1 //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform manipulations on basic blocks, and 11 // instructions contained within basic blocks. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/CFG.h" 18 #include "llvm/Analysis/Dominators.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 21 #include "llvm/IR/Constant.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/Type.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/ValueHandle.h" 29 #include "llvm/Transforms/Scalar.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 #include <algorithm> 32 using namespace llvm; 33 34 /// DeleteDeadBlock - Delete the specified block, which must have no 35 /// predecessors. 36 void llvm::DeleteDeadBlock(BasicBlock *BB) { 37 assert((pred_begin(BB) == pred_end(BB) || 38 // Can delete self loop. 39 BB->getSinglePredecessor() == BB) && "Block is not dead!"); 40 TerminatorInst *BBTerm = BB->getTerminator(); 41 42 // Loop through all of our successors and make sure they know that one 43 // of their predecessors is going away. 44 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) 45 BBTerm->getSuccessor(i)->removePredecessor(BB); 46 47 // Zap all the instructions in the block. 48 while (!BB->empty()) { 49 Instruction &I = BB->back(); 50 // If this instruction is used, replace uses with an arbitrary value. 51 // Because control flow can't get here, we don't care what we replace the 52 // value with. Note that since this block is unreachable, and all values 53 // contained within it must dominate their uses, that all uses will 54 // eventually be removed (they are themselves dead). 55 if (!I.use_empty()) 56 I.replaceAllUsesWith(UndefValue::get(I.getType())); 57 BB->getInstList().pop_back(); 58 } 59 60 // Zap the block! 61 BB->eraseFromParent(); 62 } 63 64 /// FoldSingleEntryPHINodes - We know that BB has one predecessor. If there are 65 /// any single-entry PHI nodes in it, fold them away. This handles the case 66 /// when all entries to the PHI nodes in a block are guaranteed equal, such as 67 /// when the block has exactly one predecessor. 68 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, Pass *P) { 69 if (!isa<PHINode>(BB->begin())) return; 70 71 AliasAnalysis *AA = 0; 72 MemoryDependenceAnalysis *MemDep = 0; 73 if (P) { 74 AA = P->getAnalysisIfAvailable<AliasAnalysis>(); 75 MemDep = P->getAnalysisIfAvailable<MemoryDependenceAnalysis>(); 76 } 77 78 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 79 if (PN->getIncomingValue(0) != PN) 80 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 81 else 82 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 83 84 if (MemDep) 85 MemDep->removeInstruction(PN); // Memdep updates AA itself. 86 else if (AA && isa<PointerType>(PN->getType())) 87 AA->deleteValue(PN); 88 89 PN->eraseFromParent(); 90 } 91 } 92 93 94 /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it 95 /// is dead. Also recursively delete any operands that become dead as 96 /// a result. This includes tracing the def-use list from the PHI to see if 97 /// it is ultimately unused or if it reaches an unused cycle. 98 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) { 99 // Recursively deleting a PHI may cause multiple PHIs to be deleted 100 // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete. 101 SmallVector<WeakVH, 8> PHIs; 102 for (BasicBlock::iterator I = BB->begin(); 103 PHINode *PN = dyn_cast<PHINode>(I); ++I) 104 PHIs.push_back(PN); 105 106 bool Changed = false; 107 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 108 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 109 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI); 110 111 return Changed; 112 } 113 114 /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor, 115 /// if possible. The return value indicates success or failure. 116 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) { 117 // Don't merge away blocks who have their address taken. 118 if (BB->hasAddressTaken()) return false; 119 120 // Can't merge if there are multiple predecessors, or no predecessors. 121 BasicBlock *PredBB = BB->getUniquePredecessor(); 122 if (!PredBB) return false; 123 124 // Don't break self-loops. 125 if (PredBB == BB) return false; 126 // Don't break invokes. 127 if (isa<InvokeInst>(PredBB->getTerminator())) return false; 128 129 succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB)); 130 BasicBlock *OnlySucc = BB; 131 for (; SI != SE; ++SI) 132 if (*SI != OnlySucc) { 133 OnlySucc = 0; // There are multiple distinct successors! 134 break; 135 } 136 137 // Can't merge if there are multiple successors. 138 if (!OnlySucc) return false; 139 140 // Can't merge if there is PHI loop. 141 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) { 142 if (PHINode *PN = dyn_cast<PHINode>(BI)) { 143 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 144 if (PN->getIncomingValue(i) == PN) 145 return false; 146 } else 147 break; 148 } 149 150 // Begin by getting rid of unneeded PHIs. 151 if (isa<PHINode>(BB->front())) 152 FoldSingleEntryPHINodes(BB, P); 153 154 // Delete the unconditional branch from the predecessor... 155 PredBB->getInstList().pop_back(); 156 157 // Make all PHI nodes that referred to BB now refer to Pred as their 158 // source... 159 BB->replaceAllUsesWith(PredBB); 160 161 // Move all definitions in the successor to the predecessor... 162 PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); 163 164 // Inherit predecessors name if it exists. 165 if (!PredBB->hasName()) 166 PredBB->takeName(BB); 167 168 // Finally, erase the old block and update dominator info. 169 if (P) { 170 if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) { 171 if (DomTreeNode *DTN = DT->getNode(BB)) { 172 DomTreeNode *PredDTN = DT->getNode(PredBB); 173 SmallVector<DomTreeNode*, 8> Children(DTN->begin(), DTN->end()); 174 for (SmallVectorImpl<DomTreeNode *>::iterator DI = Children.begin(), 175 DE = Children.end(); DI != DE; ++DI) 176 DT->changeImmediateDominator(*DI, PredDTN); 177 178 DT->eraseNode(BB); 179 } 180 181 if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>()) 182 LI->removeBlock(BB); 183 184 if (MemoryDependenceAnalysis *MD = 185 P->getAnalysisIfAvailable<MemoryDependenceAnalysis>()) 186 MD->invalidateCachedPredecessors(); 187 } 188 } 189 190 BB->eraseFromParent(); 191 return true; 192 } 193 194 /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI) 195 /// with a value, then remove and delete the original instruction. 196 /// 197 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, 198 BasicBlock::iterator &BI, Value *V) { 199 Instruction &I = *BI; 200 // Replaces all of the uses of the instruction with uses of the value 201 I.replaceAllUsesWith(V); 202 203 // Make sure to propagate a name if there is one already. 204 if (I.hasName() && !V->hasName()) 205 V->takeName(&I); 206 207 // Delete the unnecessary instruction now... 208 BI = BIL.erase(BI); 209 } 210 211 212 /// ReplaceInstWithInst - Replace the instruction specified by BI with the 213 /// instruction specified by I. The original instruction is deleted and BI is 214 /// updated to point to the new instruction. 215 /// 216 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, 217 BasicBlock::iterator &BI, Instruction *I) { 218 assert(I->getParent() == 0 && 219 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 220 221 // Insert the new instruction into the basic block... 222 BasicBlock::iterator New = BIL.insert(BI, I); 223 224 // Replace all uses of the old instruction, and delete it. 225 ReplaceInstWithValue(BIL, BI, I); 226 227 // Move BI back to point to the newly inserted instruction 228 BI = New; 229 } 230 231 /// ReplaceInstWithInst - Replace the instruction specified by From with the 232 /// instruction specified by To. 233 /// 234 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 235 BasicBlock::iterator BI(From); 236 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); 237 } 238 239 /// SplitEdge - Split the edge connecting specified block. Pass P must 240 /// not be NULL. 241 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) { 242 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 243 244 // If this is a critical edge, let SplitCriticalEdge do it. 245 TerminatorInst *LatchTerm = BB->getTerminator(); 246 if (SplitCriticalEdge(LatchTerm, SuccNum, P)) 247 return LatchTerm->getSuccessor(SuccNum); 248 249 // If the edge isn't critical, then BB has a single successor or Succ has a 250 // single pred. Split the block. 251 BasicBlock::iterator SplitPoint; 252 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 253 // If the successor only has a single pred, split the top of the successor 254 // block. 255 assert(SP == BB && "CFG broken"); 256 SP = NULL; 257 return SplitBlock(Succ, Succ->begin(), P); 258 } 259 260 // Otherwise, if BB has a single successor, split it at the bottom of the 261 // block. 262 assert(BB->getTerminator()->getNumSuccessors() == 1 && 263 "Should have a single succ!"); 264 return SplitBlock(BB, BB->getTerminator(), P); 265 } 266 267 /// SplitBlock - Split the specified block at the specified instruction - every 268 /// thing before SplitPt stays in Old and everything starting with SplitPt moves 269 /// to a new block. The two blocks are joined by an unconditional branch and 270 /// the loop info is updated. 271 /// 272 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) { 273 BasicBlock::iterator SplitIt = SplitPt; 274 while (isa<PHINode>(SplitIt) || isa<LandingPadInst>(SplitIt)) 275 ++SplitIt; 276 BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split"); 277 278 // The new block lives in whichever loop the old one did. This preserves 279 // LCSSA as well, because we force the split point to be after any PHI nodes. 280 if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>()) 281 if (Loop *L = LI->getLoopFor(Old)) 282 L->addBasicBlockToLoop(New, LI->getBase()); 283 284 if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) { 285 // Old dominates New. New node dominates all other nodes dominated by Old. 286 if (DomTreeNode *OldNode = DT->getNode(Old)) { 287 std::vector<DomTreeNode *> Children; 288 for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end(); 289 I != E; ++I) 290 Children.push_back(*I); 291 292 DomTreeNode *NewNode = DT->addNewBlock(New,Old); 293 for (std::vector<DomTreeNode *>::iterator I = Children.begin(), 294 E = Children.end(); I != E; ++I) 295 DT->changeImmediateDominator(*I, NewNode); 296 } 297 } 298 299 return New; 300 } 301 302 /// UpdateAnalysisInformation - Update DominatorTree, LoopInfo, and LCCSA 303 /// analysis information. 304 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 305 ArrayRef<BasicBlock *> Preds, 306 Pass *P, bool &HasLoopExit) { 307 if (!P) return; 308 309 LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>(); 310 Loop *L = LI ? LI->getLoopFor(OldBB) : 0; 311 312 // If we need to preserve loop analyses, collect some information about how 313 // this split will affect loops. 314 bool IsLoopEntry = !!L; 315 bool SplitMakesNewLoopHeader = false; 316 if (LI) { 317 bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID); 318 for (ArrayRef<BasicBlock*>::iterator 319 i = Preds.begin(), e = Preds.end(); i != e; ++i) { 320 BasicBlock *Pred = *i; 321 322 // If we need to preserve LCSSA, determine if any of the preds is a loop 323 // exit. 324 if (PreserveLCSSA) 325 if (Loop *PL = LI->getLoopFor(Pred)) 326 if (!PL->contains(OldBB)) 327 HasLoopExit = true; 328 329 // If we need to preserve LoopInfo, note whether any of the preds crosses 330 // an interesting loop boundary. 331 if (!L) continue; 332 if (L->contains(Pred)) 333 IsLoopEntry = false; 334 else 335 SplitMakesNewLoopHeader = true; 336 } 337 } 338 339 // Update dominator tree if available. 340 DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>(); 341 if (DT) 342 DT->splitBlock(NewBB); 343 344 if (!L) return; 345 346 if (IsLoopEntry) { 347 // Add the new block to the nearest enclosing loop (and not an adjacent 348 // loop). To find this, examine each of the predecessors and determine which 349 // loops enclose them, and select the most-nested loop which contains the 350 // loop containing the block being split. 351 Loop *InnermostPredLoop = 0; 352 for (ArrayRef<BasicBlock*>::iterator 353 i = Preds.begin(), e = Preds.end(); i != e; ++i) { 354 BasicBlock *Pred = *i; 355 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 356 // Seek a loop which actually contains the block being split (to avoid 357 // adjacent loops). 358 while (PredLoop && !PredLoop->contains(OldBB)) 359 PredLoop = PredLoop->getParentLoop(); 360 361 // Select the most-nested of these loops which contains the block. 362 if (PredLoop && PredLoop->contains(OldBB) && 363 (!InnermostPredLoop || 364 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 365 InnermostPredLoop = PredLoop; 366 } 367 } 368 369 if (InnermostPredLoop) 370 InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase()); 371 } else { 372 L->addBasicBlockToLoop(NewBB, LI->getBase()); 373 if (SplitMakesNewLoopHeader) 374 L->moveToHeader(NewBB); 375 } 376 } 377 378 /// UpdatePHINodes - Update the PHI nodes in OrigBB to include the values coming 379 /// from NewBB. This also updates AliasAnalysis, if available. 380 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 381 ArrayRef<BasicBlock*> Preds, BranchInst *BI, 382 Pass *P, bool HasLoopExit) { 383 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 384 AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0; 385 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 386 PHINode *PN = cast<PHINode>(I++); 387 388 // Check to see if all of the values coming in are the same. If so, we 389 // don't need to create a new PHI node, unless it's needed for LCSSA. 390 Value *InVal = 0; 391 if (!HasLoopExit) { 392 InVal = PN->getIncomingValueForBlock(Preds[0]); 393 for (unsigned i = 1, e = Preds.size(); i != e; ++i) 394 if (InVal != PN->getIncomingValueForBlock(Preds[i])) { 395 InVal = 0; 396 break; 397 } 398 } 399 400 if (InVal) { 401 // If all incoming values for the new PHI would be the same, just don't 402 // make a new PHI. Instead, just remove the incoming values from the old 403 // PHI. 404 for (unsigned i = 0, e = Preds.size(); i != e; ++i) 405 PN->removeIncomingValue(Preds[i], false); 406 } else { 407 // If the values coming into the block are not the same, we need a PHI. 408 // Create the new PHI node, insert it into NewBB at the end of the block 409 PHINode *NewPHI = 410 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); 411 if (AA) AA->copyValue(PN, NewPHI); 412 413 // Move all of the PHI values for 'Preds' to the new PHI. 414 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 415 Value *V = PN->removeIncomingValue(Preds[i], false); 416 NewPHI->addIncoming(V, Preds[i]); 417 } 418 419 InVal = NewPHI; 420 } 421 422 // Add an incoming value to the PHI node in the loop for the preheader 423 // edge. 424 PN->addIncoming(InVal, NewBB); 425 } 426 } 427 428 /// SplitBlockPredecessors - This method transforms BB by introducing a new 429 /// basic block into the function, and moving some of the predecessors of BB to 430 /// be predecessors of the new block. The new predecessors are indicated by the 431 /// Preds array, which has NumPreds elements in it. The new block is given a 432 /// suffix of 'Suffix'. 433 /// 434 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree, 435 /// LoopInfo, and LCCSA but no other analyses. In particular, it does not 436 /// preserve LoopSimplify (because it's complicated to handle the case where one 437 /// of the edges being split is an exit of a loop with other exits). 438 /// 439 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 440 ArrayRef<BasicBlock*> Preds, 441 const char *Suffix, Pass *P) { 442 // Create new basic block, insert right before the original block. 443 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix, 444 BB->getParent(), BB); 445 446 // The new block unconditionally branches to the old block. 447 BranchInst *BI = BranchInst::Create(BB, NewBB); 448 449 // Move the edges from Preds to point to NewBB instead of BB. 450 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 451 // This is slightly more strict than necessary; the minimum requirement 452 // is that there be no more than one indirectbr branching to BB. And 453 // all BlockAddress uses would need to be updated. 454 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 455 "Cannot split an edge from an IndirectBrInst"); 456 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); 457 } 458 459 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 460 // node becomes an incoming value for BB's phi node. However, if the Preds 461 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 462 // account for the newly created predecessor. 463 if (Preds.size() == 0) { 464 // Insert dummy values as the incoming value. 465 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 466 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); 467 return NewBB; 468 } 469 470 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 471 bool HasLoopExit = false; 472 UpdateAnalysisInformation(BB, NewBB, Preds, P, HasLoopExit); 473 474 // Update the PHI nodes in BB with the values coming from NewBB. 475 UpdatePHINodes(BB, NewBB, Preds, BI, P, HasLoopExit); 476 return NewBB; 477 } 478 479 /// SplitLandingPadPredecessors - This method transforms the landing pad, 480 /// OrigBB, by introducing two new basic blocks into the function. One of those 481 /// new basic blocks gets the predecessors listed in Preds. The other basic 482 /// block gets the remaining predecessors of OrigBB. The landingpad instruction 483 /// OrigBB is clone into both of the new basic blocks. The new blocks are given 484 /// the suffixes 'Suffix1' and 'Suffix2', and are returned in the NewBBs vector. 485 /// 486 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree, 487 /// DominanceFrontier, LoopInfo, and LCCSA but no other analyses. In particular, 488 /// it does not preserve LoopSimplify (because it's complicated to handle the 489 /// case where one of the edges being split is an exit of a loop with other 490 /// exits). 491 /// 492 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 493 ArrayRef<BasicBlock*> Preds, 494 const char *Suffix1, const char *Suffix2, 495 Pass *P, 496 SmallVectorImpl<BasicBlock*> &NewBBs) { 497 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 498 499 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 500 // it right before the original block. 501 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 502 OrigBB->getName() + Suffix1, 503 OrigBB->getParent(), OrigBB); 504 NewBBs.push_back(NewBB1); 505 506 // The new block unconditionally branches to the old block. 507 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 508 509 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 510 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 511 // This is slightly more strict than necessary; the minimum requirement 512 // is that there be no more than one indirectbr branching to BB. And 513 // all BlockAddress uses would need to be updated. 514 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 515 "Cannot split an edge from an IndirectBrInst"); 516 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 517 } 518 519 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 520 bool HasLoopExit = false; 521 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, P, HasLoopExit); 522 523 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 524 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, P, HasLoopExit); 525 526 // Move the remaining edges from OrigBB to point to NewBB2. 527 SmallVector<BasicBlock*, 8> NewBB2Preds; 528 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 529 i != e; ) { 530 BasicBlock *Pred = *i++; 531 if (Pred == NewBB1) continue; 532 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 533 "Cannot split an edge from an IndirectBrInst"); 534 NewBB2Preds.push_back(Pred); 535 e = pred_end(OrigBB); 536 } 537 538 BasicBlock *NewBB2 = 0; 539 if (!NewBB2Preds.empty()) { 540 // Create another basic block for the rest of OrigBB's predecessors. 541 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 542 OrigBB->getName() + Suffix2, 543 OrigBB->getParent(), OrigBB); 544 NewBBs.push_back(NewBB2); 545 546 // The new block unconditionally branches to the old block. 547 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 548 549 // Move the remaining edges from OrigBB to point to NewBB2. 550 for (SmallVectorImpl<BasicBlock*>::iterator 551 i = NewBB2Preds.begin(), e = NewBB2Preds.end(); i != e; ++i) 552 (*i)->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 553 554 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 555 HasLoopExit = false; 556 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, P, HasLoopExit); 557 558 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 559 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, P, HasLoopExit); 560 } 561 562 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 563 Instruction *Clone1 = LPad->clone(); 564 Clone1->setName(Twine("lpad") + Suffix1); 565 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1); 566 567 if (NewBB2) { 568 Instruction *Clone2 = LPad->clone(); 569 Clone2->setName(Twine("lpad") + Suffix2); 570 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2); 571 572 // Create a PHI node for the two cloned landingpad instructions. 573 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); 574 PN->addIncoming(Clone1, NewBB1); 575 PN->addIncoming(Clone2, NewBB2); 576 LPad->replaceAllUsesWith(PN); 577 LPad->eraseFromParent(); 578 } else { 579 // There is no second clone. Just replace the landing pad with the first 580 // clone. 581 LPad->replaceAllUsesWith(Clone1); 582 LPad->eraseFromParent(); 583 } 584 } 585 586 /// FoldReturnIntoUncondBranch - This method duplicates the specified return 587 /// instruction into a predecessor which ends in an unconditional branch. If 588 /// the return instruction returns a value defined by a PHI, propagate the 589 /// right value into the return. It returns the new return instruction in the 590 /// predecessor. 591 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 592 BasicBlock *Pred) { 593 Instruction *UncondBranch = Pred->getTerminator(); 594 // Clone the return and add it to the end of the predecessor. 595 Instruction *NewRet = RI->clone(); 596 Pred->getInstList().push_back(NewRet); 597 598 // If the return instruction returns a value, and if the value was a 599 // PHI node in "BB", propagate the right value into the return. 600 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end(); 601 i != e; ++i) { 602 Value *V = *i; 603 Instruction *NewBC = 0; 604 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 605 // Return value might be bitcasted. Clone and insert it before the 606 // return instruction. 607 V = BCI->getOperand(0); 608 NewBC = BCI->clone(); 609 Pred->getInstList().insert(NewRet, NewBC); 610 *i = NewBC; 611 } 612 if (PHINode *PN = dyn_cast<PHINode>(V)) { 613 if (PN->getParent() == BB) { 614 if (NewBC) 615 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 616 else 617 *i = PN->getIncomingValueForBlock(Pred); 618 } 619 } 620 } 621 622 // Update any PHI nodes in the returning block to realize that we no 623 // longer branch to them. 624 BB->removePredecessor(Pred); 625 UncondBranch->eraseFromParent(); 626 return cast<ReturnInst>(NewRet); 627 } 628 629 /// SplitBlockAndInsertIfThen - Split the containing block at the 630 /// specified instruction - everything before and including Cmp stays 631 /// in the old basic block, and everything after Cmp is moved to a 632 /// new block. The two blocks are connected by a conditional branch 633 /// (with value of Cmp being the condition). 634 /// Before: 635 /// Head 636 /// Cmp 637 /// Tail 638 /// After: 639 /// Head 640 /// Cmp 641 /// if (Cmp) 642 /// ThenBlock 643 /// Tail 644 /// 645 /// If Unreachable is true, then ThenBlock ends with 646 /// UnreachableInst, otherwise it branches to Tail. 647 /// Returns the NewBasicBlock's terminator. 648 649 TerminatorInst *llvm::SplitBlockAndInsertIfThen(Instruction *Cmp, 650 bool Unreachable, MDNode *BranchWeights) { 651 Instruction *SplitBefore = Cmp->getNextNode(); 652 BasicBlock *Head = SplitBefore->getParent(); 653 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore); 654 TerminatorInst *HeadOldTerm = Head->getTerminator(); 655 LLVMContext &C = Head->getContext(); 656 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 657 TerminatorInst *CheckTerm; 658 if (Unreachable) 659 CheckTerm = new UnreachableInst(C, ThenBlock); 660 else 661 CheckTerm = BranchInst::Create(Tail, ThenBlock); 662 BranchInst *HeadNewTerm = 663 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cmp); 664 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 665 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 666 return CheckTerm; 667 } 668 669 /// GetIfCondition - Given a basic block (BB) with two predecessors, 670 /// check to see if the merge at this block is due 671 /// to an "if condition". If so, return the boolean condition that determines 672 /// which entry into BB will be taken. Also, return by references the block 673 /// that will be entered from if the condition is true, and the block that will 674 /// be entered if the condition is false. 675 /// 676 /// This does no checking to see if the true/false blocks have large or unsavory 677 /// instructions in them. 678 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 679 BasicBlock *&IfFalse) { 680 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 681 BasicBlock *Pred1 = NULL; 682 BasicBlock *Pred2 = NULL; 683 684 if (SomePHI) { 685 if (SomePHI->getNumIncomingValues() != 2) 686 return NULL; 687 Pred1 = SomePHI->getIncomingBlock(0); 688 Pred2 = SomePHI->getIncomingBlock(1); 689 } else { 690 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 691 if (PI == PE) // No predecessor 692 return NULL; 693 Pred1 = *PI++; 694 if (PI == PE) // Only one predecessor 695 return NULL; 696 Pred2 = *PI++; 697 if (PI != PE) // More than two predecessors 698 return NULL; 699 } 700 701 // We can only handle branches. Other control flow will be lowered to 702 // branches if possible anyway. 703 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 704 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 705 if (Pred1Br == 0 || Pred2Br == 0) 706 return 0; 707 708 // Eliminate code duplication by ensuring that Pred1Br is conditional if 709 // either are. 710 if (Pred2Br->isConditional()) { 711 // If both branches are conditional, we don't have an "if statement". In 712 // reality, we could transform this case, but since the condition will be 713 // required anyway, we stand no chance of eliminating it, so the xform is 714 // probably not profitable. 715 if (Pred1Br->isConditional()) 716 return 0; 717 718 std::swap(Pred1, Pred2); 719 std::swap(Pred1Br, Pred2Br); 720 } 721 722 if (Pred1Br->isConditional()) { 723 // The only thing we have to watch out for here is to make sure that Pred2 724 // doesn't have incoming edges from other blocks. If it does, the condition 725 // doesn't dominate BB. 726 if (Pred2->getSinglePredecessor() == 0) 727 return 0; 728 729 // If we found a conditional branch predecessor, make sure that it branches 730 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 731 if (Pred1Br->getSuccessor(0) == BB && 732 Pred1Br->getSuccessor(1) == Pred2) { 733 IfTrue = Pred1; 734 IfFalse = Pred2; 735 } else if (Pred1Br->getSuccessor(0) == Pred2 && 736 Pred1Br->getSuccessor(1) == BB) { 737 IfTrue = Pred2; 738 IfFalse = Pred1; 739 } else { 740 // We know that one arm of the conditional goes to BB, so the other must 741 // go somewhere unrelated, and this must not be an "if statement". 742 return 0; 743 } 744 745 return Pred1Br->getCondition(); 746 } 747 748 // Ok, if we got here, both predecessors end with an unconditional branch to 749 // BB. Don't panic! If both blocks only have a single (identical) 750 // predecessor, and THAT is a conditional branch, then we're all ok! 751 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 752 if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor()) 753 return 0; 754 755 // Otherwise, if this is a conditional branch, then we can use it! 756 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 757 if (BI == 0) return 0; 758 759 assert(BI->isConditional() && "Two successors but not conditional?"); 760 if (BI->getSuccessor(0) == Pred1) { 761 IfTrue = Pred1; 762 IfFalse = Pred2; 763 } else { 764 IfTrue = Pred2; 765 IfFalse = Pred1; 766 } 767 return BI->getCondition(); 768 } 769