Home | History | Annotate | Download | only in bionic
      1 /*
      2  * Copyright (C) 2008 The Android Open Source Project
      3  * All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  *  * Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  *  * Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in
     12  *    the documentation and/or other materials provided with the
     13  *    distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     16  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     17  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     18  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
     19  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
     22  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     25  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 #include <pthread.h>
     30 
     31 #include <errno.h>
     32 #include <limits.h>
     33 #include <sys/atomics.h>
     34 #include <sys/mman.h>
     35 #include <unistd.h>
     36 
     37 #include "bionic_atomic_inline.h"
     38 #include "bionic_futex.h"
     39 #include "bionic_pthread.h"
     40 #include "bionic_tls.h"
     41 #include "pthread_internal.h"
     42 #include "thread_private.h"
     43 
     44 extern void pthread_debug_mutex_lock_check(pthread_mutex_t *mutex);
     45 extern void pthread_debug_mutex_unlock_check(pthread_mutex_t *mutex);
     46 
     47 extern void _exit_with_stack_teardown(void * stackBase, int stackSize, int retCode);
     48 extern void _exit_thread(int  retCode);
     49 
     50 int  __futex_wake_ex(volatile void *ftx, int pshared, int val)
     51 {
     52     return __futex_syscall3(ftx, pshared ? FUTEX_WAKE : FUTEX_WAKE_PRIVATE, val);
     53 }
     54 
     55 int  __futex_wait_ex(volatile void *ftx, int pshared, int val, const struct timespec *timeout)
     56 {
     57     return __futex_syscall4(ftx, pshared ? FUTEX_WAIT : FUTEX_WAIT_PRIVATE, val, timeout);
     58 }
     59 
     60 /* CAVEAT: our implementation of pthread_cleanup_push/pop doesn't support C++ exceptions
     61  *         and thread cancelation
     62  */
     63 
     64 void __pthread_cleanup_push( __pthread_cleanup_t*      c,
     65                              __pthread_cleanup_func_t  routine,
     66                              void*                     arg )
     67 {
     68     pthread_internal_t*  thread = __get_thread();
     69 
     70     c->__cleanup_routine  = routine;
     71     c->__cleanup_arg      = arg;
     72     c->__cleanup_prev     = thread->cleanup_stack;
     73     thread->cleanup_stack = c;
     74 }
     75 
     76 void __pthread_cleanup_pop( __pthread_cleanup_t*  c, int  execute )
     77 {
     78     pthread_internal_t*  thread = __get_thread();
     79 
     80     thread->cleanup_stack = c->__cleanup_prev;
     81     if (execute)
     82         c->__cleanup_routine(c->__cleanup_arg);
     83 }
     84 
     85 void pthread_exit(void * retval)
     86 {
     87     pthread_internal_t*  thread     = __get_thread();
     88     void*                stack_base = thread->attr.stack_base;
     89     int                  stack_size = thread->attr.stack_size;
     90     int                  user_stack = (thread->attr.flags & PTHREAD_ATTR_FLAG_USER_STACK) != 0;
     91     sigset_t mask;
     92 
     93     // call the cleanup handlers first
     94     while (thread->cleanup_stack) {
     95         __pthread_cleanup_t*  c = thread->cleanup_stack;
     96         thread->cleanup_stack   = c->__cleanup_prev;
     97         c->__cleanup_routine(c->__cleanup_arg);
     98     }
     99 
    100     // call the TLS destructors, it is important to do that before removing this
    101     // thread from the global list. this will ensure that if someone else deletes
    102     // a TLS key, the corresponding value will be set to NULL in this thread's TLS
    103     // space (see pthread_key_delete)
    104     pthread_key_clean_all();
    105 
    106     if (thread->alternate_signal_stack != NULL) {
    107       // Tell the kernel to stop using the alternate signal stack.
    108       stack_t ss;
    109       ss.ss_sp = NULL;
    110       ss.ss_flags = SS_DISABLE;
    111       sigaltstack(&ss, NULL);
    112 
    113       // Free it.
    114       munmap(thread->alternate_signal_stack, SIGSTKSZ);
    115       thread->alternate_signal_stack = NULL;
    116     }
    117 
    118     // if the thread is detached, destroy the pthread_internal_t
    119     // otherwise, keep it in memory and signal any joiners.
    120     pthread_mutex_lock(&gThreadListLock);
    121     if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
    122         _pthread_internal_remove_locked(thread);
    123     } else {
    124        /* make sure that the thread struct doesn't have stale pointers to a stack that
    125         * will be unmapped after the exit call below.
    126         */
    127         if (!user_stack) {
    128             thread->attr.stack_base = NULL;
    129             thread->attr.stack_size = 0;
    130             thread->tls = NULL;
    131         }
    132 
    133        /* Indicate that the thread has exited for joining threads. */
    134         thread->attr.flags |= PTHREAD_ATTR_FLAG_ZOMBIE;
    135         thread->return_value = retval;
    136 
    137        /* Signal the joining thread if present. */
    138         if (thread->attr.flags & PTHREAD_ATTR_FLAG_JOINED) {
    139             pthread_cond_signal(&thread->join_cond);
    140         }
    141     }
    142     pthread_mutex_unlock(&gThreadListLock);
    143 
    144     sigfillset(&mask);
    145     sigdelset(&mask, SIGSEGV);
    146     (void)sigprocmask(SIG_SETMASK, &mask, (sigset_t *)NULL);
    147 
    148     // destroy the thread stack
    149     if (user_stack)
    150         _exit_thread((int)retval);
    151     else
    152         _exit_with_stack_teardown(stack_base, stack_size, (int)retval);
    153 }
    154 
    155 /* a mutex is implemented as a 32-bit integer holding the following fields
    156  *
    157  * bits:     name     description
    158  * 31-16     tid      owner thread's tid (recursive and errorcheck only)
    159  * 15-14     type     mutex type
    160  * 13        shared   process-shared flag
    161  * 12-2      counter  counter of recursive mutexes
    162  * 1-0       state    lock state (0, 1 or 2)
    163  */
    164 
    165 /* Convenience macro, creates a mask of 'bits' bits that starts from
    166  * the 'shift'-th least significant bit in a 32-bit word.
    167  *
    168  * Examples: FIELD_MASK(0,4)  -> 0xf
    169  *           FIELD_MASK(16,9) -> 0x1ff0000
    170  */
    171 #define  FIELD_MASK(shift,bits)           (((1 << (bits))-1) << (shift))
    172 
    173 /* This one is used to create a bit pattern from a given field value */
    174 #define  FIELD_TO_BITS(val,shift,bits)    (((val) & ((1 << (bits))-1)) << (shift))
    175 
    176 /* And this one does the opposite, i.e. extract a field's value from a bit pattern */
    177 #define  FIELD_FROM_BITS(val,shift,bits)  (((val) >> (shift)) & ((1 << (bits))-1))
    178 
    179 /* Mutex state:
    180  *
    181  * 0 for unlocked
    182  * 1 for locked, no waiters
    183  * 2 for locked, maybe waiters
    184  */
    185 #define  MUTEX_STATE_SHIFT      0
    186 #define  MUTEX_STATE_LEN        2
    187 
    188 #define  MUTEX_STATE_MASK           FIELD_MASK(MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
    189 #define  MUTEX_STATE_FROM_BITS(v)   FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
    190 #define  MUTEX_STATE_TO_BITS(v)     FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
    191 
    192 #define  MUTEX_STATE_UNLOCKED            0   /* must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */
    193 #define  MUTEX_STATE_LOCKED_UNCONTENDED  1   /* must be 1 due to atomic dec in unlock operation */
    194 #define  MUTEX_STATE_LOCKED_CONTENDED    2   /* must be 1 + LOCKED_UNCONTENDED due to atomic dec */
    195 
    196 #define  MUTEX_STATE_FROM_BITS(v)    FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
    197 #define  MUTEX_STATE_TO_BITS(v)      FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
    198 
    199 #define  MUTEX_STATE_BITS_UNLOCKED            MUTEX_STATE_TO_BITS(MUTEX_STATE_UNLOCKED)
    200 #define  MUTEX_STATE_BITS_LOCKED_UNCONTENDED  MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_UNCONTENDED)
    201 #define  MUTEX_STATE_BITS_LOCKED_CONTENDED    MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_CONTENDED)
    202 
    203 /* return true iff the mutex if locked with no waiters */
    204 #define  MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(v)  (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_UNCONTENDED)
    205 
    206 /* return true iff the mutex if locked with maybe waiters */
    207 #define  MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(v)   (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_CONTENDED)
    208 
    209 /* used to flip from LOCKED_UNCONTENDED to LOCKED_CONTENDED */
    210 #define  MUTEX_STATE_BITS_FLIP_CONTENTION(v)      ((v) ^ (MUTEX_STATE_BITS_LOCKED_CONTENDED ^ MUTEX_STATE_BITS_LOCKED_UNCONTENDED))
    211 
    212 /* Mutex counter:
    213  *
    214  * We need to check for overflow before incrementing, and we also need to
    215  * detect when the counter is 0
    216  */
    217 #define  MUTEX_COUNTER_SHIFT         2
    218 #define  MUTEX_COUNTER_LEN           11
    219 #define  MUTEX_COUNTER_MASK          FIELD_MASK(MUTEX_COUNTER_SHIFT, MUTEX_COUNTER_LEN)
    220 
    221 #define  MUTEX_COUNTER_BITS_WILL_OVERFLOW(v)    (((v) & MUTEX_COUNTER_MASK) == MUTEX_COUNTER_MASK)
    222 #define  MUTEX_COUNTER_BITS_IS_ZERO(v)          (((v) & MUTEX_COUNTER_MASK) == 0)
    223 
    224 /* Used to increment the counter directly after overflow has been checked */
    225 #define  MUTEX_COUNTER_BITS_ONE      FIELD_TO_BITS(1,MUTEX_COUNTER_SHIFT,MUTEX_COUNTER_LEN)
    226 
    227 /* Returns true iff the counter is 0 */
    228 #define  MUTEX_COUNTER_BITS_ARE_ZERO(v)  (((v) & MUTEX_COUNTER_MASK) == 0)
    229 
    230 /* Mutex shared bit flag
    231  *
    232  * This flag is set to indicate that the mutex is shared among processes.
    233  * This changes the futex opcode we use for futex wait/wake operations
    234  * (non-shared operations are much faster).
    235  */
    236 #define  MUTEX_SHARED_SHIFT    13
    237 #define  MUTEX_SHARED_MASK     FIELD_MASK(MUTEX_SHARED_SHIFT,1)
    238 
    239 /* Mutex type:
    240  *
    241  * We support normal, recursive and errorcheck mutexes.
    242  *
    243  * The constants defined here *cannot* be changed because they must match
    244  * the C library ABI which defines the following initialization values in
    245  * <pthread.h>:
    246  *
    247  *   __PTHREAD_MUTEX_INIT_VALUE
    248  *   __PTHREAD_RECURSIVE_MUTEX_VALUE
    249  *   __PTHREAD_ERRORCHECK_MUTEX_INIT_VALUE
    250  */
    251 #define  MUTEX_TYPE_SHIFT      14
    252 #define  MUTEX_TYPE_LEN        2
    253 #define  MUTEX_TYPE_MASK       FIELD_MASK(MUTEX_TYPE_SHIFT,MUTEX_TYPE_LEN)
    254 
    255 #define  MUTEX_TYPE_NORMAL          0  /* Must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */
    256 #define  MUTEX_TYPE_RECURSIVE       1
    257 #define  MUTEX_TYPE_ERRORCHECK      2
    258 
    259 #define  MUTEX_TYPE_TO_BITS(t)       FIELD_TO_BITS(t, MUTEX_TYPE_SHIFT, MUTEX_TYPE_LEN)
    260 
    261 #define  MUTEX_TYPE_BITS_NORMAL      MUTEX_TYPE_TO_BITS(MUTEX_TYPE_NORMAL)
    262 #define  MUTEX_TYPE_BITS_RECURSIVE   MUTEX_TYPE_TO_BITS(MUTEX_TYPE_RECURSIVE)
    263 #define  MUTEX_TYPE_BITS_ERRORCHECK  MUTEX_TYPE_TO_BITS(MUTEX_TYPE_ERRORCHECK)
    264 
    265 /* Mutex owner field:
    266  *
    267  * This is only used for recursive and errorcheck mutexes. It holds the
    268  * tid of the owning thread. Note that this works because the Linux
    269  * kernel _only_ uses 16-bit values for tids.
    270  *
    271  * More specifically, it will wrap to 10000 when it reaches over 32768 for
    272  * application processes. You can check this by running the following inside
    273  * an adb shell session:
    274  *
    275     OLDPID=$$;
    276     while true; do
    277     NEWPID=$(sh -c 'echo $$')
    278     if [ "$NEWPID" -gt 32768 ]; then
    279         echo "AARGH: new PID $NEWPID is too high!"
    280         exit 1
    281     fi
    282     if [ "$NEWPID" -lt "$OLDPID" ]; then
    283         echo "****** Wrapping from PID $OLDPID to $NEWPID. *******"
    284     else
    285         echo -n "$NEWPID!"
    286     fi
    287     OLDPID=$NEWPID
    288     done
    289 
    290  * Note that you can run the same example on a desktop Linux system,
    291  * the wrapping will also happen at 32768, but will go back to 300 instead.
    292  */
    293 #define  MUTEX_OWNER_SHIFT     16
    294 #define  MUTEX_OWNER_LEN       16
    295 
    296 #define  MUTEX_OWNER_FROM_BITS(v)    FIELD_FROM_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN)
    297 #define  MUTEX_OWNER_TO_BITS(v)      FIELD_TO_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN)
    298 
    299 /* Convenience macros.
    300  *
    301  * These are used to form or modify the bit pattern of a given mutex value
    302  */
    303 
    304 
    305 
    306 /* a mutex attribute holds the following fields
    307  *
    308  * bits:     name       description
    309  * 0-3       type       type of mutex
    310  * 4         shared     process-shared flag
    311  */
    312 #define  MUTEXATTR_TYPE_MASK   0x000f
    313 #define  MUTEXATTR_SHARED_MASK 0x0010
    314 
    315 
    316 int pthread_mutexattr_init(pthread_mutexattr_t *attr)
    317 {
    318     if (attr) {
    319         *attr = PTHREAD_MUTEX_DEFAULT;
    320         return 0;
    321     } else {
    322         return EINVAL;
    323     }
    324 }
    325 
    326 int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
    327 {
    328     if (attr) {
    329         *attr = -1;
    330         return 0;
    331     } else {
    332         return EINVAL;
    333     }
    334 }
    335 
    336 int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type)
    337 {
    338     if (attr) {
    339         int  atype = (*attr & MUTEXATTR_TYPE_MASK);
    340 
    341          if (atype >= PTHREAD_MUTEX_NORMAL &&
    342              atype <= PTHREAD_MUTEX_ERRORCHECK) {
    343             *type = atype;
    344             return 0;
    345         }
    346     }
    347     return EINVAL;
    348 }
    349 
    350 int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
    351 {
    352     if (attr && type >= PTHREAD_MUTEX_NORMAL &&
    353                 type <= PTHREAD_MUTEX_ERRORCHECK ) {
    354         *attr = (*attr & ~MUTEXATTR_TYPE_MASK) | type;
    355         return 0;
    356     }
    357     return EINVAL;
    358 }
    359 
    360 /* process-shared mutexes are not supported at the moment */
    361 
    362 int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int  pshared)
    363 {
    364     if (!attr)
    365         return EINVAL;
    366 
    367     switch (pshared) {
    368     case PTHREAD_PROCESS_PRIVATE:
    369         *attr &= ~MUTEXATTR_SHARED_MASK;
    370         return 0;
    371 
    372     case PTHREAD_PROCESS_SHARED:
    373         /* our current implementation of pthread actually supports shared
    374          * mutexes but won't cleanup if a process dies with the mutex held.
    375          * Nevertheless, it's better than nothing. Shared mutexes are used
    376          * by surfaceflinger and audioflinger.
    377          */
    378         *attr |= MUTEXATTR_SHARED_MASK;
    379         return 0;
    380     }
    381     return EINVAL;
    382 }
    383 
    384 int pthread_mutexattr_getpshared(pthread_mutexattr_t *attr, int *pshared)
    385 {
    386     if (!attr || !pshared)
    387         return EINVAL;
    388 
    389     *pshared = (*attr & MUTEXATTR_SHARED_MASK) ? PTHREAD_PROCESS_SHARED
    390                                                : PTHREAD_PROCESS_PRIVATE;
    391     return 0;
    392 }
    393 
    394 int pthread_mutex_init(pthread_mutex_t *mutex,
    395                        const pthread_mutexattr_t *attr)
    396 {
    397     int value = 0;
    398 
    399     if (mutex == NULL)
    400         return EINVAL;
    401 
    402     if (__predict_true(attr == NULL)) {
    403         mutex->value = MUTEX_TYPE_BITS_NORMAL;
    404         return 0;
    405     }
    406 
    407     if ((*attr & MUTEXATTR_SHARED_MASK) != 0)
    408         value |= MUTEX_SHARED_MASK;
    409 
    410     switch (*attr & MUTEXATTR_TYPE_MASK) {
    411     case PTHREAD_MUTEX_NORMAL:
    412         value |= MUTEX_TYPE_BITS_NORMAL;
    413         break;
    414     case PTHREAD_MUTEX_RECURSIVE:
    415         value |= MUTEX_TYPE_BITS_RECURSIVE;
    416         break;
    417     case PTHREAD_MUTEX_ERRORCHECK:
    418         value |= MUTEX_TYPE_BITS_ERRORCHECK;
    419         break;
    420     default:
    421         return EINVAL;
    422     }
    423 
    424     mutex->value = value;
    425     return 0;
    426 }
    427 
    428 
    429 /*
    430  * Lock a non-recursive mutex.
    431  *
    432  * As noted above, there are three states:
    433  *   0 (unlocked, no contention)
    434  *   1 (locked, no contention)
    435  *   2 (locked, contention)
    436  *
    437  * Non-recursive mutexes don't use the thread-id or counter fields, and the
    438  * "type" value is zero, so the only bits that will be set are the ones in
    439  * the lock state field.
    440  */
    441 static __inline__ void
    442 _normal_lock(pthread_mutex_t*  mutex, int shared)
    443 {
    444     /* convenience shortcuts */
    445     const int unlocked           = shared | MUTEX_STATE_BITS_UNLOCKED;
    446     const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
    447     /*
    448      * The common case is an unlocked mutex, so we begin by trying to
    449      * change the lock's state from 0 (UNLOCKED) to 1 (LOCKED).
    450      * __bionic_cmpxchg() returns 0 if it made the swap successfully.
    451      * If the result is nonzero, this lock is already held by another thread.
    452      */
    453     if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) != 0) {
    454         const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
    455         /*
    456          * We want to go to sleep until the mutex is available, which
    457          * requires promoting it to state 2 (CONTENDED). We need to
    458          * swap in the new state value and then wait until somebody wakes us up.
    459          *
    460          * __bionic_swap() returns the previous value.  We swap 2 in and
    461          * see if we got zero back; if so, we have acquired the lock.  If
    462          * not, another thread still holds the lock and we wait again.
    463          *
    464          * The second argument to the __futex_wait() call is compared
    465          * against the current value.  If it doesn't match, __futex_wait()
    466          * returns immediately (otherwise, it sleeps for a time specified
    467          * by the third argument; 0 means sleep forever).  This ensures
    468          * that the mutex is in state 2 when we go to sleep on it, which
    469          * guarantees a wake-up call.
    470          */
    471         while (__bionic_swap(locked_contended, &mutex->value) != unlocked)
    472             __futex_wait_ex(&mutex->value, shared, locked_contended, 0);
    473     }
    474     ANDROID_MEMBAR_FULL();
    475 }
    476 
    477 /*
    478  * Release a non-recursive mutex.  The caller is responsible for determining
    479  * that we are in fact the owner of this lock.
    480  */
    481 static __inline__ void
    482 _normal_unlock(pthread_mutex_t*  mutex, int shared)
    483 {
    484     ANDROID_MEMBAR_FULL();
    485 
    486     /*
    487      * The mutex state will be 1 or (rarely) 2.  We use an atomic decrement
    488      * to release the lock.  __bionic_atomic_dec() returns the previous value;
    489      * if it wasn't 1 we have to do some additional work.
    490      */
    491     if (__bionic_atomic_dec(&mutex->value) != (shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED)) {
    492         /*
    493          * Start by releasing the lock.  The decrement changed it from
    494          * "contended lock" to "uncontended lock", which means we still
    495          * hold it, and anybody who tries to sneak in will push it back
    496          * to state 2.
    497          *
    498          * Once we set it to zero the lock is up for grabs.  We follow
    499          * this with a __futex_wake() to ensure that one of the waiting
    500          * threads has a chance to grab it.
    501          *
    502          * This doesn't cause a race with the swap/wait pair in
    503          * _normal_lock(), because the __futex_wait() call there will
    504          * return immediately if the mutex value isn't 2.
    505          */
    506         mutex->value = shared;
    507 
    508         /*
    509          * Wake up one waiting thread.  We don't know which thread will be
    510          * woken or when it'll start executing -- futexes make no guarantees
    511          * here.  There may not even be a thread waiting.
    512          *
    513          * The newly-woken thread will replace the 0 we just set above
    514          * with 2, which means that when it eventually releases the mutex
    515          * it will also call FUTEX_WAKE.  This results in one extra wake
    516          * call whenever a lock is contended, but lets us avoid forgetting
    517          * anyone without requiring us to track the number of sleepers.
    518          *
    519          * It's possible for another thread to sneak in and grab the lock
    520          * between the zero assignment above and the wake call below.  If
    521          * the new thread is "slow" and holds the lock for a while, we'll
    522          * wake up a sleeper, which will swap in a 2 and then go back to
    523          * sleep since the lock is still held.  If the new thread is "fast",
    524          * running to completion before we call wake, the thread we
    525          * eventually wake will find an unlocked mutex and will execute.
    526          * Either way we have correct behavior and nobody is orphaned on
    527          * the wait queue.
    528          */
    529         __futex_wake_ex(&mutex->value, shared, 1);
    530     }
    531 }
    532 
    533 /* This common inlined function is used to increment the counter of an
    534  * errorcheck or recursive mutex.
    535  *
    536  * For errorcheck mutexes, it will return EDEADLK
    537  * If the counter overflows, it will return EAGAIN
    538  * Otherwise, it atomically increments the counter and returns 0
    539  * after providing an acquire barrier.
    540  *
    541  * mtype is the current mutex type
    542  * mvalue is the current mutex value (already loaded)
    543  * mutex pointers to the mutex.
    544  */
    545 static __inline__ __attribute__((always_inline)) int
    546 _recursive_increment(pthread_mutex_t* mutex, int mvalue, int mtype)
    547 {
    548     if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) {
    549         /* trying to re-lock a mutex we already acquired */
    550         return EDEADLK;
    551     }
    552 
    553     /* Detect recursive lock overflow and return EAGAIN.
    554      * This is safe because only the owner thread can modify the
    555      * counter bits in the mutex value.
    556      */
    557     if (MUTEX_COUNTER_BITS_WILL_OVERFLOW(mvalue)) {
    558         return EAGAIN;
    559     }
    560 
    561     /* We own the mutex, but other threads are able to change
    562      * the lower bits (e.g. promoting it to "contended"), so we
    563      * need to use an atomic cmpxchg loop to update the counter.
    564      */
    565     for (;;) {
    566         /* increment counter, overflow was already checked */
    567         int newval = mvalue + MUTEX_COUNTER_BITS_ONE;
    568         if (__predict_true(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) {
    569             /* mutex is still locked, not need for a memory barrier */
    570             return 0;
    571         }
    572         /* the value was changed, this happens when another thread changes
    573          * the lower state bits from 1 to 2 to indicate contention. This
    574          * cannot change the counter, so simply reload and try again.
    575          */
    576         mvalue = mutex->value;
    577     }
    578 }
    579 
    580 __LIBC_HIDDEN__
    581 int pthread_mutex_lock_impl(pthread_mutex_t *mutex)
    582 {
    583     int mvalue, mtype, tid, shared;
    584 
    585     if (__predict_false(mutex == NULL))
    586         return EINVAL;
    587 
    588     mvalue = mutex->value;
    589     mtype = (mvalue & MUTEX_TYPE_MASK);
    590     shared = (mvalue & MUTEX_SHARED_MASK);
    591 
    592     /* Handle normal case first */
    593     if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) ) {
    594         _normal_lock(mutex, shared);
    595         return 0;
    596     }
    597 
    598     /* Do we already own this recursive or error-check mutex ? */
    599     tid = __get_thread()->tid;
    600     if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
    601         return _recursive_increment(mutex, mvalue, mtype);
    602 
    603     /* Add in shared state to avoid extra 'or' operations below */
    604     mtype |= shared;
    605 
    606     /* First, if the mutex is unlocked, try to quickly acquire it.
    607      * In the optimistic case where this works, set the state to 1 to
    608      * indicate locked with no contention */
    609     if (mvalue == mtype) {
    610         int newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
    611         if (__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0) {
    612             ANDROID_MEMBAR_FULL();
    613             return 0;
    614         }
    615         /* argh, the value changed, reload before entering the loop */
    616         mvalue = mutex->value;
    617     }
    618 
    619     for (;;) {
    620         int newval;
    621 
    622         /* if the mutex is unlocked, its value should be 'mtype' and
    623          * we try to acquire it by setting its owner and state atomically.
    624          * NOTE: We put the state to 2 since we _know_ there is contention
    625          * when we are in this loop. This ensures all waiters will be
    626          * unlocked.
    627          */
    628         if (mvalue == mtype) {
    629             newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED;
    630             /* TODO: Change this to __bionic_cmpxchg_acquire when we
    631              *        implement it to get rid of the explicit memory
    632              *        barrier below.
    633              */
    634             if (__predict_false(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) {
    635                 mvalue = mutex->value;
    636                 continue;
    637             }
    638             ANDROID_MEMBAR_FULL();
    639             return 0;
    640         }
    641 
    642         /* the mutex is already locked by another thread, if its state is 1
    643          * we will change it to 2 to indicate contention. */
    644         if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) {
    645             newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue); /* locked state 1 => state 2 */
    646             if (__predict_false(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) {
    647                 mvalue = mutex->value;
    648                 continue;
    649             }
    650             mvalue = newval;
    651         }
    652 
    653         /* wait until the mutex is unlocked */
    654         __futex_wait_ex(&mutex->value, shared, mvalue, NULL);
    655 
    656         mvalue = mutex->value;
    657     }
    658     /* NOTREACHED */
    659 }
    660 
    661 int pthread_mutex_lock(pthread_mutex_t *mutex)
    662 {
    663     int err = pthread_mutex_lock_impl(mutex);
    664 #ifdef PTHREAD_DEBUG
    665     if (PTHREAD_DEBUG_ENABLED) {
    666         if (!err) {
    667             pthread_debug_mutex_lock_check(mutex);
    668         }
    669     }
    670 #endif
    671     return err;
    672 }
    673 
    674 __LIBC_HIDDEN__
    675 int pthread_mutex_unlock_impl(pthread_mutex_t *mutex)
    676 {
    677     int mvalue, mtype, tid, shared;
    678 
    679     if (__predict_false(mutex == NULL))
    680         return EINVAL;
    681 
    682     mvalue = mutex->value;
    683     mtype  = (mvalue & MUTEX_TYPE_MASK);
    684     shared = (mvalue & MUTEX_SHARED_MASK);
    685 
    686     /* Handle common case first */
    687     if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) {
    688         _normal_unlock(mutex, shared);
    689         return 0;
    690     }
    691 
    692     /* Do we already own this recursive or error-check mutex ? */
    693     tid = __get_thread()->tid;
    694     if ( tid != MUTEX_OWNER_FROM_BITS(mvalue) )
    695         return EPERM;
    696 
    697     /* If the counter is > 0, we can simply decrement it atomically.
    698      * Since other threads can mutate the lower state bits (and only the
    699      * lower state bits), use a cmpxchg to do it.
    700      */
    701     if (!MUTEX_COUNTER_BITS_IS_ZERO(mvalue)) {
    702         for (;;) {
    703             int newval = mvalue - MUTEX_COUNTER_BITS_ONE;
    704             if (__predict_true(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) {
    705                 /* success: we still own the mutex, so no memory barrier */
    706                 return 0;
    707             }
    708             /* the value changed, so reload and loop */
    709             mvalue = mutex->value;
    710         }
    711     }
    712 
    713     /* the counter is 0, so we're going to unlock the mutex by resetting
    714      * its value to 'unlocked'. We need to perform a swap in order
    715      * to read the current state, which will be 2 if there are waiters
    716      * to awake.
    717      *
    718      * TODO: Change this to __bionic_swap_release when we implement it
    719      *        to get rid of the explicit memory barrier below.
    720      */
    721     ANDROID_MEMBAR_FULL();  /* RELEASE BARRIER */
    722     mvalue = __bionic_swap(mtype | shared | MUTEX_STATE_BITS_UNLOCKED, &mutex->value);
    723 
    724     /* Wake one waiting thread, if any */
    725     if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) {
    726         __futex_wake_ex(&mutex->value, shared, 1);
    727     }
    728     return 0;
    729 }
    730 
    731 int pthread_mutex_unlock(pthread_mutex_t *mutex)
    732 {
    733 #ifdef PTHREAD_DEBUG
    734     if (PTHREAD_DEBUG_ENABLED) {
    735         pthread_debug_mutex_unlock_check(mutex);
    736     }
    737 #endif
    738     return pthread_mutex_unlock_impl(mutex);
    739 }
    740 
    741 __LIBC_HIDDEN__
    742 int pthread_mutex_trylock_impl(pthread_mutex_t *mutex)
    743 {
    744     int mvalue, mtype, tid, shared;
    745 
    746     if (__predict_false(mutex == NULL))
    747         return EINVAL;
    748 
    749     mvalue = mutex->value;
    750     mtype  = (mvalue & MUTEX_TYPE_MASK);
    751     shared = (mvalue & MUTEX_SHARED_MASK);
    752 
    753     /* Handle common case first */
    754     if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) )
    755     {
    756         if (__bionic_cmpxchg(shared|MUTEX_STATE_BITS_UNLOCKED,
    757                              shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED,
    758                              &mutex->value) == 0) {
    759             ANDROID_MEMBAR_FULL();
    760             return 0;
    761         }
    762 
    763         return EBUSY;
    764     }
    765 
    766     /* Do we already own this recursive or error-check mutex ? */
    767     tid = __get_thread()->tid;
    768     if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
    769         return _recursive_increment(mutex, mvalue, mtype);
    770 
    771     /* Same as pthread_mutex_lock, except that we don't want to wait, and
    772      * the only operation that can succeed is a single cmpxchg to acquire the
    773      * lock if it is released / not owned by anyone. No need for a complex loop.
    774      */
    775     mtype |= shared | MUTEX_STATE_BITS_UNLOCKED;
    776     mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
    777 
    778     if (__predict_true(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) {
    779         ANDROID_MEMBAR_FULL();
    780         return 0;
    781     }
    782 
    783     return EBUSY;
    784 }
    785 
    786 int pthread_mutex_trylock(pthread_mutex_t *mutex)
    787 {
    788     int err = pthread_mutex_trylock_impl(mutex);
    789 #ifdef PTHREAD_DEBUG
    790     if (PTHREAD_DEBUG_ENABLED) {
    791         if (!err) {
    792             pthread_debug_mutex_lock_check(mutex);
    793         }
    794     }
    795 #endif
    796     return err;
    797 }
    798 
    799 /* initialize 'ts' with the difference between 'abstime' and the current time
    800  * according to 'clock'. Returns -1 if abstime already expired, or 0 otherwise.
    801  */
    802 static int
    803 __timespec_to_absolute(struct timespec*  ts, const struct timespec*  abstime, clockid_t  clock)
    804 {
    805     clock_gettime(clock, ts);
    806     ts->tv_sec  = abstime->tv_sec - ts->tv_sec;
    807     ts->tv_nsec = abstime->tv_nsec - ts->tv_nsec;
    808     if (ts->tv_nsec < 0) {
    809         ts->tv_sec--;
    810         ts->tv_nsec += 1000000000;
    811     }
    812     if ((ts->tv_nsec < 0) || (ts->tv_sec < 0))
    813         return -1;
    814 
    815     return 0;
    816 }
    817 
    818 /* initialize 'abstime' to the current time according to 'clock' plus 'msecs'
    819  * milliseconds.
    820  */
    821 static void
    822 __timespec_to_relative_msec(struct timespec*  abstime, unsigned  msecs, clockid_t  clock)
    823 {
    824     clock_gettime(clock, abstime);
    825     abstime->tv_sec  += msecs/1000;
    826     abstime->tv_nsec += (msecs%1000)*1000000;
    827     if (abstime->tv_nsec >= 1000000000) {
    828         abstime->tv_sec++;
    829         abstime->tv_nsec -= 1000000000;
    830     }
    831 }
    832 
    833 __LIBC_HIDDEN__
    834 int pthread_mutex_lock_timeout_np_impl(pthread_mutex_t *mutex, unsigned msecs)
    835 {
    836     clockid_t        clock = CLOCK_MONOTONIC;
    837     struct timespec  abstime;
    838     struct timespec  ts;
    839     int               mvalue, mtype, tid, shared;
    840 
    841     /* compute absolute expiration time */
    842     __timespec_to_relative_msec(&abstime, msecs, clock);
    843 
    844     if (__predict_false(mutex == NULL))
    845         return EINVAL;
    846 
    847     mvalue = mutex->value;
    848     mtype  = (mvalue & MUTEX_TYPE_MASK);
    849     shared = (mvalue & MUTEX_SHARED_MASK);
    850 
    851     /* Handle common case first */
    852     if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) )
    853     {
    854         const int unlocked           = shared | MUTEX_STATE_BITS_UNLOCKED;
    855         const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
    856         const int locked_contended   = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
    857 
    858         /* fast path for uncontended lock. Note: MUTEX_TYPE_BITS_NORMAL is 0 */
    859         if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) == 0) {
    860             ANDROID_MEMBAR_FULL();
    861             return 0;
    862         }
    863 
    864         /* loop while needed */
    865         while (__bionic_swap(locked_contended, &mutex->value) != unlocked) {
    866             if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
    867                 return EBUSY;
    868 
    869             __futex_wait_ex(&mutex->value, shared, locked_contended, &ts);
    870         }
    871         ANDROID_MEMBAR_FULL();
    872         return 0;
    873     }
    874 
    875     /* Do we already own this recursive or error-check mutex ? */
    876     tid = __get_thread()->tid;
    877     if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
    878         return _recursive_increment(mutex, mvalue, mtype);
    879 
    880     /* the following implements the same loop than pthread_mutex_lock_impl
    881      * but adds checks to ensure that the operation never exceeds the
    882      * absolute expiration time.
    883      */
    884     mtype |= shared;
    885 
    886     /* first try a quick lock */
    887     if (mvalue == mtype) {
    888         mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
    889         if (__predict_true(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) {
    890             ANDROID_MEMBAR_FULL();
    891             return 0;
    892         }
    893         mvalue = mutex->value;
    894     }
    895 
    896     for (;;) {
    897         struct timespec ts;
    898 
    899         /* if the value is 'unlocked', try to acquire it directly */
    900         /* NOTE: put state to 2 since we know there is contention */
    901         if (mvalue == mtype) /* unlocked */ {
    902             mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED;
    903             if (__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0) {
    904                 ANDROID_MEMBAR_FULL();
    905                 return 0;
    906             }
    907             /* the value changed before we could lock it. We need to check
    908              * the time to avoid livelocks, reload the value, then loop again. */
    909             if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
    910                 return EBUSY;
    911 
    912             mvalue = mutex->value;
    913             continue;
    914         }
    915 
    916         /* The value is locked. If 'uncontended', try to switch its state
    917          * to 'contented' to ensure we get woken up later. */
    918         if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) {
    919             int newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue);
    920             if (__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0) {
    921                 /* this failed because the value changed, reload it */
    922                 mvalue = mutex->value;
    923             } else {
    924                 /* this succeeded, update mvalue */
    925                 mvalue = newval;
    926             }
    927         }
    928 
    929         /* check time and update 'ts' */
    930         if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
    931             return EBUSY;
    932 
    933         /* Only wait to be woken up if the state is '2', otherwise we'll
    934          * simply loop right now. This can happen when the second cmpxchg
    935          * in our loop failed because the mutex was unlocked by another
    936          * thread.
    937          */
    938         if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) {
    939             if (__futex_wait_ex(&mutex->value, shared, mvalue, &ts) == ETIMEDOUT) {
    940                 return EBUSY;
    941             }
    942             mvalue = mutex->value;
    943         }
    944     }
    945     /* NOTREACHED */
    946 }
    947 
    948 int pthread_mutex_lock_timeout_np(pthread_mutex_t *mutex, unsigned msecs)
    949 {
    950     int err = pthread_mutex_lock_timeout_np_impl(mutex, msecs);
    951 #ifdef PTHREAD_DEBUG
    952     if (PTHREAD_DEBUG_ENABLED) {
    953         if (!err) {
    954             pthread_debug_mutex_lock_check(mutex);
    955         }
    956     }
    957 #endif
    958     return err;
    959 }
    960 
    961 int pthread_mutex_destroy(pthread_mutex_t *mutex)
    962 {
    963     int ret;
    964 
    965     /* use trylock to ensure that the mutex value is
    966      * valid and is not already locked. */
    967     ret = pthread_mutex_trylock_impl(mutex);
    968     if (ret != 0)
    969         return ret;
    970 
    971     mutex->value = 0xdead10cc;
    972     return 0;
    973 }
    974 
    975 
    976 
    977 int pthread_condattr_init(pthread_condattr_t *attr)
    978 {
    979     if (attr == NULL)
    980         return EINVAL;
    981 
    982     *attr = PTHREAD_PROCESS_PRIVATE;
    983     return 0;
    984 }
    985 
    986 int pthread_condattr_getpshared(pthread_condattr_t *attr, int *pshared)
    987 {
    988     if (attr == NULL || pshared == NULL)
    989         return EINVAL;
    990 
    991     *pshared = *attr;
    992     return 0;
    993 }
    994 
    995 int pthread_condattr_setpshared(pthread_condattr_t *attr, int pshared)
    996 {
    997     if (attr == NULL)
    998         return EINVAL;
    999 
   1000     if (pshared != PTHREAD_PROCESS_SHARED &&
   1001         pshared != PTHREAD_PROCESS_PRIVATE)
   1002         return EINVAL;
   1003 
   1004     *attr = pshared;
   1005     return 0;
   1006 }
   1007 
   1008 int pthread_condattr_destroy(pthread_condattr_t *attr)
   1009 {
   1010     if (attr == NULL)
   1011         return EINVAL;
   1012 
   1013     *attr = 0xdeada11d;
   1014     return 0;
   1015 }
   1016 
   1017 /* We use one bit in condition variable values as the 'shared' flag
   1018  * The rest is a counter.
   1019  */
   1020 #define COND_SHARED_MASK        0x0001
   1021 #define COND_COUNTER_INCREMENT  0x0002
   1022 #define COND_COUNTER_MASK       (~COND_SHARED_MASK)
   1023 
   1024 #define COND_IS_SHARED(c)  (((c)->value & COND_SHARED_MASK) != 0)
   1025 
   1026 /* XXX *technically* there is a race condition that could allow
   1027  * XXX a signal to be missed.  If thread A is preempted in _wait()
   1028  * XXX after unlocking the mutex and before waiting, and if other
   1029  * XXX threads call signal or broadcast UINT_MAX/2 times (exactly),
   1030  * XXX before thread A is scheduled again and calls futex_wait(),
   1031  * XXX then the signal will be lost.
   1032  */
   1033 
   1034 int pthread_cond_init(pthread_cond_t *cond,
   1035                       const pthread_condattr_t *attr)
   1036 {
   1037     if (cond == NULL)
   1038         return EINVAL;
   1039 
   1040     cond->value = 0;
   1041 
   1042     if (attr != NULL && *attr == PTHREAD_PROCESS_SHARED)
   1043         cond->value |= COND_SHARED_MASK;
   1044 
   1045     return 0;
   1046 }
   1047 
   1048 int pthread_cond_destroy(pthread_cond_t *cond)
   1049 {
   1050     if (cond == NULL)
   1051         return EINVAL;
   1052 
   1053     cond->value = 0xdeadc04d;
   1054     return 0;
   1055 }
   1056 
   1057 /* This function is used by pthread_cond_broadcast and
   1058  * pthread_cond_signal to atomically decrement the counter
   1059  * then wake-up 'counter' threads.
   1060  */
   1061 static int
   1062 __pthread_cond_pulse(pthread_cond_t *cond, int  counter)
   1063 {
   1064     long flags;
   1065 
   1066     if (__predict_false(cond == NULL))
   1067         return EINVAL;
   1068 
   1069     flags = (cond->value & ~COND_COUNTER_MASK);
   1070     for (;;) {
   1071         long oldval = cond->value;
   1072         long newval = ((oldval - COND_COUNTER_INCREMENT) & COND_COUNTER_MASK)
   1073                       | flags;
   1074         if (__bionic_cmpxchg(oldval, newval, &cond->value) == 0)
   1075             break;
   1076     }
   1077 
   1078     /*
   1079      * Ensure that all memory accesses previously made by this thread are
   1080      * visible to the woken thread(s).  On the other side, the "wait"
   1081      * code will issue any necessary barriers when locking the mutex.
   1082      *
   1083      * This may not strictly be necessary -- if the caller follows
   1084      * recommended practice and holds the mutex before signaling the cond
   1085      * var, the mutex ops will provide correct semantics.  If they don't
   1086      * hold the mutex, they're subject to race conditions anyway.
   1087      */
   1088     ANDROID_MEMBAR_FULL();
   1089 
   1090     __futex_wake_ex(&cond->value, COND_IS_SHARED(cond), counter);
   1091     return 0;
   1092 }
   1093 
   1094 int pthread_cond_broadcast(pthread_cond_t *cond)
   1095 {
   1096     return __pthread_cond_pulse(cond, INT_MAX);
   1097 }
   1098 
   1099 int pthread_cond_signal(pthread_cond_t *cond)
   1100 {
   1101     return __pthread_cond_pulse(cond, 1);
   1102 }
   1103 
   1104 int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
   1105 {
   1106     return pthread_cond_timedwait(cond, mutex, NULL);
   1107 }
   1108 
   1109 int __pthread_cond_timedwait_relative(pthread_cond_t *cond,
   1110                                       pthread_mutex_t * mutex,
   1111                                       const struct timespec *reltime)
   1112 {
   1113     int  status;
   1114     int  oldvalue = cond->value;
   1115 
   1116     pthread_mutex_unlock(mutex);
   1117     status = __futex_wait_ex(&cond->value, COND_IS_SHARED(cond), oldvalue, reltime);
   1118     pthread_mutex_lock(mutex);
   1119 
   1120     if (status == (-ETIMEDOUT)) return ETIMEDOUT;
   1121     return 0;
   1122 }
   1123 
   1124 int __pthread_cond_timedwait(pthread_cond_t *cond,
   1125                              pthread_mutex_t * mutex,
   1126                              const struct timespec *abstime,
   1127                              clockid_t clock)
   1128 {
   1129     struct timespec ts;
   1130     struct timespec * tsp;
   1131 
   1132     if (abstime != NULL) {
   1133         if (__timespec_to_absolute(&ts, abstime, clock) < 0)
   1134             return ETIMEDOUT;
   1135         tsp = &ts;
   1136     } else {
   1137         tsp = NULL;
   1138     }
   1139 
   1140     return __pthread_cond_timedwait_relative(cond, mutex, tsp);
   1141 }
   1142 
   1143 int pthread_cond_timedwait(pthread_cond_t *cond,
   1144                            pthread_mutex_t * mutex,
   1145                            const struct timespec *abstime)
   1146 {
   1147     return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_REALTIME);
   1148 }
   1149 
   1150 
   1151 /* this one exists only for backward binary compatibility */
   1152 int pthread_cond_timedwait_monotonic(pthread_cond_t *cond,
   1153                                      pthread_mutex_t * mutex,
   1154                                      const struct timespec *abstime)
   1155 {
   1156     return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
   1157 }
   1158 
   1159 int pthread_cond_timedwait_monotonic_np(pthread_cond_t *cond,
   1160                                      pthread_mutex_t * mutex,
   1161                                      const struct timespec *abstime)
   1162 {
   1163     return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
   1164 }
   1165 
   1166 int pthread_cond_timedwait_relative_np(pthread_cond_t *cond,
   1167                                       pthread_mutex_t * mutex,
   1168                                       const struct timespec *reltime)
   1169 {
   1170     return __pthread_cond_timedwait_relative(cond, mutex, reltime);
   1171 }
   1172 
   1173 int pthread_cond_timeout_np(pthread_cond_t *cond,
   1174                             pthread_mutex_t * mutex,
   1175                             unsigned msecs)
   1176 {
   1177     struct timespec ts;
   1178 
   1179     ts.tv_sec = msecs / 1000;
   1180     ts.tv_nsec = (msecs % 1000) * 1000000;
   1181 
   1182     return __pthread_cond_timedwait_relative(cond, mutex, &ts);
   1183 }
   1184 
   1185 
   1186 /* NOTE: this implementation doesn't support a init function that throws a C++ exception
   1187  *       or calls fork()
   1188  */
   1189 int pthread_once( pthread_once_t*  once_control,  void (*init_routine)(void) )
   1190 {
   1191     volatile pthread_once_t* ocptr = once_control;
   1192 
   1193     /* PTHREAD_ONCE_INIT is 0, we use the following bit flags
   1194      *
   1195      *   bit 0 set  -> initialization is under way
   1196      *   bit 1 set  -> initialization is complete
   1197      */
   1198 #define ONCE_INITIALIZING           (1 << 0)
   1199 #define ONCE_COMPLETED              (1 << 1)
   1200 
   1201     /* First check if the once is already initialized. This will be the common
   1202     * case and we want to make this as fast as possible. Note that this still
   1203     * requires a load_acquire operation here to ensure that all the
   1204     * stores performed by the initialization function are observable on
   1205     * this CPU after we exit.
   1206     */
   1207     if (__predict_true((*ocptr & ONCE_COMPLETED) != 0)) {
   1208         ANDROID_MEMBAR_FULL();
   1209         return 0;
   1210     }
   1211 
   1212     for (;;) {
   1213         /* Try to atomically set the INITIALIZING flag.
   1214          * This requires a cmpxchg loop, and we may need
   1215          * to exit prematurely if we detect that
   1216          * COMPLETED is now set.
   1217          */
   1218         int32_t  oldval, newval;
   1219 
   1220         do {
   1221             oldval = *ocptr;
   1222             if ((oldval & ONCE_COMPLETED) != 0)
   1223                 break;
   1224 
   1225             newval = oldval | ONCE_INITIALIZING;
   1226         } while (__bionic_cmpxchg(oldval, newval, ocptr) != 0);
   1227 
   1228         if ((oldval & ONCE_COMPLETED) != 0) {
   1229             /* We detected that COMPLETED was set while in our loop */
   1230             ANDROID_MEMBAR_FULL();
   1231             return 0;
   1232         }
   1233 
   1234         if ((oldval & ONCE_INITIALIZING) == 0) {
   1235             /* We got there first, we can jump out of the loop to
   1236              * handle the initialization */
   1237             break;
   1238         }
   1239 
   1240         /* Another thread is running the initialization and hasn't completed
   1241          * yet, so wait for it, then try again. */
   1242         __futex_wait_ex(ocptr, 0, oldval, NULL);
   1243     }
   1244 
   1245     /* call the initialization function. */
   1246     (*init_routine)();
   1247 
   1248     /* Do a store_release indicating that initialization is complete */
   1249     ANDROID_MEMBAR_FULL();
   1250     *ocptr = ONCE_COMPLETED;
   1251 
   1252     /* Wake up any waiters, if any */
   1253     __futex_wake_ex(ocptr, 0, INT_MAX);
   1254 
   1255     return 0;
   1256 }
   1257 
   1258 pid_t __pthread_gettid(pthread_t thid) {
   1259   pthread_internal_t* thread = (pthread_internal_t*) thid;
   1260   return thread->tid;
   1261 }
   1262 
   1263 int __pthread_settid(pthread_t thid, pid_t tid) {
   1264   if (thid == 0) {
   1265       return EINVAL;
   1266   }
   1267 
   1268   pthread_internal_t* thread = (pthread_internal_t*) thid;
   1269   thread->tid = tid;
   1270 
   1271   return 0;
   1272 }
   1273