L(0) = (int32_t)d->L(0) >> shift; 138 d->L(1) = (int32_t)d->L(1) >> shift; 139 #if SHIFT == 1 140 d->L(2) = (int32_t)d->L(2) >> shift; 141 d->L(3) = (int32_t)d->L(3) >> shift; 142 #endif 143 } 144 145 void glue(helper_pslld, SUFFIX)(Reg *d, Reg *s) 146 { 147 int shift; 148 149 if (s->Q(0) > 31) { 150 d->Q(0) = 0; 151 #if SHIFT == 1 152 d->Q(1) = 0; 153 #endif 154 } else { 155 shift = s->B(0); 156 d->L(0) <<= shift; 157 d->L(1) <<= shift; 158 #if SHIFT == 1 159 d->L(2) <<= shift; 160 d->L(3) <<= shift; 161 #endif 162 } 163 } 164 165 void glue(helper_psrlq, SUFFIX)(Reg *d, Reg *s) 166 { 167 int shift; 168 169 if (s->Q(0) > 63) { 170 d->Q(0) = 0; 171 #if SHIFT == 1 172 d->Q(1) = 0; 173 #endif 174 } else { 175 shift = s->B(0); 176 d->Q(0) >>= shift; 177 #if SHIFT == 1 178 d->Q(1) >>= shift; 179 #endif 180 } 181 } 182 183 void glue(helper_psllq, SUFFIX)(Reg *d, Reg *s) 184 { 185 int shift; 186 187 if (s->Q(0) > 63) { 188 d->Q(0) = 0; 189 #if SHIFT == 1 190 d->Q(1) = 0; 191 #endif 192 } else { 193 shift = s->B(0); 194 d->Q(0) <<= shift; 195 #if SHIFT == 1 196 d->Q(1) <<= shift; 197 #endif 198 } 199 } 200 201 #if SHIFT == 1 202 void glue(helper_psrldq, SUFFIX)(Reg *d, Reg *s) 203 { 204 int shift, i; 205 206 shift = s->L(0); 207 if (shift > 16) 208 shift = 16; 209 for(i = 0; i < 16 - shift; i++) 210 d->B(i) = d->B(i + shift); 211 for(i = 16 - shift; i < 16; i++) 212 d->B(i) = 0; 213 } 214 215 void glue(helper_pslldq, SUFFIX)(Reg *d, Reg *s) 216 { 217 int shift, i; 218 219 shift = s->L(0); 220 if (shift > 16) 221 shift = 16; 222 for(i = 15; i >= shift; i--) 223 d->B(i) = d->B(i - shift); 224 for(i = 0; i < shift; i++) 225 d->B(i) = 0; 226 } 227 #endif 228 229 #define SSE_HELPER_B(name, F)\ 230 void glue(name, SUFFIX) (Reg *d, Reg *s)\ 231 {\ 232 d->B(0) = F(d->B(0), s->B(0));\ 233 d->B(1) = F(d->B(1), s->B(1));\ 234 d->B(2) = F(d->B(2), s->B(2));\ 235 d->B(3) = F(d->B(3), s->B(3));\ 236 d->B(4) = F(d->B(4), s->B(4));\ 237 d->B(5) = F(d->B(5), s->B(5));\ 238 d->B(6) = F(d->B(6), s->B(6));\ 239 d->B(7) = F(d->B(7), s->B(7));\ 240 XMM_ONLY(\ 241 d->B(8) = F(d->B(8), s->B(8));\ 242 d->B(9) = F(d->B(9), s->B(9));\ 243 d->B(10) = F(d->B(10), s->B(10));\ 244 d->B(11) = F(d->B(11), s->B(11));\ 245 d->B(12) = F(d->B(12), s->B(12));\ 246 d->B(13) = F(d->B(13), s->B(13));\ 247 d->B(14) = F(d->B(14), s->B(14));\ 248 d->B(15) = F(d->B(15), s->B(15));\ 249 )\ 250 } 251 252 #define SSE_HELPER_W(name, F)\ 253 void glue(name, SUFFIX) (Reg *d, Reg *s)\ 254 {\ 255 d->W(0) = F(d->W(0), s->W(0));\ 256 d->W(1) = F(d->W(1), s->W(1));\ 257 d->W(2) = F(d->W(2), s->W(2));\ 258 d->W(3) = F(d->W(3), s->W(3));\ 259 XMM_ONLY(\ 260 d->W(4) = F(d->W(4), s->W(4));\ 261 d->W(5) = F(d->W(5), s->W(5));\ 262 d->W(6) = F(d->W(6), s->W(6));\ 263 d->W(7) = F(d->W(7), s->W(7));\ 264 )\ 265 } 266 267 #define SSE_HELPER_L(name, F)\ 268 void glue(name, SUFFIX) (Reg *d, Reg *s)\ 269 {\ 270 d->L(0) = F(d->L(0), s->L(0));\ 271 d->L(1) = F(d->L(1), s->L(1));\ 272 XMM_ONLY(\ 273 d->L(2) = F(d->L(2), s->L(2));\ 274 d->L(3) = F(d->L(3), s->L(3));\ 275 )\ 276 } 277 278 #define SSE_HELPER_Q(name, F)\ 279 void glue(name, SUFFIX) (Reg *d, Reg *s)\ 280 {\ 281 d->Q(0) = F(d->Q(0), s->Q(0));\ 282 XMM_ONLY(\ 283 d->Q(1) = F(d->Q(1), s->Q(1));\ 284 )\ 285 } 286 287 #if SHIFT == 0 288 static inline int satub(int x) 289 { 290 if (x < 0) 291 return 0; 292 else if (x > 255) 293 return 255; 294 else 295 return x; 296 } 297 298 static inline int satuw(int x) 299 { 300 if (x < 0) 301 return 0; 302 else if (x > 65535) 303 return 65535; 304 else 305 return x; 306 } 307 308 static inline int satsb(int x) 309 { 310 if (x < -128) 311 return -128; 312 else if (x > 127) 313 return 127; 314 else 315 return x; 316 } 317 318 static inline int satsw(int x) 319 { 320 if (x < -32768) 321 return -32768; 322 else if (x > 32767) 323 return 32767; 324 else 325 return x; 326 } 327 328 #define FADD(a, b) ((a) + (b)) 329 #define FADDUB(a, b) satub((a) + (b)) 330 #define FADDUW(a, b) satuw((a) + (b)) 331 #define FADDSB(a, b) satsb((int8_t)(a) + (int8_t)(b)) 332 #define FADDSW(a, b) satsw((int16_t)(a) + (int16_t)(b)) 333 334 #define FSUB(a, b) ((a) - (b)) 335 #define FSUBUB(a, b) satub((a) - (b)) 336 #define FSUBUW(a, b) satuw((a) - (b)) 337 #define FSUBSB(a, b) satsb((int8_t)(a) - (int8_t)(b)) 338 #define FSUBSW(a, b) satsw((int16_t)(a) - (int16_t)(b)) 339 #define FMINUB(a, b) ((a) < (b)) ? (a) : (b) 340 #define FMINSW(a, b) ((int16_t)(a) < (int16_t)(b)) ? (a) : (b) 341 #define FMAXUB(a, b) ((a) > (b)) ? (a) : (b) 342 #define FMAXSW(a, b) ((int16_t)(a) > (int16_t)(b)) ? (a) : (b) 343 344 #define FAND(a, b) (a) & (b) 345 #define FANDN(a, b) ((~(a)) & (b)) 346 #define FOR(a, b) (a) | (b) 347 #define FXOR(a, b) (a) ^ (b) 348 349 #define FCMPGTB(a, b) (int8_t)(a) > (int8_t)(b) ? -1 : 0 350 #define FCMPGTW(a, b) (int16_t)(a) > (int16_t)(b) ? -1 : 0 351 #define FCMPGTL(a, b) (int32_t)(a) > (int32_t)(b) ? -1 : 0 352 #define FCMPEQ(a, b) (a) == (b) ? -1 : 0 353 354 #define FMULLW(a, b) (a) * (b) 355 #define FMULHRW(a, b) ((int16_t)(a) * (int16_t)(b) + 0x8000) >> 16 356 #define FMULHUW(a, b) (a) * (b) >> 16 357 #define FMULHW(a, b) (int16_t)(a) * (int16_t)(b) >> 16 358 359 #define FAVG(a, b) ((a) + (b) + 1) >> 1 360 #endif 361 362 SSE_HELPER_B(helper_paddb, FADD) 363 SSE_HELPER_W(helper_paddw, FADD) 364 SSE_HELPER_L(helper_paddl, FADD) 365 SSE_HELPER_Q(helper_paddq, FADD) 366 367 SSE_HELPER_B(helper_psubb, FSUB) 368 SSE_HELPER_W(helper_psubw, FSUB) 369 SSE_HELPER_L(helper_psubl, FSUB) 370 SSE_HELPER_Q(helper_psubq, FSUB) 371 372 SSE_HELPER_B(helper_paddusb, FADDUB) 373 SSE_HELPER_B(helper_paddsb, FADDSB) 374 SSE_HELPER_B(helper_psubusb, FSUBUB) 375 SSE_HELPER_B(helper_psubsb, FSUBSB) 376 377 SSE_HELPER_W(helper_paddusw, FADDUW) 378 SSE_HELPER_W(helper_paddsw, FADDSW) 379 SSE_HELPER_W(helper_psubusw, FSUBUW) 380 SSE_HELPER_W(helper_psubsw, FSUBSW) 381 382 SSE_HELPER_B(helper_pminub, FMINUB) 383 SSE_HELPER_B(helper_pmaxub, FMAXUB) 384 385 SSE_HELPER_W(helper_pminsw, FMINSW) 386 SSE_HELPER_W(helper_pmaxsw, FMAXSW) 387 388 SSE_HELPER_Q(helper_pand, FAND) 389 SSE_HELPER_Q(helper_pandn, FANDN) 390 SSE_HELPER_Q(helper_por, FOR) 391 SSE_HELPER_Q(helper_pxor, FXOR) 392 393 SSE_HELPER_B(helper_pcmpgtb, FCMPGTB) 394 SSE_HELPER_W(helper_pcmpgtw, FCMPGTW) 395 SSE_HELPER_L(helper_pcmpgtl, FCMPGTL) 396 397 SSE_HELPER_B(helper_pcmpeqb, FCMPEQ) 398 SSE_HELPER_W(helper_pcmpeqw, FCMPEQ) 399 SSE_HELPER_L(helper_pcmpeql, FCMPEQ) 400 401 SSE_HELPER_W(helper_pmullw, FMULLW) 402 #if SHIFT == 0 403 SSE_HELPER_W(helper_pmulhrw, FMULHRW) 404 #endif 405 SSE_HELPER_W(helper_pmulhuw, FMULHUW) 406 SSE_HELPER_W(helper_pmulhw, FMULHW) 407 408 SSE_HELPER_B(helper_pavgb, FAVG) 409 SSE_HELPER_W(helper_pavgw, FAVG) 410 411 void glue(helper_pmuludq, SUFFIX) (Reg *d, Reg *s) 412 { 413 d->Q(0) = (uint64_t)s->L(0) * (uint64_t)d->L(0); 414 #if SHIFT == 1 415 d->Q(1) = (uint64_t)s->L(2) * (uint64_t)d->L(2); 416 #endif 417 } 418 419 void glue(helper_pmaddwd, SUFFIX) (Reg *d, Reg *s) 420 { 421 int i; 422 423 for(i = 0; i < (2 << SHIFT); i++) { 424 d->L(i) = (int16_t)s->W(2*i) * (int16_t)d->W(2*i) + 425 (int16_t)s->W(2*i+1) * (int16_t)d->W(2*i+1); 426 } 427 } 428 429 #if SHIFT == 0 430 static inline int abs1(int a) 431 { 432 if (a < 0) 433 return -a; 434 else 435 return a; 436 } 437 #endif 438 void glue(helper_psadbw, SUFFIX) (Reg *d, Reg *s) 439 { 440 unsigned int val; 441 442 val = 0; 443 val += abs1(d->B(0) - s->B(0)); 444 val += abs1(d->B(1) - s->B(1)); 445 val += abs1(d->B(2) - s->B(2)); 446 val += abs1(d->B(3) - s->B(3)); 447 val += abs1(d->B(4) - s->B(4)); 448 val += abs1(d->B(5) - s->B(5)); 449 val += abs1(d->B(6) - s->B(6)); 450 val += abs1(d->B(7) - s->B(7)); 451 d->Q(0) = val; 452 #if SHIFT == 1 453 val = 0; 454 val += abs1(d->B(8) - s->B(8)); 455 val += abs1(d->B(9) - s->B(9)); 456 val += abs1(d->B(10) - s->B(10)); 457 val += abs1(d->B(11) - s->B(11)); 458 val += abs1(d->B(12) - s->B(12)); 459 val += abs1(d->B(13) - s->B(13)); 460 val += abs1(d->B(14) - s->B(14)); 461 val += abs1(d->B(15) - s->B(15)); 462 d->Q(1) = val; 463 #endif 464 } 465 466 void glue(helper_maskmov, SUFFIX) (Reg *d, Reg *s, target_ulong a0) 467 { 468 int i; 469 for(i = 0; i < (8 << SHIFT); i++) { 470 if (s->B(i) & 0x80) 471 stb(a0 + i, d->B(i)); 472 } 473 } 474 475 void glue(helper_movl_mm_T0, SUFFIX) (Reg *d, uint32_t val) 476 { 477 d->L(0) = val; 478 d->L(1) = 0; 479 #if SHIFT == 1 480 d->Q(1) = 0; 481 #endif 482 } 483 484 #ifdef TARGET_X86_64 485 void glue(helper_movq_mm_T0, SUFFIX) (Reg *d, uint64_t val) 486 { 487 d->Q(0) = val; 488 #if SHIFT == 1 489 d->Q(1) = 0; 490 #endif 491 } 492 #endif 493 494 #if SHIFT == 0 495 void glue(helper_pshufw, SUFFIX) (Reg *d, Reg *s, int order) 496 { 497 Reg r; 498 r.W(0) = s->W(order & 3); 499 r.W(1) = s->W((order >> 2) & 3); 500 r.W(2) = s->W((order >> 4) & 3); 501 r.W(3) = s->W((order >> 6) & 3); 502 *d = r; 503 } 504 #else 505 void helper_shufps(Reg *d, Reg *s, int order) 506 { 507 Reg r; 508 r.L(0) = d->L(order & 3); 509 r.L(1) = d->L((order >> 2) & 3); 510 r.L(2) = s->L((order >> 4) & 3); 511 r.L(3) = s->L((order >> 6) & 3); 512 *d = r; 513 } 514 515 void helper_shufpd(Reg *d, Reg *s, int order) 516 { 517 Reg r; 518 r.Q(0) = d->Q(order & 1); 519 r.Q(1) = s->Q((order >> 1) & 1); 520 *d = r; 521 } 522 523 void glue(helper_pshufd, SUFFIX) (Reg *d, Reg *s, int order) 524 { 525 Reg r; 526 r.L(0) = s->L(order & 3); 527 r.L(1) = s->L((order >> 2) & 3); 528 r.L(2) = s->L((order >> 4) & 3); 529 r.L(3) = s->L((order >> 6) & 3); 530 *d = r; 531 } 532 533 void glue(helper_pshuflw, SUFFIX) (Reg *d, Reg *s, int order) 534 { 535 Reg r; 536 r.W(0) = s->W(order & 3); 537 r.W(1) = s->W((order >> 2) & 3); 538 r.W(2) = s->W((order >> 4) & 3); 539 r.W(3) = s->W((order >> 6) & 3); 540 r.Q(1) = s->Q(1); 541 *d = r; 542 } 543 544 void glue(helper_pshufhw, SUFFIX) (Reg *d, Reg *s, int order) 545 { 546 Reg r; 547 r.Q(0) = s->Q(0); 548 r.W(4) = s->W(4 + (order & 3)); 549 r.W(5) = s->W(4 + ((order >> 2) & 3)); 550 r.W(6) = s->W(4 + ((order >> 4) & 3)); 551 r.W(7) = s->W(4 + ((order >> 6) & 3)); 552 *d = r; 553 } 554 #endif 555 556 #if SHIFT == 1 557 /* FPU ops */ 558 /* XXX: not accurate */ 559 560 #define SSE_HELPER_S(name, F)\ 561 void helper_ ## name ## ps (Reg *d, Reg *s)\ 562 {\ 563 d->XMM_S(0) = F(32, d->XMM_S(0), s->XMM_S(0));\ 564 d->XMM_S(1) = F(32, d->XMM_S(1), s->XMM_S(1));\ 565 d->XMM_S(2) = F(32, d->XMM_S(2), s->XMM_S(2));\ 566 d->XMM_S(3) = F(32, d->XMM_S(3), s->XMM_S(3));\ 567 }\ 568 \ 569 void helper_ ## name ## ss (Reg *d, Reg *s)\ 570 {\ 571 d->XMM_S(0) = F(32, d->XMM_S(0), s->XMM_S(0));\ 572 }\ 573 void helper_ ## name ## pd (Reg *d, Reg *s)\ 574 {\ 575 d->XMM_D(0) = F(64, d->XMM_D(0), s->XMM_D(0));\ 576 d->XMM_D(1) = F(64, d->XMM_D(1), s->XMM_D(1));\ 577 }\ 578 \ 579 void helper_ ## name ## sd (Reg *d, Reg *s)\ 580 {\ 581 d->XMM_D(0) = F(64, d->XMM_D(0), s->XMM_D(0));\ 582 } 583 584 #define FPU_ADD(size, a, b) float ## size ## _add(a, b, &env->sse_status) 585 #define FPU_SUB(size, a, b) float ## size ## _sub(a, b, &env->sse_status) 586 #define FPU_MUL(size, a, b) float ## size ## _mul(a, b, &env->sse_status) 587 #define FPU_DIV(size, a, b) float ## size ## _div(a, b, &env->sse_status) 588 #define FPU_MIN(size, a, b) (a) < (b) ? (a) : (b) 589 #define FPU_MAX(size, a, b) (a) > (b) ? (a) : (b) 590 #define FPU_SQRT(size, a, b) float ## size ## _sqrt(b, &env->sse_status) 591 592 SSE_HELPER_S(add, FPU_ADD) 593 SSE_HELPER_S(sub, FPU_SUB) 594 SSE_HELPER_S(mul, FPU_MUL) 595 SSE_HELPER_S(div, FPU_DIV) 596 SSE_HELPER_S(min, FPU_MIN) 597 SSE_HELPER_S(max, FPU_MAX) 598 SSE_HELPER_S(sqrt, FPU_SQRT) 599 600 601 /* float to float conversions */ 602 void helper_cvtps2pd(Reg *d, Reg *s) 603 { 604 float32 s0, s1; 605 s0 = s->XMM_S(0); 606 s1 = s->XMM_S(1); 607 d->XMM_D(0) = float32_to_float64(s0, &env->sse_status); 608 d->XMM_D(1) = float32_to_float64(s1, &env->sse_status); 609 } 610 611 void helper_cvtpd2ps(Reg *d, Reg *s) 612 { 613 d->XMM_S(0) = float64_to_float32(s->XMM_D(0), &env->sse_status); 614 d->XMM_S(1) = float64_to_float32(s->XMM_D(1), &env->sse_status); 615 d->Q(1) = 0; 616 } 617 618 void helper_cvtss2sd(Reg *d, Reg *s) 619 { 620 d->XMM_D(0) = float32_to_float64(s->XMM_S(0), &env->sse_status); 621 } 622 623 void helper_cvtsd2ss(Reg *d, Reg *s) 624 { 625 d->XMM_S(0) = float64_to_float32(s->XMM_D(0), &env->sse_status); 626 } 627 628 /* integer to float */ 629 void helper_cvtdq2ps(Reg *d, Reg *s) 630 { 631 d->XMM_S(0) = int32_to_float32(s->XMM_L(0), &env->sse_status); 632 d->XMM_S(1) = int32_to_float32(s->XMM_L(1), &env->sse_status); 633 d->XMM_S(2) = int32_to_float32(s->XMM_L(2), &env->sse_status); 634 d->XMM_S(3) = int32_to_float32(s->XMM_L(3), &env->sse_status); 635 } 636 637 void helper_cvtdq2pd(Reg *d, Reg *s) 638 { 639 int32_t l0, l1; 640 l0 = (int32_t)s->XMM_L(0); 641 l1 = (int32_t)s->XMM_L(1); 642 d->XMM_D(0) = int32_to_float64(l0, &env->sse_status); 643 d->XMM_D(1) = int32_to_float64(l1, &env->sse_status); 644 } 645 646 void helper_cvtpi2ps(XMMReg *d, MMXReg *s) 647 { 648 d->XMM_S(0) = int32_to_float32(s->MMX_L(0), &env->sse_status); 649 d->XMM_S(1) = int32_to_float32(s->MMX_L(1), &env->sse_status); 650 } 651 652 void helper_cvtpi2pd(XMMReg *d, MMXReg *s) 653 { 654 d->XMM_D(0) = int32_to_float64(s->MMX_L(0), &env->sse_status); 655 d->XMM_D(1) = int32_to_float64(s->MMX_L(1), &env->sse_status); 656 } 657 658 void helper_cvtsi2ss(XMMReg *d, uint32_t val) 659 { 660 d->XMM_S(0) = int32_to_float32(val, &env->sse_status); 661 } 662 663 void helper_cvtsi2sd(XMMReg *d, uint32_t val) 664 { 665 d->XMM_D(0) = int32_to_float64(val, &env->sse_status); 666 } 667 668 #ifdef TARGET_X86_64 669 void helper_cvtsq2ss(XMMReg *d, uint64_t val) 670 { 671 d->XMM_S(0) = int64_to_float32(val, &env->sse_status); 672 } 673 674 void helper_cvtsq2sd(XMMReg *d, uint64_t val) 675 { 676 d->XMM_D(0) = int64_to_float64(val, &env->sse_status); 677 } 678 #endif 679 680 /* float to integer */ 681 void helper_cvtps2dq(XMMReg *d, XMMReg *s) 682 { 683 d->XMM_L(0) = float32_to_int32(s->XMM_S(0), &env->sse_status); 684 d->XMM_L(1) = float32_to_int32(s->XMM_S(1), &env->sse_status); 685 d->XMM_L(2) = float32_to_int32(s->XMM_S(2), &env->sse_status); 686 d->XMM_L(3) = float32_to_int32(s->XMM_S(3), &env->sse_status); 687 } 688 689 void helper_cvtpd2dq(XMMReg *d, XMMReg *s) 690 { 691 d->XMM_L(0) = float64_to_int32(s->XMM_D(0), &env->sse_status); 692 d->XMM_L(1) = float64_to_int32(s->XMM_D(1), &env->sse_status); 693 d->XMM_Q(1) = 0; 694 } 695 696 void helper_cvtps2pi(MMXReg *d, XMMReg *s) 697 { 698 d->MMX_L(0) = float32_to_int32(s->XMM_S(0), &env->sse_status); 699 d->MMX_L(1) = float32_to_int32(s->XMM_S(1), &env->sse_status); 700 } 701 702 void helper_cvtpd2pi(MMXReg *d, XMMReg *s) 703 { 704 d->MMX_L(0) = float64_to_int32(s->XMM_D(0), &env->sse_status); 705 d->MMX_L(1) = float64_to_int32(s->XMM_D(1), &env->sse_status); 706 } 707 708 int32_t helper_cvtss2si(XMMReg *s) 709 { 710 return float32_to_int32(s->XMM_S(0), &env->sse_status); 711 } 712 713 int32_t helper_cvtsd2si(XMMReg *s) 714 { 715 return float64_to_int32(s->XMM_D(0), &env->sse_status); 716 } 717 718 #ifdef TARGET_X86_64 719 int64_t helper_cvtss2sq(XMMReg *s) 720 { 721 return float32_to_int64(s->XMM_S(0), &env->sse_status); 722 } 723 724 int64_t helper_cvtsd2sq(XMMReg *s) 725 { 726 return float64_to_int64(s->XMM_D(0), &env->sse_status); 727 } 728 #endif 729 730 /* float to integer truncated */ 731 void helper_cvttps2dq(XMMReg *d, XMMReg *s) 732 { 733 d->XMM_L(0) = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status); 734 d->XMM_L(1) = float32_to_int32_round_to_zero(s->XMM_S(1), &env->sse_status); 735 d->XMM_L(2) = float32_to_int32_round_to_zero(s->XMM_S(2), &env->sse_status); 736 d->XMM_L(3) = float32_to_int32_round_to_zero(s->XMM_S(3), &env->sse_status); 737 } 738 739 void helper_cvttpd2dq(XMMReg *d, XMMReg *s) 740 { 741 d->XMM_L(0) = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status); 742 d->XMM_L(1) = float64_to_int32_round_to_zero(s->XMM_D(1), &env->sse_status); 743 d->XMM_Q(1) = 0; 744 } 745 746 void helper_cvttps2pi(MMXReg *d, XMMReg *s) 747 { 748 d->MMX_L(0) = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status); 749 d->MMX_L(1) = float32_to_int32_round_to_zero(s->XMM_S(1), &env->sse_status); 750 } 751 752 void helper_cvttpd2pi(MMXReg *d, XMMReg *s) 753 { 754 d->MMX_L(0) = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status); 755 d->MMX_L(1) = float64_to_int32_round_to_zero(s->XMM_D(1), &env->sse_status); 756 } 757 758 int32_t helper_cvttss2si(XMMReg *s) 759 { 760 return float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status); 761 } 762 763 int32_t helper_cvttsd2si(XMMReg *s) 764 { 765 return float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status); 766 } 767 768 #ifdef TARGET_X86_64 769 int64_t helper_cvttss2sq(XMMReg *s) 770 { 771 return float32_to_int64_round_to_zero(s->XMM_S(0), &env->sse_status); 772 } 773 774 int64_t helper_cvttsd2sq(XMMReg *s) 775 { 776 return float64_to_int64_round_to_zero(s->XMM_D(0), &env->sse_status); 777 } 778 #endif 779 780 void helper_rsqrtps(XMMReg *d, XMMReg *s) 781 { 782 d->XMM_S(0) = approx_rsqrt(s->XMM_S(0)); 783 d->XMM_S(1) = approx_rsqrt(s->XMM_S(1)); 784 d->XMM_S(2) = approx_rsqrt(s->XMM_S(2)); 785 d->XMM_S(3) = approx_rsqrt(s->XMM_S(3)); 786 } 787 788 void helper_rsqrtss(XMMReg *d, XMMReg *s) 789 { 790 d->XMM_S(0) = approx_rsqrt(s->XMM_S(0)); 791 } 792 793 void helper_rcpps(XMMReg *d, XMMReg *s) 794 { 795 d->XMM_S(0) = approx_rcp(s->XMM_S(0)); 796 d->XMM_S(1) = approx_rcp(s->XMM_S(1)); 797 d->XMM_S(2) = approx_rcp(s->XMM_S(2)); 798 d->XMM_S(3) = approx_rcp(s->XMM_S(3)); 799 } 800 801 void helper_rcpss(XMMReg *d, XMMReg *s) 802 { 803 d->XMM_S(0) = approx_rcp(s->XMM_S(0)); 804 } 805 806 void helper_haddps(XMMReg *d, XMMReg *s) 807 { 808 XMMReg r; 809 r.XMM_S(0) = d->XMM_S(0) + d->XMM_S(1); 810 r.XMM_S(1) = d->XMM_S(2) + d->XMM_S(3); 811 r.XMM_S(2) = s->XMM_S(0) + s->XMM_S(1); 812 r.XMM_S(3) = s->XMM_S(2) + s->XMM_S(3); 813 *d = r; 814 } 815 816 void helper_haddpd(XMMReg *d, XMMReg *s) 817 { 818 XMMReg r; 819 r.XMM_D(0) = d->XMM_D(0) + d->XMM_D(1); 820 r.XMM_D(1) = s->XMM_D(0) + s->XMM_D(1); 821 *d = r; 822 } 823 824 void helper_hsubps(XMMReg *d, XMMReg *s) 825 { 826 XMMReg r; 827 r.XMM_S(0) = d->XMM_S(0) - d->XMM_S(1); 828 r.XMM_S(1) = d->XMM_S(2) - d->XMM_S(3); 829 r.XMM_S(2) = s->XMM_S(0) - s->XMM_S(1); 830 r.XMM_S(3) = s->XMM_S(2) - s->XMM_S(3); 831 *d = r; 832 } 833 834 void helper_hsubpd(XMMReg *d, XMMReg *s) 835 { 836 XMMReg r; 837 r.XMM_D(0) = d->XMM_D(0) - d->XMM_D(1); 838 r.XMM_D(1) = s->XMM_D(0) - s->XMM_D(1); 839 *d = r; 840 } 841 842 void helper_addsubps(XMMReg *d, XMMReg *s) 843 { 844 d->XMM_S(0) = d->XMM_S(0) - s->XMM_S(0); 845 d->XMM_S(1) = d->XMM_S(1) + s->XMM_S(1); 846 d->XMM_S(2) = d->XMM_S(2) - s->XMM_S(2); 847 d->XMM_S(3) = d->XMM_S(3) + s->XMM_S(3); 848 } 849 850 void helper_addsubpd(XMMReg *d, XMMReg *s) 851 { 852 d->XMM_D(0) = d->XMM_D(0) - s->XMM_D(0); 853 d->XMM_D(1) = d->XMM_D(1) + s->XMM_D(1); 854 } 855 856 /* XXX: unordered */ 857 #define SSE_HELPER_CMP(name, F)\ 858 void helper_ ## name ## ps (Reg *d, Reg *s)\ 859 {\ 860 d->XMM_L(0) = F(32, d->XMM_S(0), s->XMM_S(0));\ 861 d->XMM_L(1) = F(32, d->XMM_S(1), s->XMM_S(1));\ 862 d->XMM_L(2) = F(32, d->XMM_S(2), s->XMM_S(2));\ 863 d->XMM_L(3) = F(32, d->XMM_S(3), s->XMM_S(3));\ 864 }\ 865 \ 866 void helper_ ## name ## ss (Reg *d, Reg *s)\ 867 {\ 868 d->XMM_L(0) = F(32, d->XMM_S(0), s->XMM_S(0));\ 869 }\ 870 void helper_ ## name ## pd (Reg *d, Reg *s)\ 871 {\ 872 d->XMM_Q(0) = F(64, d->XMM_D(0), s->XMM_D(0));\ 873 d->XMM_Q(1) = F(64, d->XMM_D(1), s->XMM_D(1));\ 874 }\ 875 \ 876 void helper_ ## name ## sd (Reg *d, Reg *s)\ 877 {\ 878 d->XMM_Q(0) = F(64, d->XMM_D(0), s->XMM_D(0));\ 879 } 880 881 #define FPU_CMPEQ(size, a, b) float ## size ## _eq(a, b, &env->sse_status) ? -1 : 0 882 #define FPU_CMPLT(size, a, b) float ## size ## _lt(a, b, &env->sse_status) ? -1 : 0 883 #define FPU_CMPLE(size, a, b) float ## size ## _le(a, b, &env->sse_status) ? -1 : 0 884 #define FPU_CMPUNORD(size, a, b) float ## size ## _unordered(a, b, &env->sse_status) ? - 1 : 0 885 #define FPU_CMPNEQ(size, a, b) float ## size ## _eq(a, b, &env->sse_status) ? 0 : -1 886 #define FPU_CMPNLT(size, a, b) float ## size ## _lt(a, b, &env->sse_status) ? 0 : -1 887 #define FPU_CMPNLE(size, a, b) float ## size ## _le(a, b, &env->sse_status) ? 0 : -1 888 #define FPU_CMPORD(size, a, b) float ## size ## _unordered(a, b, &env->sse_status) ? 0 : -1 889 890 SSE_HELPER_CMP(cmpeq, FPU_CMPEQ) 891 SSE_HELPER_CMP(cmplt, FPU_CMPLT) 892 SSE_HELPER_CMP(cmple, FPU_CMPLE) 893 SSE_HELPER_CMP(cmpunord, FPU_CMPUNORD) 894 SSE_HELPER_CMP(cmpneq, FPU_CMPNEQ) 895 SSE_HELPER_CMP(cmpnlt, FPU_CMPNLT) 896 SSE_HELPER_CMP(cmpnle, FPU_CMPNLE) 897 SSE_HELPER_CMP(cmpord, FPU_CMPORD) 898 899 const int comis_eflags[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C}; 900 901 void helper_ucomiss(Reg *d, Reg *s) 902 { 903 int ret; 904 float32 s0, s1; 905 906 s0 = d->XMM_S(0); 907 s1 = s->XMM_S(0); 908 ret = float32_compare_quiet(s0, s1, &env->sse_status); 909 CC_SRC = comis_eflags[ret + 1]; 910 } 911 912 void helper_comiss(Reg *d, Reg *s) 913 { 914 int ret; 915 float32 s0, s1; 916 917 s0 = d->XMM_S(0); 918 s1 = s->XMM_S(0); 919 ret = float32_compare(s0, s1, &env->sse_status); 920 CC_SRC = comis_eflags[ret + 1]; 921 } 922 923 void helper_ucomisd(Reg *d, Reg *s) 924 { 925 int ret; 926 float64 d0, d1; 927 928 d0 = d->XMM_D(0); 929 d1 = s->XMM_D(0); 930 ret = float64_compare_quiet(d0, d1, &env->sse_status); 931 CC_SRC = comis_eflags[ret + 1]; 932 } 933 934 void helper_comisd(Reg *d, Reg *s) 935 { 936 int ret; 937 float64 d0, d1; 938 939 d0 = d->XMM_D(0); 940 d1 = s->XMM_D(0); 941 ret = float64_compare(d0, d1, &env->sse_status); 942 CC_SRC = comis_eflags[ret + 1]; 943 } 944 945 uint32_t helper_movmskps(Reg *s) 946 { 947 int b0, b1, b2, b3; 948 b0 = s->XMM_L(0) >> 31; 949 b1 = s->XMM_L(1) >> 31; 950 b2 = s->XMM_L(2) >> 31; 951 b3 = s->XMM_L(3) >> 31; 952 return b0 | (b1 << 1) | (b2 << 2) | (b3 << 3); 953 } 954 955 uint32_t helper_movmskpd(Reg *s) 956 { 957 int b0, b1; 958 b0 = s->XMM_L(1) >> 31; 959 b1 = s->XMM_L(3) >> 31; 960 return b0 | (b1 << 1); 961 } 962 963 #endif 964 965 uint32_t glue(helper_pmovmskb, SUFFIX)(Reg *s) 966 { 967 uint32_t val; 968 val = 0; 969 val |= (s->B(0) >> 7); 970 val |= (s->B(1) >> 6) & 0x02; 971 val |= (s->B(2) >> 5) & 0x04; 972 val |= (s->B(3) >> 4) & 0x08; 973 val |= (s->B(4) >> 3) & 0x10; 974 val |= (s->B(5) >> 2) & 0x20; 975 val |= (s->B(6) >> 1) & 0x40; 976 val |= (s->B(7)) & 0x80; 977 #if SHIFT == 1 978 val |= (s->B(8) << 1) & 0x0100; 979 val |= (s->B(9) << 2) & 0x0200; 980 val |= (s->B(10) << 3) & 0x0400; 981 val |= (s->B(11) << 4) & 0x0800; 982 val |= (s->B(12) << 5) & 0x1000; 983 val |= (s->B(13) << 6) & 0x2000; 984 val |= (s->B(14) << 7) & 0x4000; 985 val |= (s->B(15) << 8) & 0x8000; 986 #endif 987 return val; 988 } 989 990 void glue(helper_packsswb, SUFFIX) (Reg *d, Reg *s) 991 { 992 Reg r; 993 994 r.B(0) = satsb((int16_t)d->W(0)); 995 r.B(1) = satsb((int16_t)d->W(1)); 996 r.B(2) = satsb((int16_t)d->W(2)); 997 r.B(3) = satsb((int16_t)d->W(3)); 998 #if SHIFT == 1 999 r.B(4) = satsb((int16_t)d->W(4)); 1000 r.B(5) = satsb((int16_t)d->W(5)); 1001 r.B(6) = satsb((int16_t)d->W(6)); 1002 r.B(7) = satsb((int16_t)d->W(7)); 1003 #endif 1004 r.B((4 << SHIFT) + 0) = satsb((int16_t)s->W(0)); 1005 r.B((4 << SHIFT) + 1) = satsb((int16_t)s->W(1)); 1006 r.B((4 << SHIFT) + 2) = satsb((int16_t)s->W(2)); 1007 r.B((4 << SHIFT) + 3) = satsb((int16_t)s->W(3)); 1008 #if SHIFT == 1 1009 r.B(12) = satsb((int16_t)s->W(4)); 1010 r.B(13) = satsb((int16_t)s->W(5)); 1011 r.B(14) = satsb((int16_t)s->W(6)); 1012 r.B(15) = satsb((int16_t)s->W(7)); 1013 #endif 1014 *d = r; 1015 } 1016 1017 void glue(helper_packuswb, SUFFIX) (Reg *d, Reg *s) 1018 { 1019 Reg r; 1020 1021 r.B(0) = satub((int16_t)d->W(0)); 1022 r.B(1) = satub((int16_t)d->W(1)); 1023 r.B(2) = satub((int16_t)d->W(2)); 1024 r.B(3) = satub((int16_t)d->W(3)); 1025 #if SHIFT == 1 1026 r.B(4) = satub((int16_t)d->W(4)); 1027 r.B(5) = satub((int16_t)d->W(5)); 1028 r.B(6) = satub((int16_t)d->W(6)); 1029 r.B(7) = satub((int16_t)d->W(7)); 1030 #endif 1031 r.B((4 << SHIFT) + 0) = satub((int16_t)s->W(0)); 1032 r.B((4 << SHIFT) + 1) = satub((int16_t)s->W(1)); 1033 r.B((4 << SHIFT) + 2) = satub((int16_t)s->W(2)); 1034 r.B((4 << SHIFT) + 3) = satub((int16_t)s->W(3)); 1035 #if SHIFT == 1 1036 r.B(12) = satub((int16_t)s->W(4)); 1037 r.B(13) = satub((int16_t)s->W(5)); 1038 r.B(14) = satub((int16_t)s->W(6)); 1039 r.B(15) = satub((int16_t)s->W(7)); 1040 #endif 1041 *d = r; 1042 } 1043 1044 void glue(helper_packssdw, SUFFIX) (Reg *d, Reg *s) 1045 { 1046 Reg r; 1047 1048 r.W(0) = satsw(d->L(0)); 1049 r.W(1) = satsw(d->L(1)); 1050 #if SHIFT == 1 1051 r.W(2) = satsw(d->L(2)); 1052 r.W(3) = satsw(d->L(3)); 1053 #endif 1054 r.W((2 << SHIFT) + 0) = satsw(s->L(0)); 1055 r.W((2 << SHIFT) + 1) = satsw(s->L(1)); 1056 #if SHIFT == 1 1057 r.W(6) = satsw(s->L(2)); 1058 r.W(7) = satsw(s->L(3)); 1059 #endif 1060 *d = r; 1061 } 1062 1063 #define UNPCK_OP(base_name, base) \ 1064 \ 1065 void glue(helper_punpck ## base_name ## bw, SUFFIX) (Reg *d, Reg *s) \ 1066 { \ 1067 Reg r; \ 1068 \ 1069 r.B(0) = d->B((base << (SHIFT + 2)) + 0); \ 1070 r.B(1) = s->B((base << (SHIFT + 2)) + 0); \ 1071 r.B(2) = d->B((base << (SHIFT + 2)) + 1); \ 1072 r.B(3) = s->B((base << (SHIFT + 2)) + 1); \ 1073 r.B(4) = d->B((base << (SHIFT + 2)) + 2); \ 1074 r.B(5) = s->B((base << (SHIFT + 2)) + 2); \ 1075 r.B(6) = d->B((base << (SHIFT + 2)) + 3); \ 1076 r.B(7) = s->B((base << (SHIFT + 2)) + 3); \ 1077 XMM_ONLY( \ 1078 r.B(8) = d->B((base << (SHIFT + 2)) + 4); \ 1079 r.B(9) = s->B((base << (SHIFT + 2)) + 4); \ 1080 r.B(10) = d->B((base << (SHIFT + 2)) + 5); \ 1081 r.B(11) = s->B((base << (SHIFT + 2)) + 5); \ 1082 r.B(12) = d->B((base << (SHIFT + 2)) + 6); \ 1083 r.B(13) = s->B((base << (SHIFT + 2)) + 6); \ 1084 r.B(14) = d->B((base << (SHIFT + 2)) + 7); \ 1085 r.B(15) = s->B((base << (SHIFT + 2)) + 7); \ 1086 ) \ 1087 *d = r; \ 1088 } \ 1089 \ 1090 void glue(helper_punpck ## base_name ## wd, SUFFIX) (Reg *d, Reg *s) \ 1091 { \ 1092 Reg r; \ 1093 \ 1094 r.W(0) = d->W((base << (SHIFT + 1)) + 0); \ 1095 r.W(1) = s->W((base << (SHIFT + 1)) + 0); \ 1096 r.W(2) = d->W((base << (SHIFT + 1)) + 1); \ 1097 r.W(3) = s->W((base << (SHIFT + 1)) + 1); \ 1098 XMM_ONLY( \ 1099 r.W(4) = d->W((base << (SHIFT + 1)) + 2); \ 1100 r.W(5) = s->W((base << (SHIFT + 1)) + 2); \ 1101 r.W(6) = d->W((base << (SHIFT + 1)) + 3); \ 1102 r.W(7) = s->W((base << (SHIFT + 1)) + 3); \ 1103 ) \ 1104 *d = r; \ 1105 } \ 1106 \ 1107 void glue(helper_punpck ## base_name ## dq, SUFFIX) (Reg *d, Reg *s) \ 1108 { \ 1109 Reg r; \ 1110 \ 1111 r.L(0) = d->L((base << SHIFT) + 0); \ 1112 r.L(1) = s->L((base << SHIFT) + 0); \ 1113 XMM_ONLY( \ 1114 r.L(2) = d->L((base << SHIFT) + 1); \ 1115 r.L(3) = s->L((base << SHIFT) + 1); \ 1116 ) \ 1117 *d = r; \ 1118 } \ 1119 \ 1120 XMM_ONLY( \ 1121 void glue(helper_punpck ## base_name ## qdq, SUFFIX) (Reg *d, Reg *s) \ 1122 { \ 1123 Reg r; \ 1124 \ 1125 r.Q(0) = d->Q(base); \ 1126 r.Q(1) = s->Q(base); \ 1127 *d = r; \ 1128 } \ 1129 ) 1130 1131 UNPCK_OP(l, 0) 1132 UNPCK_OP(h, 1) 1133 1134 /* 3DNow! float ops */ 1135 #if SHIFT == 0 1136 void helper_pi2fd(MMXReg *d, MMXReg *s) 1137 { 1138 d->MMX_S(0) = int32_to_float32(s->MMX_L(0), &env->mmx_status); 1139 d->MMX_S(1) = int32_to_float32(s->MMX_L(1), &env->mmx_status); 1140 } 1141 1142 void helper_pi2fw(MMXReg *d, MMXReg *s) 1143 { 1144 d->MMX_S(0) = int32_to_float32((int16_t)s->MMX_W(0), &env->mmx_status); 1145 d->MMX_S(1) = int32_to_float32((int16_t)s->MMX_W(2), &env->mmx_status); 1146 } 1147 1148 void helper_pf2id(MMXReg *d, MMXReg *s) 1149 { 1150 d->MMX_L(0) = float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status); 1151 d->MMX_L(1) = float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status); 1152 } 1153 1154 void helper_pf2iw(MMXReg *d, MMXReg *s) 1155 { 1156 d->MMX_L(0) = satsw(float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status)); 1157 d->MMX_L(1) = satsw(float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status)); 1158 } 1159 1160 void helper_pfacc(MMXReg *d, MMXReg *s) 1161 { 1162 MMXReg r; 1163 r.MMX_S(0) = float32_add(d->MMX_S(0), d->MMX_S(1), &env->mmx_status); 1164 r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status); 1165 *d = r; 1166 } 1167 1168 void helper_pfadd(MMXReg *d, MMXReg *s) 1169 { 1170 d->MMX_S(0) = float32_add(d->MMX_S(0), s->MMX_S(0), &env->mmx_status); 1171 d->MMX_S(1) = float32_add(d->MMX_S(1), s->MMX_S(1), &env->mmx_status); 1172 } 1173 1174 void helper_pfcmpeq(MMXReg *d, MMXReg *s) 1175 { 1176 d->MMX_L(0) = float32_eq(d->MMX_S(0), s->MMX_S(0), &env->mmx_status) ? -1 : 0; 1177 d->MMX_L(1) = float32_eq(d->MMX_S(1), s->MMX_S(1), &env->mmx_status) ? -1 : 0; 1178 } 1179 1180 void helper_pfcmpge(MMXReg *d, MMXReg *s) 1181 { 1182 d->MMX_L(0) = float32_le(s->MMX_S(0), d->MMX_S(0), &env->mmx_status) ? -1 : 0; 1183 d->MMX_L(1) = float32_le(s->MMX_S(1), d->MMX_S(1), &env->mmx_status) ? -1 : 0; 1184 } 1185 1186 void helper_pfcmpgt(MMXReg *d, MMXReg *s) 1187 { 1188 d->MMX_L(0) = float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status) ? -1 : 0; 1189 d->MMX_L(1) = float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status) ? -1 : 0; 1190 } 1191 1192 void helper_pfmax(MMXReg *d, MMXReg *s) 1193 { 1194 if (float32_lt(d->MMX_S(0), s->MMX_S(0), &env->mmx_status)) 1195 d->MMX_S(0) = s->MMX_S(0); 1196 if (float32_lt(d->MMX_S(1), s->MMX_S(1), &env->mmx_status)) 1197 d->MMX_S(1) = s->MMX_S(1); 1198 } 1199 1200 void helper_pfmin(MMXReg *d, MMXReg *s) 1201 { 1202 if (float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status)) 1203 d->MMX_S(0) = s->MMX_S(0); 1204 if (float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status)) 1205 d->MMX_S(1) = s->MMX_S(1); 1206 } 1207 1208 void helper_pfmul(MMXReg *d, MMXReg *s) 1209 { 1210 d->MMX_S(0) = float32_mul(d->MMX_S(0), s->MMX_S(0), &env->mmx_status); 1211 d->MMX_S(1) = float32_mul(d->MMX_S(1), s->MMX_S(1), &env->mmx_status); 1212 } 1213 1214 void helper_pfnacc(MMXReg *d, MMXReg *s) 1215 { 1216 MMXReg r; 1217 r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status); 1218 r.MMX_S(1) = float32_sub(s->MMX_S(0), s->MMX_S(1), &env->mmx_status); 1219 *d = r; 1220 } 1221 1222 void helper_pfpnacc(MMXReg *d, MMXReg *s) 1223 { 1224 MMXReg r; 1225 r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status); 1226 r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status); 1227 *d = r; 1228 } 1229 1230 void helper_pfrcp(MMXReg *d, MMXReg *s) 1231 { 1232 d->MMX_S(0) = approx_rcp(s->MMX_S(0)); 1233 d->MMX_S(1) = d->MMX_S(0); 1234 } 1235 1236 void helper_pfrsqrt(MMXReg *d, MMXReg *s) 1237 { 1238 d->MMX_L(1) = s->MMX_L(0) & 0x7fffffff; 1239 d->MMX_S(1) = approx_rsqrt(d->MMX_S(1)); 1240 d->MMX_L(1) |= s->MMX_L(0) & 0x80000000; 1241 d->MMX_L(0) = d->MMX_L(1); 1242 } 1243 1244 void helper_pfsub(MMXReg *d, MMXReg *s) 1245 { 1246 d->MMX_S(0) = float32_sub(d->MMX_S(0), s->MMX_S(0), &env->mmx_status); 1247 d->MMX_S(1) = float32_sub(d->MMX_S(1), s->MMX_S(1), &env->mmx_status); 1248 } 1249 1250 void helper_pfsubr(MMXReg *d, MMXReg *s) 1251 { 1252 d->MMX_S(0) = float32_sub(s->MMX_S(0), d->MMX_S(0), &env->mmx_status); 1253 d->MMX_S(1) = float32_sub(s->MMX_S(1), d->MMX_S(1), &env->mmx_status); 1254 } 1255 1256 void helper_pswapd(MMXReg *d, MMXReg *s) 1257 { 1258 MMXReg r; 1259 r.MMX_L(0) = s->MMX_L(1); 1260 r.MMX_L(1) = s->MMX_L(0); 1261 *d = r; 1262 } 1263 #endif 1264 1265 /* SSSE3 op helpers */ 1266 void glue(helper_pshufb, SUFFIX) (Reg *d, Reg *s) 1267 { 1268 int i; 1269 Reg r; 1270 1271 for (i = 0; i < (8 << SHIFT); i++) 1272 r.B(i) = (s->B(i) & 0x80) ? 0 : (d->B(s->B(i) & ((8 << SHIFT) - 1))); 1273 1274 *d = r; 1275 } 1276 1277 void glue(helper_phaddw, SUFFIX) (Reg *d, Reg *s) 1278 { 1279 d->W(0) = (int16_t)d->W(0) + (int16_t)d->W(1); 1280 d->W(1) = (int16_t)d->W(2) + (int16_t)d->W(3); 1281 XMM_ONLY(d->W(2) = (int16_t)d->W(4) + (int16_t)d->W(5)); 1282 XMM_ONLY(d->W(3) = (int16_t)d->W(6) + (int16_t)d->W(7)); 1283 d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) + (int16_t)s->W(1); 1284 d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) + (int16_t)s->W(3); 1285 XMM_ONLY(d->W(6) = (int16_t)s->W(4) + (int16_t)s->W(5)); 1286 XMM_ONLY(d->W(7) = (int16_t)s->W(6) + (int16_t)s->W(7)); 1287 } 1288 1289 void glue(helper_phaddd, SUFFIX) (Reg *d, Reg *s) 1290 { 1291 d->L(0) = (int32_t)d->L(0) + (int32_t)d->L(1); 1292 XMM_ONLY(d->L(1) = (int32_t)d->L(2) + (int32_t)d->L(3)); 1293 d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) + (int32_t)s->L(1); 1294 XMM_ONLY(d->L(3) = (int32_t)s->L(2) + (int32_t)s->L(3)); 1295 } 1296 1297 void glue(helper_phaddsw, SUFFIX) (Reg *d, Reg *s) 1298 { 1299 d->W(0) = satsw((int16_t)d->W(0) + (int16_t)d->W(1)); 1300 d->W(1) = satsw((int16_t)d->W(2) + (int16_t)d->W(3)); 1301 XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) + (int16_t)d->W(5))); 1302 XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) + (int16_t)d->W(7))); 1303 d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) + (int16_t)s->W(1)); 1304 d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) + (int16_t)s->W(3)); 1305 XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) + (int16_t)s->W(5))); 1306 XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) + (int16_t)s->W(7))); 1307 } 1308 1309 void glue(helper_pmaddubsw, SUFFIX) (Reg *d, Reg *s) 1310 { 1311 d->W(0) = satsw((int8_t)s->B( 0) * (uint8_t)d->B( 0) + 1312 (int8_t)s->B( 1) * (uint8_t)d->B( 1)); 1313 d->W(1) = satsw((int8_t)s->B( 2) * (uint8_t)d->B( 2) + 1314 (int8_t)s->B( 3) * (uint8_t)d->B( 3)); 1315 d->W(2) = satsw((int8_t)s->B( 4) * (uint8_t)d->B( 4) + 1316 (int8_t)s->B( 5) * (uint8_t)d->B( 5)); 1317 d->W(3) = satsw((int8_t)s->B( 6) * (uint8_t)d->B( 6) + 1318 (int8_t)s->B( 7) * (uint8_t)d->B( 7)); 1319 #if SHIFT == 1 1320 d->W(4) = satsw((int8_t)s->B( 8) * (uint8_t)d->B( 8) + 1321 (int8_t)s->B( 9) * (uint8_t)d->B( 9)); 1322 d->W(5) = satsw((int8_t)s->B(10) * (uint8_t)d->B(10) + 1323 (int8_t)s->B(11) * (uint8_t)d->B(11)); 1324 d->W(6) = satsw((int8_t)s->B(12) * (uint8_t)d->B(12) + 1325 (int8_t)s->B(13) * (uint8_t)d->B(13)); 1326 d->W(7) = satsw((int8_t)s->B(14) * (uint8_t)d->B(14) + 1327 (int8_t)s->B(15) * (uint8_t)d->B(15)); 1328 #endif 1329 } 1330 1331 void glue(helper_phsubw, SUFFIX) (Reg *d, Reg *s) 1332 { 1333 d->W(0) = (int16_t)d->W(0) - (int16_t)d->W(1); 1334 d->W(1) = (int16_t)d->W(2) - (int16_t)d->W(3); 1335 XMM_ONLY(d->W(2) = (int16_t)d->W(4) - (int16_t)d->W(5)); 1336 XMM_ONLY(d->W(3) = (int16_t)d->W(6) - (int16_t)d->W(7)); 1337 d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) - (int16_t)s->W(1); 1338 d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) - (int16_t)s->W(3); 1339 XMM_ONLY(d->W(6) = (int16_t)s->W(4) - (int16_t)s->W(5)); 1340 XMM_ONLY(d->W(7) = (int16_t)s->W(6) - (int16_t)s->W(7)); 1341 } 1342 1343 void glue(helper_phsubd, SUFFIX) (Reg *d, Reg *s) 1344 { 1345 d->L(0) = (int32_t)d->L(0) - (int32_t)d->L(1); 1346 XMM_ONLY(d->L(1) = (int32_t)d->L(2) - (int32_t)d->L(3)); 1347 d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) - (int32_t)s->L(1); 1348 XMM_ONLY(d->L(3) = (int32_t)s->L(2) - (int32_t)s->L(3)); 1349 } 1350 1351 void glue(helper_phsubsw, SUFFIX) (Reg *d, Reg *s) 1352 { 1353 d->W(0) = satsw((int16_t)d->W(0) - (int16_t)d->W(1)); 1354 d->W(1) = satsw((int16_t)d->W(2) - (int16_t)d->W(3)); 1355 XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) - (int16_t)d->W(5))); 1356 XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) - (int16_t)d->W(7))); 1357 d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) - (int16_t)s->W(1)); 1358 d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) - (int16_t)s->W(3)); 1359 XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) - (int16_t)s->W(5))); 1360 XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) - (int16_t)s->W(7))); 1361 } 1362 1363 #define FABSB(_, x) x > INT8_MAX ? -(int8_t ) x : x 1364 #define FABSW(_, x) x > INT16_MAX ? -(int16_t) x : x 1365 #define FABSL(_, x) x > INT32_MAX ? -(int32_t) x : x 1366 SSE_HELPER_B(helper_pabsb, FABSB) 1367 SSE_HELPER_W(helper_pabsw, FABSW) 1368 SSE_HELPER_L(helper_pabsd, FABSL) 1369 1370 #define FMULHRSW(d, s) ((int16_t) d * (int16_t) s + 0x4000) >> 15 1371 SSE_HELPER_W(helper_pmulhrsw, FMULHRSW) 1372 1373 #define FSIGNB(d, s) s <= INT8_MAX ? s ? d : 0 : -(int8_t ) d 1374 #define FSIGNW(d, s) s <= INT16_MAX ? s ? d : 0 : -(int16_t) d 1375 #define FSIGNL(d, s) s <= INT32_MAX ? s ? d : 0 : -(int32_t) d 1376 SSE_HELPER_B(helper_psignb, FSIGNB) 1377 SSE_HELPER_W(helper_psignw, FSIGNW) 1378 SSE_HELPER_L(helper_psignd, FSIGNL) 1379 1380 void glue(helper_palignr, SUFFIX) (Reg *d, Reg *s, int32_t shift) 1381 { 1382 Reg r; 1383 1384 /* XXX could be checked during translation */ 1385 if (shift >= (16 << SHIFT)) { 1386 r.Q(0) = 0; 1387 XMM_ONLY(r.Q(1) = 0); 1388 } else { 1389 shift <<= 3; 1390 #define SHR(v, i) (i < 64 && i > -64 ? i > 0 ? v >> (i) : (v << -(i)) : 0) 1391 #if SHIFT == 0 1392 r.Q(0) = SHR(s->Q(0), shift - 0) | 1393 SHR(d->Q(0), shift - 64); 1394 #else 1395 r.Q(0) = SHR(s->Q(0), shift - 0) | 1396 SHR(s->Q(1), shift - 64) | 1397 SHR(d->Q(0), shift - 128) | 1398 SHR(d->Q(1), shift - 192); 1399 r.Q(1) = SHR(s->Q(0), shift + 64) | 1400 SHR(s->Q(1), shift - 0) | 1401 SHR(d->Q(0), shift - 64) | 1402 SHR(d->Q(1), shift - 128); 1403 #endif 1404 #undef SHR 1405 } 1406 1407 *d = r; 1408 } 1409 1410 #define XMM0 env->xmm_regs[0] 1411 1412 #if SHIFT == 1 1413 #define SSE_HELPER_V(name, elem, num, F)\ 1414 void glue(name, SUFFIX) (Reg *d, Reg *s)\ 1415 {\ 1416 d->elem(0) = F(d->elem(0), s->elem(0), XMM0.elem(0));\ 1417 d->elem(1) = F(d->elem(1), s->elem(1), XMM0.elem(1));\ 1418 if (num > 2) {\ 1419 d->elem(2) = F(d->elem(2), s->elem(2), XMM0.elem(2));\ 1420 d->elem(3) = F(d->elem(3), s->elem(3), XMM0.elem(3));\ 1421 if (num > 4) {\ 1422 d->elem(4) = F(d->elem(4), s->elem(4), XMM0.elem(4));\ 1423 d->elem(5) = F(d->elem(5), s->elem(5), XMM0.elem(5));\ 1424 d->elem(6) = F(d->elem(6), s->elem(6), XMM0.elem(6));\ 1425 d->elem(7) = F(d->elem(7), s->elem(7), XMM0.elem(7));\ 1426 if (num > 8) {\ 1427 d->elem(8) = F(d->elem(8), s->elem(8), XMM0.elem(8));\ 1428 d->elem(9) = F(d->elem(9), s->elem(9), XMM0.elem(9));\ 1429 d->elem(10) = F(d->elem(10), s->elem(10), XMM0.elem(10));\ 1430 d->elem(11) = F(d->elem(11), s->elem(11), XMM0.elem(11));\ 1431 d->elem(12) = F(d->elem(12), s->elem(12), XMM0.elem(12));\ 1432 d->elem(13) = F(d->elem(13), s->elem(13), XMM0.elem(13));\ 1433 d->elem(14) = F(d->elem(14), s->elem(14), XMM0.elem(14));\ 1434 d->elem(15) = F(d->elem(15), s->elem(15), XMM0.elem(15));\ 1435 }\ 1436 }\ 1437 }\ 1438 } 1439 1440 #define SSE_HELPER_I(name, elem, num, F)\ 1441 void glue(name, SUFFIX) (Reg *d, Reg *s, uint32_t imm)\ 1442 {\ 1443 d->elem(0) = F(d->elem(0), s->elem(0), ((imm >> 0) & 1));\ 1444 d->elem(1) = F(d->elem(1), s->elem(1), ((imm >> 1) & 1));\ 1445 if (num > 2) {\ 1446 d->elem(2) = F(d->elem(2), s->elem(2), ((imm >> 2) & 1));\ 1447 d->elem(3) = F(d->elem(3), s->elem(3), ((imm >> 3) & 1));\ 1448 if (num > 4) {\ 1449 d->elem(4) = F(d->elem(4), s->elem(4), ((imm >> 4) & 1));\ 1450 d->elem(5) = F(d->elem(5), s->elem(5), ((imm >> 5) & 1));\ 1451 d->elem(6) = F(d->elem(6), s->elem(6), ((imm >> 6) & 1));\ 1452 d->elem(7) = F(d->elem(7), s->elem(7), ((imm >> 7) & 1));\ 1453 if (num > 8) {\ 1454 d->elem(8) = F(d->elem(8), s->elem(8), ((imm >> 8) & 1));\ 1455 d->elem(9) = F(d->elem(9), s->elem(9), ((imm >> 9) & 1));\ 1456 d->elem(10) = F(d->elem(10), s->elem(10), ((imm >> 10) & 1));\ 1457 d->elem(11) = F(d->elem(11), s->elem(11), ((imm >> 11) & 1));\ 1458 d->elem(12) = F(d->elem(12), s->elem(12), ((imm >> 12) & 1));\ 1459 d->elem(13) = F(d->elem(13), s->elem(13), ((imm >> 13) & 1));\ 1460 d->elem(14) = F(d->elem(14), s->elem(14), ((imm >> 14) & 1));\ 1461 d->elem(15) = F(d->elem(15), s->elem(15), ((imm >> 15) & 1));\ 1462 }\ 1463 }\ 1464 }\ 1465 } 1466 1467 /* SSE4.1 op helpers */ 1468 #define FBLENDVB(d, s, m) (m & 0x80) ? s : d 1469 #define FBLENDVPS(d, s, m) (m & 0x80000000) ? s : d 1470 #define FBLENDVPD(d, s, m) (m & 0x8000000000000000LL) ? s : d 1471 SSE_HELPER_V(helper_pblendvb, B, 16, FBLENDVB) 1472 SSE_HELPER_V(helper_blendvps, L, 4, FBLENDVPS) 1473 SSE_HELPER_V(helper_blendvpd, Q, 2, FBLENDVPD) 1474 1475 void glue(helper_ptest, SUFFIX) (Reg *d, Reg *s) 1476 { 1477 uint64_t zf = (s->Q(0) & d->Q(0)) | (s->Q(1) & d->Q(1)); 1478 uint64_t cf = (s->Q(0) & ~d->Q(0)) | (s->Q(1) & ~d->Q(1)); 1479 1480 CC_SRC = (zf ? 0 : CC_Z) | (cf ? 0 : CC_C); 1481 } 1482 1483 #define SSE_HELPER_F(name, elem, num, F)\ 1484 void glue(name, SUFFIX) (Reg *d, Reg *s)\ 1485 {\ 1486 d->elem(0) = F(0);\ 1487 d->elem(1) = F(1);\ 1488 if (num > 2) {\ 1489 d->elem(2) = F(2);\ 1490 d->elem(3) = F(3);\ 1491 if (num > 4) {\ 1492 d->elem(4) = F(4);\ 1493 d->elem(5) = F(5);\ 1494 d->elem(6) = F(6);\ 1495 d->elem(7) = F(7);\ 1496 }\ 1497 }\ 1498 } 1499 1500 SSE_HELPER_F(helper_pmovsxbw, W, 8, (int8_t) s->B) 1501 SSE_HELPER_F(helper_pmovsxbd, L, 4, (int8_t) s->B) 1502 SSE_HELPER_F(helper_pmovsxbq, Q, 2, (int8_t) s->B) 1503 SSE_HELPER_F(helper_pmovsxwd, L, 4, (int16_t) s->W) 1504 SSE_HELPER_F(helper_pmovsxwq, Q, 2, (int16_t) s->W) 1505 SSE_HELPER_F(helper_pmovsxdq, Q, 2, (int32_t) s->L) 1506 SSE_HELPER_F(helper_pmovzxbw, W, 8, s->B) 1507 SSE_HELPER_F(helper_pmovzxbd, L, 4, s->B) 1508 SSE_HELPER_F(helper_pmovzxbq, Q, 2, s->B) 1509 SSE_HELPER_F(helper_pmovzxwd, L, 4, s->W) 1510 SSE_HELPER_F(helper_pmovzxwq, Q, 2, s->W) 1511 SSE_HELPER_F(helper_pmovzxdq, Q, 2, s->L) 1512 1513 void glue(helper_pmuldq, SUFFIX) (Reg *d, Reg *s) 1514 { 1515 d->Q(0) = (int64_t) (int32_t) d->L(0) * (int32_t) s->L(0); 1516 d->Q(1) = (int64_t) (int32_t) d->L(2) * (int32_t) s->L(2); 1517 } 1518 1519 #define FCMPEQQ(d, s) d == s ? -1 : 0 1520 SSE_HELPER_Q(helper_pcmpeqq, FCMPEQQ) 1521 1522 void glue(helper_packusdw, SUFFIX) (Reg *d, Reg *s) 1523 { 1524 d->W(0) = satuw((int32_t) d->L(0)); 1525 d->W(1) = satuw((int32_t) d->L(1)); 1526 d->W(2) = satuw((int32_t) d->L(2)); 1527 d->W(3) = satuw((int32_t) d->L(3)); 1528 d->W(4) = satuw((int32_t) s->L(0)); 1529 d->W(5) = satuw((int32_t) s->L(1)); 1530 d->W(6) = satuw((int32_t) s->L(2)); 1531 d->W(7) = satuw((int32_t) s->L(3)); 1532 } 1533 1534 #define FMINSB(d, s) MIN((int8_t) d, (int8_t) s) 1535 #define FMINSD(d, s) MIN((int32_t) d, (int32_t) s) 1536 #define FMAXSB(d, s) MAX((int8_t) d, (int8_t) s) 1537 #define FMAXSD(d, s) MAX((int32_t) d, (int32_t) s) 1538 SSE_HELPER_B(helper_pminsb, FMINSB) 1539 SSE_HELPER_L(helper_pminsd, FMINSD) 1540 SSE_HELPER_W(helper_pminuw, MIN) 1541 SSE_HELPER_L(helper_pminud, MIN) 1542 SSE_HELPER_B(helper_pmaxsb, FMAXSB) 1543 SSE_HELPER_L(helper_pmaxsd, FMAXSD) 1544 SSE_HELPER_W(helper_pmaxuw, MAX) 1545 SSE_HELPER_L(helper_pmaxud, MAX) 1546 1547 #define FMULLD(d, s) (int32_t) d * (int32_t) s 1548 SSE_HELPER_L(helper_pmulld, FMULLD) 1549 1550 void glue(helper_phminposuw, SUFFIX) (Reg *d, Reg *s) 1551 { 1552 int idx = 0; 1553 1554 if (s->W(1) < s->W(idx)) 1555 idx = 1; 1556 if (s->W(2) < s->W(idx)) 1557 idx = 2; 1558 if (s->W(3) < s->W(idx)) 1559 idx = 3; 1560 if (s->W(4) < s->W(idx)) 1561 idx = 4; 1562 if (s->W(5) < s->W(idx)) 1563 idx = 5; 1564 if (s->W(6) < s->W(idx)) 1565 idx = 6; 1566 if (s->W(7) < s->W(idx)) 1567 idx = 7; 1568 1569 d->Q(1) = 0; 1570 d->L(1) = 0; 1571 d->W(1) = idx; 1572 d->W(0) = s->W(idx); 1573 } 1574 1575 void glue(helper_roundps, SUFFIX) (Reg *d, Reg *s, uint32_t mode) 1576 { 1577 signed char prev_rounding_mode; 1578 1579 prev_rounding_mode = env->sse_status.float_rounding_mode; 1580 if (!(mode & (1 << 2))) 1581 switch (mode & 3) { 1582 case 0: 1583 set_float_rounding_mode(float_round_nearest_even, &env->sse_status); 1584 break; 1585 case 1: 1586 set_float_rounding_mode(float_round_down, &env->sse_status); 1587 break; 1588 case 2: 1589 set_float_rounding_mode(float_round_up, &env->sse_status); 1590 break; 1591 case 3: 1592 set_float_rounding_mode(float_round_to_zero, &env->sse_status); 1593 break; 1594 } 1595 1596 d->L(0) = float64_round_to_int(s->L(0), &env->sse_status); 1597 d->L(1) = float64_round_to_int(s->L(1), &env->sse_status); 1598 d->L(2) = float64_round_to_int(s->L(2), &env->sse_status); 1599 d->L(3) = float64_round_to_int(s->L(3), &env->sse_status); 1600 1601 #if 0 /* TODO */ 1602 if (mode & (1 << 3)) 1603 set_float_exception_flags( 1604 get_float_exception_flags(&env->sse_status) & 1605 ~float_flag_inexact, 1606 &env->sse_status); 1607 #endif 1608 env->sse_status.float_rounding_mode = prev_rounding_mode; 1609 } 1610 1611 void glue(helper_roundpd, SUFFIX) (Reg *d, Reg *s, uint32_t mode) 1612 { 1613 signed char prev_rounding_mode; 1614 1615 prev_rounding_mode = env->sse_status.float_rounding_mode; 1616 if (!(mode & (1 << 2))) 1617 switch (mode & 3) { 1618 case 0: 1619 set_float_rounding_mode(float_round_nearest_even, &env->sse_status); 1620 break; 1621 case 1: 1622 set_float_rounding_mode(float_round_down, &env->sse_status); 1623 break; 1624 case 2: 1625 set_float_rounding_mode(float_round_up, &env->sse_status); 1626 break; 1627 case 3: 1628 set_float_rounding_mode(float_round_to_zero, &env->sse_status); 1629 break; 1630 } 1631 1632 d->Q(0) = float64_round_to_int(s->Q(0), &env->sse_status); 1633 d->Q(1) = float64_round_to_int(s->Q(1), &env->sse_status); 1634 1635 #if 0 /* TODO */ 1636 if (mode & (1 << 3)) 1637 set_float_exception_flags( 1638 get_float_exception_flags(&env->sse_status) & 1639 ~float_flag_inexact, 1640 &env->sse_status); 1641 #endif 1642 env->sse_status.float_rounding_mode = prev_rounding_mode; 1643 } 1644 1645 void glue(helper_roundss, SUFFIX) (Reg *d, Reg *s, uint32_t mode) 1646 { 1647 signed char prev_rounding_mode; 1648 1649 prev_rounding_mode = env->sse_status.float_rounding_mode; 1650 if (!(mode & (1 << 2))) 1651 switch (mode & 3) { 1652 case 0: 1653 set_float_rounding_mode(float_round_nearest_even, &env->sse_status); 1654 break; 1655 case 1: 1656 set_float_rounding_mode(float_round_down, &env->sse_status); 1657 break; 1658 case 2: 1659 set_float_rounding_mode(float_round_up, &env->sse_status); 1660 break; 1661 case 3: 1662 set_float_rounding_mode(float_round_to_zero, &env->sse_status); 1663 break; 1664 } 1665 1666 d->L(0) = float64_round_to_int(s->L(0), &env->sse_status); 1667 1668 #if 0 /* TODO */ 1669 if (mode & (1 << 3)) 1670 set_float_exception_flags( 1671 get_float_exception_flags(&env->sse_status) & 1672 ~float_flag_inexact, 1673 &env->sse_status); 1674 #endif 1675 env->sse_status.float_rounding_mode = prev_rounding_mode; 1676 } 1677 1678 void glue(helper_roundsd, SUFFIX) (Reg *d, Reg *s, uint32_t mode) 1679 { 1680 signed char prev_rounding_mode; 1681 1682 prev_rounding_mode = env->sse_status.float_rounding_mode; 1683 if (!(mode & (1 << 2))) 1684 switch (mode & 3) { 1685 case 0: 1686 set_float_rounding_mode(float_round_nearest_even, &env->sse_status); 1687 break; 1688 case 1: 1689 set_float_rounding_mode(float_round_down, &env->sse_status); 1690 break; 1691 case 2: 1692 set_float_rounding_mode(float_round_up, &env->sse_status); 1693 break; 1694 case 3: 1695 set_float_rounding_mode(float_round_to_zero, &env->sse_status); 1696 break; 1697 } 1698 1699 d->Q(0) = float64_round_to_int(s->Q(0), &env->sse_status); 1700 1701 #if 0 /* TODO */ 1702 if (mode & (1 << 3)) 1703 set_float_exception_flags( 1704 get_float_exception_flags(&env->sse_status) & 1705 ~float_flag_inexact, 1706 &env->sse_status); 1707 #endif 1708 env->sse_status.float_rounding_mode = prev_rounding_mode; 1709 } 1710 1711 #define FBLENDP(d, s, m) m ? s : d 1712 SSE_HELPER_I(helper_blendps, L, 4, FBLENDP) 1713 SSE_HELPER_I(helper_blendpd, Q, 2, FBLENDP) 1714 SSE_HELPER_I(helper_pblendw, W, 8, FBLENDP) 1715 1716 void glue(helper_dpps, SUFFIX) (Reg *d, Reg *s, uint32_t mask) 1717 { 1718 float32 iresult = 0 /*float32_zero*/; 1719 1720 if (mask & (1 << 4)) 1721 iresult = float32_add(iresult, 1722 float32_mul(d->L(0), s->L(0), &env->sse_status), 1723 &env->sse_status); 1724 if (mask & (1 << 5)) 1725 iresult = float32_add(iresult, 1726 float32_mul(d->L(1), s->L(1), &env->sse_status), 1727 &env->sse_status); 1728 if (mask & (1 << 6)) 1729 iresult = float32_add(iresult, 1730 float32_mul(d->L(2), s->L(2), &env->sse_status), 1731 &env->sse_status); 1732 if (mask & (1 << 7)) 1733 iresult = float32_add(iresult, 1734 float32_mul(d->L(3), s->L(3), &env->sse_status), 1735 &env->sse_status); 1736 d->L(0) = (mask & (1 << 0)) ? iresult : 0 /*float32_zero*/; 1737 d->L(1) = (mask & (1 << 1)) ? iresult : 0 /*float32_zero*/; 1738 d->L(2) = (mask & (1 << 2)) ? iresult : 0 /*float32_zero*/; 1739 d->L(3) = (mask & (1 << 3)) ? iresult : 0 /*float32_zero*/; 1740 } 1741 1742 void glue(helper_dppd, SUFFIX) (Reg *d, Reg *s, uint32_t mask) 1743 { 1744 float64 iresult = 0 /*float64_zero*/; 1745 1746 if (mask & (1 << 4)) 1747 iresult = float64_add(iresult, 1748 float64_mul(d->Q(0), s->Q(0), &env->sse_status), 1749 &env->sse_status); 1750 if (mask & (1 << 5)) 1751 iresult = float64_add(iresult, 1752 float64_mul(d->Q(1), s->Q(1), &env->sse_status), 1753 &env->sse_status); 1754 d->Q(0) = (mask & (1 << 0)) ? iresult : 0 /*float64_zero*/; 1755 d->Q(1) = (mask & (1 << 1)) ? iresult : 0 /*float64_zero*/; 1756 } 1757 1758 void glue(helper_mpsadbw, SUFFIX) (Reg *d, Reg *s, uint32_t offset) 1759 { 1760 int s0 = (offset & 3) << 2; 1761 int d0 = (offset & 4) << 0; 1762 int i; 1763 Reg r; 1764 1765 for (i = 0; i < 8; i++, d0++) { 1766 r.W(i) = 0; 1767 r.W(i) += abs1(d->B(d0 + 0) - s->B(s0 + 0)); 1768 r.W(i) += abs1(d->B(d0 + 1) - s->B(s0 + 1)); 1769 r.W(i) += abs1(d->B(d0 + 2) - s->B(s0 + 2)); 1770 r.W(i) += abs1(d->B(d0 + 3) - s->B(s0 + 3)); 1771 } 1772 1773 *d = r; 1774 } 1775 1776 /* SSE4.2 op helpers */ 1777 /* it's unclear whether signed or unsigned */ 1778 #define FCMPGTQ(d, s) d > s ? -1 : 0 1779 SSE_HELPER_Q(helper_pcmpgtq, FCMPGTQ) 1780 1781 static inline int pcmp_elen(int reg, uint32_t ctrl) 1782 { 1783 int val; 1784 1785 /* Presence of REX.W is indicated by a bit higher than 7 set */ 1786 if (ctrl >> 8) 1787 val = abs1((int64_t) env->regs[reg]); 1788 else 1789 val = abs1((int32_t) env->regs[reg]); 1790 1791 if (ctrl & 1) { 1792 if (val > 8) 1793 return 8; 1794 } else 1795 if (val > 16) 1796 return 16; 1797 1798 return val; 1799 } 1800 1801 static inline int pcmp_ilen(Reg *r, uint8_t ctrl) 1802 { 1803 int val = 0; 1804 1805 if (ctrl & 1) { 1806 while (val < 8 && r->W(val)) 1807 val++; 1808 } else 1809 while (val < 16 && r->B(val)) 1810 val++; 1811 1812 return val; 1813 } 1814 1815 static inline int pcmp_val(Reg *r, uint8_t ctrl, int i) 1816 { 1817 switch ((ctrl >> 0) & 3) { 1818 case 0: 1819 return r->B(i); 1820 case 1: 1821 return r->W(i); 1822 case 2: 1823 return (int8_t) r->B(i); 1824 case 3: 1825 default: 1826 return (int16_t) r->W(i); 1827 } 1828 } 1829 1830 static inline unsigned pcmpxstrx(Reg *d, Reg *s, 1831 int8_t ctrl, int valids, int validd) 1832 { 1833 unsigned int res = 0; 1834 int v; 1835 int j, i; 1836 int upper = (ctrl & 1) ? 7 : 15; 1837 1838 valids--; 1839 validd--; 1840 1841 CC_SRC = (valids < upper ? CC_Z : 0) | (validd < upper ? CC_S : 0); 1842 1843 switch ((ctrl >> 2) & 3) { 1844 case 0: 1845 for (j = valids; j >= 0; j--) { 1846 res <<= 1; 1847 v = pcmp_val(s, ctrl, j); 1848 for (i = validd; i >= 0; i--) 1849 res |= (v == pcmp_val(d, ctrl, i)); 1850 } 1851 break; 1852 case 1: 1853 for (j = valids; j >= 0; j--) { 1854 res <<= 1; 1855 v = pcmp_val(s, ctrl, j); 1856 for (i = ((validd - 1) | 1); i >= 0; i -= 2) 1857 res |= (pcmp_val(d, ctrl, i - 0) <= v && 1858 pcmp_val(d, ctrl, i - 1) >= v); 1859 } 1860 break; 1861 case 2: 1862 res = (2 << (upper - MAX(valids, validd))) - 1; 1863 res <<= MAX(valids, validd) - MIN(valids, validd); 1864 for (i = MIN(valids, validd); i >= 0; i--) { 1865 res <<= 1; 1866 v = pcmp_val(s, ctrl, i); 1867 res |= (v == pcmp_val(d, ctrl, i)); 1868 } 1869 break; 1870 case 3: 1871 for (j = valids - validd; j >= 0; j--) { 1872 res <<= 1; 1873 res |= 1; 1874 for (i = MIN(upper - j, validd); i >= 0; i--) 1875 res &= (pcmp_val(s, ctrl, i + j) == pcmp_val(d, ctrl, i)); 1876 } 1877 break; 1878 } 1879 1880 switch ((ctrl >> 4) & 3) { 1881 case 1: 1882 res ^= (2 << upper) - 1; 1883 break; 1884 case 3: 1885 res ^= (2 << valids) - 1; 1886 break; 1887 } 1888 1889 if (res) 1890 CC_SRC |= CC_C; 1891 if (res & 1) 1892 CC_SRC |= CC_O; 1893 1894 return res; 1895 } 1896 1897 static inline int rffs1(unsigned int val) 1898 { 1899 int ret = 1, hi; 1900 1901 for (hi = sizeof(val) * 4; hi; hi /= 2) 1902 if (val >> hi) { 1903 val >>= hi; 1904 ret += hi; 1905 } 1906 1907 return ret; 1908 } 1909 1910 static inline int ffs1(unsigned int val) 1911 { 1912 int ret = 1, hi; 1913 1914 for (hi = sizeof(val) * 4; hi; hi /= 2) 1915 if (val << hi) { 1916 val <<= hi; 1917 ret += hi; 1918 } 1919 1920 return ret; 1921 } 1922 1923 void glue(helper_pcmpestri, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl) 1924 { 1925 unsigned int res = pcmpxstrx(d, s, ctrl, 1926 pcmp_elen(R_EDX, ctrl), 1927 pcmp_elen(R_EAX, ctrl)); 1928 1929 if (res) 1930 env->regs[R_ECX] = ((ctrl & (1 << 6)) ? rffs1 : ffs1)(res) - 1; 1931 else 1932 env->regs[R_ECX] = 16 >> (ctrl & (1 << 0)); 1933 } 1934 1935 void glue(helper_pcmpestrm, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl) 1936 { 1937 int i; 1938 unsigned int res = pcmpxstrx(d, s, ctrl, 1939 pcmp_elen(R_EDX, ctrl), 1940 pcmp_elen(R_EAX, ctrl)); 1941 1942 if ((ctrl >> 6) & 1) { 1943 if (ctrl & 1) 1944 for (i = 0; i <= 8; i--, res >>= 1) 1945 d->W(i) = (res & 1) ? ~0 : 0; 1946 else 1947 for (i = 0; i <= 16; i--, res >>= 1) 1948 d->B(i) = (res & 1) ? ~0 : 0; 1949 } else { 1950 d->Q(1) = 0; 1951 d->Q(0) = res; 1952 } 1953 } 1954 1955 void glue(helper_pcmpistri, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl) 1956 { 1957 unsigned int res = pcmpxstrx(d, s, ctrl, 1958 pcmp_ilen(s, ctrl), 1959 pcmp_ilen(d, ctrl)); 1960 1961 if (res) 1962 env->regs[R_ECX] = ((ctrl & (1 << 6)) ? rffs1 : ffs1)(res) - 1; 1963 else 1964 env->regs[R_ECX] = 16 >> (ctrl & (1 << 0)); 1965 } 1966 1967 void glue(helper_pcmpistrm, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl) 1968 { 1969 int i; 1970 unsigned int res = pcmpxstrx(d, s, ctrl, 1971 pcmp_ilen(s, ctrl), 1972 pcmp_ilen(d, ctrl)); 1973 1974 if ((ctrl >> 6) & 1) { 1975 if (ctrl & 1) 1976 for (i = 0; i <= 8; i--, res >>= 1) 1977 d->W(i) = (res & 1) ? ~0 : 0; 1978 else 1979 for (i = 0; i <= 16; i--, res >>= 1) 1980 d->B(i) = (res & 1) ? ~0 : 0; 1981 } else { 1982 d->Q(1) = 0; 1983 d->Q(0) = res; 1984 } 1985 } 1986 1987 #define CRCPOLY 0x1edc6f41 1988 #define CRCPOLY_BITREV 0x82f63b78 1989 target_ulong helper_crc32(uint32_t crc1, target_ulong msg, uint32_t len) 1990 { 1991 target_ulong crc = (msg & ((target_ulong) -1 >> 1992 (TARGET_LONG_BITS - len))) ^ crc1; 1993 1994 while (len--) 1995 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_BITREV : 0); 1996 1997 return crc; 1998 } 1999 2000 #define POPMASK(i) ((target_ulong) -1 / ((1LL << (1 << i)) + 1)) 2001 #define POPCOUNT(n, i) (n & POPMASK(i)) + ((n >> (1 << i)) & POPMASK(i)) 2002 target_ulong helper_popcnt(target_ulong n, uint32_t type) 2003 { 2004 CC_SRC = n ? 0 : CC_Z; 2005 2006 n = POPCOUNT(n, 0); 2007 n = POPCOUNT(n, 1); 2008 n = POPCOUNT(n, 2); 2009 n = POPCOUNT(n, 3); 2010 if (type == 1) 2011 return n & 0xff; 2012 2013 n = POPCOUNT(n, 4); 2014 #ifndef TARGET_X86_64 2015 return n; 2016 #else 2017 if (type == 2) 2018 return n & 0xff; 2019 2020 return POPCOUNT(n, 5); 2021 #endif 2022 } 2023 #endif 2024 2025 #undef SHIFT 2026 #undef XMM_ONLY 2027 #undef Reg 2028 #undef B 2029 #undef W 2030 #undef L 2031 #undef Q 2032 #undef SUFFIX 2033