1 /* 2 * Copyright (C) 2012 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "dex/compiler_ir.h" 18 #include "dex_file-inl.h" 19 #include "entrypoints/quick/quick_entrypoints.h" 20 #include "invoke_type.h" 21 #include "mirror/array.h" 22 #include "mirror/string.h" 23 #include "mir_to_lir-inl.h" 24 #include "x86/codegen_x86.h" 25 26 namespace art { 27 28 /* 29 * This source files contains "gen" codegen routines that should 30 * be applicable to most targets. Only mid-level support utilities 31 * and "op" calls may be used here. 32 */ 33 34 /* 35 * To save scheduling time, helper calls are broken into two parts: generation of 36 * the helper target address, and the actuall call to the helper. Because x86 37 * has a memory call operation, part 1 is a NOP for x86. For other targets, 38 * load arguments between the two parts. 39 */ 40 int Mir2Lir::CallHelperSetup(ThreadOffset helper_offset) { 41 return (cu_->instruction_set == kX86) ? 0 : LoadHelper(helper_offset); 42 } 43 44 /* NOTE: if r_tgt is a temp, it will be freed following use */ 45 LIR* Mir2Lir::CallHelper(int r_tgt, ThreadOffset helper_offset, bool safepoint_pc) { 46 LIR* call_inst; 47 if (cu_->instruction_set == kX86) { 48 call_inst = OpThreadMem(kOpBlx, helper_offset); 49 } else { 50 call_inst = OpReg(kOpBlx, r_tgt); 51 FreeTemp(r_tgt); 52 } 53 if (safepoint_pc) { 54 MarkSafepointPC(call_inst); 55 } 56 return call_inst; 57 } 58 59 void Mir2Lir::CallRuntimeHelperImm(ThreadOffset helper_offset, int arg0, bool safepoint_pc) { 60 int r_tgt = CallHelperSetup(helper_offset); 61 LoadConstant(TargetReg(kArg0), arg0); 62 ClobberCalleeSave(); 63 CallHelper(r_tgt, helper_offset, safepoint_pc); 64 } 65 66 void Mir2Lir::CallRuntimeHelperReg(ThreadOffset helper_offset, int arg0, bool safepoint_pc) { 67 int r_tgt = CallHelperSetup(helper_offset); 68 OpRegCopy(TargetReg(kArg0), arg0); 69 ClobberCalleeSave(); 70 CallHelper(r_tgt, helper_offset, safepoint_pc); 71 } 72 73 void Mir2Lir::CallRuntimeHelperRegLocation(ThreadOffset helper_offset, RegLocation arg0, 74 bool safepoint_pc) { 75 int r_tgt = CallHelperSetup(helper_offset); 76 if (arg0.wide == 0) { 77 LoadValueDirectFixed(arg0, TargetReg(kArg0)); 78 } else { 79 LoadValueDirectWideFixed(arg0, TargetReg(kArg0), TargetReg(kArg1)); 80 } 81 ClobberCalleeSave(); 82 CallHelper(r_tgt, helper_offset, safepoint_pc); 83 } 84 85 void Mir2Lir::CallRuntimeHelperImmImm(ThreadOffset helper_offset, int arg0, int arg1, 86 bool safepoint_pc) { 87 int r_tgt = CallHelperSetup(helper_offset); 88 LoadConstant(TargetReg(kArg0), arg0); 89 LoadConstant(TargetReg(kArg1), arg1); 90 ClobberCalleeSave(); 91 CallHelper(r_tgt, helper_offset, safepoint_pc); 92 } 93 94 void Mir2Lir::CallRuntimeHelperImmRegLocation(ThreadOffset helper_offset, int arg0, 95 RegLocation arg1, bool safepoint_pc) { 96 int r_tgt = CallHelperSetup(helper_offset); 97 if (arg1.wide == 0) { 98 LoadValueDirectFixed(arg1, TargetReg(kArg1)); 99 } else { 100 LoadValueDirectWideFixed(arg1, TargetReg(kArg1), TargetReg(kArg2)); 101 } 102 LoadConstant(TargetReg(kArg0), arg0); 103 ClobberCalleeSave(); 104 CallHelper(r_tgt, helper_offset, safepoint_pc); 105 } 106 107 void Mir2Lir::CallRuntimeHelperRegLocationImm(ThreadOffset helper_offset, RegLocation arg0, int arg1, 108 bool safepoint_pc) { 109 int r_tgt = CallHelperSetup(helper_offset); 110 LoadValueDirectFixed(arg0, TargetReg(kArg0)); 111 LoadConstant(TargetReg(kArg1), arg1); 112 ClobberCalleeSave(); 113 CallHelper(r_tgt, helper_offset, safepoint_pc); 114 } 115 116 void Mir2Lir::CallRuntimeHelperImmReg(ThreadOffset helper_offset, int arg0, int arg1, 117 bool safepoint_pc) { 118 int r_tgt = CallHelperSetup(helper_offset); 119 OpRegCopy(TargetReg(kArg1), arg1); 120 LoadConstant(TargetReg(kArg0), arg0); 121 ClobberCalleeSave(); 122 CallHelper(r_tgt, helper_offset, safepoint_pc); 123 } 124 125 void Mir2Lir::CallRuntimeHelperRegImm(ThreadOffset helper_offset, int arg0, int arg1, 126 bool safepoint_pc) { 127 int r_tgt = CallHelperSetup(helper_offset); 128 OpRegCopy(TargetReg(kArg0), arg0); 129 LoadConstant(TargetReg(kArg1), arg1); 130 ClobberCalleeSave(); 131 CallHelper(r_tgt, helper_offset, safepoint_pc); 132 } 133 134 void Mir2Lir::CallRuntimeHelperImmMethod(ThreadOffset helper_offset, int arg0, bool safepoint_pc) { 135 int r_tgt = CallHelperSetup(helper_offset); 136 LoadCurrMethodDirect(TargetReg(kArg1)); 137 LoadConstant(TargetReg(kArg0), arg0); 138 ClobberCalleeSave(); 139 CallHelper(r_tgt, helper_offset, safepoint_pc); 140 } 141 142 void Mir2Lir::CallRuntimeHelperRegLocationRegLocation(ThreadOffset helper_offset, RegLocation arg0, 143 RegLocation arg1, bool safepoint_pc) { 144 int r_tgt = CallHelperSetup(helper_offset); 145 if (arg0.wide == 0) { 146 LoadValueDirectFixed(arg0, arg0.fp ? TargetReg(kFArg0) : TargetReg(kArg0)); 147 if (arg1.wide == 0) { 148 if (cu_->instruction_set == kMips) { 149 LoadValueDirectFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg1)); 150 } else { 151 LoadValueDirectFixed(arg1, TargetReg(kArg1)); 152 } 153 } else { 154 if (cu_->instruction_set == kMips) { 155 LoadValueDirectWideFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg1), arg1.fp ? TargetReg(kFArg3) : TargetReg(kArg2)); 156 } else { 157 LoadValueDirectWideFixed(arg1, TargetReg(kArg1), TargetReg(kArg2)); 158 } 159 } 160 } else { 161 LoadValueDirectWideFixed(arg0, arg0.fp ? TargetReg(kFArg0) : TargetReg(kArg0), arg0.fp ? TargetReg(kFArg1) : TargetReg(kArg1)); 162 if (arg1.wide == 0) { 163 LoadValueDirectFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg2)); 164 } else { 165 LoadValueDirectWideFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg2), arg1.fp ? TargetReg(kFArg3) : TargetReg(kArg3)); 166 } 167 } 168 ClobberCalleeSave(); 169 CallHelper(r_tgt, helper_offset, safepoint_pc); 170 } 171 172 void Mir2Lir::CallRuntimeHelperRegReg(ThreadOffset helper_offset, int arg0, int arg1, 173 bool safepoint_pc) { 174 int r_tgt = CallHelperSetup(helper_offset); 175 DCHECK_NE(TargetReg(kArg0), arg1); // check copy into arg0 won't clobber arg1 176 OpRegCopy(TargetReg(kArg0), arg0); 177 OpRegCopy(TargetReg(kArg1), arg1); 178 ClobberCalleeSave(); 179 CallHelper(r_tgt, helper_offset, safepoint_pc); 180 } 181 182 void Mir2Lir::CallRuntimeHelperRegRegImm(ThreadOffset helper_offset, int arg0, int arg1, 183 int arg2, bool safepoint_pc) { 184 int r_tgt = CallHelperSetup(helper_offset); 185 DCHECK_NE(TargetReg(kArg0), arg1); // check copy into arg0 won't clobber arg1 186 OpRegCopy(TargetReg(kArg0), arg0); 187 OpRegCopy(TargetReg(kArg1), arg1); 188 LoadConstant(TargetReg(kArg2), arg2); 189 ClobberCalleeSave(); 190 CallHelper(r_tgt, helper_offset, safepoint_pc); 191 } 192 193 void Mir2Lir::CallRuntimeHelperImmMethodRegLocation(ThreadOffset helper_offset, 194 int arg0, RegLocation arg2, bool safepoint_pc) { 195 int r_tgt = CallHelperSetup(helper_offset); 196 LoadValueDirectFixed(arg2, TargetReg(kArg2)); 197 LoadCurrMethodDirect(TargetReg(kArg1)); 198 LoadConstant(TargetReg(kArg0), arg0); 199 ClobberCalleeSave(); 200 CallHelper(r_tgt, helper_offset, safepoint_pc); 201 } 202 203 void Mir2Lir::CallRuntimeHelperImmMethodImm(ThreadOffset helper_offset, int arg0, 204 int arg2, bool safepoint_pc) { 205 int r_tgt = CallHelperSetup(helper_offset); 206 LoadCurrMethodDirect(TargetReg(kArg1)); 207 LoadConstant(TargetReg(kArg2), arg2); 208 LoadConstant(TargetReg(kArg0), arg0); 209 ClobberCalleeSave(); 210 CallHelper(r_tgt, helper_offset, safepoint_pc); 211 } 212 213 void Mir2Lir::CallRuntimeHelperImmRegLocationRegLocation(ThreadOffset helper_offset, 214 int arg0, RegLocation arg1, 215 RegLocation arg2, bool safepoint_pc) { 216 int r_tgt = CallHelperSetup(helper_offset); 217 LoadValueDirectFixed(arg1, TargetReg(kArg1)); 218 if (arg2.wide == 0) { 219 LoadValueDirectFixed(arg2, TargetReg(kArg2)); 220 } else { 221 LoadValueDirectWideFixed(arg2, TargetReg(kArg2), TargetReg(kArg3)); 222 } 223 LoadConstant(TargetReg(kArg0), arg0); 224 ClobberCalleeSave(); 225 CallHelper(r_tgt, helper_offset, safepoint_pc); 226 } 227 228 /* 229 * If there are any ins passed in registers that have not been promoted 230 * to a callee-save register, flush them to the frame. Perform intial 231 * assignment of promoted arguments. 232 * 233 * ArgLocs is an array of location records describing the incoming arguments 234 * with one location record per word of argument. 235 */ 236 void Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) { 237 /* 238 * Dummy up a RegLocation for the incoming Method* 239 * It will attempt to keep kArg0 live (or copy it to home location 240 * if promoted). 241 */ 242 RegLocation rl_src = rl_method; 243 rl_src.location = kLocPhysReg; 244 rl_src.low_reg = TargetReg(kArg0); 245 rl_src.home = false; 246 MarkLive(rl_src.low_reg, rl_src.s_reg_low); 247 StoreValue(rl_method, rl_src); 248 // If Method* has been promoted, explicitly flush 249 if (rl_method.location == kLocPhysReg) { 250 StoreWordDisp(TargetReg(kSp), 0, TargetReg(kArg0)); 251 } 252 253 if (cu_->num_ins == 0) 254 return; 255 const int num_arg_regs = 3; 256 static SpecialTargetRegister arg_regs[] = {kArg1, kArg2, kArg3}; 257 int start_vreg = cu_->num_dalvik_registers - cu_->num_ins; 258 /* 259 * Copy incoming arguments to their proper home locations. 260 * NOTE: an older version of dx had an issue in which 261 * it would reuse static method argument registers. 262 * This could result in the same Dalvik virtual register 263 * being promoted to both core and fp regs. To account for this, 264 * we only copy to the corresponding promoted physical register 265 * if it matches the type of the SSA name for the incoming 266 * argument. It is also possible that long and double arguments 267 * end up half-promoted. In those cases, we must flush the promoted 268 * half to memory as well. 269 */ 270 for (int i = 0; i < cu_->num_ins; i++) { 271 PromotionMap* v_map = &promotion_map_[start_vreg + i]; 272 if (i < num_arg_regs) { 273 // If arriving in register 274 bool need_flush = true; 275 RegLocation* t_loc = &ArgLocs[i]; 276 if ((v_map->core_location == kLocPhysReg) && !t_loc->fp) { 277 OpRegCopy(v_map->core_reg, TargetReg(arg_regs[i])); 278 need_flush = false; 279 } else if ((v_map->fp_location == kLocPhysReg) && t_loc->fp) { 280 OpRegCopy(v_map->FpReg, TargetReg(arg_regs[i])); 281 need_flush = false; 282 } else { 283 need_flush = true; 284 } 285 286 // For wide args, force flush if not fully promoted 287 if (t_loc->wide) { 288 PromotionMap* p_map = v_map + (t_loc->high_word ? -1 : +1); 289 // Is only half promoted? 290 need_flush |= (p_map->core_location != v_map->core_location) || 291 (p_map->fp_location != v_map->fp_location); 292 if ((cu_->instruction_set == kThumb2) && t_loc->fp && !need_flush) { 293 /* 294 * In Arm, a double is represented as a pair of consecutive single float 295 * registers starting at an even number. It's possible that both Dalvik vRegs 296 * representing the incoming double were independently promoted as singles - but 297 * not in a form usable as a double. If so, we need to flush - even though the 298 * incoming arg appears fully in register. At this point in the code, both 299 * halves of the double are promoted. Make sure they are in a usable form. 300 */ 301 int lowreg_index = start_vreg + i + (t_loc->high_word ? -1 : 0); 302 int low_reg = promotion_map_[lowreg_index].FpReg; 303 int high_reg = promotion_map_[lowreg_index + 1].FpReg; 304 if (((low_reg & 0x1) != 0) || (high_reg != (low_reg + 1))) { 305 need_flush = true; 306 } 307 } 308 } 309 if (need_flush) { 310 StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), 311 TargetReg(arg_regs[i]), kWord); 312 } 313 } else { 314 // If arriving in frame & promoted 315 if (v_map->core_location == kLocPhysReg) { 316 LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i), 317 v_map->core_reg); 318 } 319 if (v_map->fp_location == kLocPhysReg) { 320 LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i), 321 v_map->FpReg); 322 } 323 } 324 } 325 } 326 327 /* 328 * Bit of a hack here - in the absence of a real scheduling pass, 329 * emit the next instruction in static & direct invoke sequences. 330 */ 331 static int NextSDCallInsn(CompilationUnit* cu, CallInfo* info, 332 int state, const MethodReference& target_method, 333 uint32_t unused, 334 uintptr_t direct_code, uintptr_t direct_method, 335 InvokeType type) { 336 Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get()); 337 if (cu->instruction_set != kThumb2) { 338 // Disable sharpening 339 direct_code = 0; 340 direct_method = 0; 341 } 342 if (direct_code != 0 && direct_method != 0) { 343 switch (state) { 344 case 0: // Get the current Method* [sets kArg0] 345 if (direct_code != static_cast<unsigned int>(-1)) { 346 cg->LoadConstant(cg->TargetReg(kInvokeTgt), direct_code); 347 } else { 348 CHECK_EQ(cu->dex_file, target_method.dex_file); 349 LIR* data_target = cg->ScanLiteralPool(cg->code_literal_list_, 350 target_method.dex_method_index, 0); 351 if (data_target == NULL) { 352 data_target = cg->AddWordData(&cg->code_literal_list_, target_method.dex_method_index); 353 data_target->operands[1] = type; 354 } 355 LIR* load_pc_rel = cg->OpPcRelLoad(cg->TargetReg(kInvokeTgt), data_target); 356 cg->AppendLIR(load_pc_rel); 357 DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target); 358 } 359 if (direct_method != static_cast<unsigned int>(-1)) { 360 cg->LoadConstant(cg->TargetReg(kArg0), direct_method); 361 } else { 362 CHECK_EQ(cu->dex_file, target_method.dex_file); 363 LIR* data_target = cg->ScanLiteralPool(cg->method_literal_list_, 364 target_method.dex_method_index, 0); 365 if (data_target == NULL) { 366 data_target = cg->AddWordData(&cg->method_literal_list_, target_method.dex_method_index); 367 data_target->operands[1] = type; 368 } 369 LIR* load_pc_rel = cg->OpPcRelLoad(cg->TargetReg(kArg0), data_target); 370 cg->AppendLIR(load_pc_rel); 371 DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target); 372 } 373 break; 374 default: 375 return -1; 376 } 377 } else { 378 switch (state) { 379 case 0: // Get the current Method* [sets kArg0] 380 // TUNING: we can save a reg copy if Method* has been promoted. 381 cg->LoadCurrMethodDirect(cg->TargetReg(kArg0)); 382 break; 383 case 1: // Get method->dex_cache_resolved_methods_ 384 cg->LoadWordDisp(cg->TargetReg(kArg0), 385 mirror::ArtMethod::DexCacheResolvedMethodsOffset().Int32Value(), cg->TargetReg(kArg0)); 386 // Set up direct code if known. 387 if (direct_code != 0) { 388 if (direct_code != static_cast<unsigned int>(-1)) { 389 cg->LoadConstant(cg->TargetReg(kInvokeTgt), direct_code); 390 } else { 391 CHECK_EQ(cu->dex_file, target_method.dex_file); 392 LIR* data_target = cg->ScanLiteralPool(cg->code_literal_list_, 393 target_method.dex_method_index, 0); 394 if (data_target == NULL) { 395 data_target = cg->AddWordData(&cg->code_literal_list_, target_method.dex_method_index); 396 data_target->operands[1] = type; 397 } 398 LIR* load_pc_rel = cg->OpPcRelLoad(cg->TargetReg(kInvokeTgt), data_target); 399 cg->AppendLIR(load_pc_rel); 400 DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target); 401 } 402 } 403 break; 404 case 2: // Grab target method* 405 CHECK_EQ(cu->dex_file, target_method.dex_file); 406 cg->LoadWordDisp(cg->TargetReg(kArg0), 407 mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() + 408 (target_method.dex_method_index * 4), 409 cg-> TargetReg(kArg0)); 410 break; 411 case 3: // Grab the code from the method* 412 if (cu->instruction_set != kX86) { 413 if (direct_code == 0) { 414 cg->LoadWordDisp(cg->TargetReg(kArg0), 415 mirror::ArtMethod::GetEntryPointFromCompiledCodeOffset().Int32Value(), 416 cg->TargetReg(kInvokeTgt)); 417 } 418 break; 419 } 420 // Intentional fallthrough for x86 421 default: 422 return -1; 423 } 424 } 425 return state + 1; 426 } 427 428 /* 429 * Bit of a hack here - in the absence of a real scheduling pass, 430 * emit the next instruction in a virtual invoke sequence. 431 * We can use kLr as a temp prior to target address loading 432 * Note also that we'll load the first argument ("this") into 433 * kArg1 here rather than the standard LoadArgRegs. 434 */ 435 static int NextVCallInsn(CompilationUnit* cu, CallInfo* info, 436 int state, const MethodReference& target_method, 437 uint32_t method_idx, uintptr_t unused, uintptr_t unused2, 438 InvokeType unused3) { 439 Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get()); 440 /* 441 * This is the fast path in which the target virtual method is 442 * fully resolved at compile time. 443 */ 444 switch (state) { 445 case 0: { // Get "this" [set kArg1] 446 RegLocation rl_arg = info->args[0]; 447 cg->LoadValueDirectFixed(rl_arg, cg->TargetReg(kArg1)); 448 break; 449 } 450 case 1: // Is "this" null? [use kArg1] 451 cg->GenNullCheck(info->args[0].s_reg_low, cg->TargetReg(kArg1), info->opt_flags); 452 // get this->klass_ [use kArg1, set kInvokeTgt] 453 cg->LoadWordDisp(cg->TargetReg(kArg1), mirror::Object::ClassOffset().Int32Value(), 454 cg->TargetReg(kInvokeTgt)); 455 break; 456 case 2: // Get this->klass_->vtable [usr kInvokeTgt, set kInvokeTgt] 457 cg->LoadWordDisp(cg->TargetReg(kInvokeTgt), mirror::Class::VTableOffset().Int32Value(), 458 cg->TargetReg(kInvokeTgt)); 459 break; 460 case 3: // Get target method [use kInvokeTgt, set kArg0] 461 cg->LoadWordDisp(cg->TargetReg(kInvokeTgt), (method_idx * 4) + 462 mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value(), 463 cg->TargetReg(kArg0)); 464 break; 465 case 4: // Get the compiled code address [uses kArg0, sets kInvokeTgt] 466 if (cu->instruction_set != kX86) { 467 cg->LoadWordDisp(cg->TargetReg(kArg0), 468 mirror::ArtMethod::GetEntryPointFromCompiledCodeOffset().Int32Value(), 469 cg->TargetReg(kInvokeTgt)); 470 break; 471 } 472 // Intentional fallthrough for X86 473 default: 474 return -1; 475 } 476 return state + 1; 477 } 478 479 /* 480 * All invoke-interface calls bounce off of art_quick_invoke_interface_trampoline, 481 * which will locate the target and continue on via a tail call. 482 */ 483 static int NextInterfaceCallInsn(CompilationUnit* cu, CallInfo* info, int state, 484 const MethodReference& target_method, 485 uint32_t unused, uintptr_t unused2, 486 uintptr_t direct_method, InvokeType unused4) { 487 Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get()); 488 if (cu->instruction_set != kThumb2) { 489 // Disable sharpening 490 direct_method = 0; 491 } 492 ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeInterfaceTrampoline); 493 494 if (direct_method != 0) { 495 switch (state) { 496 case 0: // Load the trampoline target [sets kInvokeTgt]. 497 if (cu->instruction_set != kX86) { 498 cg->LoadWordDisp(cg->TargetReg(kSelf), trampoline.Int32Value(), 499 cg->TargetReg(kInvokeTgt)); 500 } 501 // Get the interface Method* [sets kArg0] 502 if (direct_method != static_cast<unsigned int>(-1)) { 503 cg->LoadConstant(cg->TargetReg(kArg0), direct_method); 504 } else { 505 CHECK_EQ(cu->dex_file, target_method.dex_file); 506 LIR* data_target = cg->ScanLiteralPool(cg->method_literal_list_, 507 target_method.dex_method_index, 0); 508 if (data_target == NULL) { 509 data_target = cg->AddWordData(&cg->method_literal_list_, 510 target_method.dex_method_index); 511 data_target->operands[1] = kInterface; 512 } 513 LIR* load_pc_rel = cg->OpPcRelLoad(cg->TargetReg(kArg0), data_target); 514 cg->AppendLIR(load_pc_rel); 515 DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target); 516 } 517 break; 518 default: 519 return -1; 520 } 521 } else { 522 switch (state) { 523 case 0: 524 // Get the current Method* [sets kArg0] - TUNING: remove copy of method if it is promoted. 525 cg->LoadCurrMethodDirect(cg->TargetReg(kArg0)); 526 // Load the trampoline target [sets kInvokeTgt]. 527 if (cu->instruction_set != kX86) { 528 cg->LoadWordDisp(cg->TargetReg(kSelf), trampoline.Int32Value(), 529 cg->TargetReg(kInvokeTgt)); 530 } 531 break; 532 case 1: // Get method->dex_cache_resolved_methods_ [set/use kArg0] 533 cg->LoadWordDisp(cg->TargetReg(kArg0), 534 mirror::ArtMethod::DexCacheResolvedMethodsOffset().Int32Value(), 535 cg->TargetReg(kArg0)); 536 break; 537 case 2: // Grab target method* [set/use kArg0] 538 CHECK_EQ(cu->dex_file, target_method.dex_file); 539 cg->LoadWordDisp(cg->TargetReg(kArg0), 540 mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() + 541 (target_method.dex_method_index * 4), 542 cg->TargetReg(kArg0)); 543 break; 544 default: 545 return -1; 546 } 547 } 548 return state + 1; 549 } 550 551 static int NextInvokeInsnSP(CompilationUnit* cu, CallInfo* info, ThreadOffset trampoline, 552 int state, const MethodReference& target_method, 553 uint32_t method_idx) { 554 Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get()); 555 /* 556 * This handles the case in which the base method is not fully 557 * resolved at compile time, we bail to a runtime helper. 558 */ 559 if (state == 0) { 560 if (cu->instruction_set != kX86) { 561 // Load trampoline target 562 cg->LoadWordDisp(cg->TargetReg(kSelf), trampoline.Int32Value(), cg->TargetReg(kInvokeTgt)); 563 } 564 // Load kArg0 with method index 565 CHECK_EQ(cu->dex_file, target_method.dex_file); 566 cg->LoadConstant(cg->TargetReg(kArg0), target_method.dex_method_index); 567 return 1; 568 } 569 return -1; 570 } 571 572 static int NextStaticCallInsnSP(CompilationUnit* cu, CallInfo* info, 573 int state, 574 const MethodReference& target_method, 575 uint32_t method_idx, 576 uintptr_t unused, uintptr_t unused2, 577 InvokeType unused3) { 578 ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeStaticTrampolineWithAccessCheck); 579 return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0); 580 } 581 582 static int NextDirectCallInsnSP(CompilationUnit* cu, CallInfo* info, int state, 583 const MethodReference& target_method, 584 uint32_t method_idx, uintptr_t unused, 585 uintptr_t unused2, InvokeType unused3) { 586 ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeDirectTrampolineWithAccessCheck); 587 return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0); 588 } 589 590 static int NextSuperCallInsnSP(CompilationUnit* cu, CallInfo* info, int state, 591 const MethodReference& target_method, 592 uint32_t method_idx, uintptr_t unused, 593 uintptr_t unused2, InvokeType unused3) { 594 ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeSuperTrampolineWithAccessCheck); 595 return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0); 596 } 597 598 static int NextVCallInsnSP(CompilationUnit* cu, CallInfo* info, int state, 599 const MethodReference& target_method, 600 uint32_t method_idx, uintptr_t unused, 601 uintptr_t unused2, InvokeType unused3) { 602 ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeVirtualTrampolineWithAccessCheck); 603 return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0); 604 } 605 606 static int NextInterfaceCallInsnWithAccessCheck(CompilationUnit* cu, 607 CallInfo* info, int state, 608 const MethodReference& target_method, 609 uint32_t unused, 610 uintptr_t unused2, uintptr_t unused3, 611 InvokeType unused4) { 612 ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeInterfaceTrampolineWithAccessCheck); 613 return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0); 614 } 615 616 int Mir2Lir::LoadArgRegs(CallInfo* info, int call_state, 617 NextCallInsn next_call_insn, 618 const MethodReference& target_method, 619 uint32_t vtable_idx, uintptr_t direct_code, 620 uintptr_t direct_method, InvokeType type, bool skip_this) { 621 int last_arg_reg = TargetReg(kArg3); 622 int next_reg = TargetReg(kArg1); 623 int next_arg = 0; 624 if (skip_this) { 625 next_reg++; 626 next_arg++; 627 } 628 for (; (next_reg <= last_arg_reg) && (next_arg < info->num_arg_words); next_reg++) { 629 RegLocation rl_arg = info->args[next_arg++]; 630 rl_arg = UpdateRawLoc(rl_arg); 631 if (rl_arg.wide && (next_reg <= TargetReg(kArg2))) { 632 LoadValueDirectWideFixed(rl_arg, next_reg, next_reg + 1); 633 next_reg++; 634 next_arg++; 635 } else { 636 if (rl_arg.wide) { 637 rl_arg.wide = false; 638 rl_arg.is_const = false; 639 } 640 LoadValueDirectFixed(rl_arg, next_reg); 641 } 642 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, 643 direct_code, direct_method, type); 644 } 645 return call_state; 646 } 647 648 /* 649 * Load up to 5 arguments, the first three of which will be in 650 * kArg1 .. kArg3. On entry kArg0 contains the current method pointer, 651 * and as part of the load sequence, it must be replaced with 652 * the target method pointer. Note, this may also be called 653 * for "range" variants if the number of arguments is 5 or fewer. 654 */ 655 int Mir2Lir::GenDalvikArgsNoRange(CallInfo* info, 656 int call_state, LIR** pcrLabel, NextCallInsn next_call_insn, 657 const MethodReference& target_method, 658 uint32_t vtable_idx, uintptr_t direct_code, 659 uintptr_t direct_method, InvokeType type, bool skip_this) { 660 RegLocation rl_arg; 661 662 /* If no arguments, just return */ 663 if (info->num_arg_words == 0) 664 return call_state; 665 666 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, 667 direct_code, direct_method, type); 668 669 DCHECK_LE(info->num_arg_words, 5); 670 if (info->num_arg_words > 3) { 671 int32_t next_use = 3; 672 // Detect special case of wide arg spanning arg3/arg4 673 RegLocation rl_use0 = info->args[0]; 674 RegLocation rl_use1 = info->args[1]; 675 RegLocation rl_use2 = info->args[2]; 676 if (((!rl_use0.wide && !rl_use1.wide) || rl_use0.wide) && 677 rl_use2.wide) { 678 int reg = -1; 679 // Wide spans, we need the 2nd half of uses[2]. 680 rl_arg = UpdateLocWide(rl_use2); 681 if (rl_arg.location == kLocPhysReg) { 682 reg = rl_arg.high_reg; 683 } else { 684 // kArg2 & rArg3 can safely be used here 685 reg = TargetReg(kArg3); 686 LoadWordDisp(TargetReg(kSp), SRegOffset(rl_arg.s_reg_low) + 4, reg); 687 call_state = next_call_insn(cu_, info, call_state, target_method, 688 vtable_idx, direct_code, direct_method, type); 689 } 690 StoreBaseDisp(TargetReg(kSp), (next_use + 1) * 4, reg, kWord); 691 StoreBaseDisp(TargetReg(kSp), 16 /* (3+1)*4 */, reg, kWord); 692 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, 693 direct_code, direct_method, type); 694 next_use++; 695 } 696 // Loop through the rest 697 while (next_use < info->num_arg_words) { 698 int low_reg; 699 int high_reg = -1; 700 rl_arg = info->args[next_use]; 701 rl_arg = UpdateRawLoc(rl_arg); 702 if (rl_arg.location == kLocPhysReg) { 703 low_reg = rl_arg.low_reg; 704 high_reg = rl_arg.high_reg; 705 } else { 706 low_reg = TargetReg(kArg2); 707 if (rl_arg.wide) { 708 high_reg = TargetReg(kArg3); 709 LoadValueDirectWideFixed(rl_arg, low_reg, high_reg); 710 } else { 711 LoadValueDirectFixed(rl_arg, low_reg); 712 } 713 call_state = next_call_insn(cu_, info, call_state, target_method, 714 vtable_idx, direct_code, direct_method, type); 715 } 716 int outs_offset = (next_use + 1) * 4; 717 if (rl_arg.wide) { 718 StoreBaseDispWide(TargetReg(kSp), outs_offset, low_reg, high_reg); 719 next_use += 2; 720 } else { 721 StoreWordDisp(TargetReg(kSp), outs_offset, low_reg); 722 next_use++; 723 } 724 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, 725 direct_code, direct_method, type); 726 } 727 } 728 729 call_state = LoadArgRegs(info, call_state, next_call_insn, 730 target_method, vtable_idx, direct_code, direct_method, 731 type, skip_this); 732 733 if (pcrLabel) { 734 *pcrLabel = GenNullCheck(info->args[0].s_reg_low, TargetReg(kArg1), info->opt_flags); 735 } 736 return call_state; 737 } 738 739 /* 740 * May have 0+ arguments (also used for jumbo). Note that 741 * source virtual registers may be in physical registers, so may 742 * need to be flushed to home location before copying. This 743 * applies to arg3 and above (see below). 744 * 745 * Two general strategies: 746 * If < 20 arguments 747 * Pass args 3-18 using vldm/vstm block copy 748 * Pass arg0, arg1 & arg2 in kArg1-kArg3 749 * If 20+ arguments 750 * Pass args arg19+ using memcpy block copy 751 * Pass arg0, arg1 & arg2 in kArg1-kArg3 752 * 753 */ 754 int Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state, 755 LIR** pcrLabel, NextCallInsn next_call_insn, 756 const MethodReference& target_method, 757 uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method, 758 InvokeType type, bool skip_this) { 759 // If we can treat it as non-range (Jumbo ops will use range form) 760 if (info->num_arg_words <= 5) 761 return GenDalvikArgsNoRange(info, call_state, pcrLabel, 762 next_call_insn, target_method, vtable_idx, 763 direct_code, direct_method, type, skip_this); 764 /* 765 * First load the non-register arguments. Both forms expect all 766 * of the source arguments to be in their home frame location, so 767 * scan the s_reg names and flush any that have been promoted to 768 * frame backing storage. 769 */ 770 // Scan the rest of the args - if in phys_reg flush to memory 771 for (int next_arg = 0; next_arg < info->num_arg_words;) { 772 RegLocation loc = info->args[next_arg]; 773 if (loc.wide) { 774 loc = UpdateLocWide(loc); 775 if ((next_arg >= 2) && (loc.location == kLocPhysReg)) { 776 StoreBaseDispWide(TargetReg(kSp), SRegOffset(loc.s_reg_low), 777 loc.low_reg, loc.high_reg); 778 } 779 next_arg += 2; 780 } else { 781 loc = UpdateLoc(loc); 782 if ((next_arg >= 3) && (loc.location == kLocPhysReg)) { 783 StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), 784 loc.low_reg, kWord); 785 } 786 next_arg++; 787 } 788 } 789 790 int start_offset = SRegOffset(info->args[3].s_reg_low); 791 int outs_offset = 4 /* Method* */ + (3 * 4); 792 if (cu_->instruction_set != kThumb2) { 793 // Generate memcpy 794 OpRegRegImm(kOpAdd, TargetReg(kArg0), TargetReg(kSp), outs_offset); 795 OpRegRegImm(kOpAdd, TargetReg(kArg1), TargetReg(kSp), start_offset); 796 CallRuntimeHelperRegRegImm(QUICK_ENTRYPOINT_OFFSET(pMemcpy), TargetReg(kArg0), 797 TargetReg(kArg1), (info->num_arg_words - 3) * 4, false); 798 } else { 799 if (info->num_arg_words >= 20) { 800 // Generate memcpy 801 OpRegRegImm(kOpAdd, TargetReg(kArg0), TargetReg(kSp), outs_offset); 802 OpRegRegImm(kOpAdd, TargetReg(kArg1), TargetReg(kSp), start_offset); 803 CallRuntimeHelperRegRegImm(QUICK_ENTRYPOINT_OFFSET(pMemcpy), TargetReg(kArg0), 804 TargetReg(kArg1), (info->num_arg_words - 3) * 4, false); 805 } else { 806 // Use vldm/vstm pair using kArg3 as a temp 807 int regs_left = std::min(info->num_arg_words - 3, 16); 808 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, 809 direct_code, direct_method, type); 810 OpRegRegImm(kOpAdd, TargetReg(kArg3), TargetReg(kSp), start_offset); 811 LIR* ld = OpVldm(TargetReg(kArg3), regs_left); 812 // TUNING: loosen barrier 813 ld->def_mask = ENCODE_ALL; 814 SetMemRefType(ld, true /* is_load */, kDalvikReg); 815 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, 816 direct_code, direct_method, type); 817 OpRegRegImm(kOpAdd, TargetReg(kArg3), TargetReg(kSp), 4 /* Method* */ + (3 * 4)); 818 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, 819 direct_code, direct_method, type); 820 LIR* st = OpVstm(TargetReg(kArg3), regs_left); 821 SetMemRefType(st, false /* is_load */, kDalvikReg); 822 st->def_mask = ENCODE_ALL; 823 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, 824 direct_code, direct_method, type); 825 } 826 } 827 828 call_state = LoadArgRegs(info, call_state, next_call_insn, 829 target_method, vtable_idx, direct_code, direct_method, 830 type, skip_this); 831 832 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, 833 direct_code, direct_method, type); 834 if (pcrLabel) { 835 *pcrLabel = GenNullCheck(info->args[0].s_reg_low, TargetReg(kArg1), info->opt_flags); 836 } 837 return call_state; 838 } 839 840 RegLocation Mir2Lir::InlineTarget(CallInfo* info) { 841 RegLocation res; 842 if (info->result.location == kLocInvalid) { 843 res = GetReturn(false); 844 } else { 845 res = info->result; 846 } 847 return res; 848 } 849 850 RegLocation Mir2Lir::InlineTargetWide(CallInfo* info) { 851 RegLocation res; 852 if (info->result.location == kLocInvalid) { 853 res = GetReturnWide(false); 854 } else { 855 res = info->result; 856 } 857 return res; 858 } 859 860 bool Mir2Lir::GenInlinedCharAt(CallInfo* info) { 861 if (cu_->instruction_set == kMips) { 862 // TODO - add Mips implementation 863 return false; 864 } 865 // Location of reference to data array 866 int value_offset = mirror::String::ValueOffset().Int32Value(); 867 // Location of count 868 int count_offset = mirror::String::CountOffset().Int32Value(); 869 // Starting offset within data array 870 int offset_offset = mirror::String::OffsetOffset().Int32Value(); 871 // Start of char data with array_ 872 int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value(); 873 874 RegLocation rl_obj = info->args[0]; 875 RegLocation rl_idx = info->args[1]; 876 rl_obj = LoadValue(rl_obj, kCoreReg); 877 rl_idx = LoadValue(rl_idx, kCoreReg); 878 int reg_max; 879 GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, info->opt_flags); 880 bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK)); 881 LIR* launch_pad = NULL; 882 int reg_off = INVALID_REG; 883 int reg_ptr = INVALID_REG; 884 if (cu_->instruction_set != kX86) { 885 reg_off = AllocTemp(); 886 reg_ptr = AllocTemp(); 887 if (range_check) { 888 reg_max = AllocTemp(); 889 LoadWordDisp(rl_obj.low_reg, count_offset, reg_max); 890 } 891 LoadWordDisp(rl_obj.low_reg, offset_offset, reg_off); 892 LoadWordDisp(rl_obj.low_reg, value_offset, reg_ptr); 893 if (range_check) { 894 // Set up a launch pad to allow retry in case of bounds violation */ 895 launch_pad = RawLIR(0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info)); 896 intrinsic_launchpads_.Insert(launch_pad); 897 OpRegReg(kOpCmp, rl_idx.low_reg, reg_max); 898 FreeTemp(reg_max); 899 OpCondBranch(kCondCs, launch_pad); 900 } 901 } else { 902 if (range_check) { 903 reg_max = AllocTemp(); 904 LoadWordDisp(rl_obj.low_reg, count_offset, reg_max); 905 // Set up a launch pad to allow retry in case of bounds violation */ 906 launch_pad = RawLIR(0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info)); 907 intrinsic_launchpads_.Insert(launch_pad); 908 OpRegReg(kOpCmp, rl_idx.low_reg, reg_max); 909 FreeTemp(reg_max); 910 OpCondBranch(kCondCc, launch_pad); 911 } 912 reg_off = AllocTemp(); 913 reg_ptr = AllocTemp(); 914 LoadWordDisp(rl_obj.low_reg, offset_offset, reg_off); 915 LoadWordDisp(rl_obj.low_reg, value_offset, reg_ptr); 916 } 917 OpRegImm(kOpAdd, reg_ptr, data_offset); 918 OpRegReg(kOpAdd, reg_off, rl_idx.low_reg); 919 FreeTemp(rl_obj.low_reg); 920 FreeTemp(rl_idx.low_reg); 921 RegLocation rl_dest = InlineTarget(info); 922 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); 923 LoadBaseIndexed(reg_ptr, reg_off, rl_result.low_reg, 1, kUnsignedHalf); 924 FreeTemp(reg_off); 925 FreeTemp(reg_ptr); 926 StoreValue(rl_dest, rl_result); 927 if (range_check) { 928 launch_pad->operands[2] = 0; // no resumption 929 } 930 // Record that we've already inlined & null checked 931 info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK); 932 return true; 933 } 934 935 // Generates an inlined String.is_empty or String.length. 936 bool Mir2Lir::GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty) { 937 if (cu_->instruction_set == kMips) { 938 // TODO - add Mips implementation 939 return false; 940 } 941 // dst = src.length(); 942 RegLocation rl_obj = info->args[0]; 943 rl_obj = LoadValue(rl_obj, kCoreReg); 944 RegLocation rl_dest = InlineTarget(info); 945 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); 946 GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, info->opt_flags); 947 LoadWordDisp(rl_obj.low_reg, mirror::String::CountOffset().Int32Value(), rl_result.low_reg); 948 if (is_empty) { 949 // dst = (dst == 0); 950 if (cu_->instruction_set == kThumb2) { 951 int t_reg = AllocTemp(); 952 OpRegReg(kOpNeg, t_reg, rl_result.low_reg); 953 OpRegRegReg(kOpAdc, rl_result.low_reg, rl_result.low_reg, t_reg); 954 } else { 955 DCHECK_EQ(cu_->instruction_set, kX86); 956 OpRegImm(kOpSub, rl_result.low_reg, 1); 957 OpRegImm(kOpLsr, rl_result.low_reg, 31); 958 } 959 } 960 StoreValue(rl_dest, rl_result); 961 return true; 962 } 963 964 bool Mir2Lir::GenInlinedAbsInt(CallInfo* info) { 965 if (cu_->instruction_set == kMips) { 966 // TODO - add Mips implementation 967 return false; 968 } 969 RegLocation rl_src = info->args[0]; 970 rl_src = LoadValue(rl_src, kCoreReg); 971 RegLocation rl_dest = InlineTarget(info); 972 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); 973 int sign_reg = AllocTemp(); 974 // abs(x) = y<=x>>31, (x+y)^y. 975 OpRegRegImm(kOpAsr, sign_reg, rl_src.low_reg, 31); 976 OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, sign_reg); 977 OpRegReg(kOpXor, rl_result.low_reg, sign_reg); 978 StoreValue(rl_dest, rl_result); 979 return true; 980 } 981 982 bool Mir2Lir::GenInlinedAbsLong(CallInfo* info) { 983 if (cu_->instruction_set == kMips) { 984 // TODO - add Mips implementation 985 return false; 986 } 987 if (cu_->instruction_set == kThumb2) { 988 RegLocation rl_src = info->args[0]; 989 rl_src = LoadValueWide(rl_src, kCoreReg); 990 RegLocation rl_dest = InlineTargetWide(info); 991 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); 992 int sign_reg = AllocTemp(); 993 // abs(x) = y<=x>>31, (x+y)^y. 994 OpRegRegImm(kOpAsr, sign_reg, rl_src.high_reg, 31); 995 OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, sign_reg); 996 OpRegRegReg(kOpAdc, rl_result.high_reg, rl_src.high_reg, sign_reg); 997 OpRegReg(kOpXor, rl_result.low_reg, sign_reg); 998 OpRegReg(kOpXor, rl_result.high_reg, sign_reg); 999 StoreValueWide(rl_dest, rl_result); 1000 return true; 1001 } else { 1002 DCHECK_EQ(cu_->instruction_set, kX86); 1003 // Reuse source registers to avoid running out of temps 1004 RegLocation rl_src = info->args[0]; 1005 rl_src = LoadValueWide(rl_src, kCoreReg); 1006 RegLocation rl_dest = InlineTargetWide(info); 1007 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); 1008 OpRegCopyWide(rl_result.low_reg, rl_result.high_reg, rl_src.low_reg, rl_src.high_reg); 1009 FreeTemp(rl_src.low_reg); 1010 FreeTemp(rl_src.high_reg); 1011 int sign_reg = AllocTemp(); 1012 // abs(x) = y<=x>>31, (x+y)^y. 1013 OpRegRegImm(kOpAsr, sign_reg, rl_result.high_reg, 31); 1014 OpRegReg(kOpAdd, rl_result.low_reg, sign_reg); 1015 OpRegReg(kOpAdc, rl_result.high_reg, sign_reg); 1016 OpRegReg(kOpXor, rl_result.low_reg, sign_reg); 1017 OpRegReg(kOpXor, rl_result.high_reg, sign_reg); 1018 StoreValueWide(rl_dest, rl_result); 1019 return true; 1020 } 1021 } 1022 1023 bool Mir2Lir::GenInlinedFloatCvt(CallInfo* info) { 1024 if (cu_->instruction_set == kMips) { 1025 // TODO - add Mips implementation 1026 return false; 1027 } 1028 RegLocation rl_src = info->args[0]; 1029 RegLocation rl_dest = InlineTarget(info); 1030 StoreValue(rl_dest, rl_src); 1031 return true; 1032 } 1033 1034 bool Mir2Lir::GenInlinedDoubleCvt(CallInfo* info) { 1035 if (cu_->instruction_set == kMips) { 1036 // TODO - add Mips implementation 1037 return false; 1038 } 1039 RegLocation rl_src = info->args[0]; 1040 RegLocation rl_dest = InlineTargetWide(info); 1041 StoreValueWide(rl_dest, rl_src); 1042 return true; 1043 } 1044 1045 /* 1046 * Fast string.index_of(I) & (II). Tests for simple case of char <= 0xffff, 1047 * otherwise bails to standard library code. 1048 */ 1049 bool Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) { 1050 if (cu_->instruction_set == kMips) { 1051 // TODO - add Mips implementation 1052 return false; 1053 } 1054 ClobberCalleeSave(); 1055 LockCallTemps(); // Using fixed registers 1056 int reg_ptr = TargetReg(kArg0); 1057 int reg_char = TargetReg(kArg1); 1058 int reg_start = TargetReg(kArg2); 1059 1060 RegLocation rl_obj = info->args[0]; 1061 RegLocation rl_char = info->args[1]; 1062 RegLocation rl_start = info->args[2]; 1063 LoadValueDirectFixed(rl_obj, reg_ptr); 1064 LoadValueDirectFixed(rl_char, reg_char); 1065 if (zero_based) { 1066 LoadConstant(reg_start, 0); 1067 } else { 1068 LoadValueDirectFixed(rl_start, reg_start); 1069 } 1070 int r_tgt = (cu_->instruction_set != kX86) ? LoadHelper(QUICK_ENTRYPOINT_OFFSET(pIndexOf)) : 0; 1071 GenNullCheck(rl_obj.s_reg_low, reg_ptr, info->opt_flags); 1072 LIR* launch_pad = RawLIR(0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info)); 1073 intrinsic_launchpads_.Insert(launch_pad); 1074 OpCmpImmBranch(kCondGt, reg_char, 0xFFFF, launch_pad); 1075 // NOTE: not a safepoint 1076 if (cu_->instruction_set != kX86) { 1077 OpReg(kOpBlx, r_tgt); 1078 } else { 1079 OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pIndexOf)); 1080 } 1081 LIR* resume_tgt = NewLIR0(kPseudoTargetLabel); 1082 launch_pad->operands[2] = reinterpret_cast<uintptr_t>(resume_tgt); 1083 // Record that we've already inlined & null checked 1084 info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK); 1085 RegLocation rl_return = GetReturn(false); 1086 RegLocation rl_dest = InlineTarget(info); 1087 StoreValue(rl_dest, rl_return); 1088 return true; 1089 } 1090 1091 /* Fast string.compareTo(Ljava/lang/string;)I. */ 1092 bool Mir2Lir::GenInlinedStringCompareTo(CallInfo* info) { 1093 if (cu_->instruction_set == kMips) { 1094 // TODO - add Mips implementation 1095 return false; 1096 } 1097 ClobberCalleeSave(); 1098 LockCallTemps(); // Using fixed registers 1099 int reg_this = TargetReg(kArg0); 1100 int reg_cmp = TargetReg(kArg1); 1101 1102 RegLocation rl_this = info->args[0]; 1103 RegLocation rl_cmp = info->args[1]; 1104 LoadValueDirectFixed(rl_this, reg_this); 1105 LoadValueDirectFixed(rl_cmp, reg_cmp); 1106 int r_tgt = (cu_->instruction_set != kX86) ? 1107 LoadHelper(QUICK_ENTRYPOINT_OFFSET(pStringCompareTo)) : 0; 1108 GenNullCheck(rl_this.s_reg_low, reg_this, info->opt_flags); 1109 // TUNING: check if rl_cmp.s_reg_low is already null checked 1110 LIR* launch_pad = RawLIR(0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info)); 1111 intrinsic_launchpads_.Insert(launch_pad); 1112 OpCmpImmBranch(kCondEq, reg_cmp, 0, launch_pad); 1113 // NOTE: not a safepoint 1114 if (cu_->instruction_set != kX86) { 1115 OpReg(kOpBlx, r_tgt); 1116 } else { 1117 OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pStringCompareTo)); 1118 } 1119 launch_pad->operands[2] = 0; // No return possible 1120 // Record that we've already inlined & null checked 1121 info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK); 1122 RegLocation rl_return = GetReturn(false); 1123 RegLocation rl_dest = InlineTarget(info); 1124 StoreValue(rl_dest, rl_return); 1125 return true; 1126 } 1127 1128 bool Mir2Lir::GenInlinedCurrentThread(CallInfo* info) { 1129 RegLocation rl_dest = InlineTarget(info); 1130 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); 1131 ThreadOffset offset = Thread::PeerOffset(); 1132 if (cu_->instruction_set == kThumb2 || cu_->instruction_set == kMips) { 1133 LoadWordDisp(TargetReg(kSelf), offset.Int32Value(), rl_result.low_reg); 1134 } else { 1135 CHECK(cu_->instruction_set == kX86); 1136 reinterpret_cast<X86Mir2Lir*>(this)->OpRegThreadMem(kOpMov, rl_result.low_reg, offset); 1137 } 1138 StoreValue(rl_dest, rl_result); 1139 return true; 1140 } 1141 1142 bool Mir2Lir::GenInlinedUnsafeGet(CallInfo* info, 1143 bool is_long, bool is_volatile) { 1144 if (cu_->instruction_set == kMips) { 1145 // TODO - add Mips implementation 1146 return false; 1147 } 1148 // Unused - RegLocation rl_src_unsafe = info->args[0]; 1149 RegLocation rl_src_obj = info->args[1]; // Object 1150 RegLocation rl_src_offset = info->args[2]; // long low 1151 rl_src_offset.wide = 0; // ignore high half in info->args[3] 1152 RegLocation rl_dest = InlineTarget(info); // result reg 1153 if (is_volatile) { 1154 GenMemBarrier(kLoadLoad); 1155 } 1156 RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg); 1157 RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg); 1158 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); 1159 if (is_long) { 1160 OpRegReg(kOpAdd, rl_object.low_reg, rl_offset.low_reg); 1161 LoadBaseDispWide(rl_object.low_reg, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG); 1162 StoreValueWide(rl_dest, rl_result); 1163 } else { 1164 LoadBaseIndexed(rl_object.low_reg, rl_offset.low_reg, rl_result.low_reg, 0, kWord); 1165 StoreValue(rl_dest, rl_result); 1166 } 1167 return true; 1168 } 1169 1170 bool Mir2Lir::GenInlinedUnsafePut(CallInfo* info, bool is_long, 1171 bool is_object, bool is_volatile, bool is_ordered) { 1172 if (cu_->instruction_set == kMips) { 1173 // TODO - add Mips implementation 1174 return false; 1175 } 1176 if (cu_->instruction_set == kX86 && is_object) { 1177 // TODO: fix X86, it exhausts registers for card marking. 1178 return false; 1179 } 1180 // Unused - RegLocation rl_src_unsafe = info->args[0]; 1181 RegLocation rl_src_obj = info->args[1]; // Object 1182 RegLocation rl_src_offset = info->args[2]; // long low 1183 rl_src_offset.wide = 0; // ignore high half in info->args[3] 1184 RegLocation rl_src_value = info->args[4]; // value to store 1185 if (is_volatile || is_ordered) { 1186 GenMemBarrier(kStoreStore); 1187 } 1188 RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg); 1189 RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg); 1190 RegLocation rl_value; 1191 if (is_long) { 1192 rl_value = LoadValueWide(rl_src_value, kCoreReg); 1193 OpRegReg(kOpAdd, rl_object.low_reg, rl_offset.low_reg); 1194 StoreBaseDispWide(rl_object.low_reg, 0, rl_value.low_reg, rl_value.high_reg); 1195 } else { 1196 rl_value = LoadValue(rl_src_value, kCoreReg); 1197 StoreBaseIndexed(rl_object.low_reg, rl_offset.low_reg, rl_value.low_reg, 0, kWord); 1198 } 1199 if (is_volatile) { 1200 GenMemBarrier(kStoreLoad); 1201 } 1202 if (is_object) { 1203 MarkGCCard(rl_value.low_reg, rl_object.low_reg); 1204 } 1205 return true; 1206 } 1207 1208 bool Mir2Lir::GenIntrinsic(CallInfo* info) { 1209 if (info->opt_flags & MIR_INLINED) { 1210 return false; 1211 } 1212 /* 1213 * TODO: move these to a target-specific structured constant array 1214 * and use a generic match function. The list of intrinsics may be 1215 * slightly different depending on target. 1216 * TODO: Fold this into a matching function that runs during 1217 * basic block building. This should be part of the action for 1218 * small method inlining and recognition of the special object init 1219 * method. By doing this during basic block construction, we can also 1220 * take advantage of/generate new useful dataflow info. 1221 */ 1222 StringPiece tgt_methods_declaring_class( 1223 cu_->dex_file->GetMethodDeclaringClassDescriptor(cu_->dex_file->GetMethodId(info->index))); 1224 if (tgt_methods_declaring_class.starts_with("Ljava/lang/Double;")) { 1225 std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file)); 1226 if (tgt_method == "long java.lang.Double.doubleToRawLongBits(double)") { 1227 return GenInlinedDoubleCvt(info); 1228 } 1229 if (tgt_method == "double java.lang.Double.longBitsToDouble(long)") { 1230 return GenInlinedDoubleCvt(info); 1231 } 1232 } else if (tgt_methods_declaring_class.starts_with("Ljava/lang/Float;")) { 1233 std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file)); 1234 if (tgt_method == "int java.lang.Float.float_to_raw_int_bits(float)") { 1235 return GenInlinedFloatCvt(info); 1236 } 1237 if (tgt_method == "float java.lang.Float.intBitsToFloat(int)") { 1238 return GenInlinedFloatCvt(info); 1239 } 1240 } else if (tgt_methods_declaring_class.starts_with("Ljava/lang/Math;") || 1241 tgt_methods_declaring_class.starts_with("Ljava/lang/StrictMath;")) { 1242 std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file)); 1243 if (tgt_method == "int java.lang.Math.abs(int)" || 1244 tgt_method == "int java.lang.StrictMath.abs(int)") { 1245 return GenInlinedAbsInt(info); 1246 } 1247 if (tgt_method == "long java.lang.Math.abs(long)" || 1248 tgt_method == "long java.lang.StrictMath.abs(long)") { 1249 return GenInlinedAbsLong(info); 1250 } 1251 if (tgt_method == "int java.lang.Math.max(int, int)" || 1252 tgt_method == "int java.lang.StrictMath.max(int, int)") { 1253 return GenInlinedMinMaxInt(info, false /* is_min */); 1254 } 1255 if (tgt_method == "int java.lang.Math.min(int, int)" || 1256 tgt_method == "int java.lang.StrictMath.min(int, int)") { 1257 return GenInlinedMinMaxInt(info, true /* is_min */); 1258 } 1259 if (tgt_method == "double java.lang.Math.sqrt(double)" || 1260 tgt_method == "double java.lang.StrictMath.sqrt(double)") { 1261 return GenInlinedSqrt(info); 1262 } 1263 } else if (tgt_methods_declaring_class.starts_with("Ljava/lang/String;")) { 1264 std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file)); 1265 if (tgt_method == "char java.lang.String.charAt(int)") { 1266 return GenInlinedCharAt(info); 1267 } 1268 if (tgt_method == "int java.lang.String.compareTo(java.lang.String)") { 1269 return GenInlinedStringCompareTo(info); 1270 } 1271 if (tgt_method == "boolean java.lang.String.is_empty()") { 1272 return GenInlinedStringIsEmptyOrLength(info, true /* is_empty */); 1273 } 1274 if (tgt_method == "int java.lang.String.index_of(int, int)") { 1275 return GenInlinedIndexOf(info, false /* base 0 */); 1276 } 1277 if (tgt_method == "int java.lang.String.index_of(int)") { 1278 return GenInlinedIndexOf(info, true /* base 0 */); 1279 } 1280 if (tgt_method == "int java.lang.String.length()") { 1281 return GenInlinedStringIsEmptyOrLength(info, false /* is_empty */); 1282 } 1283 } else if (tgt_methods_declaring_class.starts_with("Ljava/lang/Thread;")) { 1284 std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file)); 1285 if (tgt_method == "java.lang.Thread java.lang.Thread.currentThread()") { 1286 return GenInlinedCurrentThread(info); 1287 } 1288 } else if (tgt_methods_declaring_class.starts_with("Lsun/misc/Unsafe;")) { 1289 std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file)); 1290 if (tgt_method == "boolean sun.misc.Unsafe.compareAndSwapInt(java.lang.Object, long, int, int)") { 1291 return GenInlinedCas32(info, false); 1292 } 1293 if (tgt_method == "boolean sun.misc.Unsafe.compareAndSwapObject(java.lang.Object, long, java.lang.Object, java.lang.Object)") { 1294 return GenInlinedCas32(info, true); 1295 } 1296 if (tgt_method == "int sun.misc.Unsafe.getInt(java.lang.Object, long)") { 1297 return GenInlinedUnsafeGet(info, false /* is_long */, false /* is_volatile */); 1298 } 1299 if (tgt_method == "int sun.misc.Unsafe.getIntVolatile(java.lang.Object, long)") { 1300 return GenInlinedUnsafeGet(info, false /* is_long */, true /* is_volatile */); 1301 } 1302 if (tgt_method == "void sun.misc.Unsafe.putInt(java.lang.Object, long, int)") { 1303 return GenInlinedUnsafePut(info, false /* is_long */, false /* is_object */, 1304 false /* is_volatile */, false /* is_ordered */); 1305 } 1306 if (tgt_method == "void sun.misc.Unsafe.putIntVolatile(java.lang.Object, long, int)") { 1307 return GenInlinedUnsafePut(info, false /* is_long */, false /* is_object */, 1308 true /* is_volatile */, false /* is_ordered */); 1309 } 1310 if (tgt_method == "void sun.misc.Unsafe.putOrderedInt(java.lang.Object, long, int)") { 1311 return GenInlinedUnsafePut(info, false /* is_long */, false /* is_object */, 1312 false /* is_volatile */, true /* is_ordered */); 1313 } 1314 if (tgt_method == "long sun.misc.Unsafe.getLong(java.lang.Object, long)") { 1315 return GenInlinedUnsafeGet(info, true /* is_long */, false /* is_volatile */); 1316 } 1317 if (tgt_method == "long sun.misc.Unsafe.getLongVolatile(java.lang.Object, long)") { 1318 return GenInlinedUnsafeGet(info, true /* is_long */, true /* is_volatile */); 1319 } 1320 if (tgt_method == "void sun.misc.Unsafe.putLong(java.lang.Object, long, long)") { 1321 return GenInlinedUnsafePut(info, true /* is_long */, false /* is_object */, 1322 false /* is_volatile */, false /* is_ordered */); 1323 } 1324 if (tgt_method == "void sun.misc.Unsafe.putLongVolatile(java.lang.Object, long, long)") { 1325 return GenInlinedUnsafePut(info, true /* is_long */, false /* is_object */, 1326 true /* is_volatile */, false /* is_ordered */); 1327 } 1328 if (tgt_method == "void sun.misc.Unsafe.putOrderedLong(java.lang.Object, long, long)") { 1329 return GenInlinedUnsafePut(info, true /* is_long */, false /* is_object */, 1330 false /* is_volatile */, true /* is_ordered */); 1331 } 1332 if (tgt_method == "java.lang.Object sun.misc.Unsafe.getObject(java.lang.Object, long)") { 1333 return GenInlinedUnsafeGet(info, false /* is_long */, false /* is_volatile */); 1334 } 1335 if (tgt_method == "java.lang.Object sun.misc.Unsafe.getObjectVolatile(java.lang.Object, long)") { 1336 return GenInlinedUnsafeGet(info, false /* is_long */, true /* is_volatile */); 1337 } 1338 if (tgt_method == "void sun.misc.Unsafe.putObject(java.lang.Object, long, java.lang.Object)") { 1339 return GenInlinedUnsafePut(info, false /* is_long */, true /* is_object */, 1340 false /* is_volatile */, false /* is_ordered */); 1341 } 1342 if (tgt_method == "void sun.misc.Unsafe.putObjectVolatile(java.lang.Object, long, java.lang.Object)") { 1343 return GenInlinedUnsafePut(info, false /* is_long */, true /* is_object */, 1344 true /* is_volatile */, false /* is_ordered */); 1345 } 1346 if (tgt_method == "void sun.misc.Unsafe.putOrderedObject(java.lang.Object, long, java.lang.Object)") { 1347 return GenInlinedUnsafePut(info, false /* is_long */, true /* is_object */, 1348 false /* is_volatile */, true /* is_ordered */); 1349 } 1350 } 1351 return false; 1352 } 1353 1354 void Mir2Lir::GenInvoke(CallInfo* info) { 1355 if (GenIntrinsic(info)) { 1356 return; 1357 } 1358 InvokeType original_type = info->type; // avoiding mutation by ComputeInvokeInfo 1359 int call_state = 0; 1360 LIR* null_ck; 1361 LIR** p_null_ck = NULL; 1362 NextCallInsn next_call_insn; 1363 FlushAllRegs(); /* Everything to home location */ 1364 // Explicit register usage 1365 LockCallTemps(); 1366 1367 DexCompilationUnit* cUnit = mir_graph_->GetCurrentDexCompilationUnit(); 1368 MethodReference target_method(cUnit->GetDexFile(), info->index); 1369 int vtable_idx; 1370 uintptr_t direct_code; 1371 uintptr_t direct_method; 1372 bool skip_this; 1373 bool fast_path = 1374 cu_->compiler_driver->ComputeInvokeInfo(mir_graph_->GetCurrentDexCompilationUnit(), 1375 current_dalvik_offset_, 1376 info->type, target_method, 1377 vtable_idx, 1378 direct_code, direct_method, 1379 true) && !SLOW_INVOKE_PATH; 1380 if (info->type == kInterface) { 1381 if (fast_path) { 1382 p_null_ck = &null_ck; 1383 } 1384 next_call_insn = fast_path ? NextInterfaceCallInsn : NextInterfaceCallInsnWithAccessCheck; 1385 skip_this = false; 1386 } else if (info->type == kDirect) { 1387 if (fast_path) { 1388 p_null_ck = &null_ck; 1389 } 1390 next_call_insn = fast_path ? NextSDCallInsn : NextDirectCallInsnSP; 1391 skip_this = false; 1392 } else if (info->type == kStatic) { 1393 next_call_insn = fast_path ? NextSDCallInsn : NextStaticCallInsnSP; 1394 skip_this = false; 1395 } else if (info->type == kSuper) { 1396 DCHECK(!fast_path); // Fast path is a direct call. 1397 next_call_insn = NextSuperCallInsnSP; 1398 skip_this = false; 1399 } else { 1400 DCHECK_EQ(info->type, kVirtual); 1401 next_call_insn = fast_path ? NextVCallInsn : NextVCallInsnSP; 1402 skip_this = fast_path; 1403 } 1404 if (!info->is_range) { 1405 call_state = GenDalvikArgsNoRange(info, call_state, p_null_ck, 1406 next_call_insn, target_method, 1407 vtable_idx, direct_code, direct_method, 1408 original_type, skip_this); 1409 } else { 1410 call_state = GenDalvikArgsRange(info, call_state, p_null_ck, 1411 next_call_insn, target_method, vtable_idx, 1412 direct_code, direct_method, original_type, 1413 skip_this); 1414 } 1415 // Finish up any of the call sequence not interleaved in arg loading 1416 while (call_state >= 0) { 1417 call_state = next_call_insn(cu_, info, call_state, target_method, 1418 vtable_idx, direct_code, direct_method, 1419 original_type); 1420 } 1421 LIR* call_inst; 1422 if (cu_->instruction_set != kX86) { 1423 call_inst = OpReg(kOpBlx, TargetReg(kInvokeTgt)); 1424 } else { 1425 if (fast_path && info->type != kInterface) { 1426 call_inst = OpMem(kOpBlx, TargetReg(kArg0), 1427 mirror::ArtMethod::GetEntryPointFromCompiledCodeOffset().Int32Value()); 1428 } else { 1429 ThreadOffset trampoline(-1); 1430 switch (info->type) { 1431 case kInterface: 1432 trampoline = fast_path ? QUICK_ENTRYPOINT_OFFSET(pInvokeInterfaceTrampoline) 1433 : QUICK_ENTRYPOINT_OFFSET(pInvokeInterfaceTrampolineWithAccessCheck); 1434 break; 1435 case kDirect: 1436 trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeDirectTrampolineWithAccessCheck); 1437 break; 1438 case kStatic: 1439 trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeStaticTrampolineWithAccessCheck); 1440 break; 1441 case kSuper: 1442 trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeSuperTrampolineWithAccessCheck); 1443 break; 1444 case kVirtual: 1445 trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeVirtualTrampolineWithAccessCheck); 1446 break; 1447 default: 1448 LOG(FATAL) << "Unexpected invoke type"; 1449 } 1450 call_inst = OpThreadMem(kOpBlx, trampoline); 1451 } 1452 } 1453 MarkSafepointPC(call_inst); 1454 1455 ClobberCalleeSave(); 1456 if (info->result.location != kLocInvalid) { 1457 // We have a following MOVE_RESULT - do it now. 1458 if (info->result.wide) { 1459 RegLocation ret_loc = GetReturnWide(info->result.fp); 1460 StoreValueWide(info->result, ret_loc); 1461 } else { 1462 RegLocation ret_loc = GetReturn(info->result.fp); 1463 StoreValue(info->result, ret_loc); 1464 } 1465 } 1466 } 1467 1468 } // namespace art 1469