1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "mark_sweep.h" 18 19 #include <functional> 20 #include <numeric> 21 #include <climits> 22 #include <vector> 23 24 #include "base/bounded_fifo.h" 25 #include "base/logging.h" 26 #include "base/macros.h" 27 #include "base/mutex-inl.h" 28 #include "base/timing_logger.h" 29 #include "gc/accounting/card_table-inl.h" 30 #include "gc/accounting/heap_bitmap.h" 31 #include "gc/accounting/space_bitmap-inl.h" 32 #include "gc/heap.h" 33 #include "gc/space/image_space.h" 34 #include "gc/space/large_object_space.h" 35 #include "gc/space/space-inl.h" 36 #include "indirect_reference_table.h" 37 #include "intern_table.h" 38 #include "jni_internal.h" 39 #include "monitor.h" 40 #include "mark_sweep-inl.h" 41 #include "mirror/art_field.h" 42 #include "mirror/art_field-inl.h" 43 #include "mirror/class-inl.h" 44 #include "mirror/class_loader.h" 45 #include "mirror/dex_cache.h" 46 #include "mirror/object-inl.h" 47 #include "mirror/object_array.h" 48 #include "mirror/object_array-inl.h" 49 #include "runtime.h" 50 #include "thread-inl.h" 51 #include "thread_list.h" 52 #include "verifier/method_verifier.h" 53 54 using ::art::mirror::ArtField; 55 using ::art::mirror::Class; 56 using ::art::mirror::Object; 57 using ::art::mirror::ObjectArray; 58 59 namespace art { 60 namespace gc { 61 namespace collector { 62 63 // Performance options. 64 constexpr bool kUseRecursiveMark = false; 65 constexpr bool kUseMarkStackPrefetch = true; 66 constexpr size_t kSweepArrayChunkFreeSize = 1024; 67 68 // Parallelism options. 69 constexpr bool kParallelCardScan = true; 70 constexpr bool kParallelRecursiveMark = true; 71 // Don't attempt to parallelize mark stack processing unless the mark stack is at least n 72 // elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not 73 // having this can add overhead in ProcessReferences since we may end up doing many calls of 74 // ProcessMarkStack with very small mark stacks. 75 constexpr size_t kMinimumParallelMarkStackSize = 128; 76 constexpr bool kParallelProcessMarkStack = true; 77 78 // Profiling and information flags. 79 constexpr bool kCountClassesMarked = false; 80 constexpr bool kProfileLargeObjects = false; 81 constexpr bool kMeasureOverhead = false; 82 constexpr bool kCountTasks = false; 83 constexpr bool kCountJavaLangRefs = false; 84 85 // Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%. 86 constexpr bool kCheckLocks = kDebugLocking; 87 88 void MarkSweep::ImmuneSpace(space::ContinuousSpace* space) { 89 // Bind live to mark bitmap if necessary. 90 if (space->GetLiveBitmap() != space->GetMarkBitmap()) { 91 BindLiveToMarkBitmap(space); 92 } 93 94 // Add the space to the immune region. 95 if (immune_begin_ == NULL) { 96 DCHECK(immune_end_ == NULL); 97 SetImmuneRange(reinterpret_cast<Object*>(space->Begin()), 98 reinterpret_cast<Object*>(space->End())); 99 } else { 100 const space::ContinuousSpace* prev_space = nullptr; 101 // Find out if the previous space is immune. 102 for (space::ContinuousSpace* cur_space : GetHeap()->GetContinuousSpaces()) { 103 if (cur_space == space) { 104 break; 105 } 106 prev_space = cur_space; 107 } 108 // If previous space was immune, then extend the immune region. Relies on continuous spaces 109 // being sorted by Heap::AddContinuousSpace. 110 if (prev_space != NULL && 111 immune_begin_ <= reinterpret_cast<Object*>(prev_space->Begin()) && 112 immune_end_ >= reinterpret_cast<Object*>(prev_space->End())) { 113 immune_begin_ = std::min(reinterpret_cast<Object*>(space->Begin()), immune_begin_); 114 immune_end_ = std::max(reinterpret_cast<Object*>(space->End()), immune_end_); 115 } 116 } 117 } 118 119 void MarkSweep::BindBitmaps() { 120 timings_.StartSplit("BindBitmaps"); 121 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); 122 // Mark all of the spaces we never collect as immune. 123 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 124 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) { 125 ImmuneSpace(space); 126 } 127 } 128 timings_.EndSplit(); 129 } 130 131 MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix) 132 : GarbageCollector(heap, 133 name_prefix + (name_prefix.empty() ? "" : " ") + 134 (is_concurrent ? "concurrent mark sweep": "mark sweep")), 135 current_mark_bitmap_(NULL), 136 java_lang_Class_(NULL), 137 mark_stack_(NULL), 138 immune_begin_(NULL), 139 immune_end_(NULL), 140 soft_reference_list_(NULL), 141 weak_reference_list_(NULL), 142 finalizer_reference_list_(NULL), 143 phantom_reference_list_(NULL), 144 cleared_reference_list_(NULL), 145 gc_barrier_(new Barrier(0)), 146 large_object_lock_("mark sweep large object lock", kMarkSweepLargeObjectLock), 147 mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock), 148 is_concurrent_(is_concurrent), 149 clear_soft_references_(false) { 150 } 151 152 void MarkSweep::InitializePhase() { 153 timings_.Reset(); 154 base::TimingLogger::ScopedSplit split("InitializePhase", &timings_); 155 mark_stack_ = heap_->mark_stack_.get(); 156 DCHECK(mark_stack_ != nullptr); 157 SetImmuneRange(nullptr, nullptr); 158 soft_reference_list_ = nullptr; 159 weak_reference_list_ = nullptr; 160 finalizer_reference_list_ = nullptr; 161 phantom_reference_list_ = nullptr; 162 cleared_reference_list_ = nullptr; 163 freed_bytes_ = 0; 164 freed_large_object_bytes_ = 0; 165 freed_objects_ = 0; 166 freed_large_objects_ = 0; 167 class_count_ = 0; 168 array_count_ = 0; 169 other_count_ = 0; 170 large_object_test_ = 0; 171 large_object_mark_ = 0; 172 classes_marked_ = 0; 173 overhead_time_ = 0; 174 work_chunks_created_ = 0; 175 work_chunks_deleted_ = 0; 176 reference_count_ = 0; 177 java_lang_Class_ = Class::GetJavaLangClass(); 178 CHECK(java_lang_Class_ != nullptr); 179 180 FindDefaultMarkBitmap(); 181 182 // Do any pre GC verification. 183 timings_.NewSplit("PreGcVerification"); 184 heap_->PreGcVerification(this); 185 } 186 187 void MarkSweep::ProcessReferences(Thread* self) { 188 base::TimingLogger::ScopedSplit split("ProcessReferences", &timings_); 189 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 190 ProcessReferences(&soft_reference_list_, clear_soft_references_, &weak_reference_list_, 191 &finalizer_reference_list_, &phantom_reference_list_); 192 } 193 194 bool MarkSweep::HandleDirtyObjectsPhase() { 195 base::TimingLogger::ScopedSplit split("HandleDirtyObjectsPhase", &timings_); 196 Thread* self = Thread::Current(); 197 Locks::mutator_lock_->AssertExclusiveHeld(self); 198 199 { 200 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 201 202 // Re-mark root set. 203 ReMarkRoots(); 204 205 // Scan dirty objects, this is only required if we are not doing concurrent GC. 206 RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty); 207 } 208 209 ProcessReferences(self); 210 211 // Only need to do this if we have the card mark verification on, and only during concurrent GC. 212 if (GetHeap()->verify_missing_card_marks_ || GetHeap()->verify_pre_gc_heap_|| 213 GetHeap()->verify_post_gc_heap_) { 214 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 215 // This second sweep makes sure that we don't have any objects in the live stack which point to 216 // freed objects. These cause problems since their references may be previously freed objects. 217 SweepArray(GetHeap()->allocation_stack_.get(), false); 218 } 219 220 timings_.StartSplit("PreSweepingGcVerification"); 221 heap_->PreSweepingGcVerification(this); 222 timings_.EndSplit(); 223 224 // Ensure that nobody inserted items in the live stack after we swapped the stacks. 225 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); 226 CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size()); 227 228 // Disallow new system weaks to prevent a race which occurs when someone adds a new system 229 // weak before we sweep them. Since this new system weak may not be marked, the GC may 230 // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong 231 // reference to a string that is about to be swept. 232 Runtime::Current()->DisallowNewSystemWeaks(); 233 return true; 234 } 235 236 bool MarkSweep::IsConcurrent() const { 237 return is_concurrent_; 238 } 239 240 void MarkSweep::MarkingPhase() { 241 base::TimingLogger::ScopedSplit split("MarkingPhase", &timings_); 242 Thread* self = Thread::Current(); 243 244 BindBitmaps(); 245 FindDefaultMarkBitmap(); 246 247 // Process dirty cards and add dirty cards to mod union tables. 248 heap_->ProcessCards(timings_); 249 250 // Need to do this before the checkpoint since we don't want any threads to add references to 251 // the live stack during the recursive mark. 252 timings_.NewSplit("SwapStacks"); 253 heap_->SwapStacks(); 254 255 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 256 if (Locks::mutator_lock_->IsExclusiveHeld(self)) { 257 // If we exclusively hold the mutator lock, all threads must be suspended. 258 MarkRoots(); 259 } else { 260 MarkThreadRoots(self); 261 // At this point the live stack should no longer have any mutators which push into it. 262 MarkNonThreadRoots(); 263 } 264 live_stack_freeze_size_ = heap_->GetLiveStack()->Size(); 265 MarkConcurrentRoots(); 266 267 heap_->UpdateAndMarkModUnion(this, timings_, GetGcType()); 268 MarkReachableObjects(); 269 } 270 271 void MarkSweep::MarkThreadRoots(Thread* self) { 272 MarkRootsCheckpoint(self); 273 } 274 275 void MarkSweep::MarkReachableObjects() { 276 // Mark everything allocated since the last as GC live so that we can sweep concurrently, 277 // knowing that new allocations won't be marked as live. 278 timings_.StartSplit("MarkStackAsLive"); 279 accounting::ObjectStack* live_stack = heap_->GetLiveStack(); 280 heap_->MarkAllocStack(heap_->alloc_space_->GetLiveBitmap(), 281 heap_->large_object_space_->GetLiveObjects(), live_stack); 282 live_stack->Reset(); 283 timings_.EndSplit(); 284 // Recursively mark all the non-image bits set in the mark bitmap. 285 RecursiveMark(); 286 } 287 288 void MarkSweep::ReclaimPhase() { 289 base::TimingLogger::ScopedSplit split("ReclaimPhase", &timings_); 290 Thread* self = Thread::Current(); 291 292 if (!IsConcurrent()) { 293 ProcessReferences(self); 294 } 295 296 { 297 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 298 SweepSystemWeaks(); 299 } 300 301 if (IsConcurrent()) { 302 Runtime::Current()->AllowNewSystemWeaks(); 303 304 base::TimingLogger::ScopedSplit split("UnMarkAllocStack", &timings_); 305 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 306 accounting::ObjectStack* allocation_stack = GetHeap()->allocation_stack_.get(); 307 // The allocation stack contains things allocated since the start of the GC. These may have been 308 // marked during this GC meaning they won't be eligible for reclaiming in the next sticky GC. 309 // Remove these objects from the mark bitmaps so that they will be eligible for sticky 310 // collection. 311 // There is a race here which is safely handled. Another thread such as the hprof could 312 // have flushed the alloc stack after we resumed the threads. This is safe however, since 313 // reseting the allocation stack zeros it out with madvise. This means that we will either 314 // read NULLs or attempt to unmark a newly allocated object which will not be marked in the 315 // first place. 316 mirror::Object** end = allocation_stack->End(); 317 for (mirror::Object** it = allocation_stack->Begin(); it != end; ++it) { 318 const Object* obj = *it; 319 if (obj != NULL) { 320 UnMarkObjectNonNull(obj); 321 } 322 } 323 } 324 325 // Before freeing anything, lets verify the heap. 326 if (kIsDebugBuild) { 327 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); 328 VerifyImageRoots(); 329 } 330 331 { 332 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 333 334 // Reclaim unmarked objects. 335 Sweep(false); 336 337 // Swap the live and mark bitmaps for each space which we modified space. This is an 338 // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound 339 // bitmaps. 340 timings_.StartSplit("SwapBitmaps"); 341 SwapBitmaps(); 342 timings_.EndSplit(); 343 344 // Unbind the live and mark bitmaps. 345 UnBindBitmaps(); 346 } 347 } 348 349 void MarkSweep::SetImmuneRange(Object* begin, Object* end) { 350 immune_begin_ = begin; 351 immune_end_ = end; 352 } 353 354 void MarkSweep::FindDefaultMarkBitmap() { 355 base::TimingLogger::ScopedSplit split("FindDefaultMarkBitmap", &timings_); 356 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 357 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) { 358 current_mark_bitmap_ = space->GetMarkBitmap(); 359 CHECK(current_mark_bitmap_ != NULL); 360 return; 361 } 362 } 363 GetHeap()->DumpSpaces(); 364 LOG(FATAL) << "Could not find a default mark bitmap"; 365 } 366 367 void MarkSweep::ExpandMarkStack() { 368 ResizeMarkStack(mark_stack_->Capacity() * 2); 369 } 370 371 void MarkSweep::ResizeMarkStack(size_t new_size) { 372 // Rare case, no need to have Thread::Current be a parameter. 373 if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) { 374 // Someone else acquired the lock and expanded the mark stack before us. 375 return; 376 } 377 std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End()); 378 CHECK_LE(mark_stack_->Size(), new_size); 379 mark_stack_->Resize(new_size); 380 for (const auto& obj : temp) { 381 mark_stack_->PushBack(obj); 382 } 383 } 384 385 inline void MarkSweep::MarkObjectNonNullParallel(const Object* obj) { 386 DCHECK(obj != NULL); 387 if (MarkObjectParallel(obj)) { 388 MutexLock mu(Thread::Current(), mark_stack_lock_); 389 if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) { 390 ExpandMarkStack(); 391 } 392 // The object must be pushed on to the mark stack. 393 mark_stack_->PushBack(const_cast<Object*>(obj)); 394 } 395 } 396 397 inline void MarkSweep::UnMarkObjectNonNull(const Object* obj) { 398 DCHECK(!IsImmune(obj)); 399 // Try to take advantage of locality of references within a space, failing this find the space 400 // the hard way. 401 accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_; 402 if (UNLIKELY(!object_bitmap->HasAddress(obj))) { 403 accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj); 404 if (LIKELY(new_bitmap != NULL)) { 405 object_bitmap = new_bitmap; 406 } else { 407 MarkLargeObject(obj, false); 408 return; 409 } 410 } 411 412 DCHECK(object_bitmap->HasAddress(obj)); 413 object_bitmap->Clear(obj); 414 } 415 416 inline void MarkSweep::MarkObjectNonNull(const Object* obj) { 417 DCHECK(obj != NULL); 418 419 if (IsImmune(obj)) { 420 DCHECK(IsMarked(obj)); 421 return; 422 } 423 424 // Try to take advantage of locality of references within a space, failing this find the space 425 // the hard way. 426 accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_; 427 if (UNLIKELY(!object_bitmap->HasAddress(obj))) { 428 accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj); 429 if (LIKELY(new_bitmap != NULL)) { 430 object_bitmap = new_bitmap; 431 } else { 432 MarkLargeObject(obj, true); 433 return; 434 } 435 } 436 437 // This object was not previously marked. 438 if (!object_bitmap->Test(obj)) { 439 object_bitmap->Set(obj); 440 if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) { 441 // Lock is not needed but is here anyways to please annotalysis. 442 MutexLock mu(Thread::Current(), mark_stack_lock_); 443 ExpandMarkStack(); 444 } 445 // The object must be pushed on to the mark stack. 446 mark_stack_->PushBack(const_cast<Object*>(obj)); 447 } 448 } 449 450 // Rare case, probably not worth inlining since it will increase instruction cache miss rate. 451 bool MarkSweep::MarkLargeObject(const Object* obj, bool set) { 452 // TODO: support >1 discontinuous space. 453 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace(); 454 accounting::SpaceSetMap* large_objects = large_object_space->GetMarkObjects(); 455 if (kProfileLargeObjects) { 456 ++large_object_test_; 457 } 458 if (UNLIKELY(!large_objects->Test(obj))) { 459 if (!large_object_space->Contains(obj)) { 460 LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces"; 461 LOG(ERROR) << "Attempting see if it's a bad root"; 462 VerifyRoots(); 463 LOG(FATAL) << "Can't mark bad root"; 464 } 465 if (kProfileLargeObjects) { 466 ++large_object_mark_; 467 } 468 if (set) { 469 large_objects->Set(obj); 470 } else { 471 large_objects->Clear(obj); 472 } 473 return true; 474 } 475 return false; 476 } 477 478 inline bool MarkSweep::MarkObjectParallel(const Object* obj) { 479 DCHECK(obj != NULL); 480 481 if (IsImmune(obj)) { 482 DCHECK(IsMarked(obj)); 483 return false; 484 } 485 486 // Try to take advantage of locality of references within a space, failing this find the space 487 // the hard way. 488 accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_; 489 if (UNLIKELY(!object_bitmap->HasAddress(obj))) { 490 accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj); 491 if (new_bitmap != NULL) { 492 object_bitmap = new_bitmap; 493 } else { 494 // TODO: Remove the Thread::Current here? 495 // TODO: Convert this to some kind of atomic marking? 496 MutexLock mu(Thread::Current(), large_object_lock_); 497 return MarkLargeObject(obj, true); 498 } 499 } 500 501 // Return true if the object was not previously marked. 502 return !object_bitmap->AtomicTestAndSet(obj); 503 } 504 505 // Used to mark objects when recursing. Recursion is done by moving 506 // the finger across the bitmaps in address order and marking child 507 // objects. Any newly-marked objects whose addresses are lower than 508 // the finger won't be visited by the bitmap scan, so those objects 509 // need to be added to the mark stack. 510 inline void MarkSweep::MarkObject(const Object* obj) { 511 if (obj != NULL) { 512 MarkObjectNonNull(obj); 513 } 514 } 515 516 void MarkSweep::MarkRoot(const Object* obj) { 517 if (obj != NULL) { 518 MarkObjectNonNull(obj); 519 } 520 } 521 522 void MarkSweep::MarkRootParallelCallback(const Object* root, void* arg) { 523 DCHECK(root != NULL); 524 DCHECK(arg != NULL); 525 reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNullParallel(root); 526 } 527 528 void MarkSweep::MarkObjectCallback(const Object* root, void* arg) { 529 DCHECK(root != NULL); 530 DCHECK(arg != NULL); 531 MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg); 532 mark_sweep->MarkObjectNonNull(root); 533 } 534 535 void MarkSweep::ReMarkObjectVisitor(const Object* root, void* arg) { 536 DCHECK(root != NULL); 537 DCHECK(arg != NULL); 538 MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg); 539 mark_sweep->MarkObjectNonNull(root); 540 } 541 542 void MarkSweep::VerifyRootCallback(const Object* root, void* arg, size_t vreg, 543 const StackVisitor* visitor) { 544 reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(root, vreg, visitor); 545 } 546 547 void MarkSweep::VerifyRoot(const Object* root, size_t vreg, const StackVisitor* visitor) { 548 // See if the root is on any space bitmap. 549 if (GetHeap()->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == NULL) { 550 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace(); 551 if (!large_object_space->Contains(root)) { 552 LOG(ERROR) << "Found invalid root: " << root; 553 if (visitor != NULL) { 554 LOG(ERROR) << visitor->DescribeLocation() << " in VReg: " << vreg; 555 } 556 } 557 } 558 } 559 560 void MarkSweep::VerifyRoots() { 561 Runtime::Current()->GetThreadList()->VerifyRoots(VerifyRootCallback, this); 562 } 563 564 // Marks all objects in the root set. 565 void MarkSweep::MarkRoots() { 566 timings_.StartSplit("MarkRoots"); 567 Runtime::Current()->VisitNonConcurrentRoots(MarkObjectCallback, this); 568 timings_.EndSplit(); 569 } 570 571 void MarkSweep::MarkNonThreadRoots() { 572 timings_.StartSplit("MarkNonThreadRoots"); 573 Runtime::Current()->VisitNonThreadRoots(MarkObjectCallback, this); 574 timings_.EndSplit(); 575 } 576 577 void MarkSweep::MarkConcurrentRoots() { 578 timings_.StartSplit("MarkConcurrentRoots"); 579 // Visit all runtime roots and clear dirty flags. 580 Runtime::Current()->VisitConcurrentRoots(MarkObjectCallback, this, false, true); 581 timings_.EndSplit(); 582 } 583 584 void MarkSweep::CheckObject(const Object* obj) { 585 DCHECK(obj != NULL); 586 VisitObjectReferences(obj, [this](const Object* obj, const Object* ref, MemberOffset offset, 587 bool is_static) NO_THREAD_SAFETY_ANALYSIS { 588 Locks::heap_bitmap_lock_->AssertSharedHeld(Thread::Current()); 589 CheckReference(obj, ref, offset, is_static); 590 }); 591 } 592 593 void MarkSweep::VerifyImageRootVisitor(Object* root, void* arg) { 594 DCHECK(root != NULL); 595 DCHECK(arg != NULL); 596 MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg); 597 DCHECK(mark_sweep->heap_->GetMarkBitmap()->Test(root)); 598 mark_sweep->CheckObject(root); 599 } 600 601 void MarkSweep::BindLiveToMarkBitmap(space::ContinuousSpace* space) { 602 CHECK(space->IsDlMallocSpace()); 603 space::DlMallocSpace* alloc_space = space->AsDlMallocSpace(); 604 accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap(); 605 accounting::SpaceBitmap* mark_bitmap = alloc_space->mark_bitmap_.release(); 606 GetHeap()->GetMarkBitmap()->ReplaceBitmap(mark_bitmap, live_bitmap); 607 alloc_space->temp_bitmap_.reset(mark_bitmap); 608 alloc_space->mark_bitmap_.reset(live_bitmap); 609 } 610 611 class ScanObjectVisitor { 612 public: 613 explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE 614 : mark_sweep_(mark_sweep) {} 615 616 // TODO: Fixme when anotatalysis works with visitors. 617 void operator()(const Object* obj) const ALWAYS_INLINE NO_THREAD_SAFETY_ANALYSIS { 618 if (kCheckLocks) { 619 Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); 620 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current()); 621 } 622 mark_sweep_->ScanObject(obj); 623 } 624 625 private: 626 MarkSweep* const mark_sweep_; 627 }; 628 629 template <bool kUseFinger = false> 630 class MarkStackTask : public Task { 631 public: 632 MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size, 633 const Object** mark_stack) 634 : mark_sweep_(mark_sweep), 635 thread_pool_(thread_pool), 636 mark_stack_pos_(mark_stack_size) { 637 // We may have to copy part of an existing mark stack when another mark stack overflows. 638 if (mark_stack_size != 0) { 639 DCHECK(mark_stack != NULL); 640 // TODO: Check performance? 641 std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_); 642 } 643 if (kCountTasks) { 644 ++mark_sweep_->work_chunks_created_; 645 } 646 } 647 648 static const size_t kMaxSize = 1 * KB; 649 650 protected: 651 class ScanObjectParallelVisitor { 652 public: 653 explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE 654 : chunk_task_(chunk_task) {} 655 656 void operator()(const Object* obj) const { 657 MarkSweep* mark_sweep = chunk_task_->mark_sweep_; 658 mark_sweep->ScanObjectVisit(obj, 659 [mark_sweep, this](const Object* /* obj */, const Object* ref, 660 const MemberOffset& /* offset */, bool /* is_static */) ALWAYS_INLINE { 661 if (ref != nullptr && mark_sweep->MarkObjectParallel(ref)) { 662 if (kUseFinger) { 663 android_memory_barrier(); 664 if (reinterpret_cast<uintptr_t>(ref) >= 665 static_cast<uintptr_t>(mark_sweep->atomic_finger_)) { 666 return; 667 } 668 } 669 chunk_task_->MarkStackPush(ref); 670 } 671 }); 672 } 673 674 private: 675 MarkStackTask<kUseFinger>* const chunk_task_; 676 }; 677 678 virtual ~MarkStackTask() { 679 // Make sure that we have cleared our mark stack. 680 DCHECK_EQ(mark_stack_pos_, 0U); 681 if (kCountTasks) { 682 ++mark_sweep_->work_chunks_deleted_; 683 } 684 } 685 686 MarkSweep* const mark_sweep_; 687 ThreadPool* const thread_pool_; 688 // Thread local mark stack for this task. 689 const Object* mark_stack_[kMaxSize]; 690 // Mark stack position. 691 size_t mark_stack_pos_; 692 693 void MarkStackPush(const Object* obj) ALWAYS_INLINE { 694 if (UNLIKELY(mark_stack_pos_ == kMaxSize)) { 695 // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task. 696 mark_stack_pos_ /= 2; 697 auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_, 698 mark_stack_ + mark_stack_pos_); 699 thread_pool_->AddTask(Thread::Current(), task); 700 } 701 DCHECK(obj != nullptr); 702 DCHECK(mark_stack_pos_ < kMaxSize); 703 mark_stack_[mark_stack_pos_++] = obj; 704 } 705 706 virtual void Finalize() { 707 delete this; 708 } 709 710 // Scans all of the objects 711 virtual void Run(Thread* self) { 712 ScanObjectParallelVisitor visitor(this); 713 // TODO: Tune this. 714 static const size_t kFifoSize = 4; 715 BoundedFifoPowerOfTwo<const Object*, kFifoSize> prefetch_fifo; 716 for (;;) { 717 const Object* obj = NULL; 718 if (kUseMarkStackPrefetch) { 719 while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) { 720 const Object* obj = mark_stack_[--mark_stack_pos_]; 721 DCHECK(obj != NULL); 722 __builtin_prefetch(obj); 723 prefetch_fifo.push_back(obj); 724 } 725 if (UNLIKELY(prefetch_fifo.empty())) { 726 break; 727 } 728 obj = prefetch_fifo.front(); 729 prefetch_fifo.pop_front(); 730 } else { 731 if (UNLIKELY(mark_stack_pos_ == 0)) { 732 break; 733 } 734 obj = mark_stack_[--mark_stack_pos_]; 735 } 736 DCHECK(obj != NULL); 737 visitor(obj); 738 } 739 } 740 }; 741 742 class CardScanTask : public MarkStackTask<false> { 743 public: 744 CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, accounting::SpaceBitmap* bitmap, 745 byte* begin, byte* end, byte minimum_age, size_t mark_stack_size, 746 const Object** mark_stack_obj) 747 : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj), 748 bitmap_(bitmap), 749 begin_(begin), 750 end_(end), 751 minimum_age_(minimum_age) { 752 } 753 754 protected: 755 accounting::SpaceBitmap* const bitmap_; 756 byte* const begin_; 757 byte* const end_; 758 const byte minimum_age_; 759 760 virtual void Finalize() { 761 delete this; 762 } 763 764 virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS { 765 ScanObjectParallelVisitor visitor(this); 766 accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable(); 767 size_t cards_scanned = card_table->Scan(bitmap_, begin_, end_, visitor, minimum_age_); 768 mark_sweep_->cards_scanned_.fetch_add(cards_scanned); 769 VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - " 770 << reinterpret_cast<void*>(end_) << " = " << cards_scanned; 771 // Finish by emptying our local mark stack. 772 MarkStackTask::Run(self); 773 } 774 }; 775 776 size_t MarkSweep::GetThreadCount(bool paused) const { 777 if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) { 778 return 0; 779 } 780 if (paused) { 781 return heap_->GetParallelGCThreadCount() + 1; 782 } else { 783 return heap_->GetConcGCThreadCount() + 1; 784 } 785 } 786 787 void MarkSweep::ScanGrayObjects(bool paused, byte minimum_age) { 788 accounting::CardTable* card_table = GetHeap()->GetCardTable(); 789 ThreadPool* thread_pool = GetHeap()->GetThreadPool(); 790 size_t thread_count = GetThreadCount(paused); 791 // The parallel version with only one thread is faster for card scanning, TODO: fix. 792 if (kParallelCardScan && thread_count > 0) { 793 Thread* self = Thread::Current(); 794 // Can't have a different split for each space since multiple spaces can have their cards being 795 // scanned at the same time. 796 timings_.StartSplit(paused ? "(Paused)ScanGrayObjects" : "ScanGrayObjects"); 797 // Try to take some of the mark stack since we can pass this off to the worker tasks. 798 const Object** mark_stack_begin = const_cast<const Object**>(mark_stack_->Begin()); 799 const Object** mark_stack_end = const_cast<const Object**>(mark_stack_->End()); 800 const size_t mark_stack_size = mark_stack_end - mark_stack_begin; 801 // Estimated number of work tasks we will create. 802 const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count; 803 DCHECK_NE(mark_stack_tasks, 0U); 804 const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2, 805 mark_stack_size / mark_stack_tasks + 1); 806 size_t ref_card_count = 0; 807 cards_scanned_ = 0; 808 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 809 byte* card_begin = space->Begin(); 810 byte* card_end = space->End(); 811 // Calculate how many bytes of heap we will scan, 812 const size_t address_range = card_end - card_begin; 813 // Calculate how much address range each task gets. 814 const size_t card_delta = RoundUp(address_range / thread_count + 1, 815 accounting::CardTable::kCardSize); 816 // Create the worker tasks for this space. 817 while (card_begin != card_end) { 818 // Add a range of cards. 819 size_t addr_remaining = card_end - card_begin; 820 size_t card_increment = std::min(card_delta, addr_remaining); 821 // Take from the back of the mark stack. 822 size_t mark_stack_remaining = mark_stack_end - mark_stack_begin; 823 size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining); 824 mark_stack_end -= mark_stack_increment; 825 mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment)); 826 DCHECK_EQ(mark_stack_end, mark_stack_->End()); 827 // Add the new task to the thread pool. 828 auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin, 829 card_begin + card_increment, minimum_age, 830 mark_stack_increment, mark_stack_end); 831 thread_pool->AddTask(self, task); 832 card_begin += card_increment; 833 } 834 835 if (paused && kIsDebugBuild) { 836 // Make sure we don't miss scanning any cards. 837 size_t scanned_cards = card_table->Scan(space->GetMarkBitmap(), space->Begin(), 838 space->End(), VoidFunctor(), minimum_age); 839 VLOG(heap) << "Scanning space cards " << reinterpret_cast<void*>(space->Begin()) << " - " 840 << reinterpret_cast<void*>(space->End()) << " = " << scanned_cards; 841 ref_card_count += scanned_cards; 842 } 843 } 844 845 thread_pool->SetMaxActiveWorkers(thread_count - 1); 846 thread_pool->StartWorkers(self); 847 thread_pool->Wait(self, true, true); 848 thread_pool->StopWorkers(self); 849 if (paused) { 850 DCHECK_EQ(ref_card_count, static_cast<size_t>(cards_scanned_.load())); 851 } 852 timings_.EndSplit(); 853 } else { 854 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 855 // Image spaces are handled properly since live == marked for them. 856 switch (space->GetGcRetentionPolicy()) { 857 case space::kGcRetentionPolicyNeverCollect: 858 timings_.StartSplit(paused ? "(Paused)ScanGrayImageSpaceObjects" : 859 "ScanGrayImageSpaceObjects"); 860 break; 861 case space::kGcRetentionPolicyFullCollect: 862 timings_.StartSplit(paused ? "(Paused)ScanGrayZygoteSpaceObjects" : 863 "ScanGrayZygoteSpaceObjects"); 864 break; 865 case space::kGcRetentionPolicyAlwaysCollect: 866 timings_.StartSplit(paused ? "(Paused)ScanGrayAllocSpaceObjects" : 867 "ScanGrayAllocSpaceObjects"); 868 break; 869 } 870 ScanObjectVisitor visitor(this); 871 card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, minimum_age); 872 timings_.EndSplit(); 873 } 874 } 875 } 876 877 void MarkSweep::VerifyImageRoots() { 878 // Verify roots ensures that all the references inside the image space point 879 // objects which are either in the image space or marked objects in the alloc 880 // space 881 timings_.StartSplit("VerifyImageRoots"); 882 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 883 if (space->IsImageSpace()) { 884 space::ImageSpace* image_space = space->AsImageSpace(); 885 uintptr_t begin = reinterpret_cast<uintptr_t>(image_space->Begin()); 886 uintptr_t end = reinterpret_cast<uintptr_t>(image_space->End()); 887 accounting::SpaceBitmap* live_bitmap = image_space->GetLiveBitmap(); 888 DCHECK(live_bitmap != NULL); 889 live_bitmap->VisitMarkedRange(begin, end, [this](const Object* obj) { 890 if (kCheckLocks) { 891 Locks::heap_bitmap_lock_->AssertSharedHeld(Thread::Current()); 892 } 893 DCHECK(obj != NULL); 894 CheckObject(obj); 895 }); 896 } 897 } 898 timings_.EndSplit(); 899 } 900 901 class RecursiveMarkTask : public MarkStackTask<false> { 902 public: 903 RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, 904 accounting::SpaceBitmap* bitmap, uintptr_t begin, uintptr_t end) 905 : MarkStackTask<false>(thread_pool, mark_sweep, 0, NULL), 906 bitmap_(bitmap), 907 begin_(begin), 908 end_(end) { 909 } 910 911 protected: 912 accounting::SpaceBitmap* const bitmap_; 913 const uintptr_t begin_; 914 const uintptr_t end_; 915 916 virtual void Finalize() { 917 delete this; 918 } 919 920 // Scans all of the objects 921 virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS { 922 ScanObjectParallelVisitor visitor(this); 923 bitmap_->VisitMarkedRange(begin_, end_, visitor); 924 // Finish by emptying our local mark stack. 925 MarkStackTask::Run(self); 926 } 927 }; 928 929 // Populates the mark stack based on the set of marked objects and 930 // recursively marks until the mark stack is emptied. 931 void MarkSweep::RecursiveMark() { 932 base::TimingLogger::ScopedSplit split("RecursiveMark", &timings_); 933 // RecursiveMark will build the lists of known instances of the Reference classes. 934 // See DelayReferenceReferent for details. 935 CHECK(soft_reference_list_ == NULL); 936 CHECK(weak_reference_list_ == NULL); 937 CHECK(finalizer_reference_list_ == NULL); 938 CHECK(phantom_reference_list_ == NULL); 939 CHECK(cleared_reference_list_ == NULL); 940 941 if (kUseRecursiveMark) { 942 const bool partial = GetGcType() == kGcTypePartial; 943 ScanObjectVisitor scan_visitor(this); 944 auto* self = Thread::Current(); 945 ThreadPool* thread_pool = heap_->GetThreadPool(); 946 size_t thread_count = GetThreadCount(false); 947 const bool parallel = kParallelRecursiveMark && thread_count > 1; 948 mark_stack_->Reset(); 949 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 950 if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) || 951 (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) { 952 current_mark_bitmap_ = space->GetMarkBitmap(); 953 if (current_mark_bitmap_ == NULL) { 954 GetHeap()->DumpSpaces(); 955 LOG(FATAL) << "invalid bitmap"; 956 } 957 if (parallel) { 958 // We will use the mark stack the future. 959 // CHECK(mark_stack_->IsEmpty()); 960 // This function does not handle heap end increasing, so we must use the space end. 961 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin()); 962 uintptr_t end = reinterpret_cast<uintptr_t>(space->End()); 963 atomic_finger_ = static_cast<int32_t>(0xFFFFFFFF); 964 965 // Create a few worker tasks. 966 const size_t n = thread_count * 2; 967 while (begin != end) { 968 uintptr_t start = begin; 969 uintptr_t delta = (end - begin) / n; 970 delta = RoundUp(delta, KB); 971 if (delta < 16 * KB) delta = end - begin; 972 begin += delta; 973 auto* task = new RecursiveMarkTask(thread_pool, this, current_mark_bitmap_, start, 974 begin); 975 thread_pool->AddTask(self, task); 976 } 977 thread_pool->SetMaxActiveWorkers(thread_count - 1); 978 thread_pool->StartWorkers(self); 979 thread_pool->Wait(self, true, true); 980 thread_pool->StopWorkers(self); 981 } else { 982 // This function does not handle heap end increasing, so we must use the space end. 983 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin()); 984 uintptr_t end = reinterpret_cast<uintptr_t>(space->End()); 985 current_mark_bitmap_->VisitMarkedRange(begin, end, scan_visitor); 986 } 987 } 988 } 989 } 990 ProcessMarkStack(false); 991 } 992 993 bool MarkSweep::IsMarkedCallback(const Object* object, void* arg) { 994 return reinterpret_cast<MarkSweep*>(arg)->IsMarked(object); 995 } 996 997 void MarkSweep::RecursiveMarkDirtyObjects(bool paused, byte minimum_age) { 998 ScanGrayObjects(paused, minimum_age); 999 ProcessMarkStack(paused); 1000 } 1001 1002 void MarkSweep::ReMarkRoots() { 1003 timings_.StartSplit("ReMarkRoots"); 1004 Runtime::Current()->VisitRoots(ReMarkObjectVisitor, this, true, true); 1005 timings_.EndSplit(); 1006 } 1007 1008 void MarkSweep::SweepJniWeakGlobals(IsMarkedTester is_marked, void* arg) { 1009 Runtime::Current()->GetJavaVM()->SweepWeakGlobals(is_marked, arg); 1010 } 1011 1012 struct ArrayMarkedCheck { 1013 accounting::ObjectStack* live_stack; 1014 MarkSweep* mark_sweep; 1015 }; 1016 1017 // Either marked or not live. 1018 bool MarkSweep::IsMarkedArrayCallback(const Object* object, void* arg) { 1019 ArrayMarkedCheck* array_check = reinterpret_cast<ArrayMarkedCheck*>(arg); 1020 if (array_check->mark_sweep->IsMarked(object)) { 1021 return true; 1022 } 1023 accounting::ObjectStack* live_stack = array_check->live_stack; 1024 if (std::find(live_stack->Begin(), live_stack->End(), object) == live_stack->End()) { 1025 return true; 1026 } 1027 return false; 1028 } 1029 1030 void MarkSweep::SweepSystemWeaks() { 1031 Runtime* runtime = Runtime::Current(); 1032 timings_.StartSplit("SweepSystemWeaks"); 1033 runtime->GetInternTable()->SweepInternTableWeaks(IsMarkedCallback, this); 1034 runtime->GetMonitorList()->SweepMonitorList(IsMarkedCallback, this); 1035 SweepJniWeakGlobals(IsMarkedCallback, this); 1036 timings_.EndSplit(); 1037 } 1038 1039 bool MarkSweep::VerifyIsLiveCallback(const Object* obj, void* arg) { 1040 reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj); 1041 // We don't actually want to sweep the object, so lets return "marked" 1042 return true; 1043 } 1044 1045 void MarkSweep::VerifyIsLive(const Object* obj) { 1046 Heap* heap = GetHeap(); 1047 if (!heap->GetLiveBitmap()->Test(obj)) { 1048 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace(); 1049 if (!large_object_space->GetLiveObjects()->Test(obj)) { 1050 if (std::find(heap->allocation_stack_->Begin(), heap->allocation_stack_->End(), obj) == 1051 heap->allocation_stack_->End()) { 1052 // Object not found! 1053 heap->DumpSpaces(); 1054 LOG(FATAL) << "Found dead object " << obj; 1055 } 1056 } 1057 } 1058 } 1059 1060 void MarkSweep::VerifySystemWeaks() { 1061 Runtime* runtime = Runtime::Current(); 1062 // Verify system weaks, uses a special IsMarked callback which always returns true. 1063 runtime->GetInternTable()->SweepInternTableWeaks(VerifyIsLiveCallback, this); 1064 runtime->GetMonitorList()->SweepMonitorList(VerifyIsLiveCallback, this); 1065 runtime->GetJavaVM()->SweepWeakGlobals(VerifyIsLiveCallback, this); 1066 } 1067 1068 struct SweepCallbackContext { 1069 MarkSweep* mark_sweep; 1070 space::AllocSpace* space; 1071 Thread* self; 1072 }; 1073 1074 class CheckpointMarkThreadRoots : public Closure { 1075 public: 1076 explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {} 1077 1078 virtual void Run(Thread* thread) NO_THREAD_SAFETY_ANALYSIS { 1079 ATRACE_BEGIN("Marking thread roots"); 1080 // Note: self is not necessarily equal to thread since thread may be suspended. 1081 Thread* self = Thread::Current(); 1082 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc) 1083 << thread->GetState() << " thread " << thread << " self " << self; 1084 thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_); 1085 ATRACE_END(); 1086 mark_sweep_->GetBarrier().Pass(self); 1087 } 1088 1089 private: 1090 MarkSweep* mark_sweep_; 1091 }; 1092 1093 void MarkSweep::MarkRootsCheckpoint(Thread* self) { 1094 CheckpointMarkThreadRoots check_point(this); 1095 timings_.StartSplit("MarkRootsCheckpoint"); 1096 ThreadList* thread_list = Runtime::Current()->GetThreadList(); 1097 // Request the check point is run on all threads returning a count of the threads that must 1098 // run through the barrier including self. 1099 size_t barrier_count = thread_list->RunCheckpoint(&check_point); 1100 // Release locks then wait for all mutator threads to pass the barrier. 1101 // TODO: optimize to not release locks when there are no threads to wait for. 1102 Locks::heap_bitmap_lock_->ExclusiveUnlock(self); 1103 Locks::mutator_lock_->SharedUnlock(self); 1104 ThreadState old_state = self->SetState(kWaitingForCheckPointsToRun); 1105 CHECK_EQ(old_state, kWaitingPerformingGc); 1106 gc_barrier_->Increment(self, barrier_count); 1107 self->SetState(kWaitingPerformingGc); 1108 Locks::mutator_lock_->SharedLock(self); 1109 Locks::heap_bitmap_lock_->ExclusiveLock(self); 1110 timings_.EndSplit(); 1111 } 1112 1113 void MarkSweep::SweepCallback(size_t num_ptrs, Object** ptrs, void* arg) { 1114 SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg); 1115 MarkSweep* mark_sweep = context->mark_sweep; 1116 Heap* heap = mark_sweep->GetHeap(); 1117 space::AllocSpace* space = context->space; 1118 Thread* self = context->self; 1119 Locks::heap_bitmap_lock_->AssertExclusiveHeld(self); 1120 // Use a bulk free, that merges consecutive objects before freeing or free per object? 1121 // Documentation suggests better free performance with merging, but this may be at the expensive 1122 // of allocation. 1123 size_t freed_objects = num_ptrs; 1124 // AllocSpace::FreeList clears the value in ptrs, so perform after clearing the live bit 1125 size_t freed_bytes = space->FreeList(self, num_ptrs, ptrs); 1126 heap->RecordFree(freed_objects, freed_bytes); 1127 mark_sweep->freed_objects_.fetch_add(freed_objects); 1128 mark_sweep->freed_bytes_.fetch_add(freed_bytes); 1129 } 1130 1131 void MarkSweep::ZygoteSweepCallback(size_t num_ptrs, Object** ptrs, void* arg) { 1132 SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg); 1133 Locks::heap_bitmap_lock_->AssertExclusiveHeld(context->self); 1134 Heap* heap = context->mark_sweep->GetHeap(); 1135 // We don't free any actual memory to avoid dirtying the shared zygote pages. 1136 for (size_t i = 0; i < num_ptrs; ++i) { 1137 Object* obj = static_cast<Object*>(ptrs[i]); 1138 heap->GetLiveBitmap()->Clear(obj); 1139 heap->GetCardTable()->MarkCard(obj); 1140 } 1141 } 1142 1143 void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) { 1144 space::DlMallocSpace* space = heap_->GetAllocSpace(); 1145 timings_.StartSplit("SweepArray"); 1146 // Newly allocated objects MUST be in the alloc space and those are the only objects which we are 1147 // going to free. 1148 accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap(); 1149 accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap(); 1150 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace(); 1151 accounting::SpaceSetMap* large_live_objects = large_object_space->GetLiveObjects(); 1152 accounting::SpaceSetMap* large_mark_objects = large_object_space->GetMarkObjects(); 1153 if (swap_bitmaps) { 1154 std::swap(live_bitmap, mark_bitmap); 1155 std::swap(large_live_objects, large_mark_objects); 1156 } 1157 1158 size_t freed_bytes = 0; 1159 size_t freed_large_object_bytes = 0; 1160 size_t freed_objects = 0; 1161 size_t freed_large_objects = 0; 1162 size_t count = allocations->Size(); 1163 Object** objects = const_cast<Object**>(allocations->Begin()); 1164 Object** out = objects; 1165 Object** objects_to_chunk_free = out; 1166 1167 // Empty the allocation stack. 1168 Thread* self = Thread::Current(); 1169 for (size_t i = 0; i < count; ++i) { 1170 Object* obj = objects[i]; 1171 // There should only be objects in the AllocSpace/LargeObjectSpace in the allocation stack. 1172 if (LIKELY(mark_bitmap->HasAddress(obj))) { 1173 if (!mark_bitmap->Test(obj)) { 1174 // Don't bother un-marking since we clear the mark bitmap anyways. 1175 *(out++) = obj; 1176 // Free objects in chunks. 1177 DCHECK_GE(out, objects_to_chunk_free); 1178 DCHECK_LE(static_cast<size_t>(out - objects_to_chunk_free), kSweepArrayChunkFreeSize); 1179 if (static_cast<size_t>(out - objects_to_chunk_free) == kSweepArrayChunkFreeSize) { 1180 timings_.StartSplit("FreeList"); 1181 size_t chunk_freed_objects = out - objects_to_chunk_free; 1182 freed_objects += chunk_freed_objects; 1183 freed_bytes += space->FreeList(self, chunk_freed_objects, objects_to_chunk_free); 1184 objects_to_chunk_free = out; 1185 timings_.EndSplit(); 1186 } 1187 } 1188 } else if (!large_mark_objects->Test(obj)) { 1189 ++freed_large_objects; 1190 freed_large_object_bytes += large_object_space->Free(self, obj); 1191 } 1192 } 1193 // Free the remaining objects in chunks. 1194 DCHECK_GE(out, objects_to_chunk_free); 1195 DCHECK_LE(static_cast<size_t>(out - objects_to_chunk_free), kSweepArrayChunkFreeSize); 1196 if (out - objects_to_chunk_free > 0) { 1197 timings_.StartSplit("FreeList"); 1198 size_t chunk_freed_objects = out - objects_to_chunk_free; 1199 freed_objects += chunk_freed_objects; 1200 freed_bytes += space->FreeList(self, chunk_freed_objects, objects_to_chunk_free); 1201 timings_.EndSplit(); 1202 } 1203 CHECK_EQ(count, allocations->Size()); 1204 timings_.EndSplit(); 1205 1206 timings_.StartSplit("RecordFree"); 1207 VLOG(heap) << "Freed " << freed_objects << "/" << count 1208 << " objects with size " << PrettySize(freed_bytes); 1209 heap_->RecordFree(freed_objects + freed_large_objects, freed_bytes + freed_large_object_bytes); 1210 freed_objects_.fetch_add(freed_objects); 1211 freed_large_objects_.fetch_add(freed_large_objects); 1212 freed_bytes_.fetch_add(freed_bytes); 1213 freed_large_object_bytes_.fetch_add(freed_large_object_bytes); 1214 timings_.EndSplit(); 1215 1216 timings_.StartSplit("ResetStack"); 1217 allocations->Reset(); 1218 timings_.EndSplit(); 1219 } 1220 1221 void MarkSweep::Sweep(bool swap_bitmaps) { 1222 DCHECK(mark_stack_->IsEmpty()); 1223 base::TimingLogger::ScopedSplit("Sweep", &timings_); 1224 1225 const bool partial = (GetGcType() == kGcTypePartial); 1226 SweepCallbackContext scc; 1227 scc.mark_sweep = this; 1228 scc.self = Thread::Current(); 1229 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 1230 // We always sweep always collect spaces. 1231 bool sweep_space = (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect); 1232 if (!partial && !sweep_space) { 1233 // We sweep full collect spaces when the GC isn't a partial GC (ie its full). 1234 sweep_space = (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect); 1235 } 1236 if (sweep_space) { 1237 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin()); 1238 uintptr_t end = reinterpret_cast<uintptr_t>(space->End()); 1239 scc.space = space->AsDlMallocSpace(); 1240 accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap(); 1241 accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap(); 1242 if (swap_bitmaps) { 1243 std::swap(live_bitmap, mark_bitmap); 1244 } 1245 if (!space->IsZygoteSpace()) { 1246 base::TimingLogger::ScopedSplit split("SweepAllocSpace", &timings_); 1247 // Bitmaps are pre-swapped for optimization which enables sweeping with the heap unlocked. 1248 accounting::SpaceBitmap::SweepWalk(*live_bitmap, *mark_bitmap, begin, end, 1249 &SweepCallback, reinterpret_cast<void*>(&scc)); 1250 } else { 1251 base::TimingLogger::ScopedSplit split("SweepZygote", &timings_); 1252 // Zygote sweep takes care of dirtying cards and clearing live bits, does not free actual 1253 // memory. 1254 accounting::SpaceBitmap::SweepWalk(*live_bitmap, *mark_bitmap, begin, end, 1255 &ZygoteSweepCallback, reinterpret_cast<void*>(&scc)); 1256 } 1257 } 1258 } 1259 1260 SweepLargeObjects(swap_bitmaps); 1261 } 1262 1263 void MarkSweep::SweepLargeObjects(bool swap_bitmaps) { 1264 base::TimingLogger::ScopedSplit("SweepLargeObjects", &timings_); 1265 // Sweep large objects 1266 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace(); 1267 accounting::SpaceSetMap* large_live_objects = large_object_space->GetLiveObjects(); 1268 accounting::SpaceSetMap* large_mark_objects = large_object_space->GetMarkObjects(); 1269 if (swap_bitmaps) { 1270 std::swap(large_live_objects, large_mark_objects); 1271 } 1272 // O(n*log(n)) but hopefully there are not too many large objects. 1273 size_t freed_objects = 0; 1274 size_t freed_bytes = 0; 1275 Thread* self = Thread::Current(); 1276 for (const Object* obj : large_live_objects->GetObjects()) { 1277 if (!large_mark_objects->Test(obj)) { 1278 freed_bytes += large_object_space->Free(self, const_cast<Object*>(obj)); 1279 ++freed_objects; 1280 } 1281 } 1282 freed_large_objects_.fetch_add(freed_objects); 1283 freed_large_object_bytes_.fetch_add(freed_bytes); 1284 GetHeap()->RecordFree(freed_objects, freed_bytes); 1285 } 1286 1287 void MarkSweep::CheckReference(const Object* obj, const Object* ref, MemberOffset offset, bool is_static) { 1288 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 1289 if (space->IsDlMallocSpace() && space->Contains(ref)) { 1290 DCHECK(IsMarked(obj)); 1291 1292 bool is_marked = IsMarked(ref); 1293 if (!is_marked) { 1294 LOG(INFO) << *space; 1295 LOG(WARNING) << (is_static ? "Static ref'" : "Instance ref'") << PrettyTypeOf(ref) 1296 << "' (" << reinterpret_cast<const void*>(ref) << ") in '" << PrettyTypeOf(obj) 1297 << "' (" << reinterpret_cast<const void*>(obj) << ") at offset " 1298 << reinterpret_cast<void*>(offset.Int32Value()) << " wasn't marked"; 1299 1300 const Class* klass = is_static ? obj->AsClass() : obj->GetClass(); 1301 DCHECK(klass != NULL); 1302 const ObjectArray<ArtField>* fields = is_static ? klass->GetSFields() : klass->GetIFields(); 1303 DCHECK(fields != NULL); 1304 bool found = false; 1305 for (int32_t i = 0; i < fields->GetLength(); ++i) { 1306 const ArtField* cur = fields->Get(i); 1307 if (cur->GetOffset().Int32Value() == offset.Int32Value()) { 1308 LOG(WARNING) << "Field referencing the alloc space was " << PrettyField(cur); 1309 found = true; 1310 break; 1311 } 1312 } 1313 if (!found) { 1314 LOG(WARNING) << "Could not find field in object alloc space with offset " << offset.Int32Value(); 1315 } 1316 1317 bool obj_marked = heap_->GetCardTable()->IsDirty(obj); 1318 if (!obj_marked) { 1319 LOG(WARNING) << "Object '" << PrettyTypeOf(obj) << "' " 1320 << "(" << reinterpret_cast<const void*>(obj) << ") contains references to " 1321 << "the alloc space, but wasn't card marked"; 1322 } 1323 } 1324 } 1325 break; 1326 } 1327 } 1328 1329 // Process the "referent" field in a java.lang.ref.Reference. If the 1330 // referent has not yet been marked, put it on the appropriate list in 1331 // the heap for later processing. 1332 void MarkSweep::DelayReferenceReferent(mirror::Class* klass, Object* obj) { 1333 DCHECK(klass != nullptr); 1334 DCHECK(klass->IsReferenceClass()); 1335 DCHECK(obj != NULL); 1336 Object* referent = heap_->GetReferenceReferent(obj); 1337 if (referent != NULL && !IsMarked(referent)) { 1338 if (kCountJavaLangRefs) { 1339 ++reference_count_; 1340 } 1341 Thread* self = Thread::Current(); 1342 // TODO: Remove these locks, and use atomic stacks for storing references? 1343 // We need to check that the references haven't already been enqueued since we can end up 1344 // scanning the same reference multiple times due to dirty cards. 1345 if (klass->IsSoftReferenceClass()) { 1346 MutexLock mu(self, *heap_->GetSoftRefQueueLock()); 1347 if (!heap_->IsEnqueued(obj)) { 1348 heap_->EnqueuePendingReference(obj, &soft_reference_list_); 1349 } 1350 } else if (klass->IsWeakReferenceClass()) { 1351 MutexLock mu(self, *heap_->GetWeakRefQueueLock()); 1352 if (!heap_->IsEnqueued(obj)) { 1353 heap_->EnqueuePendingReference(obj, &weak_reference_list_); 1354 } 1355 } else if (klass->IsFinalizerReferenceClass()) { 1356 MutexLock mu(self, *heap_->GetFinalizerRefQueueLock()); 1357 if (!heap_->IsEnqueued(obj)) { 1358 heap_->EnqueuePendingReference(obj, &finalizer_reference_list_); 1359 } 1360 } else if (klass->IsPhantomReferenceClass()) { 1361 MutexLock mu(self, *heap_->GetPhantomRefQueueLock()); 1362 if (!heap_->IsEnqueued(obj)) { 1363 heap_->EnqueuePendingReference(obj, &phantom_reference_list_); 1364 } 1365 } else { 1366 LOG(FATAL) << "Invalid reference type " << PrettyClass(klass) 1367 << " " << std::hex << klass->GetAccessFlags(); 1368 } 1369 } 1370 } 1371 1372 void MarkSweep::ScanRoot(const Object* obj) { 1373 ScanObject(obj); 1374 } 1375 1376 class MarkObjectVisitor { 1377 public: 1378 explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) {} 1379 1380 // TODO: Fixme when anotatalysis works with visitors. 1381 void operator()(const Object* /* obj */, const Object* ref, const MemberOffset& /* offset */, 1382 bool /* is_static */) const ALWAYS_INLINE 1383 NO_THREAD_SAFETY_ANALYSIS { 1384 if (kCheckLocks) { 1385 Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); 1386 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current()); 1387 } 1388 mark_sweep_->MarkObject(ref); 1389 } 1390 1391 private: 1392 MarkSweep* const mark_sweep_; 1393 }; 1394 1395 // Scans an object reference. Determines the type of the reference 1396 // and dispatches to a specialized scanning routine. 1397 void MarkSweep::ScanObject(const Object* obj) { 1398 MarkObjectVisitor visitor(this); 1399 ScanObjectVisit(obj, visitor); 1400 } 1401 1402 void MarkSweep::ProcessMarkStackParallel(size_t thread_count) { 1403 Thread* self = Thread::Current(); 1404 ThreadPool* thread_pool = GetHeap()->GetThreadPool(); 1405 const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1, 1406 static_cast<size_t>(MarkStackTask<false>::kMaxSize)); 1407 CHECK_GT(chunk_size, 0U); 1408 // Split the current mark stack up into work tasks. 1409 for (mirror::Object **it = mark_stack_->Begin(), **end = mark_stack_->End(); it < end; ) { 1410 const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size); 1411 thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta, 1412 const_cast<const mirror::Object**>(it))); 1413 it += delta; 1414 } 1415 thread_pool->SetMaxActiveWorkers(thread_count - 1); 1416 thread_pool->StartWorkers(self); 1417 thread_pool->Wait(self, true, true); 1418 thread_pool->StopWorkers(self); 1419 mark_stack_->Reset(); 1420 CHECK_EQ(work_chunks_created_, work_chunks_deleted_) << " some of the work chunks were leaked"; 1421 } 1422 1423 // Scan anything that's on the mark stack. 1424 void MarkSweep::ProcessMarkStack(bool paused) { 1425 timings_.StartSplit("ProcessMarkStack"); 1426 size_t thread_count = GetThreadCount(paused); 1427 if (kParallelProcessMarkStack && thread_count > 1 && 1428 mark_stack_->Size() >= kMinimumParallelMarkStackSize) { 1429 ProcessMarkStackParallel(thread_count); 1430 } else { 1431 // TODO: Tune this. 1432 static const size_t kFifoSize = 4; 1433 BoundedFifoPowerOfTwo<const Object*, kFifoSize> prefetch_fifo; 1434 for (;;) { 1435 const Object* obj = NULL; 1436 if (kUseMarkStackPrefetch) { 1437 while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) { 1438 const Object* obj = mark_stack_->PopBack(); 1439 DCHECK(obj != NULL); 1440 __builtin_prefetch(obj); 1441 prefetch_fifo.push_back(obj); 1442 } 1443 if (prefetch_fifo.empty()) { 1444 break; 1445 } 1446 obj = prefetch_fifo.front(); 1447 prefetch_fifo.pop_front(); 1448 } else { 1449 if (mark_stack_->IsEmpty()) { 1450 break; 1451 } 1452 obj = mark_stack_->PopBack(); 1453 } 1454 DCHECK(obj != NULL); 1455 ScanObject(obj); 1456 } 1457 } 1458 timings_.EndSplit(); 1459 } 1460 1461 // Walks the reference list marking any references subject to the 1462 // reference clearing policy. References with a black referent are 1463 // removed from the list. References with white referents biased 1464 // toward saving are blackened and also removed from the list. 1465 void MarkSweep::PreserveSomeSoftReferences(Object** list) { 1466 DCHECK(list != NULL); 1467 Object* clear = NULL; 1468 size_t counter = 0; 1469 1470 DCHECK(mark_stack_->IsEmpty()); 1471 1472 timings_.StartSplit("PreserveSomeSoftReferences"); 1473 while (*list != NULL) { 1474 Object* ref = heap_->DequeuePendingReference(list); 1475 Object* referent = heap_->GetReferenceReferent(ref); 1476 if (referent == NULL) { 1477 // Referent was cleared by the user during marking. 1478 continue; 1479 } 1480 bool is_marked = IsMarked(referent); 1481 if (!is_marked && ((++counter) & 1)) { 1482 // Referent is white and biased toward saving, mark it. 1483 MarkObject(referent); 1484 is_marked = true; 1485 } 1486 if (!is_marked) { 1487 // Referent is white, queue it for clearing. 1488 heap_->EnqueuePendingReference(ref, &clear); 1489 } 1490 } 1491 *list = clear; 1492 timings_.EndSplit(); 1493 1494 // Restart the mark with the newly black references added to the root set. 1495 ProcessMarkStack(true); 1496 } 1497 1498 inline bool MarkSweep::IsMarked(const Object* object) const 1499 SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 1500 if (IsImmune(object)) { 1501 return true; 1502 } 1503 DCHECK(current_mark_bitmap_ != NULL); 1504 if (current_mark_bitmap_->HasAddress(object)) { 1505 return current_mark_bitmap_->Test(object); 1506 } 1507 return heap_->GetMarkBitmap()->Test(object); 1508 } 1509 1510 // Unlink the reference list clearing references objects with white 1511 // referents. Cleared references registered to a reference queue are 1512 // scheduled for appending by the heap worker thread. 1513 void MarkSweep::ClearWhiteReferences(Object** list) { 1514 DCHECK(list != NULL); 1515 while (*list != NULL) { 1516 Object* ref = heap_->DequeuePendingReference(list); 1517 Object* referent = heap_->GetReferenceReferent(ref); 1518 if (referent != NULL && !IsMarked(referent)) { 1519 // Referent is white, clear it. 1520 heap_->ClearReferenceReferent(ref); 1521 if (heap_->IsEnqueuable(ref)) { 1522 heap_->EnqueueReference(ref, &cleared_reference_list_); 1523 } 1524 } 1525 } 1526 DCHECK(*list == NULL); 1527 } 1528 1529 // Enqueues finalizer references with white referents. White 1530 // referents are blackened, moved to the zombie field, and the 1531 // referent field is cleared. 1532 void MarkSweep::EnqueueFinalizerReferences(Object** list) { 1533 DCHECK(list != NULL); 1534 timings_.StartSplit("EnqueueFinalizerReferences"); 1535 MemberOffset zombie_offset = heap_->GetFinalizerReferenceZombieOffset(); 1536 bool has_enqueued = false; 1537 while (*list != NULL) { 1538 Object* ref = heap_->DequeuePendingReference(list); 1539 Object* referent = heap_->GetReferenceReferent(ref); 1540 if (referent != NULL && !IsMarked(referent)) { 1541 MarkObject(referent); 1542 // If the referent is non-null the reference must queuable. 1543 DCHECK(heap_->IsEnqueuable(ref)); 1544 ref->SetFieldObject(zombie_offset, referent, false); 1545 heap_->ClearReferenceReferent(ref); 1546 heap_->EnqueueReference(ref, &cleared_reference_list_); 1547 has_enqueued = true; 1548 } 1549 } 1550 timings_.EndSplit(); 1551 if (has_enqueued) { 1552 ProcessMarkStack(true); 1553 } 1554 DCHECK(*list == NULL); 1555 } 1556 1557 // Process reference class instances and schedule finalizations. 1558 void MarkSweep::ProcessReferences(Object** soft_references, bool clear_soft, 1559 Object** weak_references, 1560 Object** finalizer_references, 1561 Object** phantom_references) { 1562 CHECK(soft_references != NULL); 1563 CHECK(weak_references != NULL); 1564 CHECK(finalizer_references != NULL); 1565 CHECK(phantom_references != NULL); 1566 CHECK(mark_stack_->IsEmpty()); 1567 1568 // Unless we are in the zygote or required to clear soft references 1569 // with white references, preserve some white referents. 1570 if (!clear_soft && !Runtime::Current()->IsZygote()) { 1571 PreserveSomeSoftReferences(soft_references); 1572 } 1573 1574 timings_.StartSplit("ProcessReferences"); 1575 // Clear all remaining soft and weak references with white 1576 // referents. 1577 ClearWhiteReferences(soft_references); 1578 ClearWhiteReferences(weak_references); 1579 timings_.EndSplit(); 1580 1581 // Preserve all white objects with finalize methods and schedule 1582 // them for finalization. 1583 EnqueueFinalizerReferences(finalizer_references); 1584 1585 timings_.StartSplit("ProcessReferences"); 1586 // Clear all f-reachable soft and weak references with white 1587 // referents. 1588 ClearWhiteReferences(soft_references); 1589 ClearWhiteReferences(weak_references); 1590 1591 // Clear all phantom references with white referents. 1592 ClearWhiteReferences(phantom_references); 1593 1594 // At this point all reference lists should be empty. 1595 DCHECK(*soft_references == NULL); 1596 DCHECK(*weak_references == NULL); 1597 DCHECK(*finalizer_references == NULL); 1598 DCHECK(*phantom_references == NULL); 1599 timings_.EndSplit(); 1600 } 1601 1602 void MarkSweep::UnBindBitmaps() { 1603 base::TimingLogger::ScopedSplit split("UnBindBitmaps", &timings_); 1604 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 1605 if (space->IsDlMallocSpace()) { 1606 space::DlMallocSpace* alloc_space = space->AsDlMallocSpace(); 1607 if (alloc_space->temp_bitmap_.get() != NULL) { 1608 // At this point, the temp_bitmap holds our old mark bitmap. 1609 accounting::SpaceBitmap* new_bitmap = alloc_space->temp_bitmap_.release(); 1610 GetHeap()->GetMarkBitmap()->ReplaceBitmap(alloc_space->mark_bitmap_.get(), new_bitmap); 1611 CHECK_EQ(alloc_space->mark_bitmap_.release(), alloc_space->live_bitmap_.get()); 1612 alloc_space->mark_bitmap_.reset(new_bitmap); 1613 DCHECK(alloc_space->temp_bitmap_.get() == NULL); 1614 } 1615 } 1616 } 1617 } 1618 1619 void MarkSweep::FinishPhase() { 1620 base::TimingLogger::ScopedSplit split("FinishPhase", &timings_); 1621 // Can't enqueue references if we hold the mutator lock. 1622 Object* cleared_references = GetClearedReferences(); 1623 Heap* heap = GetHeap(); 1624 timings_.NewSplit("EnqueueClearedReferences"); 1625 heap->EnqueueClearedReferences(&cleared_references); 1626 1627 timings_.NewSplit("PostGcVerification"); 1628 heap->PostGcVerification(this); 1629 1630 timings_.NewSplit("GrowForUtilization"); 1631 heap->GrowForUtilization(GetGcType(), GetDurationNs()); 1632 1633 timings_.NewSplit("RequestHeapTrim"); 1634 heap->RequestHeapTrim(); 1635 1636 // Update the cumulative statistics 1637 total_time_ns_ += GetDurationNs(); 1638 total_paused_time_ns_ += std::accumulate(GetPauseTimes().begin(), GetPauseTimes().end(), 0, 1639 std::plus<uint64_t>()); 1640 total_freed_objects_ += GetFreedObjects() + GetFreedLargeObjects(); 1641 total_freed_bytes_ += GetFreedBytes() + GetFreedLargeObjectBytes(); 1642 1643 // Ensure that the mark stack is empty. 1644 CHECK(mark_stack_->IsEmpty()); 1645 1646 if (kCountScannedTypes) { 1647 VLOG(gc) << "MarkSweep scanned classes=" << class_count_ << " arrays=" << array_count_ 1648 << " other=" << other_count_; 1649 } 1650 1651 if (kCountTasks) { 1652 VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_; 1653 } 1654 1655 if (kMeasureOverhead) { 1656 VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_); 1657 } 1658 1659 if (kProfileLargeObjects) { 1660 VLOG(gc) << "Large objects tested " << large_object_test_ << " marked " << large_object_mark_; 1661 } 1662 1663 if (kCountClassesMarked) { 1664 VLOG(gc) << "Classes marked " << classes_marked_; 1665 } 1666 1667 if (kCountJavaLangRefs) { 1668 VLOG(gc) << "References scanned " << reference_count_; 1669 } 1670 1671 // Update the cumulative loggers. 1672 cumulative_timings_.Start(); 1673 cumulative_timings_.AddLogger(timings_); 1674 cumulative_timings_.End(); 1675 1676 // Clear all of the spaces' mark bitmaps. 1677 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 1678 if (space->GetGcRetentionPolicy() != space::kGcRetentionPolicyNeverCollect) { 1679 space->GetMarkBitmap()->Clear(); 1680 } 1681 } 1682 mark_stack_->Reset(); 1683 1684 // Reset the marked large objects. 1685 space::LargeObjectSpace* large_objects = GetHeap()->GetLargeObjectsSpace(); 1686 large_objects->GetMarkObjects()->Clear(); 1687 } 1688 1689 } // namespace collector 1690 } // namespace gc 1691 } // namespace art 1692