Home | History | Annotate | Download | only in encoder
      1 /*
      2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include <assert.h>
     12 #include <stdio.h>
     13 #include <limits.h>
     14 
     15 #include "vpx/vpx_encoder.h"
     16 #include "vpx_mem/vpx_mem.h"
     17 
     18 #include "vp9/common/vp9_entropymode.h"
     19 #include "vp9/common/vp9_entropymv.h"
     20 #include "vp9/common/vp9_findnearmv.h"
     21 #include "vp9/common/vp9_tile_common.h"
     22 #include "vp9/common/vp9_seg_common.h"
     23 #include "vp9/common/vp9_pred_common.h"
     24 #include "vp9/common/vp9_entropy.h"
     25 #include "vp9/common/vp9_entropymv.h"
     26 #include "vp9/common/vp9_mvref_common.h"
     27 #include "vp9/common/vp9_treecoder.h"
     28 #include "vp9/common/vp9_systemdependent.h"
     29 #include "vp9/common/vp9_pragmas.h"
     30 
     31 #include "vp9/encoder/vp9_mcomp.h"
     32 #include "vp9/encoder/vp9_encodemv.h"
     33 #include "vp9/encoder/vp9_bitstream.h"
     34 #include "vp9/encoder/vp9_segmentation.h"
     35 #include "vp9/encoder/vp9_subexp.h"
     36 #include "vp9/encoder/vp9_write_bit_buffer.h"
     37 
     38 
     39 #if defined(SECTIONBITS_OUTPUT)
     40 unsigned __int64 Sectionbits[500];
     41 #endif
     42 
     43 #ifdef ENTROPY_STATS
     44 int intra_mode_stats[INTRA_MODES]
     45                     [INTRA_MODES]
     46                     [INTRA_MODES];
     47 vp9_coeff_stats tree_update_hist[TX_SIZES][BLOCK_TYPES];
     48 
     49 extern unsigned int active_section;
     50 #endif
     51 
     52 
     53 #ifdef MODE_STATS
     54 int64_t tx_count_32x32p_stats[TX_SIZE_CONTEXTS][TX_SIZES];
     55 int64_t tx_count_16x16p_stats[TX_SIZE_CONTEXTS][TX_SIZES - 1];
     56 int64_t tx_count_8x8p_stats[TX_SIZE_CONTEXTS][TX_SIZES - 2];
     57 int64_t switchable_interp_stats[SWITCHABLE_FILTERS+1]
     58                                [SWITCHABLE_FILTERS];
     59 
     60 void init_tx_count_stats() {
     61   vp9_zero(tx_count_32x32p_stats);
     62   vp9_zero(tx_count_16x16p_stats);
     63   vp9_zero(tx_count_8x8p_stats);
     64 }
     65 
     66 void init_switchable_interp_stats() {
     67   vp9_zero(switchable_interp_stats);
     68 }
     69 
     70 static void update_tx_count_stats(VP9_COMMON *cm) {
     71   int i, j;
     72   for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
     73     for (j = 0; j < TX_SIZES; j++) {
     74       tx_count_32x32p_stats[i][j] += cm->fc.tx_count_32x32p[i][j];
     75     }
     76   }
     77   for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
     78     for (j = 0; j < TX_SIZES - 1; j++) {
     79       tx_count_16x16p_stats[i][j] += cm->fc.tx_count_16x16p[i][j];
     80     }
     81   }
     82   for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
     83     for (j = 0; j < TX_SIZES - 2; j++) {
     84       tx_count_8x8p_stats[i][j] += cm->fc.tx_count_8x8p[i][j];
     85     }
     86   }
     87 }
     88 
     89 static void update_switchable_interp_stats(VP9_COMMON *cm) {
     90   int i, j;
     91   for (i = 0; i < SWITCHABLE_FILTERS+1; ++i)
     92     for (j = 0; j < SWITCHABLE_FILTERS; ++j) {
     93       switchable_interp_stats[i][j] += cm->fc.switchable_interp_count[i][j];
     94     }
     95 }
     96 
     97 void write_tx_count_stats() {
     98   int i, j;
     99   FILE *fp = fopen("tx_count.bin", "wb");
    100   fwrite(tx_count_32x32p_stats, sizeof(tx_count_32x32p_stats), 1, fp);
    101   fwrite(tx_count_16x16p_stats, sizeof(tx_count_16x16p_stats), 1, fp);
    102   fwrite(tx_count_8x8p_stats, sizeof(tx_count_8x8p_stats), 1, fp);
    103   fclose(fp);
    104 
    105   printf(
    106       "vp9_default_tx_count_32x32p[TX_SIZE_CONTEXTS][TX_SIZES] = {\n");
    107   for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
    108     printf("  { ");
    109     for (j = 0; j < TX_SIZES; j++) {
    110       printf("%"PRId64", ", tx_count_32x32p_stats[i][j]);
    111     }
    112     printf("},\n");
    113   }
    114   printf("};\n");
    115   printf(
    116       "vp9_default_tx_count_16x16p[TX_SIZE_CONTEXTS][TX_SIZES-1] = {\n");
    117   for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
    118     printf("  { ");
    119     for (j = 0; j < TX_SIZES - 1; j++) {
    120       printf("%"PRId64", ", tx_count_16x16p_stats[i][j]);
    121     }
    122     printf("},\n");
    123   }
    124   printf("};\n");
    125   printf(
    126       "vp9_default_tx_count_8x8p[TX_SIZE_CONTEXTS][TX_SIZES-2] = {\n");
    127   for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
    128     printf("  { ");
    129     for (j = 0; j < TX_SIZES - 2; j++) {
    130       printf("%"PRId64", ", tx_count_8x8p_stats[i][j]);
    131     }
    132     printf("},\n");
    133   }
    134   printf("};\n");
    135 }
    136 
    137 void write_switchable_interp_stats() {
    138   int i, j;
    139   FILE *fp = fopen("switchable_interp.bin", "wb");
    140   fwrite(switchable_interp_stats, sizeof(switchable_interp_stats), 1, fp);
    141   fclose(fp);
    142 
    143   printf(
    144       "vp9_default_switchable_filter_count[SWITCHABLE_FILTERS+1]"
    145       "[SWITCHABLE_FILTERS] = {\n");
    146   for (i = 0; i < SWITCHABLE_FILTERS+1; i++) {
    147     printf("  { ");
    148     for (j = 0; j < SWITCHABLE_FILTERS; j++) {
    149       printf("%"PRId64", ", switchable_interp_stats[i][j]);
    150     }
    151     printf("},\n");
    152   }
    153   printf("};\n");
    154 }
    155 #endif
    156 
    157 static INLINE void write_be32(uint8_t *p, int value) {
    158   p[0] = value >> 24;
    159   p[1] = value >> 16;
    160   p[2] = value >> 8;
    161   p[3] = value;
    162 }
    163 
    164 void vp9_encode_unsigned_max(struct vp9_write_bit_buffer *wb,
    165                              int data, int max) {
    166   vp9_wb_write_literal(wb, data, get_unsigned_bits(max));
    167 }
    168 
    169 static void update_mode(
    170   vp9_writer *w,
    171   int n,
    172   vp9_tree tree,
    173   vp9_prob Pnew[/* n-1 */],
    174   vp9_prob Pcur[/* n-1 */],
    175   unsigned int bct[/* n-1 */] [2],
    176   const unsigned int num_events[/* n */]
    177 ) {
    178   int i = 0;
    179 
    180   vp9_tree_probs_from_distribution(tree, Pnew, bct, num_events, 0);
    181   n--;
    182 
    183   for (i = 0; i < n; ++i) {
    184     vp9_cond_prob_diff_update(w, &Pcur[i], MODE_UPDATE_PROB, bct[i]);
    185   }
    186 }
    187 
    188 static void update_mbintra_mode_probs(VP9_COMP* const cpi,
    189                                       vp9_writer* const bc) {
    190   VP9_COMMON *const cm = &cpi->common;
    191   int j;
    192   vp9_prob pnew[INTRA_MODES - 1];
    193   unsigned int bct[INTRA_MODES - 1][2];
    194 
    195   for (j = 0; j < BLOCK_SIZE_GROUPS; j++)
    196     update_mode(bc, INTRA_MODES, vp9_intra_mode_tree, pnew,
    197                 cm->fc.y_mode_prob[j], bct,
    198                 (unsigned int *)cpi->y_mode_count[j]);
    199 }
    200 
    201 static void write_selected_tx_size(const VP9_COMP *cpi, MODE_INFO *m,
    202                                    TX_SIZE tx_size, BLOCK_SIZE bsize,
    203                                    vp9_writer *w) {
    204   const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
    205   const vp9_prob *tx_probs = get_tx_probs2(xd, &cpi->common.fc.tx_probs, m);
    206   vp9_write(w, tx_size != TX_4X4, tx_probs[0]);
    207   if (bsize >= BLOCK_16X16 && tx_size != TX_4X4) {
    208     vp9_write(w, tx_size != TX_8X8, tx_probs[1]);
    209     if (bsize >= BLOCK_32X32 && tx_size != TX_8X8)
    210       vp9_write(w, tx_size != TX_16X16, tx_probs[2]);
    211   }
    212 }
    213 
    214 static int write_skip_coeff(const VP9_COMP *cpi, int segment_id, MODE_INFO *m,
    215                             vp9_writer *w) {
    216   const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
    217   if (vp9_segfeature_active(&cpi->common.seg, segment_id, SEG_LVL_SKIP)) {
    218     return 1;
    219   } else {
    220     const int skip_coeff = m->mbmi.skip_coeff;
    221     vp9_write(w, skip_coeff, vp9_get_pred_prob_mbskip(&cpi->common, xd));
    222     return skip_coeff;
    223   }
    224 }
    225 
    226 void vp9_update_skip_probs(VP9_COMP *cpi, vp9_writer *w) {
    227   VP9_COMMON *cm = &cpi->common;
    228   int k;
    229 
    230   for (k = 0; k < MBSKIP_CONTEXTS; ++k)
    231     vp9_cond_prob_diff_update(w, &cm->fc.mbskip_probs[k],
    232                               MODE_UPDATE_PROB, cm->counts.mbskip[k]);
    233 }
    234 
    235 static void write_intra_mode(vp9_writer *bc, int m, const vp9_prob *p) {
    236   write_token(bc, vp9_intra_mode_tree, p, vp9_intra_mode_encodings + m);
    237 }
    238 
    239 static void update_switchable_interp_probs(VP9_COMP *const cpi,
    240                                            vp9_writer* const bc) {
    241   VP9_COMMON *const cm = &cpi->common;
    242   unsigned int branch_ct[SWITCHABLE_FILTERS + 1]
    243                         [SWITCHABLE_FILTERS - 1][2];
    244   vp9_prob new_prob[SWITCHABLE_FILTERS + 1][SWITCHABLE_FILTERS - 1];
    245   int i, j;
    246   for (j = 0; j <= SWITCHABLE_FILTERS; ++j) {
    247     vp9_tree_probs_from_distribution(
    248         vp9_switchable_interp_tree,
    249         new_prob[j], branch_ct[j],
    250         cm->counts.switchable_interp[j], 0);
    251   }
    252   for (j = 0; j <= SWITCHABLE_FILTERS; ++j) {
    253     for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i) {
    254       vp9_cond_prob_diff_update(bc, &cm->fc.switchable_interp_prob[j][i],
    255                                 MODE_UPDATE_PROB, branch_ct[j][i]);
    256     }
    257   }
    258 #ifdef MODE_STATS
    259   if (!cpi->dummy_packing)
    260     update_switchable_interp_stats(cm);
    261 #endif
    262 }
    263 
    264 static void update_inter_mode_probs(VP9_COMMON *cm, vp9_writer* const bc) {
    265   int i, j;
    266 
    267   for (i = 0; i < INTER_MODE_CONTEXTS; ++i) {
    268     unsigned int branch_ct[INTER_MODES - 1][2];
    269     vp9_prob new_prob[INTER_MODES - 1];
    270 
    271     vp9_tree_probs_from_distribution(vp9_inter_mode_tree,
    272                                      new_prob, branch_ct,
    273                                      cm->counts.inter_mode[i], NEARESTMV);
    274 
    275     for (j = 0; j < INTER_MODES - 1; ++j)
    276       vp9_cond_prob_diff_update(bc, &cm->fc.inter_mode_probs[i][j],
    277                                 MODE_UPDATE_PROB, branch_ct[j]);
    278   }
    279 }
    280 
    281 static void pack_mb_tokens(vp9_writer* const bc,
    282                            TOKENEXTRA **tp,
    283                            const TOKENEXTRA *const stop) {
    284   TOKENEXTRA *p = *tp;
    285 
    286   while (p < stop) {
    287     const int t = p->token;
    288     const struct vp9_token *const a = vp9_coef_encodings + t;
    289     const vp9_extra_bit *const b = vp9_extra_bits + t;
    290     int i = 0;
    291     const vp9_prob *pp;
    292     int v = a->value;
    293     int n = a->len;
    294     vp9_prob probs[ENTROPY_NODES];
    295 
    296     if (t == EOSB_TOKEN) {
    297       ++p;
    298       break;
    299     }
    300     if (t >= TWO_TOKEN) {
    301       vp9_model_to_full_probs(p->context_tree, probs);
    302       pp = probs;
    303     } else {
    304       pp = p->context_tree;
    305     }
    306     assert(pp != 0);
    307 
    308     /* skip one or two nodes */
    309     if (p->skip_eob_node) {
    310       n -= p->skip_eob_node;
    311       i = 2 * p->skip_eob_node;
    312     }
    313 
    314     do {
    315       const int bb = (v >> --n) & 1;
    316       vp9_write(bc, bb, pp[i >> 1]);
    317       i = vp9_coef_tree[i + bb];
    318     } while (n);
    319 
    320     if (b->base_val) {
    321       const int e = p->extra, l = b->len;
    322 
    323       if (l) {
    324         const unsigned char *pb = b->prob;
    325         int v = e >> 1;
    326         int n = l;              /* number of bits in v, assumed nonzero */
    327         int i = 0;
    328 
    329         do {
    330           const int bb = (v >> --n) & 1;
    331           vp9_write(bc, bb, pb[i >> 1]);
    332           i = b->tree[i + bb];
    333         } while (n);
    334       }
    335 
    336       vp9_write_bit(bc, e & 1);
    337     }
    338     ++p;
    339   }
    340 
    341   *tp = p;
    342 }
    343 
    344 static void write_sb_mv_ref(vp9_writer *w, MB_PREDICTION_MODE mode,
    345                             const vp9_prob *p) {
    346   assert(is_inter_mode(mode));
    347   write_token(w, vp9_inter_mode_tree, p,
    348               &vp9_inter_mode_encodings[mode - NEARESTMV]);
    349 }
    350 
    351 
    352 static void write_segment_id(vp9_writer *w, const struct segmentation *seg,
    353                              int segment_id) {
    354   if (seg->enabled && seg->update_map)
    355     treed_write(w, vp9_segment_tree, seg->tree_probs, segment_id, 3);
    356 }
    357 
    358 // This function encodes the reference frame
    359 static void encode_ref_frame(VP9_COMP *cpi, vp9_writer *bc) {
    360   VP9_COMMON *const cm = &cpi->common;
    361   MACROBLOCK *const x = &cpi->mb;
    362   MACROBLOCKD *const xd = &x->e_mbd;
    363   MB_MODE_INFO *mi = &xd->this_mi->mbmi;
    364   const int segment_id = mi->segment_id;
    365   int seg_ref_active = vp9_segfeature_active(&cm->seg, segment_id,
    366                                              SEG_LVL_REF_FRAME);
    367   // If segment level coding of this signal is disabled...
    368   // or the segment allows multiple reference frame options
    369   if (!seg_ref_active) {
    370     // does the feature use compound prediction or not
    371     // (if not specified at the frame/segment level)
    372     if (cm->comp_pred_mode == HYBRID_PREDICTION) {
    373       vp9_write(bc, mi->ref_frame[1] > INTRA_FRAME,
    374                 vp9_get_pred_prob_comp_inter_inter(cm, xd));
    375     } else {
    376       assert((mi->ref_frame[1] <= INTRA_FRAME) ==
    377                  (cm->comp_pred_mode == SINGLE_PREDICTION_ONLY));
    378     }
    379 
    380     if (mi->ref_frame[1] > INTRA_FRAME) {
    381       vp9_write(bc, mi->ref_frame[0] == GOLDEN_FRAME,
    382                 vp9_get_pred_prob_comp_ref_p(cm, xd));
    383     } else {
    384       vp9_write(bc, mi->ref_frame[0] != LAST_FRAME,
    385                 vp9_get_pred_prob_single_ref_p1(cm, xd));
    386       if (mi->ref_frame[0] != LAST_FRAME)
    387         vp9_write(bc, mi->ref_frame[0] != GOLDEN_FRAME,
    388                   vp9_get_pred_prob_single_ref_p2(cm, xd));
    389     }
    390   } else {
    391     assert(mi->ref_frame[1] <= INTRA_FRAME);
    392     assert(vp9_get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME) ==
    393            mi->ref_frame[0]);
    394   }
    395 
    396   // if using the prediction mdoel we have nothing further to do because
    397   // the reference frame is fully coded by the segment
    398 }
    399 
    400 static void pack_inter_mode_mvs(VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc) {
    401   VP9_COMMON *const cm = &cpi->common;
    402   const nmv_context *nmvc = &cm->fc.nmvc;
    403   MACROBLOCK *const x = &cpi->mb;
    404   MACROBLOCKD *const xd = &x->e_mbd;
    405   struct segmentation *seg = &cm->seg;
    406   MB_MODE_INFO *const mi = &m->mbmi;
    407   const MV_REFERENCE_FRAME rf = mi->ref_frame[0];
    408   const MB_PREDICTION_MODE mode = mi->mode;
    409   const int segment_id = mi->segment_id;
    410   int skip_coeff;
    411   const BLOCK_SIZE bsize = mi->sb_type;
    412   const int allow_hp = xd->allow_high_precision_mv;
    413 
    414   x->partition_info = x->pi + (m - cm->mi);
    415 
    416 #ifdef ENTROPY_STATS
    417   active_section = 9;
    418 #endif
    419 
    420   if (seg->update_map) {
    421     if (seg->temporal_update) {
    422       const int pred_flag = mi->seg_id_predicted;
    423       vp9_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd);
    424       vp9_write(bc, pred_flag, pred_prob);
    425       if (!pred_flag)
    426         write_segment_id(bc, seg, segment_id);
    427     } else {
    428       write_segment_id(bc, seg, segment_id);
    429     }
    430   }
    431 
    432   skip_coeff = write_skip_coeff(cpi, segment_id, m, bc);
    433 
    434   if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
    435     vp9_write(bc, rf != INTRA_FRAME,
    436               vp9_get_pred_prob_intra_inter(cm, xd));
    437 
    438   if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT &&
    439       !(rf != INTRA_FRAME &&
    440         (skip_coeff || vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)))) {
    441     write_selected_tx_size(cpi, m, mi->tx_size, bsize, bc);
    442   }
    443 
    444   if (rf == INTRA_FRAME) {
    445 #ifdef ENTROPY_STATS
    446     active_section = 6;
    447 #endif
    448 
    449     if (bsize >= BLOCK_8X8) {
    450       write_intra_mode(bc, mode, cm->fc.y_mode_prob[size_group_lookup[bsize]]);
    451     } else {
    452       int idx, idy;
    453       const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
    454       const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
    455       for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
    456         for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
    457           const MB_PREDICTION_MODE bm = m->bmi[idy * 2 + idx].as_mode;
    458           write_intra_mode(bc, bm, cm->fc.y_mode_prob[0]);
    459         }
    460       }
    461     }
    462     write_intra_mode(bc, mi->uv_mode, cm->fc.uv_mode_prob[mode]);
    463   } else {
    464     vp9_prob *mv_ref_p;
    465     encode_ref_frame(cpi, bc);
    466     mv_ref_p = cpi->common.fc.inter_mode_probs[mi->mode_context[rf]];
    467 
    468 #ifdef ENTROPY_STATS
    469     active_section = 3;
    470 #endif
    471 
    472     // If segment skip is not enabled code the mode.
    473     if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
    474       if (bsize >= BLOCK_8X8) {
    475         write_sb_mv_ref(bc, mode, mv_ref_p);
    476         ++cm->counts.inter_mode[mi->mode_context[rf]]
    477                                [inter_mode_offset(mode)];
    478       }
    479     }
    480 
    481     if (cm->mcomp_filter_type == SWITCHABLE) {
    482       const int ctx = vp9_get_pred_context_switchable_interp(xd);
    483       write_token(bc, vp9_switchable_interp_tree,
    484                   cm->fc.switchable_interp_prob[ctx],
    485                   &vp9_switchable_interp_encodings[mi->interp_filter]);
    486     } else {
    487       assert(mi->interp_filter == cm->mcomp_filter_type);
    488     }
    489 
    490     if (bsize < BLOCK_8X8) {
    491       int j;
    492       MB_PREDICTION_MODE blockmode;
    493       int_mv blockmv;
    494       const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
    495       const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
    496       int idx, idy;
    497       for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
    498         for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
    499           j = idy * 2 + idx;
    500           blockmode = x->partition_info->bmi[j].mode;
    501           blockmv = m->bmi[j].as_mv[0];
    502           write_sb_mv_ref(bc, blockmode, mv_ref_p);
    503           ++cm->counts.inter_mode[mi->mode_context[rf]]
    504                                  [inter_mode_offset(blockmode)];
    505 
    506           if (blockmode == NEWMV) {
    507 #ifdef ENTROPY_STATS
    508             active_section = 11;
    509 #endif
    510             vp9_encode_mv(cpi, bc, &blockmv.as_mv, &mi->best_mv.as_mv,
    511                           nmvc, allow_hp);
    512 
    513             if (mi->ref_frame[1] > INTRA_FRAME)
    514               vp9_encode_mv(cpi, bc,
    515                             &m->bmi[j].as_mv[1].as_mv,
    516                             &mi->best_second_mv.as_mv,
    517                             nmvc, allow_hp);
    518           }
    519         }
    520       }
    521     } else if (mode == NEWMV) {
    522 #ifdef ENTROPY_STATS
    523       active_section = 5;
    524 #endif
    525       vp9_encode_mv(cpi, bc, &mi->mv[0].as_mv, &mi->best_mv.as_mv,
    526                     nmvc, allow_hp);
    527 
    528       if (mi->ref_frame[1] > INTRA_FRAME)
    529         vp9_encode_mv(cpi, bc, &mi->mv[1].as_mv, &mi->best_second_mv.as_mv,
    530                       nmvc, allow_hp);
    531     }
    532   }
    533 }
    534 
    535 static void write_mb_modes_kf(const VP9_COMP *cpi, MODE_INFO **mi_8x8,
    536                               vp9_writer *bc) {
    537   const VP9_COMMON *const cm = &cpi->common;
    538   const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
    539   const struct segmentation *const seg = &cm->seg;
    540   MODE_INFO *m = mi_8x8[0];
    541   const int ym = m->mbmi.mode;
    542   const int segment_id = m->mbmi.segment_id;
    543   MODE_INFO *above_mi = mi_8x8[-xd->mode_info_stride];
    544   MODE_INFO *left_mi = mi_8x8[-1];
    545 
    546   if (seg->update_map)
    547     write_segment_id(bc, seg, m->mbmi.segment_id);
    548 
    549   write_skip_coeff(cpi, segment_id, m, bc);
    550 
    551   if (m->mbmi.sb_type >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT)
    552     write_selected_tx_size(cpi, m, m->mbmi.tx_size, m->mbmi.sb_type, bc);
    553 
    554   if (m->mbmi.sb_type >= BLOCK_8X8) {
    555     const MB_PREDICTION_MODE A = above_block_mode(m, above_mi, 0);
    556     const MB_PREDICTION_MODE L = xd->left_available ?
    557                                  left_block_mode(m, left_mi, 0) : DC_PRED;
    558     write_intra_mode(bc, ym, vp9_kf_y_mode_prob[A][L]);
    559   } else {
    560     int idx, idy;
    561     const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[m->mbmi.sb_type];
    562     const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[m->mbmi.sb_type];
    563     for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
    564       for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
    565         int i = idy * 2 + idx;
    566         const MB_PREDICTION_MODE A = above_block_mode(m, above_mi, i);
    567         const MB_PREDICTION_MODE L = (xd->left_available || idx) ?
    568                                      left_block_mode(m, left_mi, i) : DC_PRED;
    569         const int bm = m->bmi[i].as_mode;
    570 #ifdef ENTROPY_STATS
    571         ++intra_mode_stats[A][L][bm];
    572 #endif
    573         write_intra_mode(bc, bm, vp9_kf_y_mode_prob[A][L]);
    574       }
    575     }
    576   }
    577 
    578   write_intra_mode(bc, m->mbmi.uv_mode, vp9_kf_uv_mode_prob[ym]);
    579 }
    580 
    581 static void write_modes_b(VP9_COMP *cpi, MODE_INFO **mi_8x8, vp9_writer *bc,
    582                           TOKENEXTRA **tok, TOKENEXTRA *tok_end,
    583                           int mi_row, int mi_col) {
    584   VP9_COMMON *const cm = &cpi->common;
    585   MACROBLOCKD *const xd = &cpi->mb.e_mbd;
    586   MODE_INFO *m = mi_8x8[0];
    587 
    588   if (m->mbmi.sb_type < BLOCK_8X8)
    589     if (xd->ab_index > 0)
    590       return;
    591 
    592   xd->this_mi = mi_8x8[0];
    593   xd->mi_8x8 = mi_8x8;
    594 
    595   set_mi_row_col(&cpi->common, xd,
    596                  mi_row, num_8x8_blocks_high_lookup[m->mbmi.sb_type],
    597                  mi_col, num_8x8_blocks_wide_lookup[m->mbmi.sb_type]);
    598   if ((cm->frame_type == KEY_FRAME) || cm->intra_only) {
    599     write_mb_modes_kf(cpi, mi_8x8, bc);
    600 #ifdef ENTROPY_STATS
    601     active_section = 8;
    602 #endif
    603   } else {
    604     pack_inter_mode_mvs(cpi, m, bc);
    605 #ifdef ENTROPY_STATS
    606     active_section = 1;
    607 #endif
    608   }
    609 
    610   assert(*tok < tok_end);
    611   pack_mb_tokens(bc, tok, tok_end);
    612 }
    613 
    614 static void write_modes_sb(VP9_COMP *cpi, MODE_INFO **mi_8x8, vp9_writer *bc,
    615                            TOKENEXTRA **tok, TOKENEXTRA *tok_end,
    616                            int mi_row, int mi_col, BLOCK_SIZE bsize) {
    617   VP9_COMMON *const cm = &cpi->common;
    618   MACROBLOCKD *xd = &cpi->mb.e_mbd;
    619   const int mis = cm->mode_info_stride;
    620   int bsl = b_width_log2(bsize);
    621   int bs = (1 << bsl) / 4;  // mode_info step for subsize
    622   int n;
    623   PARTITION_TYPE partition = PARTITION_NONE;
    624   BLOCK_SIZE subsize;
    625   MODE_INFO *m = mi_8x8[0];
    626 
    627   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
    628     return;
    629 
    630   partition = partition_lookup[bsl][m->mbmi.sb_type];
    631 
    632   if (bsize < BLOCK_8X8)
    633     if (xd->ab_index > 0)
    634       return;
    635 
    636   if (bsize >= BLOCK_8X8) {
    637     int pl;
    638     const int idx = check_bsize_coverage(bs, cm->mi_rows, cm->mi_cols,
    639                                          mi_row, mi_col);
    640     set_partition_seg_context(cm, xd, mi_row, mi_col);
    641     pl = partition_plane_context(xd, bsize);
    642     // encode the partition information
    643     if (idx == 0)
    644       write_token(bc, vp9_partition_tree,
    645                   cm->fc.partition_prob[cm->frame_type][pl],
    646                   vp9_partition_encodings + partition);
    647     else if (idx > 0)
    648       vp9_write(bc, partition == PARTITION_SPLIT,
    649                 cm->fc.partition_prob[cm->frame_type][pl][idx]);
    650   }
    651 
    652   subsize = get_subsize(bsize, partition);
    653   *(get_sb_index(xd, subsize)) = 0;
    654 
    655   switch (partition) {
    656     case PARTITION_NONE:
    657       write_modes_b(cpi, mi_8x8, bc, tok, tok_end, mi_row, mi_col);
    658       break;
    659     case PARTITION_HORZ:
    660       write_modes_b(cpi, mi_8x8, bc, tok, tok_end, mi_row, mi_col);
    661       *(get_sb_index(xd, subsize)) = 1;
    662       if ((mi_row + bs) < cm->mi_rows)
    663         write_modes_b(cpi, mi_8x8 + bs * mis, bc, tok, tok_end, mi_row + bs,
    664                       mi_col);
    665       break;
    666     case PARTITION_VERT:
    667       write_modes_b(cpi, mi_8x8, bc, tok, tok_end, mi_row, mi_col);
    668       *(get_sb_index(xd, subsize)) = 1;
    669       if ((mi_col + bs) < cm->mi_cols)
    670         write_modes_b(cpi, mi_8x8 + bs, bc, tok, tok_end, mi_row, mi_col + bs);
    671       break;
    672     case PARTITION_SPLIT:
    673       for (n = 0; n < 4; n++) {
    674         int j = n >> 1, i = n & 0x01;
    675         *(get_sb_index(xd, subsize)) = n;
    676         write_modes_sb(cpi, mi_8x8 + j * bs * mis + i * bs, bc, tok, tok_end,
    677                        mi_row + j * bs, mi_col + i * bs, subsize);
    678       }
    679       break;
    680     default:
    681       assert(0);
    682   }
    683 
    684   // update partition context
    685   if (bsize >= BLOCK_8X8 &&
    686       (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT)) {
    687     set_partition_seg_context(cm, xd, mi_row, mi_col);
    688     update_partition_context(xd, subsize, bsize);
    689   }
    690 }
    691 
    692 static void write_modes(VP9_COMP *cpi, vp9_writer* const bc,
    693                         TOKENEXTRA **tok, TOKENEXTRA *tok_end) {
    694   VP9_COMMON *const cm = &cpi->common;
    695   const int mis = cm->mode_info_stride;
    696   int mi_row, mi_col;
    697   MODE_INFO **mi_8x8 = cm->mi_grid_visible;
    698   MODE_INFO **m_8x8;
    699 
    700   mi_8x8 += cm->cur_tile_mi_col_start + cm->cur_tile_mi_row_start * mis;
    701 
    702   for (mi_row = cm->cur_tile_mi_row_start; mi_row < cm->cur_tile_mi_row_end;
    703        mi_row += 8, mi_8x8 += 8 * mis) {
    704     m_8x8 = mi_8x8;
    705     vp9_zero(cm->left_seg_context);
    706     for (mi_col = cm->cur_tile_mi_col_start; mi_col < cm->cur_tile_mi_col_end;
    707          mi_col += MI_BLOCK_SIZE, m_8x8 += MI_BLOCK_SIZE) {
    708       write_modes_sb(cpi, m_8x8, bc, tok, tok_end, mi_row, mi_col,
    709                      BLOCK_64X64);
    710     }
    711   }
    712 }
    713 
    714 /* This function is used for debugging probability trees. */
    715 static void print_prob_tree(vp9_coeff_probs *coef_probs, int block_types) {
    716   /* print coef probability tree */
    717   int i, j, k, l, m;
    718   FILE *f = fopen("enc_tree_probs.txt", "a");
    719   fprintf(f, "{\n");
    720   for (i = 0; i < block_types; i++) {
    721     fprintf(f, "  {\n");
    722     for (j = 0; j < REF_TYPES; ++j) {
    723       fprintf(f, "  {\n");
    724       for (k = 0; k < COEF_BANDS; k++) {
    725         fprintf(f, "    {\n");
    726         for (l = 0; l < PREV_COEF_CONTEXTS; l++) {
    727           fprintf(f, "      {");
    728           for (m = 0; m < ENTROPY_NODES; m++) {
    729             fprintf(f, "%3u, ",
    730                     (unsigned int)(coef_probs[i][j][k][l][m]));
    731           }
    732         }
    733         fprintf(f, " }\n");
    734       }
    735       fprintf(f, "    }\n");
    736     }
    737     fprintf(f, "  }\n");
    738   }
    739   fprintf(f, "}\n");
    740   fclose(f);
    741 }
    742 
    743 static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size) {
    744   vp9_coeff_probs_model *coef_probs = cpi->frame_coef_probs[tx_size];
    745   vp9_coeff_count *coef_counts = cpi->coef_counts[tx_size];
    746   unsigned int (*eob_branch_ct)[REF_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS] =
    747       cpi->common.counts.eob_branch[tx_size];
    748   vp9_coeff_stats *coef_branch_ct = cpi->frame_branch_ct[tx_size];
    749   vp9_prob full_probs[ENTROPY_NODES];
    750   int i, j, k, l;
    751 
    752   for (i = 0; i < BLOCK_TYPES; ++i) {
    753     for (j = 0; j < REF_TYPES; ++j) {
    754       for (k = 0; k < COEF_BANDS; ++k) {
    755         for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
    756           if (l >= 3 && k == 0)
    757             continue;
    758           vp9_tree_probs_from_distribution(vp9_coef_tree,
    759                                            full_probs,
    760                                            coef_branch_ct[i][j][k][l],
    761                                            coef_counts[i][j][k][l], 0);
    762           vpx_memcpy(coef_probs[i][j][k][l], full_probs,
    763                      sizeof(vp9_prob) * UNCONSTRAINED_NODES);
    764           coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] -
    765                                              coef_branch_ct[i][j][k][l][0][0];
    766           coef_probs[i][j][k][l][0] =
    767               get_binary_prob(coef_branch_ct[i][j][k][l][0][0],
    768                               coef_branch_ct[i][j][k][l][0][1]);
    769 #ifdef ENTROPY_STATS
    770           if (!cpi->dummy_packing) {
    771             int t;
    772             for (t = 0; t < MAX_ENTROPY_TOKENS; ++t)
    773               context_counters[tx_size][i][j][k][l][t] +=
    774                   coef_counts[i][j][k][l][t];
    775             context_counters[tx_size][i][j][k][l][MAX_ENTROPY_TOKENS] +=
    776                 eob_branch_ct[i][j][k][l];
    777           }
    778 #endif
    779         }
    780       }
    781     }
    782   }
    783 }
    784 
    785 static void build_coeff_contexts(VP9_COMP *cpi) {
    786   TX_SIZE t;
    787   for (t = TX_4X4; t <= TX_32X32; t++)
    788     build_tree_distribution(cpi, t);
    789 }
    790 
    791 static void update_coef_probs_common(vp9_writer* const bc, VP9_COMP *cpi,
    792                                      TX_SIZE tx_size) {
    793   vp9_coeff_probs_model *new_frame_coef_probs = cpi->frame_coef_probs[tx_size];
    794   vp9_coeff_probs_model *old_frame_coef_probs =
    795       cpi->common.fc.coef_probs[tx_size];
    796   vp9_coeff_stats *frame_branch_ct = cpi->frame_branch_ct[tx_size];
    797   const vp9_prob upd = VP9_COEF_UPDATE_PROB;
    798   const int entropy_nodes_update = UNCONSTRAINED_NODES;
    799   int i, j, k, l, t;
    800   switch (cpi->sf.use_fast_coef_updates) {
    801     case 0: {
    802       /* dry run to see if there is any udpate at all needed */
    803       int savings = 0;
    804       int update[2] = {0, 0};
    805       for (i = 0; i < BLOCK_TYPES; ++i) {
    806         for (j = 0; j < REF_TYPES; ++j) {
    807           for (k = 0; k < COEF_BANDS; ++k) {
    808             for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
    809               for (t = 0; t < entropy_nodes_update; ++t) {
    810                 vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
    811                 const vp9_prob oldp = old_frame_coef_probs[i][j][k][l][t];
    812                 int s;
    813                 int u = 0;
    814 
    815                 if (l >= 3 && k == 0)
    816                   continue;
    817                 if (t == PIVOT_NODE)
    818                   s = vp9_prob_diff_update_savings_search_model(
    819                       frame_branch_ct[i][j][k][l][0],
    820                       old_frame_coef_probs[i][j][k][l], &newp, upd, i, j);
    821                 else
    822                   s = vp9_prob_diff_update_savings_search(
    823                       frame_branch_ct[i][j][k][l][t], oldp, &newp, upd);
    824                 if (s > 0 && newp != oldp)
    825                   u = 1;
    826                 if (u)
    827                   savings += s - (int)(vp9_cost_zero(upd));
    828                 else
    829                   savings -= (int)(vp9_cost_zero(upd));
    830                 update[u]++;
    831               }
    832             }
    833           }
    834         }
    835       }
    836 
    837       // printf("Update %d %d, savings %d\n", update[0], update[1], savings);
    838       /* Is coef updated at all */
    839       if (update[1] == 0 || savings < 0) {
    840         vp9_write_bit(bc, 0);
    841         return;
    842       }
    843       vp9_write_bit(bc, 1);
    844       for (i = 0; i < BLOCK_TYPES; ++i) {
    845         for (j = 0; j < REF_TYPES; ++j) {
    846           for (k = 0; k < COEF_BANDS; ++k) {
    847             for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
    848               // calc probs and branch cts for this frame only
    849               for (t = 0; t < entropy_nodes_update; ++t) {
    850                 vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
    851                 vp9_prob *oldp = old_frame_coef_probs[i][j][k][l] + t;
    852                 const vp9_prob upd = VP9_COEF_UPDATE_PROB;
    853                 int s;
    854                 int u = 0;
    855                 if (l >= 3 && k == 0)
    856                   continue;
    857                 if (t == PIVOT_NODE)
    858                   s = vp9_prob_diff_update_savings_search_model(
    859                       frame_branch_ct[i][j][k][l][0],
    860                       old_frame_coef_probs[i][j][k][l], &newp, upd, i, j);
    861                 else
    862                   s = vp9_prob_diff_update_savings_search(
    863                       frame_branch_ct[i][j][k][l][t],
    864                       *oldp, &newp, upd);
    865                 if (s > 0 && newp != *oldp)
    866                   u = 1;
    867                 vp9_write(bc, u, upd);
    868 #ifdef ENTROPY_STATS
    869                 if (!cpi->dummy_packing)
    870                   ++tree_update_hist[tx_size][i][j][k][l][t][u];
    871 #endif
    872                 if (u) {
    873                   /* send/use new probability */
    874                   vp9_write_prob_diff_update(bc, newp, *oldp);
    875                   *oldp = newp;
    876                 }
    877               }
    878             }
    879           }
    880         }
    881       }
    882       return;
    883     }
    884 
    885     case 1:
    886     case 2: {
    887       const int prev_coef_contexts_to_update =
    888           (cpi->sf.use_fast_coef_updates == 2 ?
    889            PREV_COEF_CONTEXTS >> 1 : PREV_COEF_CONTEXTS);
    890       const int coef_band_to_update =
    891           (cpi->sf.use_fast_coef_updates == 2 ?
    892            COEF_BANDS >> 1 : COEF_BANDS);
    893       int updates = 0;
    894       int noupdates_before_first = 0;
    895       for (i = 0; i < BLOCK_TYPES; ++i) {
    896         for (j = 0; j < REF_TYPES; ++j) {
    897           for (k = 0; k < COEF_BANDS; ++k) {
    898             for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
    899               // calc probs and branch cts for this frame only
    900               for (t = 0; t < entropy_nodes_update; ++t) {
    901                 vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
    902                 vp9_prob *oldp = old_frame_coef_probs[i][j][k][l] + t;
    903                 int s;
    904                 int u = 0;
    905                 if (l >= 3 && k == 0)
    906                   continue;
    907                 if (l >= prev_coef_contexts_to_update ||
    908                     k >= coef_band_to_update) {
    909                   u = 0;
    910                 } else {
    911                   if (t == PIVOT_NODE)
    912                     s = vp9_prob_diff_update_savings_search_model(
    913                         frame_branch_ct[i][j][k][l][0],
    914                         old_frame_coef_probs[i][j][k][l], &newp, upd, i, j);
    915                   else
    916                     s = vp9_prob_diff_update_savings_search(
    917                         frame_branch_ct[i][j][k][l][t],
    918                         *oldp, &newp, upd);
    919                   if (s > 0 && newp != *oldp)
    920                     u = 1;
    921                 }
    922                 updates += u;
    923                 if (u == 0 && updates == 0) {
    924                   noupdates_before_first++;
    925 #ifdef ENTROPY_STATS
    926                   if (!cpi->dummy_packing)
    927                     ++tree_update_hist[tx_size][i][j][k][l][t][u];
    928 #endif
    929                   continue;
    930                 }
    931                 if (u == 1 && updates == 1) {
    932                   int v;
    933                   // first update
    934                   vp9_write_bit(bc, 1);
    935                   for (v = 0; v < noupdates_before_first; ++v)
    936                     vp9_write(bc, 0, upd);
    937                 }
    938                 vp9_write(bc, u, upd);
    939 #ifdef ENTROPY_STATS
    940                 if (!cpi->dummy_packing)
    941                   ++tree_update_hist[tx_size][i][j][k][l][t][u];
    942 #endif
    943                 if (u) {
    944                   /* send/use new probability */
    945                   vp9_write_prob_diff_update(bc, newp, *oldp);
    946                   *oldp = newp;
    947                 }
    948               }
    949             }
    950           }
    951         }
    952       }
    953       if (updates == 0) {
    954         vp9_write_bit(bc, 0);  // no updates
    955       }
    956       return;
    957     }
    958 
    959     default:
    960       assert(0);
    961   }
    962 }
    963 
    964 static void update_coef_probs(VP9_COMP* const cpi, vp9_writer* const bc) {
    965   const TX_MODE tx_mode = cpi->common.tx_mode;
    966 
    967   vp9_clear_system_state();
    968 
    969   // Build the cofficient contexts based on counts collected in encode loop
    970   build_coeff_contexts(cpi);
    971 
    972   update_coef_probs_common(bc, cpi, TX_4X4);
    973 
    974   // do not do this if not even allowed
    975   if (tx_mode > ONLY_4X4)
    976     update_coef_probs_common(bc, cpi, TX_8X8);
    977 
    978   if (tx_mode > ALLOW_8X8)
    979     update_coef_probs_common(bc, cpi, TX_16X16);
    980 
    981   if (tx_mode > ALLOW_16X16)
    982     update_coef_probs_common(bc, cpi, TX_32X32);
    983 }
    984 
    985 static void encode_loopfilter(struct loopfilter *lf,
    986                               struct vp9_write_bit_buffer *wb) {
    987   int i;
    988 
    989   // Encode the loop filter level and type
    990   vp9_wb_write_literal(wb, lf->filter_level, 6);
    991   vp9_wb_write_literal(wb, lf->sharpness_level, 3);
    992 
    993   // Write out loop filter deltas applied at the MB level based on mode or
    994   // ref frame (if they are enabled).
    995   vp9_wb_write_bit(wb, lf->mode_ref_delta_enabled);
    996 
    997   if (lf->mode_ref_delta_enabled) {
    998     // Do the deltas need to be updated
    999     vp9_wb_write_bit(wb, lf->mode_ref_delta_update);
   1000     if (lf->mode_ref_delta_update) {
   1001       // Send update
   1002       for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
   1003         const int delta = lf->ref_deltas[i];
   1004 
   1005         // Frame level data
   1006         if (delta != lf->last_ref_deltas[i]) {
   1007           lf->last_ref_deltas[i] = delta;
   1008           vp9_wb_write_bit(wb, 1);
   1009 
   1010           assert(delta != 0);
   1011           vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
   1012           vp9_wb_write_bit(wb, delta < 0);
   1013         } else {
   1014           vp9_wb_write_bit(wb, 0);
   1015         }
   1016       }
   1017 
   1018       // Send update
   1019       for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
   1020         const int delta = lf->mode_deltas[i];
   1021         if (delta != lf->last_mode_deltas[i]) {
   1022           lf->last_mode_deltas[i] = delta;
   1023           vp9_wb_write_bit(wb, 1);
   1024 
   1025           assert(delta != 0);
   1026           vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
   1027           vp9_wb_write_bit(wb, delta < 0);
   1028         } else {
   1029           vp9_wb_write_bit(wb, 0);
   1030         }
   1031       }
   1032     }
   1033   }
   1034 }
   1035 
   1036 static void write_delta_q(struct vp9_write_bit_buffer *wb, int delta_q) {
   1037   if (delta_q != 0) {
   1038     vp9_wb_write_bit(wb, 1);
   1039     vp9_wb_write_literal(wb, abs(delta_q), 4);
   1040     vp9_wb_write_bit(wb, delta_q < 0);
   1041   } else {
   1042     vp9_wb_write_bit(wb, 0);
   1043   }
   1044 }
   1045 
   1046 static void encode_quantization(VP9_COMMON *cm,
   1047                                 struct vp9_write_bit_buffer *wb) {
   1048   vp9_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS);
   1049   write_delta_q(wb, cm->y_dc_delta_q);
   1050   write_delta_q(wb, cm->uv_dc_delta_q);
   1051   write_delta_q(wb, cm->uv_ac_delta_q);
   1052 }
   1053 
   1054 
   1055 static void encode_segmentation(VP9_COMP *cpi,
   1056                                 struct vp9_write_bit_buffer *wb) {
   1057   int i, j;
   1058 
   1059   struct segmentation *seg = &cpi->common.seg;
   1060 
   1061   vp9_wb_write_bit(wb, seg->enabled);
   1062   if (!seg->enabled)
   1063     return;
   1064 
   1065   // Segmentation map
   1066   vp9_wb_write_bit(wb, seg->update_map);
   1067   if (seg->update_map) {
   1068     // Select the coding strategy (temporal or spatial)
   1069     vp9_choose_segmap_coding_method(cpi);
   1070     // Write out probabilities used to decode unpredicted  macro-block segments
   1071     for (i = 0; i < SEG_TREE_PROBS; i++) {
   1072       const int prob = seg->tree_probs[i];
   1073       const int update = prob != MAX_PROB;
   1074       vp9_wb_write_bit(wb, update);
   1075       if (update)
   1076         vp9_wb_write_literal(wb, prob, 8);
   1077     }
   1078 
   1079     // Write out the chosen coding method.
   1080     vp9_wb_write_bit(wb, seg->temporal_update);
   1081     if (seg->temporal_update) {
   1082       for (i = 0; i < PREDICTION_PROBS; i++) {
   1083         const int prob = seg->pred_probs[i];
   1084         const int update = prob != MAX_PROB;
   1085         vp9_wb_write_bit(wb, update);
   1086         if (update)
   1087           vp9_wb_write_literal(wb, prob, 8);
   1088       }
   1089     }
   1090   }
   1091 
   1092   // Segmentation data
   1093   vp9_wb_write_bit(wb, seg->update_data);
   1094   if (seg->update_data) {
   1095     vp9_wb_write_bit(wb, seg->abs_delta);
   1096 
   1097     for (i = 0; i < MAX_SEGMENTS; i++) {
   1098       for (j = 0; j < SEG_LVL_MAX; j++) {
   1099         const int active = vp9_segfeature_active(seg, i, j);
   1100         vp9_wb_write_bit(wb, active);
   1101         if (active) {
   1102           const int data = vp9_get_segdata(seg, i, j);
   1103           const int data_max = vp9_seg_feature_data_max(j);
   1104 
   1105           if (vp9_is_segfeature_signed(j)) {
   1106             vp9_encode_unsigned_max(wb, abs(data), data_max);
   1107             vp9_wb_write_bit(wb, data < 0);
   1108           } else {
   1109             vp9_encode_unsigned_max(wb, data, data_max);
   1110           }
   1111         }
   1112       }
   1113     }
   1114   }
   1115 }
   1116 
   1117 
   1118 static void encode_txfm_probs(VP9_COMP *cpi, vp9_writer *w) {
   1119   VP9_COMMON *const cm = &cpi->common;
   1120 
   1121   // Mode
   1122   vp9_write_literal(w, MIN(cm->tx_mode, ALLOW_32X32), 2);
   1123   if (cm->tx_mode >= ALLOW_32X32)
   1124     vp9_write_bit(w, cm->tx_mode == TX_MODE_SELECT);
   1125 
   1126   // Probabilities
   1127   if (cm->tx_mode == TX_MODE_SELECT) {
   1128     int i, j;
   1129     unsigned int ct_8x8p[TX_SIZES - 3][2];
   1130     unsigned int ct_16x16p[TX_SIZES - 2][2];
   1131     unsigned int ct_32x32p[TX_SIZES - 1][2];
   1132 
   1133 
   1134     for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
   1135       tx_counts_to_branch_counts_8x8(cm->counts.tx.p8x8[i],
   1136                                      ct_8x8p);
   1137       for (j = 0; j < TX_SIZES - 3; j++)
   1138         vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p8x8[i][j],
   1139                                   MODE_UPDATE_PROB, ct_8x8p[j]);
   1140     }
   1141 
   1142     for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
   1143       tx_counts_to_branch_counts_16x16(cm->counts.tx.p16x16[i],
   1144                                        ct_16x16p);
   1145       for (j = 0; j < TX_SIZES - 2; j++)
   1146         vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p16x16[i][j],
   1147                                   MODE_UPDATE_PROB, ct_16x16p[j]);
   1148     }
   1149 
   1150     for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
   1151       tx_counts_to_branch_counts_32x32(cm->counts.tx.p32x32[i], ct_32x32p);
   1152       for (j = 0; j < TX_SIZES - 1; j++)
   1153         vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p32x32[i][j],
   1154                                   MODE_UPDATE_PROB, ct_32x32p[j]);
   1155     }
   1156 #ifdef MODE_STATS
   1157     if (!cpi->dummy_packing)
   1158       update_tx_count_stats(cm);
   1159 #endif
   1160   }
   1161 }
   1162 
   1163 static void write_interp_filter_type(INTERPOLATIONFILTERTYPE type,
   1164                                      struct vp9_write_bit_buffer *wb) {
   1165   const int type_to_literal[] = { 1, 0, 2 };
   1166 
   1167   vp9_wb_write_bit(wb, type == SWITCHABLE);
   1168   if (type != SWITCHABLE)
   1169     vp9_wb_write_literal(wb, type_to_literal[type], 2);
   1170 }
   1171 
   1172 static void fix_mcomp_filter_type(VP9_COMP *cpi) {
   1173   VP9_COMMON *const cm = &cpi->common;
   1174 
   1175   if (cm->mcomp_filter_type == SWITCHABLE) {
   1176     // Check to see if only one of the filters is actually used
   1177     int count[SWITCHABLE_FILTERS];
   1178     int i, j, c = 0;
   1179     for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
   1180       count[i] = 0;
   1181       for (j = 0; j <= SWITCHABLE_FILTERS; ++j)
   1182         count[i] += cm->counts.switchable_interp[j][i];
   1183       c += (count[i] > 0);
   1184     }
   1185     if (c == 1) {
   1186       // Only one filter is used. So set the filter at frame level
   1187       for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
   1188         if (count[i]) {
   1189           cm->mcomp_filter_type = i;
   1190           break;
   1191         }
   1192       }
   1193     }
   1194   }
   1195 }
   1196 
   1197 static void write_tile_info(VP9_COMMON *cm, struct vp9_write_bit_buffer *wb) {
   1198   int min_log2_tile_cols, max_log2_tile_cols, ones;
   1199   vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
   1200 
   1201   // columns
   1202   ones = cm->log2_tile_cols - min_log2_tile_cols;
   1203   while (ones--)
   1204     vp9_wb_write_bit(wb, 1);
   1205 
   1206   if (cm->log2_tile_cols < max_log2_tile_cols)
   1207     vp9_wb_write_bit(wb, 0);
   1208 
   1209   // rows
   1210   vp9_wb_write_bit(wb, cm->log2_tile_rows != 0);
   1211   if (cm->log2_tile_rows != 0)
   1212     vp9_wb_write_bit(wb, cm->log2_tile_rows != 1);
   1213 }
   1214 
   1215 static int get_refresh_mask(VP9_COMP *cpi) {
   1216     // Should the GF or ARF be updated using the transmitted frame or buffer
   1217 #if CONFIG_MULTIPLE_ARF
   1218     if (!cpi->multi_arf_enabled && cpi->refresh_golden_frame &&
   1219         !cpi->refresh_alt_ref_frame) {
   1220 #else
   1221     if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame &&
   1222         !cpi->use_svc) {
   1223 #endif
   1224       // Preserve the previously existing golden frame and update the frame in
   1225       // the alt ref slot instead. This is highly specific to the use of
   1226       // alt-ref as a forward reference, and this needs to be generalized as
   1227       // other uses are implemented (like RTC/temporal scaling)
   1228       //
   1229       // gld_fb_idx and alt_fb_idx need to be swapped for future frames, but
   1230       // that happens in vp9_onyx_if.c:update_reference_frames() so that it can
   1231       // be done outside of the recode loop.
   1232       return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
   1233              (cpi->refresh_golden_frame << cpi->alt_fb_idx);
   1234     } else {
   1235       int arf_idx = cpi->alt_fb_idx;
   1236 #if CONFIG_MULTIPLE_ARF
   1237       // Determine which ARF buffer to use to encode this ARF frame.
   1238       if (cpi->multi_arf_enabled) {
   1239         int sn = cpi->sequence_number;
   1240         arf_idx = (cpi->frame_coding_order[sn] < 0) ?
   1241             cpi->arf_buffer_idx[sn + 1] :
   1242             cpi->arf_buffer_idx[sn];
   1243       }
   1244 #endif
   1245       return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
   1246              (cpi->refresh_golden_frame << cpi->gld_fb_idx) |
   1247              (cpi->refresh_alt_ref_frame << arf_idx);
   1248     }
   1249 }
   1250 
   1251 static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) {
   1252   VP9_COMMON *const cm = &cpi->common;
   1253   vp9_writer residual_bc;
   1254 
   1255   int tile_row, tile_col;
   1256   TOKENEXTRA *tok[4][1 << 6], *tok_end;
   1257   size_t total_size = 0;
   1258   const int tile_cols = 1 << cm->log2_tile_cols;
   1259   const int tile_rows = 1 << cm->log2_tile_rows;
   1260 
   1261   vpx_memset(cm->above_seg_context, 0, sizeof(PARTITION_CONTEXT) *
   1262              mi_cols_aligned_to_sb(cm->mi_cols));
   1263 
   1264   tok[0][0] = cpi->tok;
   1265   for (tile_row = 0; tile_row < tile_rows; tile_row++) {
   1266     if (tile_row)
   1267       tok[tile_row][0] = tok[tile_row - 1][tile_cols - 1] +
   1268                          cpi->tok_count[tile_row - 1][tile_cols - 1];
   1269 
   1270     for (tile_col = 1; tile_col < tile_cols; tile_col++)
   1271       tok[tile_row][tile_col] = tok[tile_row][tile_col - 1] +
   1272                                 cpi->tok_count[tile_row][tile_col - 1];
   1273   }
   1274 
   1275   for (tile_row = 0; tile_row < tile_rows; tile_row++) {
   1276     vp9_get_tile_row_offsets(cm, tile_row);
   1277     for (tile_col = 0; tile_col < tile_cols; tile_col++) {
   1278       vp9_get_tile_col_offsets(cm, tile_col);
   1279       tok_end = tok[tile_row][tile_col] + cpi->tok_count[tile_row][tile_col];
   1280 
   1281       if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1)
   1282         vp9_start_encode(&residual_bc, data_ptr + total_size + 4);
   1283       else
   1284         vp9_start_encode(&residual_bc, data_ptr + total_size);
   1285 
   1286       write_modes(cpi, &residual_bc, &tok[tile_row][tile_col], tok_end);
   1287       assert(tok[tile_row][tile_col] == tok_end);
   1288       vp9_stop_encode(&residual_bc);
   1289       if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) {
   1290         // size of this tile
   1291         write_be32(data_ptr + total_size, residual_bc.pos);
   1292         total_size += 4;
   1293       }
   1294 
   1295       total_size += residual_bc.pos;
   1296     }
   1297   }
   1298 
   1299   return total_size;
   1300 }
   1301 
   1302 static void write_display_size(VP9_COMP *cpi, struct vp9_write_bit_buffer *wb) {
   1303   VP9_COMMON *const cm = &cpi->common;
   1304 
   1305   const int scaling_active = cm->width != cm->display_width ||
   1306                              cm->height != cm->display_height;
   1307   vp9_wb_write_bit(wb, scaling_active);
   1308   if (scaling_active) {
   1309     vp9_wb_write_literal(wb, cm->display_width - 1, 16);
   1310     vp9_wb_write_literal(wb, cm->display_height - 1, 16);
   1311   }
   1312 }
   1313 
   1314 static void write_frame_size(VP9_COMP *cpi,
   1315                              struct vp9_write_bit_buffer *wb) {
   1316   VP9_COMMON *const cm = &cpi->common;
   1317   vp9_wb_write_literal(wb, cm->width - 1, 16);
   1318   vp9_wb_write_literal(wb, cm->height - 1, 16);
   1319 
   1320   write_display_size(cpi, wb);
   1321 }
   1322 
   1323 static void write_frame_size_with_refs(VP9_COMP *cpi,
   1324                                        struct vp9_write_bit_buffer *wb) {
   1325   VP9_COMMON *const cm = &cpi->common;
   1326   int refs[ALLOWED_REFS_PER_FRAME] = {cpi->lst_fb_idx, cpi->gld_fb_idx,
   1327                                       cpi->alt_fb_idx};
   1328   int i, found = 0;
   1329 
   1330   for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) {
   1331     YV12_BUFFER_CONFIG *cfg = &cm->yv12_fb[cm->ref_frame_map[refs[i]]];
   1332     found = cm->width == cfg->y_crop_width &&
   1333             cm->height == cfg->y_crop_height;
   1334 
   1335     // TODO(ivan): This prevents a bug while more than 3 buffers are used. Do it
   1336     // in a better way.
   1337     if (cpi->use_svc) {
   1338       found = 0;
   1339     }
   1340     vp9_wb_write_bit(wb, found);
   1341     if (found) {
   1342       break;
   1343     }
   1344   }
   1345 
   1346   if (!found) {
   1347     vp9_wb_write_literal(wb, cm->width - 1, 16);
   1348     vp9_wb_write_literal(wb, cm->height - 1, 16);
   1349   }
   1350 
   1351   write_display_size(cpi, wb);
   1352 }
   1353 
   1354 static void write_sync_code(struct vp9_write_bit_buffer *wb) {
   1355   vp9_wb_write_literal(wb, SYNC_CODE_0, 8);
   1356   vp9_wb_write_literal(wb, SYNC_CODE_1, 8);
   1357   vp9_wb_write_literal(wb, SYNC_CODE_2, 8);
   1358 }
   1359 
   1360 static void write_uncompressed_header(VP9_COMP *cpi,
   1361                                       struct vp9_write_bit_buffer *wb) {
   1362   VP9_COMMON *const cm = &cpi->common;
   1363   MACROBLOCKD *const xd = &cpi->mb.e_mbd;
   1364 
   1365   // frame marker bits
   1366   vp9_wb_write_literal(wb, 0x2, 2);
   1367 
   1368   // bitstream version.
   1369   // 00 - profile 0. 4:2:0 only
   1370   // 10 - profile 1. adds 4:4:4, 4:2:2, alpha
   1371   vp9_wb_write_bit(wb, cm->version);
   1372   vp9_wb_write_bit(wb, 0);
   1373 
   1374   vp9_wb_write_bit(wb, 0);
   1375   vp9_wb_write_bit(wb, cm->frame_type);
   1376   vp9_wb_write_bit(wb, cm->show_frame);
   1377   vp9_wb_write_bit(wb, cm->error_resilient_mode);
   1378 
   1379   if (cm->frame_type == KEY_FRAME) {
   1380     write_sync_code(wb);
   1381     // colorspaces
   1382     // 000 - Unknown
   1383     // 001 - BT.601
   1384     // 010 - BT.709
   1385     // 011 - SMPTE-170
   1386     // 100 - SMPTE-240
   1387     // 101 - Reserved
   1388     // 110 - Reserved
   1389     // 111 - sRGB (RGB)
   1390     vp9_wb_write_literal(wb, 0, 3);
   1391     if (1 /* colorspace != sRGB */) {
   1392       vp9_wb_write_bit(wb, 0);  // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
   1393       if (cm->version == 1) {
   1394         vp9_wb_write_bit(wb, cm->subsampling_x);
   1395         vp9_wb_write_bit(wb, cm->subsampling_y);
   1396         vp9_wb_write_bit(wb, 0);  // has extra plane
   1397       }
   1398     } else {
   1399       assert(cm->version == 1);
   1400       vp9_wb_write_bit(wb, 0);  // has extra plane
   1401     }
   1402 
   1403     write_frame_size(cpi, wb);
   1404   } else {
   1405     const int refs[ALLOWED_REFS_PER_FRAME] = {cpi->lst_fb_idx, cpi->gld_fb_idx,
   1406                                               cpi->alt_fb_idx};
   1407     if (!cm->show_frame)
   1408       vp9_wb_write_bit(wb, cm->intra_only);
   1409 
   1410     if (!cm->error_resilient_mode)
   1411       vp9_wb_write_literal(wb, cm->reset_frame_context, 2);
   1412 
   1413     if (cm->intra_only) {
   1414       write_sync_code(wb);
   1415 
   1416       vp9_wb_write_literal(wb, get_refresh_mask(cpi), NUM_REF_FRAMES);
   1417       write_frame_size(cpi, wb);
   1418     } else {
   1419       int i;
   1420       vp9_wb_write_literal(wb, get_refresh_mask(cpi), NUM_REF_FRAMES);
   1421       for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) {
   1422         vp9_wb_write_literal(wb, refs[i], NUM_REF_FRAMES_LOG2);
   1423         vp9_wb_write_bit(wb, cm->ref_frame_sign_bias[LAST_FRAME + i]);
   1424       }
   1425 
   1426       write_frame_size_with_refs(cpi, wb);
   1427 
   1428       vp9_wb_write_bit(wb, xd->allow_high_precision_mv);
   1429 
   1430       fix_mcomp_filter_type(cpi);
   1431       write_interp_filter_type(cm->mcomp_filter_type, wb);
   1432     }
   1433   }
   1434 
   1435   if (!cm->error_resilient_mode) {
   1436     vp9_wb_write_bit(wb, cm->refresh_frame_context);
   1437     vp9_wb_write_bit(wb, cm->frame_parallel_decoding_mode);
   1438   }
   1439 
   1440   vp9_wb_write_literal(wb, cm->frame_context_idx, NUM_FRAME_CONTEXTS_LOG2);
   1441 
   1442   encode_loopfilter(&cm->lf, wb);
   1443   encode_quantization(cm, wb);
   1444   encode_segmentation(cpi, wb);
   1445 
   1446   write_tile_info(cm, wb);
   1447 }
   1448 
   1449 static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) {
   1450   VP9_COMMON *const cm = &cpi->common;
   1451   MACROBLOCKD *const xd = &cpi->mb.e_mbd;
   1452   FRAME_CONTEXT *const fc = &cm->fc;
   1453   vp9_writer header_bc;
   1454 
   1455   vp9_start_encode(&header_bc, data);
   1456 
   1457   if (xd->lossless)
   1458     cm->tx_mode = ONLY_4X4;
   1459   else
   1460     encode_txfm_probs(cpi, &header_bc);
   1461 
   1462   update_coef_probs(cpi, &header_bc);
   1463 
   1464 #ifdef ENTROPY_STATS
   1465   active_section = 2;
   1466 #endif
   1467 
   1468   vp9_update_skip_probs(cpi, &header_bc);
   1469 
   1470   if (cm->frame_type != KEY_FRAME) {
   1471     int i;
   1472 #ifdef ENTROPY_STATS
   1473     active_section = 1;
   1474 #endif
   1475 
   1476     update_inter_mode_probs(cm, &header_bc);
   1477     vp9_zero(cm->counts.inter_mode);
   1478 
   1479     if (cm->mcomp_filter_type == SWITCHABLE)
   1480       update_switchable_interp_probs(cpi, &header_bc);
   1481 
   1482     for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
   1483       vp9_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i],
   1484                                 MODE_UPDATE_PROB,
   1485                                 cpi->intra_inter_count[i]);
   1486 
   1487     if (cm->allow_comp_inter_inter) {
   1488       const int comp_pred_mode = cpi->common.comp_pred_mode;
   1489       const int use_compound_pred = comp_pred_mode != SINGLE_PREDICTION_ONLY;
   1490       const int use_hybrid_pred = comp_pred_mode == HYBRID_PREDICTION;
   1491 
   1492       vp9_write_bit(&header_bc, use_compound_pred);
   1493       if (use_compound_pred) {
   1494         vp9_write_bit(&header_bc, use_hybrid_pred);
   1495         if (use_hybrid_pred)
   1496           for (i = 0; i < COMP_INTER_CONTEXTS; i++)
   1497             vp9_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i],
   1498                                       MODE_UPDATE_PROB,
   1499                                       cpi->comp_inter_count[i]);
   1500       }
   1501     }
   1502 
   1503     if (cm->comp_pred_mode != COMP_PREDICTION_ONLY) {
   1504       for (i = 0; i < REF_CONTEXTS; i++) {
   1505         vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][0],
   1506                                   MODE_UPDATE_PROB,
   1507                                   cpi->single_ref_count[i][0]);
   1508         vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][1],
   1509                                   MODE_UPDATE_PROB,
   1510                                   cpi->single_ref_count[i][1]);
   1511       }
   1512     }
   1513 
   1514     if (cm->comp_pred_mode != SINGLE_PREDICTION_ONLY)
   1515       for (i = 0; i < REF_CONTEXTS; i++)
   1516         vp9_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i],
   1517                                   MODE_UPDATE_PROB,
   1518                                   cpi->comp_ref_count[i]);
   1519 
   1520     update_mbintra_mode_probs(cpi, &header_bc);
   1521 
   1522     for (i = 0; i < NUM_PARTITION_CONTEXTS; ++i) {
   1523       vp9_prob pnew[PARTITION_TYPES - 1];
   1524       unsigned int bct[PARTITION_TYPES - 1][2];
   1525       update_mode(&header_bc, PARTITION_TYPES,
   1526                   vp9_partition_tree, pnew,
   1527                   fc->partition_prob[cm->frame_type][i], bct,
   1528                   (unsigned int *)cpi->partition_count[i]);
   1529     }
   1530 
   1531     vp9_write_nmv_probs(cpi, xd->allow_high_precision_mv, &header_bc);
   1532   }
   1533 
   1534   vp9_stop_encode(&header_bc);
   1535   assert(header_bc.pos <= 0xffff);
   1536 
   1537   return header_bc.pos;
   1538 }
   1539 
   1540 void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, unsigned long *size) {
   1541   uint8_t *data = dest;
   1542   size_t first_part_size;
   1543   struct vp9_write_bit_buffer wb = {data, 0};
   1544   struct vp9_write_bit_buffer saved_wb;
   1545 
   1546   write_uncompressed_header(cpi, &wb);
   1547   saved_wb = wb;
   1548   vp9_wb_write_literal(&wb, 0, 16);  // don't know in advance first part. size
   1549 
   1550   data += vp9_rb_bytes_written(&wb);
   1551 
   1552   vp9_compute_update_table();
   1553 
   1554 #ifdef ENTROPY_STATS
   1555   if (cm->frame_type == INTER_FRAME)
   1556     active_section = 0;
   1557   else
   1558     active_section = 7;
   1559 #endif
   1560 
   1561   vp9_clear_system_state();  // __asm emms;
   1562 
   1563   first_part_size = write_compressed_header(cpi, data);
   1564   data += first_part_size;
   1565   vp9_wb_write_literal(&saved_wb, first_part_size, 16);
   1566 
   1567   data += encode_tiles(cpi, data);
   1568 
   1569   *size = data - dest;
   1570 }
   1571 
   1572 #ifdef ENTROPY_STATS
   1573 static void print_tree_update_for_type(FILE *f,
   1574                                        vp9_coeff_stats *tree_update_hist,
   1575                                        int block_types, const char *header) {
   1576   int i, j, k, l, m;
   1577 
   1578   fprintf(f, "const vp9_coeff_prob %s = {\n", header);
   1579   for (i = 0; i < block_types; i++) {
   1580     fprintf(f, "  { \n");
   1581     for (j = 0; j < REF_TYPES; j++) {
   1582       fprintf(f, "  { \n");
   1583       for (k = 0; k < COEF_BANDS; k++) {
   1584         fprintf(f, "    {\n");
   1585         for (l = 0; l < PREV_COEF_CONTEXTS; l++) {
   1586           fprintf(f, "      {");
   1587           for (m = 0; m < ENTROPY_NODES; m++) {
   1588             fprintf(f, "%3d, ",
   1589                     get_binary_prob(tree_update_hist[i][j][k][l][m][0],
   1590                                     tree_update_hist[i][j][k][l][m][1]));
   1591           }
   1592           fprintf(f, "},\n");
   1593         }
   1594         fprintf(f, "},\n");
   1595       }
   1596       fprintf(f, "    },\n");
   1597     }
   1598     fprintf(f, "  },\n");
   1599   }
   1600   fprintf(f, "};\n");
   1601 }
   1602 
   1603 void print_tree_update_probs() {
   1604   FILE *f = fopen("coefupdprob.h", "w");
   1605   fprintf(f, "\n/* Update probabilities for token entropy tree. */\n\n");
   1606 
   1607   print_tree_update_for_type(f, tree_update_hist[TX_4X4],   BLOCK_TYPES,
   1608                              "vp9_coef_update_probs_4x4[BLOCK_TYPES]");
   1609   print_tree_update_for_type(f, tree_update_hist[TX_8X8],   BLOCK_TYPES,
   1610                              "vp9_coef_update_probs_8x8[BLOCK_TYPES]");
   1611   print_tree_update_for_type(f, tree_update_hist[TX_16X16], BLOCK_TYPES,
   1612                              "vp9_coef_update_probs_16x16[BLOCK_TYPES]");
   1613   print_tree_update_for_type(f, tree_update_hist[TX_32X32], BLOCK_TYPES,
   1614                              "vp9_coef_update_probs_32x32[BLOCK_TYPES]");
   1615 
   1616   fclose(f);
   1617   f = fopen("treeupdate.bin", "wb");
   1618   fwrite(tree_update_hist, sizeof(tree_update_hist), 1, f);
   1619   fclose(f);
   1620 }
   1621 #endif
   1622