1 /* 2 * Wrapper functions for OpenSSL libcrypto 3 * Copyright (c) 2004-2013, Jouni Malinen <j (at) w1.fi> 4 * 5 * This software may be distributed under the terms of the BSD license. 6 * See README for more details. 7 */ 8 9 #include "includes.h" 10 #include <openssl/opensslv.h> 11 #include <openssl/err.h> 12 #include <openssl/des.h> 13 #include <openssl/aes.h> 14 #include <openssl/bn.h> 15 #include <openssl/evp.h> 16 #include <openssl/dh.h> 17 #include <openssl/hmac.h> 18 #include <openssl/rand.h> 19 #ifdef CONFIG_OPENSSL_CMAC 20 #include <openssl/cmac.h> 21 #endif /* CONFIG_OPENSSL_CMAC */ 22 #ifdef CONFIG_ECC 23 #include <openssl/ec.h> 24 #endif /* CONFIG_ECC */ 25 26 #include "common.h" 27 #include "wpabuf.h" 28 #include "dh_group5.h" 29 #include "crypto.h" 30 31 #if OPENSSL_VERSION_NUMBER < 0x00907000 32 #define DES_key_schedule des_key_schedule 33 #define DES_cblock des_cblock 34 #define DES_set_key(key, schedule) des_set_key((key), *(schedule)) 35 #define DES_ecb_encrypt(input, output, ks, enc) \ 36 des_ecb_encrypt((input), (output), *(ks), (enc)) 37 #endif /* openssl < 0.9.7 */ 38 39 static BIGNUM * get_group5_prime(void) 40 { 41 #if OPENSSL_VERSION_NUMBER < 0x00908000 42 static const unsigned char RFC3526_PRIME_1536[] = { 43 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2, 44 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1, 45 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6, 46 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD, 47 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D, 48 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45, 49 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9, 50 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED, 51 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11, 52 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D, 53 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36, 54 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F, 55 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56, 56 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D, 57 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08, 58 0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 59 }; 60 return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), NULL); 61 #else /* openssl < 0.9.8 */ 62 return get_rfc3526_prime_1536(NULL); 63 #endif /* openssl < 0.9.8 */ 64 } 65 66 #if OPENSSL_VERSION_NUMBER < 0x00908000 67 #ifndef OPENSSL_NO_SHA256 68 #ifndef OPENSSL_FIPS 69 #define NO_SHA256_WRAPPER 70 #endif 71 #endif 72 73 #endif /* openssl < 0.9.8 */ 74 75 #ifdef OPENSSL_NO_SHA256 76 #define NO_SHA256_WRAPPER 77 #endif 78 79 static int openssl_digest_vector(const EVP_MD *type, size_t num_elem, 80 const u8 *addr[], const size_t *len, u8 *mac) 81 { 82 EVP_MD_CTX ctx; 83 size_t i; 84 unsigned int mac_len; 85 86 EVP_MD_CTX_init(&ctx); 87 if (!EVP_DigestInit_ex(&ctx, type, NULL)) { 88 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestInit_ex failed: %s", 89 ERR_error_string(ERR_get_error(), NULL)); 90 return -1; 91 } 92 for (i = 0; i < num_elem; i++) { 93 if (!EVP_DigestUpdate(&ctx, addr[i], len[i])) { 94 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestUpdate " 95 "failed: %s", 96 ERR_error_string(ERR_get_error(), NULL)); 97 return -1; 98 } 99 } 100 if (!EVP_DigestFinal(&ctx, mac, &mac_len)) { 101 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestFinal failed: %s", 102 ERR_error_string(ERR_get_error(), NULL)); 103 return -1; 104 } 105 106 return 0; 107 } 108 109 110 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) 111 { 112 return openssl_digest_vector(EVP_md4(), num_elem, addr, len, mac); 113 } 114 115 116 void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher) 117 { 118 u8 pkey[8], next, tmp; 119 int i; 120 DES_key_schedule ks; 121 122 /* Add parity bits to the key */ 123 next = 0; 124 for (i = 0; i < 7; i++) { 125 tmp = key[i]; 126 pkey[i] = (tmp >> i) | next | 1; 127 next = tmp << (7 - i); 128 } 129 pkey[i] = next | 1; 130 131 DES_set_key(&pkey, &ks); 132 DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks, 133 DES_ENCRYPT); 134 } 135 136 137 int rc4_skip(const u8 *key, size_t keylen, size_t skip, 138 u8 *data, size_t data_len) 139 { 140 #ifdef OPENSSL_NO_RC4 141 return -1; 142 #else /* OPENSSL_NO_RC4 */ 143 EVP_CIPHER_CTX ctx; 144 int outl; 145 int res = -1; 146 unsigned char skip_buf[16]; 147 148 EVP_CIPHER_CTX_init(&ctx); 149 if (!EVP_CIPHER_CTX_set_padding(&ctx, 0) || 150 !EVP_CipherInit_ex(&ctx, EVP_rc4(), NULL, NULL, NULL, 1) || 151 !EVP_CIPHER_CTX_set_key_length(&ctx, keylen) || 152 !EVP_CipherInit_ex(&ctx, NULL, NULL, key, NULL, 1)) 153 goto out; 154 155 while (skip >= sizeof(skip_buf)) { 156 size_t len = skip; 157 if (len > sizeof(skip_buf)) 158 len = sizeof(skip_buf); 159 if (!EVP_CipherUpdate(&ctx, skip_buf, &outl, skip_buf, len)) 160 goto out; 161 skip -= len; 162 } 163 164 if (EVP_CipherUpdate(&ctx, data, &outl, data, data_len)) 165 res = 0; 166 167 out: 168 EVP_CIPHER_CTX_cleanup(&ctx); 169 return res; 170 #endif /* OPENSSL_NO_RC4 */ 171 } 172 173 174 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) 175 { 176 return openssl_digest_vector(EVP_md5(), num_elem, addr, len, mac); 177 } 178 179 180 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) 181 { 182 return openssl_digest_vector(EVP_sha1(), num_elem, addr, len, mac); 183 } 184 185 186 #ifndef NO_SHA256_WRAPPER 187 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len, 188 u8 *mac) 189 { 190 return openssl_digest_vector(EVP_sha256(), num_elem, addr, len, mac); 191 } 192 #endif /* NO_SHA256_WRAPPER */ 193 194 195 static const EVP_CIPHER * aes_get_evp_cipher(size_t keylen) 196 { 197 switch (keylen) { 198 case 16: 199 return EVP_aes_128_ecb(); 200 case 24: 201 return EVP_aes_192_ecb(); 202 case 32: 203 return EVP_aes_256_ecb(); 204 } 205 206 return NULL; 207 } 208 209 210 void * aes_encrypt_init(const u8 *key, size_t len) 211 { 212 EVP_CIPHER_CTX *ctx; 213 const EVP_CIPHER *type; 214 215 type = aes_get_evp_cipher(len); 216 if (type == NULL) 217 return NULL; 218 219 ctx = os_malloc(sizeof(*ctx)); 220 if (ctx == NULL) 221 return NULL; 222 EVP_CIPHER_CTX_init(ctx); 223 if (EVP_EncryptInit_ex(ctx, type, NULL, key, NULL) != 1) { 224 os_free(ctx); 225 return NULL; 226 } 227 EVP_CIPHER_CTX_set_padding(ctx, 0); 228 return ctx; 229 } 230 231 232 void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt) 233 { 234 EVP_CIPHER_CTX *c = ctx; 235 int clen = 16; 236 if (EVP_EncryptUpdate(c, crypt, &clen, plain, 16) != 1) { 237 wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptUpdate failed: %s", 238 ERR_error_string(ERR_get_error(), NULL)); 239 } 240 } 241 242 243 void aes_encrypt_deinit(void *ctx) 244 { 245 EVP_CIPHER_CTX *c = ctx; 246 u8 buf[16]; 247 int len = sizeof(buf); 248 if (EVP_EncryptFinal_ex(c, buf, &len) != 1) { 249 wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptFinal_ex failed: " 250 "%s", ERR_error_string(ERR_get_error(), NULL)); 251 } 252 if (len != 0) { 253 wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d " 254 "in AES encrypt", len); 255 } 256 EVP_CIPHER_CTX_cleanup(c); 257 os_free(c); 258 } 259 260 261 void * aes_decrypt_init(const u8 *key, size_t len) 262 { 263 EVP_CIPHER_CTX *ctx; 264 const EVP_CIPHER *type; 265 266 type = aes_get_evp_cipher(len); 267 if (type == NULL) 268 return NULL; 269 270 ctx = os_malloc(sizeof(*ctx)); 271 if (ctx == NULL) 272 return NULL; 273 EVP_CIPHER_CTX_init(ctx); 274 if (EVP_DecryptInit_ex(ctx, type, NULL, key, NULL) != 1) { 275 os_free(ctx); 276 return NULL; 277 } 278 EVP_CIPHER_CTX_set_padding(ctx, 0); 279 return ctx; 280 } 281 282 283 void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain) 284 { 285 EVP_CIPHER_CTX *c = ctx; 286 int plen = 16; 287 if (EVP_DecryptUpdate(c, plain, &plen, crypt, 16) != 1) { 288 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptUpdate failed: %s", 289 ERR_error_string(ERR_get_error(), NULL)); 290 } 291 } 292 293 294 void aes_decrypt_deinit(void *ctx) 295 { 296 EVP_CIPHER_CTX *c = ctx; 297 u8 buf[16]; 298 int len = sizeof(buf); 299 if (EVP_DecryptFinal_ex(c, buf, &len) != 1) { 300 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptFinal_ex failed: " 301 "%s", ERR_error_string(ERR_get_error(), NULL)); 302 } 303 if (len != 0) { 304 wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d " 305 "in AES decrypt", len); 306 } 307 EVP_CIPHER_CTX_cleanup(c); 308 os_free(ctx); 309 } 310 311 312 int crypto_mod_exp(const u8 *base, size_t base_len, 313 const u8 *power, size_t power_len, 314 const u8 *modulus, size_t modulus_len, 315 u8 *result, size_t *result_len) 316 { 317 BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result; 318 int ret = -1; 319 BN_CTX *ctx; 320 321 ctx = BN_CTX_new(); 322 if (ctx == NULL) 323 return -1; 324 325 bn_base = BN_bin2bn(base, base_len, NULL); 326 bn_exp = BN_bin2bn(power, power_len, NULL); 327 bn_modulus = BN_bin2bn(modulus, modulus_len, NULL); 328 bn_result = BN_new(); 329 330 if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL || 331 bn_result == NULL) 332 goto error; 333 334 if (BN_mod_exp(bn_result, bn_base, bn_exp, bn_modulus, ctx) != 1) 335 goto error; 336 337 *result_len = BN_bn2bin(bn_result, result); 338 ret = 0; 339 340 error: 341 BN_free(bn_base); 342 BN_free(bn_exp); 343 BN_free(bn_modulus); 344 BN_free(bn_result); 345 BN_CTX_free(ctx); 346 return ret; 347 } 348 349 350 struct crypto_cipher { 351 EVP_CIPHER_CTX enc; 352 EVP_CIPHER_CTX dec; 353 }; 354 355 356 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg, 357 const u8 *iv, const u8 *key, 358 size_t key_len) 359 { 360 struct crypto_cipher *ctx; 361 const EVP_CIPHER *cipher; 362 363 ctx = os_zalloc(sizeof(*ctx)); 364 if (ctx == NULL) 365 return NULL; 366 367 switch (alg) { 368 #ifndef OPENSSL_NO_RC4 369 case CRYPTO_CIPHER_ALG_RC4: 370 cipher = EVP_rc4(); 371 break; 372 #endif /* OPENSSL_NO_RC4 */ 373 #ifndef OPENSSL_NO_AES 374 case CRYPTO_CIPHER_ALG_AES: 375 switch (key_len) { 376 case 16: 377 cipher = EVP_aes_128_cbc(); 378 break; 379 case 24: 380 cipher = EVP_aes_192_cbc(); 381 break; 382 case 32: 383 cipher = EVP_aes_256_cbc(); 384 break; 385 default: 386 os_free(ctx); 387 return NULL; 388 } 389 break; 390 #endif /* OPENSSL_NO_AES */ 391 #ifndef OPENSSL_NO_DES 392 case CRYPTO_CIPHER_ALG_3DES: 393 cipher = EVP_des_ede3_cbc(); 394 break; 395 case CRYPTO_CIPHER_ALG_DES: 396 cipher = EVP_des_cbc(); 397 break; 398 #endif /* OPENSSL_NO_DES */ 399 #ifndef OPENSSL_NO_RC2 400 case CRYPTO_CIPHER_ALG_RC2: 401 cipher = EVP_rc2_ecb(); 402 break; 403 #endif /* OPENSSL_NO_RC2 */ 404 default: 405 os_free(ctx); 406 return NULL; 407 } 408 409 EVP_CIPHER_CTX_init(&ctx->enc); 410 EVP_CIPHER_CTX_set_padding(&ctx->enc, 0); 411 if (!EVP_EncryptInit_ex(&ctx->enc, cipher, NULL, NULL, NULL) || 412 !EVP_CIPHER_CTX_set_key_length(&ctx->enc, key_len) || 413 !EVP_EncryptInit_ex(&ctx->enc, NULL, NULL, key, iv)) { 414 EVP_CIPHER_CTX_cleanup(&ctx->enc); 415 os_free(ctx); 416 return NULL; 417 } 418 419 EVP_CIPHER_CTX_init(&ctx->dec); 420 EVP_CIPHER_CTX_set_padding(&ctx->dec, 0); 421 if (!EVP_DecryptInit_ex(&ctx->dec, cipher, NULL, NULL, NULL) || 422 !EVP_CIPHER_CTX_set_key_length(&ctx->dec, key_len) || 423 !EVP_DecryptInit_ex(&ctx->dec, NULL, NULL, key, iv)) { 424 EVP_CIPHER_CTX_cleanup(&ctx->enc); 425 EVP_CIPHER_CTX_cleanup(&ctx->dec); 426 os_free(ctx); 427 return NULL; 428 } 429 430 return ctx; 431 } 432 433 434 int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain, 435 u8 *crypt, size_t len) 436 { 437 int outl; 438 if (!EVP_EncryptUpdate(&ctx->enc, crypt, &outl, plain, len)) 439 return -1; 440 return 0; 441 } 442 443 444 int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt, 445 u8 *plain, size_t len) 446 { 447 int outl; 448 outl = len; 449 if (!EVP_DecryptUpdate(&ctx->dec, plain, &outl, crypt, len)) 450 return -1; 451 return 0; 452 } 453 454 455 void crypto_cipher_deinit(struct crypto_cipher *ctx) 456 { 457 EVP_CIPHER_CTX_cleanup(&ctx->enc); 458 EVP_CIPHER_CTX_cleanup(&ctx->dec); 459 os_free(ctx); 460 } 461 462 463 void * dh5_init(struct wpabuf **priv, struct wpabuf **publ) 464 { 465 DH *dh; 466 struct wpabuf *pubkey = NULL, *privkey = NULL; 467 size_t publen, privlen; 468 469 *priv = NULL; 470 *publ = NULL; 471 472 dh = DH_new(); 473 if (dh == NULL) 474 return NULL; 475 476 dh->g = BN_new(); 477 if (dh->g == NULL || BN_set_word(dh->g, 2) != 1) 478 goto err; 479 480 dh->p = get_group5_prime(); 481 if (dh->p == NULL) 482 goto err; 483 484 if (DH_generate_key(dh) != 1) 485 goto err; 486 487 publen = BN_num_bytes(dh->pub_key); 488 pubkey = wpabuf_alloc(publen); 489 if (pubkey == NULL) 490 goto err; 491 privlen = BN_num_bytes(dh->priv_key); 492 privkey = wpabuf_alloc(privlen); 493 if (privkey == NULL) 494 goto err; 495 496 BN_bn2bin(dh->pub_key, wpabuf_put(pubkey, publen)); 497 BN_bn2bin(dh->priv_key, wpabuf_put(privkey, privlen)); 498 499 *priv = privkey; 500 *publ = pubkey; 501 return dh; 502 503 err: 504 wpabuf_free(pubkey); 505 wpabuf_free(privkey); 506 DH_free(dh); 507 return NULL; 508 } 509 510 511 void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ) 512 { 513 DH *dh; 514 515 dh = DH_new(); 516 if (dh == NULL) 517 return NULL; 518 519 dh->g = BN_new(); 520 if (dh->g == NULL || BN_set_word(dh->g, 2) != 1) 521 goto err; 522 523 dh->p = get_group5_prime(); 524 if (dh->p == NULL) 525 goto err; 526 527 dh->priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL); 528 if (dh->priv_key == NULL) 529 goto err; 530 531 dh->pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL); 532 if (dh->pub_key == NULL) 533 goto err; 534 535 if (DH_generate_key(dh) != 1) 536 goto err; 537 538 return dh; 539 540 err: 541 DH_free(dh); 542 return NULL; 543 } 544 545 546 struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public, 547 const struct wpabuf *own_private) 548 { 549 BIGNUM *pub_key; 550 struct wpabuf *res = NULL; 551 size_t rlen; 552 DH *dh = ctx; 553 int keylen; 554 555 if (ctx == NULL) 556 return NULL; 557 558 pub_key = BN_bin2bn(wpabuf_head(peer_public), wpabuf_len(peer_public), 559 NULL); 560 if (pub_key == NULL) 561 return NULL; 562 563 rlen = DH_size(dh); 564 res = wpabuf_alloc(rlen); 565 if (res == NULL) 566 goto err; 567 568 keylen = DH_compute_key(wpabuf_mhead(res), pub_key, dh); 569 if (keylen < 0) 570 goto err; 571 wpabuf_put(res, keylen); 572 BN_free(pub_key); 573 574 return res; 575 576 err: 577 BN_free(pub_key); 578 wpabuf_free(res); 579 return NULL; 580 } 581 582 583 void dh5_free(void *ctx) 584 { 585 DH *dh; 586 if (ctx == NULL) 587 return; 588 dh = ctx; 589 DH_free(dh); 590 } 591 592 593 struct crypto_hash { 594 HMAC_CTX ctx; 595 }; 596 597 598 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key, 599 size_t key_len) 600 { 601 struct crypto_hash *ctx; 602 const EVP_MD *md; 603 604 switch (alg) { 605 #ifndef OPENSSL_NO_MD5 606 case CRYPTO_HASH_ALG_HMAC_MD5: 607 md = EVP_md5(); 608 break; 609 #endif /* OPENSSL_NO_MD5 */ 610 #ifndef OPENSSL_NO_SHA 611 case CRYPTO_HASH_ALG_HMAC_SHA1: 612 md = EVP_sha1(); 613 break; 614 #endif /* OPENSSL_NO_SHA */ 615 #ifndef OPENSSL_NO_SHA256 616 #ifdef CONFIG_SHA256 617 case CRYPTO_HASH_ALG_HMAC_SHA256: 618 md = EVP_sha256(); 619 break; 620 #endif /* CONFIG_SHA256 */ 621 #endif /* OPENSSL_NO_SHA256 */ 622 default: 623 return NULL; 624 } 625 626 ctx = os_zalloc(sizeof(*ctx)); 627 if (ctx == NULL) 628 return NULL; 629 HMAC_CTX_init(&ctx->ctx); 630 631 #if OPENSSL_VERSION_NUMBER < 0x00909000 632 HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL); 633 #else /* openssl < 0.9.9 */ 634 if (HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL) != 1) { 635 os_free(ctx); 636 return NULL; 637 } 638 #endif /* openssl < 0.9.9 */ 639 640 return ctx; 641 } 642 643 644 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len) 645 { 646 if (ctx == NULL) 647 return; 648 HMAC_Update(&ctx->ctx, data, len); 649 } 650 651 652 int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len) 653 { 654 unsigned int mdlen; 655 int res; 656 657 if (ctx == NULL) 658 return -2; 659 660 if (mac == NULL || len == NULL) { 661 os_free(ctx); 662 return 0; 663 } 664 665 mdlen = *len; 666 #if OPENSSL_VERSION_NUMBER < 0x00909000 667 HMAC_Final(&ctx->ctx, mac, &mdlen); 668 res = 1; 669 #else /* openssl < 0.9.9 */ 670 res = HMAC_Final(&ctx->ctx, mac, &mdlen); 671 #endif /* openssl < 0.9.9 */ 672 HMAC_CTX_cleanup(&ctx->ctx); 673 os_free(ctx); 674 675 if (res == 1) { 676 *len = mdlen; 677 return 0; 678 } 679 680 return -1; 681 } 682 683 684 int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len, 685 int iterations, u8 *buf, size_t buflen) 686 { 687 #if OPENSSL_VERSION_NUMBER < 0x00908000 688 if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), 689 (unsigned char *) ssid, 690 ssid_len, 4096, buflen, buf) != 1) 691 return -1; 692 #else /* openssl < 0.9.8 */ 693 if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), ssid, 694 ssid_len, 4096, buflen, buf) != 1) 695 return -1; 696 #endif /* openssl < 0.9.8 */ 697 return 0; 698 } 699 700 701 int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem, 702 const u8 *addr[], const size_t *len, u8 *mac) 703 { 704 HMAC_CTX ctx; 705 size_t i; 706 unsigned int mdlen; 707 int res; 708 709 HMAC_CTX_init(&ctx); 710 #if OPENSSL_VERSION_NUMBER < 0x00909000 711 HMAC_Init_ex(&ctx, key, key_len, EVP_sha1(), NULL); 712 #else /* openssl < 0.9.9 */ 713 if (HMAC_Init_ex(&ctx, key, key_len, EVP_sha1(), NULL) != 1) 714 return -1; 715 #endif /* openssl < 0.9.9 */ 716 717 for (i = 0; i < num_elem; i++) 718 HMAC_Update(&ctx, addr[i], len[i]); 719 720 mdlen = 20; 721 #if OPENSSL_VERSION_NUMBER < 0x00909000 722 HMAC_Final(&ctx, mac, &mdlen); 723 res = 1; 724 #else /* openssl < 0.9.9 */ 725 res = HMAC_Final(&ctx, mac, &mdlen); 726 #endif /* openssl < 0.9.9 */ 727 HMAC_CTX_cleanup(&ctx); 728 729 return res == 1 ? 0 : -1; 730 } 731 732 733 int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len, 734 u8 *mac) 735 { 736 return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac); 737 } 738 739 740 #ifdef CONFIG_SHA256 741 742 int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem, 743 const u8 *addr[], const size_t *len, u8 *mac) 744 { 745 HMAC_CTX ctx; 746 size_t i; 747 unsigned int mdlen; 748 int res; 749 750 HMAC_CTX_init(&ctx); 751 #if OPENSSL_VERSION_NUMBER < 0x00909000 752 HMAC_Init_ex(&ctx, key, key_len, EVP_sha256(), NULL); 753 #else /* openssl < 0.9.9 */ 754 if (HMAC_Init_ex(&ctx, key, key_len, EVP_sha256(), NULL) != 1) 755 return -1; 756 #endif /* openssl < 0.9.9 */ 757 758 for (i = 0; i < num_elem; i++) 759 HMAC_Update(&ctx, addr[i], len[i]); 760 761 mdlen = 32; 762 #if OPENSSL_VERSION_NUMBER < 0x00909000 763 HMAC_Final(&ctx, mac, &mdlen); 764 res = 1; 765 #else /* openssl < 0.9.9 */ 766 res = HMAC_Final(&ctx, mac, &mdlen); 767 #endif /* openssl < 0.9.9 */ 768 HMAC_CTX_cleanup(&ctx); 769 770 return res == 1 ? 0 : -1; 771 } 772 773 774 int hmac_sha256(const u8 *key, size_t key_len, const u8 *data, 775 size_t data_len, u8 *mac) 776 { 777 return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac); 778 } 779 780 #endif /* CONFIG_SHA256 */ 781 782 783 int crypto_get_random(void *buf, size_t len) 784 { 785 if (RAND_bytes(buf, len) != 1) 786 return -1; 787 return 0; 788 } 789 790 791 #ifdef CONFIG_OPENSSL_CMAC 792 int omac1_aes_128_vector(const u8 *key, size_t num_elem, 793 const u8 *addr[], const size_t *len, u8 *mac) 794 { 795 CMAC_CTX *ctx; 796 int ret = -1; 797 size_t outlen, i; 798 799 ctx = CMAC_CTX_new(); 800 if (ctx == NULL) 801 return -1; 802 803 if (!CMAC_Init(ctx, key, 16, EVP_aes_128_cbc(), NULL)) 804 goto fail; 805 for (i = 0; i < num_elem; i++) { 806 if (!CMAC_Update(ctx, addr[i], len[i])) 807 goto fail; 808 } 809 if (!CMAC_Final(ctx, mac, &outlen) || outlen != 16) 810 goto fail; 811 812 ret = 0; 813 fail: 814 CMAC_CTX_free(ctx); 815 return ret; 816 } 817 818 819 int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac) 820 { 821 return omac1_aes_128_vector(key, 1, &data, &data_len, mac); 822 } 823 #endif /* CONFIG_OPENSSL_CMAC */ 824 825 826 struct crypto_bignum * crypto_bignum_init(void) 827 { 828 return (struct crypto_bignum *) BN_new(); 829 } 830 831 832 struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len) 833 { 834 BIGNUM *bn = BN_bin2bn(buf, len, NULL); 835 return (struct crypto_bignum *) bn; 836 } 837 838 839 void crypto_bignum_deinit(struct crypto_bignum *n, int clear) 840 { 841 if (clear) 842 BN_clear_free((BIGNUM *) n); 843 else 844 BN_free((BIGNUM *) n); 845 } 846 847 848 int crypto_bignum_to_bin(const struct crypto_bignum *a, 849 u8 *buf, size_t buflen, size_t padlen) 850 { 851 int num_bytes, offset; 852 853 if (padlen > buflen) 854 return -1; 855 856 num_bytes = BN_num_bytes((const BIGNUM *) a); 857 if ((size_t) num_bytes > buflen) 858 return -1; 859 if (padlen > (size_t) num_bytes) 860 offset = padlen - num_bytes; 861 else 862 offset = 0; 863 864 os_memset(buf, 0, offset); 865 BN_bn2bin((const BIGNUM *) a, buf + offset); 866 867 return num_bytes + offset; 868 } 869 870 871 int crypto_bignum_add(const struct crypto_bignum *a, 872 const struct crypto_bignum *b, 873 struct crypto_bignum *c) 874 { 875 return BN_add((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ? 876 0 : -1; 877 } 878 879 880 int crypto_bignum_mod(const struct crypto_bignum *a, 881 const struct crypto_bignum *b, 882 struct crypto_bignum *c) 883 { 884 int res; 885 BN_CTX *bnctx; 886 887 bnctx = BN_CTX_new(); 888 if (bnctx == NULL) 889 return -1; 890 res = BN_mod((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b, 891 bnctx); 892 BN_CTX_free(bnctx); 893 894 return res ? 0 : -1; 895 } 896 897 898 int crypto_bignum_exptmod(const struct crypto_bignum *a, 899 const struct crypto_bignum *b, 900 const struct crypto_bignum *c, 901 struct crypto_bignum *d) 902 { 903 int res; 904 BN_CTX *bnctx; 905 906 bnctx = BN_CTX_new(); 907 if (bnctx == NULL) 908 return -1; 909 res = BN_mod_exp((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b, 910 (const BIGNUM *) c, bnctx); 911 BN_CTX_free(bnctx); 912 913 return res ? 0 : -1; 914 } 915 916 917 int crypto_bignum_rshift(const struct crypto_bignum *a, int n, 918 struct crypto_bignum *b) 919 { 920 return BN_rshift((BIGNUM *) b, (const BIGNUM *) a, n) ? 0 : -1; 921 } 922 923 924 int crypto_bignum_inverse(const struct crypto_bignum *a, 925 const struct crypto_bignum *b, 926 struct crypto_bignum *c) 927 { 928 BIGNUM *res; 929 BN_CTX *bnctx; 930 931 bnctx = BN_CTX_new(); 932 if (bnctx == NULL) 933 return -1; 934 res = BN_mod_inverse((BIGNUM *) c, (const BIGNUM *) a, 935 (const BIGNUM *) b, bnctx); 936 BN_CTX_free(bnctx); 937 938 return res ? 0 : -1; 939 } 940 941 942 int crypto_bignum_sub(const struct crypto_bignum *a, 943 const struct crypto_bignum *b, 944 struct crypto_bignum *c) 945 { 946 return BN_sub((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ? 947 0 : -1; 948 } 949 950 951 int crypto_bignum_div(const struct crypto_bignum *a, 952 const struct crypto_bignum *b, 953 struct crypto_bignum *c) 954 { 955 int res; 956 957 BN_CTX *bnctx; 958 959 bnctx = BN_CTX_new(); 960 if (bnctx == NULL) 961 return -1; 962 res = BN_div((BIGNUM *) c, NULL, (const BIGNUM *) a, 963 (const BIGNUM *) b, bnctx); 964 BN_CTX_free(bnctx); 965 966 return res ? 0 : -1; 967 } 968 969 970 int crypto_bignum_mulmod(const struct crypto_bignum *a, 971 const struct crypto_bignum *b, 972 const struct crypto_bignum *c, 973 struct crypto_bignum *d) 974 { 975 int res; 976 977 BN_CTX *bnctx; 978 979 bnctx = BN_CTX_new(); 980 if (bnctx == NULL) 981 return -1; 982 res = BN_mod_mul((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b, 983 (const BIGNUM *) c, bnctx); 984 BN_CTX_free(bnctx); 985 986 return res ? 0 : -1; 987 } 988 989 990 int crypto_bignum_cmp(const struct crypto_bignum *a, 991 const struct crypto_bignum *b) 992 { 993 return BN_cmp((const BIGNUM *) a, (const BIGNUM *) b); 994 } 995 996 997 int crypto_bignum_bits(const struct crypto_bignum *a) 998 { 999 return BN_num_bits((const BIGNUM *) a); 1000 } 1001 1002 1003 int crypto_bignum_is_zero(const struct crypto_bignum *a) 1004 { 1005 return BN_is_zero((const BIGNUM *) a); 1006 } 1007 1008 1009 int crypto_bignum_is_one(const struct crypto_bignum *a) 1010 { 1011 return BN_is_one((const BIGNUM *) a); 1012 } 1013 1014 1015 #ifdef CONFIG_ECC 1016 1017 struct crypto_ec { 1018 EC_GROUP *group; 1019 BN_CTX *bnctx; 1020 BIGNUM *prime; 1021 BIGNUM *order; 1022 }; 1023 1024 struct crypto_ec * crypto_ec_init(int group) 1025 { 1026 struct crypto_ec *e; 1027 int nid; 1028 1029 /* Map from IANA registry for IKE D-H groups to OpenSSL NID */ 1030 switch (group) { 1031 case 19: 1032 nid = NID_X9_62_prime256v1; 1033 break; 1034 case 20: 1035 nid = NID_secp384r1; 1036 break; 1037 case 21: 1038 nid = NID_secp521r1; 1039 break; 1040 case 25: 1041 nid = NID_X9_62_prime192v1; 1042 break; 1043 case 26: 1044 nid = NID_secp224r1; 1045 break; 1046 default: 1047 return NULL; 1048 } 1049 1050 e = os_zalloc(sizeof(*e)); 1051 if (e == NULL) 1052 return NULL; 1053 1054 e->bnctx = BN_CTX_new(); 1055 e->group = EC_GROUP_new_by_curve_name(nid); 1056 e->prime = BN_new(); 1057 e->order = BN_new(); 1058 if (e->group == NULL || e->bnctx == NULL || e->prime == NULL || 1059 e->order == NULL || 1060 !EC_GROUP_get_curve_GFp(e->group, e->prime, NULL, NULL, e->bnctx) || 1061 !EC_GROUP_get_order(e->group, e->order, e->bnctx)) { 1062 crypto_ec_deinit(e); 1063 e = NULL; 1064 } 1065 1066 return e; 1067 } 1068 1069 1070 void crypto_ec_deinit(struct crypto_ec *e) 1071 { 1072 if (e == NULL) 1073 return; 1074 BN_free(e->order); 1075 EC_GROUP_free(e->group); 1076 BN_CTX_free(e->bnctx); 1077 os_free(e); 1078 } 1079 1080 1081 struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e) 1082 { 1083 if (e == NULL) 1084 return NULL; 1085 return (struct crypto_ec_point *) EC_POINT_new(e->group); 1086 } 1087 1088 1089 size_t crypto_ec_prime_len(struct crypto_ec *e) 1090 { 1091 return BN_num_bytes(e->prime); 1092 } 1093 1094 1095 size_t crypto_ec_prime_len_bits(struct crypto_ec *e) 1096 { 1097 return BN_num_bits(e->prime); 1098 } 1099 1100 1101 const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e) 1102 { 1103 return (const struct crypto_bignum *) e->prime; 1104 } 1105 1106 1107 const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e) 1108 { 1109 return (const struct crypto_bignum *) e->order; 1110 } 1111 1112 1113 void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear) 1114 { 1115 if (clear) 1116 EC_POINT_clear_free((EC_POINT *) p); 1117 else 1118 EC_POINT_free((EC_POINT *) p); 1119 } 1120 1121 1122 int crypto_ec_point_to_bin(struct crypto_ec *e, 1123 const struct crypto_ec_point *point, u8 *x, u8 *y) 1124 { 1125 BIGNUM *x_bn, *y_bn; 1126 int ret = -1; 1127 int len = BN_num_bytes(e->prime); 1128 1129 x_bn = BN_new(); 1130 y_bn = BN_new(); 1131 1132 if (x_bn && y_bn && 1133 EC_POINT_get_affine_coordinates_GFp(e->group, (EC_POINT *) point, 1134 x_bn, y_bn, e->bnctx)) { 1135 if (x) { 1136 crypto_bignum_to_bin((struct crypto_bignum *) x_bn, 1137 x, len, len); 1138 } 1139 if (y) { 1140 crypto_bignum_to_bin((struct crypto_bignum *) y_bn, 1141 y, len, len); 1142 } 1143 ret = 0; 1144 } 1145 1146 BN_free(x_bn); 1147 BN_free(y_bn); 1148 return ret; 1149 } 1150 1151 1152 struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e, 1153 const u8 *val) 1154 { 1155 BIGNUM *x, *y; 1156 EC_POINT *elem; 1157 int len = BN_num_bytes(e->prime); 1158 1159 x = BN_bin2bn(val, len, NULL); 1160 y = BN_bin2bn(val + len, len, NULL); 1161 elem = EC_POINT_new(e->group); 1162 if (x == NULL || y == NULL || elem == NULL) { 1163 BN_free(x); 1164 BN_free(y); 1165 EC_POINT_free(elem); 1166 return NULL; 1167 } 1168 1169 if (!EC_POINT_set_affine_coordinates_GFp(e->group, elem, x, y, 1170 e->bnctx)) { 1171 EC_POINT_free(elem); 1172 elem = NULL; 1173 } 1174 1175 BN_free(x); 1176 BN_free(y); 1177 1178 return (struct crypto_ec_point *) elem; 1179 } 1180 1181 1182 int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a, 1183 const struct crypto_ec_point *b, 1184 struct crypto_ec_point *c) 1185 { 1186 return EC_POINT_add(e->group, (EC_POINT *) c, (const EC_POINT *) a, 1187 (const EC_POINT *) b, e->bnctx) ? 0 : -1; 1188 } 1189 1190 1191 int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p, 1192 const struct crypto_bignum *b, 1193 struct crypto_ec_point *res) 1194 { 1195 return EC_POINT_mul(e->group, (EC_POINT *) res, NULL, 1196 (const EC_POINT *) p, (const BIGNUM *) b, e->bnctx) 1197 ? 0 : -1; 1198 } 1199 1200 1201 int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p) 1202 { 1203 return EC_POINT_invert(e->group, (EC_POINT *) p, e->bnctx) ? 0 : -1; 1204 } 1205 1206 1207 int crypto_ec_point_solve_y_coord(struct crypto_ec *e, 1208 struct crypto_ec_point *p, 1209 const struct crypto_bignum *x, int y_bit) 1210 { 1211 if (!EC_POINT_set_compressed_coordinates_GFp(e->group, (EC_POINT *) p, 1212 (const BIGNUM *) x, y_bit, 1213 e->bnctx) || 1214 !EC_POINT_is_on_curve(e->group, (EC_POINT *) p, e->bnctx)) 1215 return -1; 1216 return 0; 1217 } 1218 1219 1220 int crypto_ec_point_is_at_infinity(struct crypto_ec *e, 1221 const struct crypto_ec_point *p) 1222 { 1223 return EC_POINT_is_at_infinity(e->group, (const EC_POINT *) p); 1224 } 1225 1226 1227 int crypto_ec_point_is_on_curve(struct crypto_ec *e, 1228 const struct crypto_ec_point *p) 1229 { 1230 return EC_POINT_is_on_curve(e->group, (const EC_POINT *) p, e->bnctx); 1231 } 1232 1233 #endif /* CONFIG_ECC */ 1234