Home | History | Annotate | Download | only in doc
      1 % -*- mode: latex; TeX-master: "Vorbis_I_spec"; -*-
      2 %!TEX root = Vorbis_I_spec.tex
      3 % $Id$
      4 \section{Helper equations} \label{vorbis:spec:helper}
      5 
      6 \subsection{Overview}
      7 
      8 The equations below are used in multiple places by the Vorbis codec
      9 specification.  Rather than cluttering up the main specification
     10 documents, they are defined here and referenced where appropriate.
     11 
     12 
     13 \subsection{Functions}
     14 
     15 \subsubsection{ilog} \label{vorbis:spec:ilog}
     16 
     17 The "ilog(x)" function returns the position number (1 through n) of the highest set bit in the two's complement integer value
     18 \varname{[x]}.  Values of \varname{[x]} less than zero are defined to return zero.
     19 
     20 \begin{programlisting}
     21   1) [return_value] = 0;
     22   2) if ( [x] is greater than zero ) {
     23 
     24        3) increment [return_value];
     25        4) logical shift [x] one bit to the right, padding the MSb with zero
     26        5) repeat at step 2)
     27 
     28      }
     29 
     30    6) done
     31 \end{programlisting}
     32 
     33 Examples:
     34 
     35 \begin{itemize}
     36  \item ilog(0) = 0;
     37  \item ilog(1) = 1;
     38  \item ilog(2) = 2;
     39  \item ilog(3) = 2;
     40  \item ilog(4) = 3;
     41  \item ilog(7) = 3;
     42  \item ilog(negative number) = 0;
     43 \end{itemize}
     44 
     45 
     46 
     47 
     48 \subsubsection{float32_unpack} \label{vorbis:spec:float32:unpack}
     49 
     50 "float32_unpack(x)" is intended to translate the packed binary
     51 representation of a Vorbis codebook float value into the
     52 representation used by the decoder for floating point numbers.  For
     53 purposes of this example, we will unpack a Vorbis float32 into a
     54 host-native floating point number.
     55 
     56 \begin{programlisting}
     57   1) [mantissa] = [x] bitwise AND 0x1fffff (unsigned result)
     58   2) [sign] = [x] bitwise AND 0x80000000 (unsigned result)
     59   3) [exponent] = ( [x] bitwise AND 0x7fe00000) shifted right 21 bits (unsigned result)
     60   4) if ( [sign] is nonzero ) then negate [mantissa]
     61   5) return [mantissa] * ( 2 ^ ( [exponent] - 788 ) )
     62 \end{programlisting}
     63 
     64 
     65 
     66 \subsubsection{lookup1_values} \label{vorbis:spec:lookup1:values}
     67 
     68 "lookup1_values(codebook_entries,codebook_dimensions)" is used to
     69 compute the correct length of the value index for a codebook VQ lookup
     70 table of lookup type 1.  The values on this list are permuted to
     71 construct the VQ vector lookup table of size
     72 \varname{[codebook_entries]}.
     73 
     74 The return value for this function is defined to be 'the greatest
     75 integer value for which \varname{[return_value]} to the power of
     76 \varname{[codebook_dimensions]} is less than or equal to
     77 \varname{[codebook_entries]}'.
     78 
     79 
     80 
     81 \subsubsection{low_neighbor} \label{vorbis:spec:low:neighbor}
     82 
     83 "low_neighbor(v,x)" finds the position \varname{n} in vector \varname{[v]} of
     84 the greatest value scalar element for which \varname{n} is less than
     85 \varname{[x]} and vector \varname{[v]} element \varname{n} is less
     86 than vector \varname{[v]} element \varname{[x]}.
     87 
     88 \subsubsection{high_neighbor} \label{vorbis:spec:high:neighbor}
     89 
     90 "high_neighbor(v,x)" finds the position \varname{n} in vector [v] of
     91 the lowest value scalar element for which \varname{n} is less than
     92 \varname{[x]} and vector \varname{[v]} element \varname{n} is greater
     93 than vector \varname{[v]} element \varname{[x]}.
     94 
     95 
     96 
     97 \subsubsection{render_point} \label{vorbis:spec:render:point}
     98 
     99 "render_point(x0,y0,x1,y1,X)" is used to find the Y value at point X
    100 along the line specified by x0, x1, y0 and y1.  This function uses an
    101 integer algorithm to solve for the point directly without calculating
    102 intervening values along the line.
    103 
    104 \begin{programlisting}
    105   1)  [dy] = [y1] - [y0]
    106   2) [adx] = [x1] - [x0]
    107   3) [ady] = absolute value of [dy]
    108   4) [err] = [ady] * ([X] - [x0])
    109   5) [off] = [err] / [adx] using integer division
    110   6) if ( [dy] is less than zero ) {
    111 
    112        7) [Y] = [y0] - [off]
    113 
    114      } else {
    115 
    116        8) [Y] = [y0] + [off]
    117 
    118      }
    119 
    120   9) done
    121 \end{programlisting}
    122 
    123 
    124 
    125 \subsubsection{render_line} \label{vorbis:spec:render:line}
    126 
    127 Floor decode type one uses the integer line drawing algorithm of
    128 "render_line(x0, y0, x1, y1, v)" to construct an integer floor
    129 curve for contiguous piecewise line segments. Note that it has not
    130 been relevant elsewhere, but here we must define integer division as
    131 rounding division of both positive and negative numbers toward zero.
    132 
    133 
    134 \begin{programlisting}
    135   1)   [dy] = [y1] - [y0]
    136   2)  [adx] = [x1] - [x0]
    137   3)  [ady] = absolute value of [dy]
    138   4) [base] = [dy] / [adx] using integer division
    139   5)    [x] = [x0]
    140   6)    [y] = [y0]
    141   7)  [err] = 0
    142 
    143   8) if ( [dy] is less than 0 ) {
    144 
    145         9) [sy] = [base] - 1
    146 
    147      } else {
    148 
    149        10) [sy] = [base] + 1
    150 
    151      }
    152 
    153  11) [ady] = [ady] - (absolute value of [base]) * [adx]
    154  12) vector [v] element [x] = [y]
    155 
    156  13) iterate [x] over the range [x0]+1 ... [x1]-1 {
    157 
    158        14) [err] = [err] + [ady];
    159        15) if ( [err] >= [adx] ) {
    160 
    161              16) [err] = [err] - [adx]
    162              17)   [y] = [y] + [sy]
    163 
    164            } else {
    165 
    166              18) [y] = [y] + [base]
    167 
    168            }
    169 
    170        19) vector [v] element [x] = [y]
    171 
    172      }
    173 \end{programlisting}
    174 
    175 
    176 
    177 
    178 
    179 
    180 
    181 
    182