Home | History | Annotate | Download | only in memory
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 // Scopers help you manage ownership of a pointer, helping you easily manage the
      6 // a pointer within a scope, and automatically destroying the pointer at the
      7 // end of a scope.  There are two main classes you will use, which correspond
      8 // to the operators new/delete and new[]/delete[].
      9 //
     10 // Example usage (scoped_ptr<T>):
     11 //   {
     12 //     scoped_ptr<Foo> foo(new Foo("wee"));
     13 //   }  // foo goes out of scope, releasing the pointer with it.
     14 //
     15 //   {
     16 //     scoped_ptr<Foo> foo;          // No pointer managed.
     17 //     foo.reset(new Foo("wee"));    // Now a pointer is managed.
     18 //     foo.reset(new Foo("wee2"));   // Foo("wee") was destroyed.
     19 //     foo.reset(new Foo("wee3"));   // Foo("wee2") was destroyed.
     20 //     foo->Method();                // Foo::Method() called.
     21 //     foo.get()->Method();          // Foo::Method() called.
     22 //     SomeFunc(foo.release());      // SomeFunc takes ownership, foo no longer
     23 //                                   // manages a pointer.
     24 //     foo.reset(new Foo("wee4"));   // foo manages a pointer again.
     25 //     foo.reset();                  // Foo("wee4") destroyed, foo no longer
     26 //                                   // manages a pointer.
     27 //   }  // foo wasn't managing a pointer, so nothing was destroyed.
     28 //
     29 // Example usage (scoped_ptr<T[]>):
     30 //   {
     31 //     scoped_ptr<Foo[]> foo(new Foo[100]);
     32 //     foo.get()->Method();  // Foo::Method on the 0th element.
     33 //     foo[10].Method();     // Foo::Method on the 10th element.
     34 //   }
     35 //
     36 // These scopers also implement part of the functionality of C++11 unique_ptr
     37 // in that they are "movable but not copyable."  You can use the scopers in
     38 // the parameter and return types of functions to signify ownership transfer
     39 // in to and out of a function.  When calling a function that has a scoper
     40 // as the argument type, it must be called with the result of an analogous
     41 // scoper's Pass() function or another function that generates a temporary;
     42 // passing by copy will NOT work.  Here is an example using scoped_ptr:
     43 //
     44 //   void TakesOwnership(scoped_ptr<Foo> arg) {
     45 //     // Do something with arg
     46 //   }
     47 //   scoped_ptr<Foo> CreateFoo() {
     48 //     // No need for calling Pass() because we are constructing a temporary
     49 //     // for the return value.
     50 //     return scoped_ptr<Foo>(new Foo("new"));
     51 //   }
     52 //   scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
     53 //     return arg.Pass();
     54 //   }
     55 //
     56 //   {
     57 //     scoped_ptr<Foo> ptr(new Foo("yay"));  // ptr manages Foo("yay").
     58 //     TakesOwnership(ptr.Pass());           // ptr no longer owns Foo("yay").
     59 //     scoped_ptr<Foo> ptr2 = CreateFoo();   // ptr2 owns the return Foo.
     60 //     scoped_ptr<Foo> ptr3 =                // ptr3 now owns what was in ptr2.
     61 //         PassThru(ptr2.Pass());            // ptr2 is correspondingly NULL.
     62 //   }
     63 //
     64 // Notice that if you do not call Pass() when returning from PassThru(), or
     65 // when invoking TakesOwnership(), the code will not compile because scopers
     66 // are not copyable; they only implement move semantics which require calling
     67 // the Pass() function to signify a destructive transfer of state. CreateFoo()
     68 // is different though because we are constructing a temporary on the return
     69 // line and thus can avoid needing to call Pass().
     70 //
     71 // Pass() properly handles upcast in assignment, i.e. you can assign
     72 // scoped_ptr<Child> to scoped_ptr<Parent>:
     73 //
     74 //   scoped_ptr<Foo> foo(new Foo());
     75 //   scoped_ptr<FooParent> parent = foo.Pass();
     76 //
     77 // PassAs<>() should be used to upcast return value in return statement:
     78 //
     79 //   scoped_ptr<Foo> CreateFoo() {
     80 //     scoped_ptr<FooChild> result(new FooChild());
     81 //     return result.PassAs<Foo>();
     82 //   }
     83 //
     84 // Note that PassAs<>() is implemented only for scoped_ptr<T>, but not for
     85 // scoped_ptr<T[]>. This is because casting array pointers may not be safe.
     86 
     87 #ifndef BASE_MEMORY_SCOPED_PTR_H_
     88 #define BASE_MEMORY_SCOPED_PTR_H_
     89 
     90 // This is an implementation designed to match the anticipated future TR2
     91 // implementation of the scoped_ptr class and scoped_ptr_malloc (deprecated).
     92 
     93 #include <assert.h>
     94 #include <stddef.h>
     95 #include <stdlib.h>
     96 
     97 #include <algorithm>  // For std::swap().
     98 
     99 #include "base/basictypes.h"
    100 #include "base/compiler_specific.h"
    101 #include "base/move.h"
    102 #include "base/template_util.h"
    103 
    104 namespace base {
    105 
    106 namespace subtle {
    107 class RefCountedBase;
    108 class RefCountedThreadSafeBase;
    109 }  // namespace subtle
    110 
    111 // Function object which deletes its parameter, which must be a pointer.
    112 // If C is an array type, invokes 'delete[]' on the parameter; otherwise,
    113 // invokes 'delete'. The default deleter for scoped_ptr<T>.
    114 template <class T>
    115 struct DefaultDeleter {
    116   DefaultDeleter() {}
    117   template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) {
    118     // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
    119     // if U* is implicitly convertible to T* and U is not an array type.
    120     //
    121     // Correct implementation should use SFINAE to disable this
    122     // constructor. However, since there are no other 1-argument constructors,
    123     // using a COMPILE_ASSERT() based on is_convertible<> and requiring
    124     // complete types is simpler and will cause compile failures for equivalent
    125     // misuses.
    126     //
    127     // Note, the is_convertible<U*, T*> check also ensures that U is not an
    128     // array. T is guaranteed to be a non-array, so any U* where U is an array
    129     // cannot convert to T*.
    130     enum { T_must_be_complete = sizeof(T) };
    131     enum { U_must_be_complete = sizeof(U) };
    132     COMPILE_ASSERT((base::is_convertible<U*, T*>::value),
    133                    U_ptr_must_implicitly_convert_to_T_ptr);
    134   }
    135   inline void operator()(T* ptr) const {
    136     enum { type_must_be_complete = sizeof(T) };
    137     delete ptr;
    138   }
    139 };
    140 
    141 // Specialization of DefaultDeleter for array types.
    142 template <class T>
    143 struct DefaultDeleter<T[]> {
    144   inline void operator()(T* ptr) const {
    145     enum { type_must_be_complete = sizeof(T) };
    146     delete[] ptr;
    147   }
    148 
    149  private:
    150   // Disable this operator for any U != T because it is undefined to execute
    151   // an array delete when the static type of the array mismatches the dynamic
    152   // type.
    153   //
    154   // References:
    155   //   C++98 [expr.delete]p3
    156   //   http://cplusplus.github.com/LWG/lwg-defects.html#938
    157   template <typename U> void operator()(U* array) const;
    158 };
    159 
    160 template <class T, int n>
    161 struct DefaultDeleter<T[n]> {
    162   // Never allow someone to declare something like scoped_ptr<int[10]>.
    163   COMPILE_ASSERT(sizeof(T) == -1, do_not_use_array_with_size_as_type);
    164 };
    165 
    166 // Function object which invokes 'free' on its parameter, which must be
    167 // a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
    168 //
    169 // scoped_ptr<int, base::FreeDeleter> foo_ptr(
    170 //     static_cast<int*>(malloc(sizeof(int))));
    171 struct FreeDeleter {
    172   inline void operator()(void* ptr) const {
    173     free(ptr);
    174   }
    175 };
    176 
    177 namespace internal {
    178 
    179 template <typename T> struct IsNotRefCounted {
    180   enum {
    181     value = !base::is_convertible<T*, base::subtle::RefCountedBase*>::value &&
    182         !base::is_convertible<T*, base::subtle::RefCountedThreadSafeBase*>::
    183             value
    184   };
    185 };
    186 
    187 // Minimal implementation of the core logic of scoped_ptr, suitable for
    188 // reuse in both scoped_ptr and its specializations.
    189 template <class T, class D>
    190 class scoped_ptr_impl {
    191  public:
    192   explicit scoped_ptr_impl(T* p) : data_(p) { }
    193 
    194   // Initializer for deleters that have data parameters.
    195   scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
    196 
    197   // Templated constructor that destructively takes the value from another
    198   // scoped_ptr_impl.
    199   template <typename U, typename V>
    200   scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
    201       : data_(other->release(), other->get_deleter()) {
    202     // We do not support move-only deleters.  We could modify our move
    203     // emulation to have base::subtle::move() and base::subtle::forward()
    204     // functions that are imperfect emulations of their C++11 equivalents,
    205     // but until there's a requirement, just assume deleters are copyable.
    206   }
    207 
    208   template <typename U, typename V>
    209   void TakeState(scoped_ptr_impl<U, V>* other) {
    210     // See comment in templated constructor above regarding lack of support
    211     // for move-only deleters.
    212     reset(other->release());
    213     get_deleter() = other->get_deleter();
    214   }
    215 
    216   ~scoped_ptr_impl() {
    217     if (data_.ptr != NULL) {
    218       // Not using get_deleter() saves one function call in non-optimized
    219       // builds.
    220       static_cast<D&>(data_)(data_.ptr);
    221     }
    222   }
    223 
    224   void reset(T* p) {
    225     // This is a self-reset, which is no longer allowed: http://crbug.com/162971
    226     if (p != NULL && p == data_.ptr)
    227       abort();
    228 
    229     // Note that running data_.ptr = p can lead to undefined behavior if
    230     // get_deleter()(get()) deletes this. In order to pevent this, reset()
    231     // should update the stored pointer before deleting its old value.
    232     //
    233     // However, changing reset() to use that behavior may cause current code to
    234     // break in unexpected ways. If the destruction of the owned object
    235     // dereferences the scoped_ptr when it is destroyed by a call to reset(),
    236     // then it will incorrectly dispatch calls to |p| rather than the original
    237     // value of |data_.ptr|.
    238     //
    239     // During the transition period, set the stored pointer to NULL while
    240     // deleting the object. Eventually, this safety check will be removed to
    241     // prevent the scenario initially described from occuring and
    242     // http://crbug.com/176091 can be closed.
    243     T* old = data_.ptr;
    244     data_.ptr = NULL;
    245     if (old != NULL)
    246       static_cast<D&>(data_)(old);
    247     data_.ptr = p;
    248   }
    249 
    250   T* get() const { return data_.ptr; }
    251 
    252   D& get_deleter() { return data_; }
    253   const D& get_deleter() const { return data_; }
    254 
    255   void swap(scoped_ptr_impl& p2) {
    256     // Standard swap idiom: 'using std::swap' ensures that std::swap is
    257     // present in the overload set, but we call swap unqualified so that
    258     // any more-specific overloads can be used, if available.
    259     using std::swap;
    260     swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
    261     swap(data_.ptr, p2.data_.ptr);
    262   }
    263 
    264   T* release() {
    265     T* old_ptr = data_.ptr;
    266     data_.ptr = NULL;
    267     return old_ptr;
    268   }
    269 
    270  private:
    271   // Needed to allow type-converting constructor.
    272   template <typename U, typename V> friend class scoped_ptr_impl;
    273 
    274   // Use the empty base class optimization to allow us to have a D
    275   // member, while avoiding any space overhead for it when D is an
    276   // empty class.  See e.g. http://www.cantrip.org/emptyopt.html for a good
    277   // discussion of this technique.
    278   struct Data : public D {
    279     explicit Data(T* ptr_in) : ptr(ptr_in) {}
    280     Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
    281     T* ptr;
    282   };
    283 
    284   Data data_;
    285 
    286   DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
    287 };
    288 
    289 }  // namespace internal
    290 
    291 }  // namespace base
    292 
    293 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
    294 // automatically deletes the pointer it holds (if any).
    295 // That is, scoped_ptr<T> owns the T object that it points to.
    296 // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
    297 // Also like T*, scoped_ptr<T> is thread-compatible, and once you
    298 // dereference it, you get the thread safety guarantees of T.
    299 //
    300 // The size of scoped_ptr is small. On most compilers, when using the
    301 // DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will
    302 // increase the size proportional to whatever state they need to have. See
    303 // comments inside scoped_ptr_impl<> for details.
    304 //
    305 // Current implementation targets having a strict subset of  C++11's
    306 // unique_ptr<> features. Known deficiencies include not supporting move-only
    307 // deleteres, function pointers as deleters, and deleters with reference
    308 // types.
    309 template <class T, class D = base::DefaultDeleter<T> >
    310 class scoped_ptr {
    311   MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
    312 
    313   COMPILE_ASSERT(base::internal::IsNotRefCounted<T>::value,
    314                  T_is_refcounted_type_and_needs_scoped_refptr);
    315 
    316  public:
    317   // The element and deleter types.
    318   typedef T element_type;
    319   typedef D deleter_type;
    320 
    321   // Constructor.  Defaults to initializing with NULL.
    322   scoped_ptr() : impl_(NULL) { }
    323 
    324   // Constructor.  Takes ownership of p.
    325   explicit scoped_ptr(element_type* p) : impl_(p) { }
    326 
    327   // Constructor.  Allows initialization of a stateful deleter.
    328   scoped_ptr(element_type* p, const D& d) : impl_(p, d) { }
    329 
    330   // Constructor.  Allows construction from a scoped_ptr rvalue for a
    331   // convertible type and deleter.
    332   //
    333   // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct
    334   // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor
    335   // has different post-conditions if D is a reference type. Since this
    336   // implementation does not support deleters with reference type,
    337   // we do not need a separate move constructor allowing us to avoid one
    338   // use of SFINAE. You only need to care about this if you modify the
    339   // implementation of scoped_ptr.
    340   template <typename U, typename V>
    341   scoped_ptr(scoped_ptr<U, V> other) : impl_(&other.impl_) {
    342     COMPILE_ASSERT(!base::is_array<U>::value, U_cannot_be_an_array);
    343   }
    344 
    345   // Constructor.  Move constructor for C++03 move emulation of this type.
    346   scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
    347 
    348   // operator=.  Allows assignment from a scoped_ptr rvalue for a convertible
    349   // type and deleter.
    350   //
    351   // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
    352   // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated
    353   // form has different requirements on for move-only Deleters. Since this
    354   // implementation does not support move-only Deleters, we do not need a
    355   // separate move assignment operator allowing us to avoid one use of SFINAE.
    356   // You only need to care about this if you modify the implementation of
    357   // scoped_ptr.
    358   template <typename U, typename V>
    359   scoped_ptr& operator=(scoped_ptr<U, V> rhs) {
    360     COMPILE_ASSERT(!base::is_array<U>::value, U_cannot_be_an_array);
    361     impl_.TakeState(&rhs.impl_);
    362     return *this;
    363   }
    364 
    365   // Reset.  Deletes the currently owned object, if any.
    366   // Then takes ownership of a new object, if given.
    367   void reset(element_type* p = NULL) { impl_.reset(p); }
    368 
    369   // Accessors to get the owned object.
    370   // operator* and operator-> will assert() if there is no current object.
    371   element_type& operator*() const {
    372     assert(impl_.get() != NULL);
    373     return *impl_.get();
    374   }
    375   element_type* operator->() const  {
    376     assert(impl_.get() != NULL);
    377     return impl_.get();
    378   }
    379   element_type* get() const { return impl_.get(); }
    380 
    381   // Access to the deleter.
    382   deleter_type& get_deleter() { return impl_.get_deleter(); }
    383   const deleter_type& get_deleter() const { return impl_.get_deleter(); }
    384 
    385   // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
    386   // implicitly convertible to a real bool (which is dangerous).
    387   //
    388   // Note that this trick is only safe when the == and != operators
    389   // are declared explicitly, as otherwise "scoped_ptr1 ==
    390   // scoped_ptr2" will compile but do the wrong thing (i.e., convert
    391   // to Testable and then do the comparison).
    392  private:
    393   typedef base::internal::scoped_ptr_impl<element_type, deleter_type>
    394       scoped_ptr::*Testable;
    395 
    396  public:
    397   operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
    398 
    399   // Comparison operators.
    400   // These return whether two scoped_ptr refer to the same object, not just to
    401   // two different but equal objects.
    402   bool operator==(const element_type* p) const { return impl_.get() == p; }
    403   bool operator!=(const element_type* p) const { return impl_.get() != p; }
    404 
    405   // Swap two scoped pointers.
    406   void swap(scoped_ptr& p2) {
    407     impl_.swap(p2.impl_);
    408   }
    409 
    410   // Release a pointer.
    411   // The return value is the current pointer held by this object.
    412   // If this object holds a NULL pointer, the return value is NULL.
    413   // After this operation, this object will hold a NULL pointer,
    414   // and will not own the object any more.
    415   element_type* release() WARN_UNUSED_RESULT {
    416     return impl_.release();
    417   }
    418 
    419   // C++98 doesn't support functions templates with default parameters which
    420   // makes it hard to write a PassAs() that understands converting the deleter
    421   // while preserving simple calling semantics.
    422   //
    423   // Until there is a use case for PassAs() with custom deleters, just ignore
    424   // the custom deleter.
    425   template <typename PassAsType>
    426   scoped_ptr<PassAsType> PassAs() {
    427     return scoped_ptr<PassAsType>(Pass());
    428   }
    429 
    430  private:
    431   // Needed to reach into |impl_| in the constructor.
    432   template <typename U, typename V> friend class scoped_ptr;
    433   base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
    434 
    435   // Forbidden for API compatibility with std::unique_ptr.
    436   explicit scoped_ptr(int disallow_construction_from_null);
    437 
    438   // Forbid comparison of scoped_ptr types.  If U != T, it totally
    439   // doesn't make sense, and if U == T, it still doesn't make sense
    440   // because you should never have the same object owned by two different
    441   // scoped_ptrs.
    442   template <class U> bool operator==(scoped_ptr<U> const& p2) const;
    443   template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
    444 };
    445 
    446 template <class T, class D>
    447 class scoped_ptr<T[], D> {
    448   MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
    449 
    450  public:
    451   // The element and deleter types.
    452   typedef T element_type;
    453   typedef D deleter_type;
    454 
    455   // Constructor.  Defaults to initializing with NULL.
    456   scoped_ptr() : impl_(NULL) { }
    457 
    458   // Constructor. Stores the given array. Note that the argument's type
    459   // must exactly match T*. In particular:
    460   // - it cannot be a pointer to a type derived from T, because it is
    461   //   inherently unsafe in the general case to access an array through a
    462   //   pointer whose dynamic type does not match its static type (eg., if
    463   //   T and the derived types had different sizes access would be
    464   //   incorrectly calculated). Deletion is also always undefined
    465   //   (C++98 [expr.delete]p3). If you're doing this, fix your code.
    466   // - it cannot be NULL, because NULL is an integral expression, not a
    467   //   pointer to T. Use the no-argument version instead of explicitly
    468   //   passing NULL.
    469   // - it cannot be const-qualified differently from T per unique_ptr spec
    470   //   (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
    471   //   to work around this may use implicit_cast<const T*>().
    472   //   However, because of the first bullet in this comment, users MUST
    473   //   NOT use implicit_cast<Base*>() to upcast the static type of the array.
    474   explicit scoped_ptr(element_type* array) : impl_(array) { }
    475 
    476   // Constructor.  Move constructor for C++03 move emulation of this type.
    477   scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
    478 
    479   // operator=.  Move operator= for C++03 move emulation of this type.
    480   scoped_ptr& operator=(RValue rhs) {
    481     impl_.TakeState(&rhs.object->impl_);
    482     return *this;
    483   }
    484 
    485   // Reset.  Deletes the currently owned array, if any.
    486   // Then takes ownership of a new object, if given.
    487   void reset(element_type* array = NULL) { impl_.reset(array); }
    488 
    489   // Accessors to get the owned array.
    490   element_type& operator[](size_t i) const {
    491     assert(impl_.get() != NULL);
    492     return impl_.get()[i];
    493   }
    494   element_type* get() const { return impl_.get(); }
    495 
    496   // Access to the deleter.
    497   deleter_type& get_deleter() { return impl_.get_deleter(); }
    498   const deleter_type& get_deleter() const { return impl_.get_deleter(); }
    499 
    500   // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
    501   // implicitly convertible to a real bool (which is dangerous).
    502  private:
    503   typedef base::internal::scoped_ptr_impl<element_type, deleter_type>
    504       scoped_ptr::*Testable;
    505 
    506  public:
    507   operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
    508 
    509   // Comparison operators.
    510   // These return whether two scoped_ptr refer to the same object, not just to
    511   // two different but equal objects.
    512   bool operator==(element_type* array) const { return impl_.get() == array; }
    513   bool operator!=(element_type* array) const { return impl_.get() != array; }
    514 
    515   // Swap two scoped pointers.
    516   void swap(scoped_ptr& p2) {
    517     impl_.swap(p2.impl_);
    518   }
    519 
    520   // Release a pointer.
    521   // The return value is the current pointer held by this object.
    522   // If this object holds a NULL pointer, the return value is NULL.
    523   // After this operation, this object will hold a NULL pointer,
    524   // and will not own the object any more.
    525   element_type* release() WARN_UNUSED_RESULT {
    526     return impl_.release();
    527   }
    528 
    529  private:
    530   // Force element_type to be a complete type.
    531   enum { type_must_be_complete = sizeof(element_type) };
    532 
    533   // Actually hold the data.
    534   base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
    535 
    536   // Disable initialization from any type other than element_type*, by
    537   // providing a constructor that matches such an initialization, but is
    538   // private and has no definition. This is disabled because it is not safe to
    539   // call delete[] on an array whose static type does not match its dynamic
    540   // type.
    541   template <typename U> explicit scoped_ptr(U* array);
    542   explicit scoped_ptr(int disallow_construction_from_null);
    543 
    544   // Disable reset() from any type other than element_type*, for the same
    545   // reasons as the constructor above.
    546   template <typename U> void reset(U* array);
    547   void reset(int disallow_reset_from_null);
    548 
    549   // Forbid comparison of scoped_ptr types.  If U != T, it totally
    550   // doesn't make sense, and if U == T, it still doesn't make sense
    551   // because you should never have the same object owned by two different
    552   // scoped_ptrs.
    553   template <class U> bool operator==(scoped_ptr<U> const& p2) const;
    554   template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
    555 };
    556 
    557 // Free functions
    558 template <class T, class D>
    559 void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) {
    560   p1.swap(p2);
    561 }
    562 
    563 template <class T, class D>
    564 bool operator==(T* p1, const scoped_ptr<T, D>& p2) {
    565   return p1 == p2.get();
    566 }
    567 
    568 template <class T, class D>
    569 bool operator!=(T* p1, const scoped_ptr<T, D>& p2) {
    570   return p1 != p2.get();
    571 }
    572 
    573 // DEPRECATED: Use scoped_ptr<C, base::FreeDeleter> instead.
    574 //
    575 // scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a
    576 // second template argument, the functor used to free the object.
    577 
    578 template<class C, class FreeProc = base::FreeDeleter>
    579 class scoped_ptr_malloc {
    580   MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr_malloc, RValue)
    581 
    582  public:
    583 
    584   // The element type
    585   typedef C element_type;
    586 
    587   // Constructor.  Defaults to initializing with NULL.
    588   // There is no way to create an uninitialized scoped_ptr.
    589   // The input parameter must be allocated with an allocator that matches the
    590   // Free functor.  For the default Free functor, this is malloc, calloc, or
    591   // realloc.
    592   explicit scoped_ptr_malloc(C* p = NULL): ptr_(p) {}
    593 
    594   // Constructor.  Move constructor for C++03 move emulation of this type.
    595   scoped_ptr_malloc(RValue rvalue)
    596       : ptr_(rvalue.object->release()) {
    597   }
    598 
    599   // Destructor.  If there is a C object, call the Free functor.
    600   ~scoped_ptr_malloc() {
    601     reset();
    602   }
    603 
    604   // operator=.  Move operator= for C++03 move emulation of this type.
    605   scoped_ptr_malloc& operator=(RValue rhs) {
    606     reset(rhs.object->release());
    607     return *this;
    608   }
    609 
    610   // Reset.  Calls the Free functor on the current owned object, if any.
    611   // Then takes ownership of a new object, if given.
    612   // this->reset(this->get()) works.
    613   void reset(C* p = NULL) {
    614     if (ptr_ != p) {
    615       if (ptr_ != NULL) {
    616         FreeProc free_proc;
    617         free_proc(ptr_);
    618       }
    619       ptr_ = p;
    620     }
    621   }
    622 
    623   // Get the current object.
    624   // operator* and operator-> will cause an assert() failure if there is
    625   // no current object.
    626   C& operator*() const {
    627     assert(ptr_ != NULL);
    628     return *ptr_;
    629   }
    630 
    631   C* operator->() const {
    632     assert(ptr_ != NULL);
    633     return ptr_;
    634   }
    635 
    636   C* get() const {
    637     return ptr_;
    638   }
    639 
    640   // Allow scoped_ptr_malloc<C> to be used in boolean expressions, but not
    641   // implicitly convertible to a real bool (which is dangerous).
    642   typedef C* scoped_ptr_malloc::*Testable;
    643   operator Testable() const { return ptr_ ? &scoped_ptr_malloc::ptr_ : NULL; }
    644 
    645   // Comparison operators.
    646   // These return whether a scoped_ptr_malloc and a plain pointer refer
    647   // to the same object, not just to two different but equal objects.
    648   // For compatibility with the boost-derived implementation, these
    649   // take non-const arguments.
    650   bool operator==(C* p) const {
    651     return ptr_ == p;
    652   }
    653 
    654   bool operator!=(C* p) const {
    655     return ptr_ != p;
    656   }
    657 
    658   // Swap two scoped pointers.
    659   void swap(scoped_ptr_malloc & b) {
    660     C* tmp = b.ptr_;
    661     b.ptr_ = ptr_;
    662     ptr_ = tmp;
    663   }
    664 
    665   // Release a pointer.
    666   // The return value is the current pointer held by this object.
    667   // If this object holds a NULL pointer, the return value is NULL.
    668   // After this operation, this object will hold a NULL pointer,
    669   // and will not own the object any more.
    670   C* release() WARN_UNUSED_RESULT {
    671     C* tmp = ptr_;
    672     ptr_ = NULL;
    673     return tmp;
    674   }
    675 
    676  private:
    677   C* ptr_;
    678 
    679   // no reason to use these: each scoped_ptr_malloc should have its own object
    680   template <class C2, class GP>
    681   bool operator==(scoped_ptr_malloc<C2, GP> const& p) const;
    682   template <class C2, class GP>
    683   bool operator!=(scoped_ptr_malloc<C2, GP> const& p) const;
    684 };
    685 
    686 template<class C, class FP> inline
    687 void swap(scoped_ptr_malloc<C, FP>& a, scoped_ptr_malloc<C, FP>& b) {
    688   a.swap(b);
    689 }
    690 
    691 template<class C, class FP> inline
    692 bool operator==(C* p, const scoped_ptr_malloc<C, FP>& b) {
    693   return p == b.get();
    694 }
    695 
    696 template<class C, class FP> inline
    697 bool operator!=(C* p, const scoped_ptr_malloc<C, FP>& b) {
    698   return p != b.get();
    699 }
    700 
    701 // A function to convert T* into scoped_ptr<T>
    702 // Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation
    703 // for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg))
    704 template <typename T>
    705 scoped_ptr<T> make_scoped_ptr(T* ptr) {
    706   return scoped_ptr<T>(ptr);
    707 }
    708 
    709 #endif  // BASE_MEMORY_SCOPED_PTR_H_
    710